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Abstract: Lack-of-fit testing is often essential in many statistical/machine learning

applications. Despite the availability of large-scale data sets, the challenges associ-

ated with model checking when some resource budgets are limited are not yet well

addressed. In this paper, we propose a design-adaptive testing procedure for check-

ing a general model when only a limited number of data observations are available.

We derive an optimal sampling strategy, called Structure-Adaptive-Sampling, to se-

lect a small subset from a large pool of data. With this subset, the proposed test

possesses the asymptotically best power. Numerical results on both synthetic and

real-world data confirm the effectiveness of the proposed method.
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1. Introduction

The emergence of big data has provided statisticians with both unprece-

dented opportunities and challenges. One of the key challenges is that applying

statistical methods directly to super-large data using conventional computing ap-

proaches is prohibitive, which calls for the development of new tools. Recently,

statistical analysis and inference in large-scale data sets have garnered much at-

tention. As a result, computationally scalable methods have been proposed to

reduce the computation and storage effort from various aspects of applications.

These include the divide-and-conquer procedures (Battey et al. (2018); Jordan,

Lee and Yang (2019); Zhao, Zou and Wang (2017, 2019)), subsampling strategies

(Kleiner et al. (2014); Wang, Zhu and Ma (2018)), and online learning meth-

ods (Balakrishnan and Madigan (2008); Schifano et al. (2016)). Most of the

aforementioned works usually assume a parametric model, typically a linear or

a logistic regression model. Therefore, it is necessary to check that a given re-

gression model is not misspecified, such that the subsequent planning, analysis,
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and inference can proceed in a creditable way. This study focuses on lack-of-

fit checking for parametric and semiparametric models in a large-scale data set

setting.

Suppose Y is the response and X = (x1, . . . , xp)
> ∈ Rp is the p-dimensional

covariate. We consider the general model in Xia (2009)

Y = G(X;β,g) + ε, (1.1)

where g = (g1, . . . , gq)
> are unknown smooth functions of X, G(·) is known up

to a parameter vector β, and ε is a random error with E(ε | X)=0. This model

includes many parametric and semiparametric models as special cases, such as

the generalized additive models (Hastie and Tibshirani (1986)), partially linear

models (Speckman (1988)), single-index or multi-index models (Hardle, Hall and

Ichimura (1993); Xia et al. (2002)), and varying coefficient models (Hastie and

Tibshirani (1993)). Specifically, the generalized additive models and single-index

models admit the forms of Y = g1(x1) + g2(x2) + · · · + gp(xp) + ε and Y =

g(X>β) + ε, respectively.

The cared model checking problem can be formulated as the following test:

H0 : E(Y | X) = G(X;β0,g0), for some β0 ∈ Θ,g0 ∈ G,
H1 : E(Y | X) 6= G(X;β,g), for any β ∈ Θ,g ∈ G,

(1.2)

where G(X;β0,g0) is a prespecified model with unknown β0 and g0, and Θ and

G are the parameter and function spaces, respectively.

In this paper, we aim to answer the question that “given a limited budget or

resources, how can a practitioner optimally use this budget to test (1.2) in a large-

scale data set analysis”. There are usually two types of limited budgets. On the

one hand, computing capacity limits how much data can be processed. Because

model checking is very likely one of the most preliminary steps in data analy-

sis, practitioners are typically reluctant to expend much computational effort.

Several lack-of-fit tests for small and moderate sample sizes have been proposed.

Here, nonparametric smoothing-based tests and their variants, such as those of

Hardle and Mammen (1993), Zheng (1996), and Fan and Huang (2005), are very

popular, owing to their efficiency and flexibility; see González-Manteiga and Cru-

jeiras (2013) and Guo and Zhu (2017) for comprehensive reviews. However, the

computational complexity and memory required by these methods are typically

quadratic in the sample size, which may greatly hamper their applicability to

large-scale data sets applications. On the other hand, despite the availability

of large-scale data sets, in many applications, collecting responses or labels for
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all data points is impossible due to measurement constraints or costs (Wang,

Yu and Singh (2017); Ren et al. (2020)), especially at the beginning of the data

processing. As a result, these constraints often require that we select a small

subset from a large pool of given design points X, and use the limited budget

to obtain the corresponding responses Y . For example, in the problem of speech

recognition, one may easily get large amounts of unlabeled audio data, but the

accurate labeling of speech utterances is extremely time-consuming and requires

trained linguists. Annotation at the word level can take 10 times longer than the

actual audio (Tur, Hakkani-Tür and Schapire (2005)).

When proven statistical methods are no longer applicable because of the two

types of limited resources, a natural and appealing method of extracting useful

information from the data is the subsampling method (Kleiner et al. (2014); Ma

and Sun (2015)). Many existing works on subsampling take uniform samples

from the full data. However, a nonuniform sampling strategy may achieve better

performance. For example, in the estimation problem of linear models, Ma,

Mahoney and Yu (2015) and Ma and Sun (2015) propose a so-called algorithmic

leveraging with a nonuniform sampling probability to draw a more informative

subsample data set. Other recent developments include the works of Wang, Yang

and Stufken (2019), Yao and Wang (2019), Yu et al. (2020), and Ai et al. (2021).

However, the challenges associated with designing an efficient testing procedure

for model checking are not yet well addressed.

In this paper, we propose a new design-adaptive testing procedure for prob-

lem (1.2) when a computation or measurement budget is imposed. The main

idea is to select the most informative sample points from the full data, and

then to construct a computationally tractable test statistic based on the obser-

vations of those selected points. We derive an optimal sampling strategy, called

Structure-Adaptive-Sampling (SAS), with which the proposed test possesses the

asymptotically best power. An initial step is needed to obtain raw estimations

of the quantities involved in the optimal design criterion. The estimated designs

with plug-in estimators are shown to perform as well as the theoretical oracle

design from asymptotic viewpoints. The SAS procedure addresses a key question

in a general semiparametric framework: how to use limited resources to imple-

ment efficient lack-of-fit tests. Our simulation results clearly demonstrate the

superiority of the proposed procedure over existing methods.

The remainder of our paper is structured as follows. In Section 2, we con-

struct the optimal sampling designs and discuss the asymptotic justifications.

Some practical guidelines are given in Section 3. Numerical studies and a real-

world example are conducted in Section 4. Section 5 concludes the paper, and
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theoretical proofs are provided in the Appendix.

2. Methodology

Assume that there are total N available data points or observable subjects

X = {Xa
j}Nj=1 ∈ Rp. Given a measurement constraint, only n samples S =

{Xi, Yi}ni=1 can be obtained, or, similarly, the computational budget only allows

us to deal with one data set of size n, where Yi is the response and n� N . For

the data set S, we independently sample Xi from X with replacement and then

observe its corresponding response Yi. We start with the test construction on S
given the full data.

2.1. Test construction

Denote the residual as ε = Y − G(X;β0,g0). Then, test problem (1.2)

amounts to assessing whether or not E(ε | X) = E {Y −G(X;β0,g0) | X} is equal

to zero. A standard way is to construct a test statistic based on an estimated E(ε |
X) with fitted residuals under the null hypothesis. See, for example, Hardle and

Mammen (1993), Stute, Manteiga and Quindimil (1998), Dette (1999), and Fan,

Zhang and Zhang (2001). However, because of the difficulty of nonparametrically

estimating the function E(ε | X) or E(Y | X) when p > 2, the efficiency of those

methods drops rapidly as the dimension p of the covariates increases.

To this end, we consider a structured alternative model as E(ε | X) =

M(θ>X), where θ ∈ Rp is one projection direction with ‖θ‖2 = 1, and M(·)
is an unknown smooth function. Thus, the alternative E(ε | X) 6= 0 is equivalent

to E(ε | θ>X) 6= 0. It is also clear that E(ε | θ>X) = 0 because E(ε | X) = 0

under the null hypothesis. Then, test problem (1.2) can be formulated as follow:

H0 : E(ε | θ>X) = 0 versus H1 : E(ε | θ>X) = M(θ>X) 6= 0, (2.1)

where M(θ>X) 6= 0, for some θ>X ∈ Ω ⊂ R. Intuitively, E
{
εE(ε | θ>X)

}
is a good choice to measure the derivation between H0 and H1. Under H0,

E{εE(ε | θ>X)} = 0, whereas under H1, E{εE(ε | θ>X)} = E{E2(ε | θ>X)} > 0.

Thus, our test can be built using E{εE(ε | θ>X)}, which is a popular quantity

in the context of model specification tests (Zheng (1996); Guerre and Lavergne

(2005)).

Given the projection direction θ, a nonparametric estimation of E{εE(ε |
θ>X)} based on S = {Xi, Yi}ni=1 is
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Vf =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

ε̂iε̂jKh(ωi − ωj)√
f(ωi)

√
f(ωj)

,

where ωi = θ>Xi is followed by a density f(·), ε̂i = Yi − G(Xi; β̂, ĝ) are the

fitted residuals, β̂ and ĝ are estimates of β and g, respectively, and Kh(·) =

K(·/h)/h denotes a one-dimensional kernel function with a bandwidth h. For

notational simplicity, we only emphasize the dependence of the test statistic Vf
on the density f(·). Under some mild conditions, it can be shown that Vf is

asymptotically normal under H0 (Zheng (1996); Guerre and Lavergne (2005));

that is,

Tf :=
nh1/2Vf
σV

L−→ N (0, 1), (2.2)

where σ2
V = 2σ4|Ω|

∫
K2(u)du is the asymptotic variance under the null. In the

latter, |Ω| is the cardinality of Ω and σ2 = E(ε2 | θ>X). The arrow
L−→ should

be understood as convergence in distribution. A large value of Tf would lead to

a rejection of the null.

Note that θ plays an important role in dimension reduction in the test statis-

tic Vf . In practice, θ can be specified by the user or estimated using some di-

mension reduction techniques. See Section 3 for a detailed discussion on how

to determine θ. Similar projection-based tests have been proposed in the liter-

ature. For example, Fan and Huang (2001) reduced the dimension based on X

alone, and Xia (2009) proposed projecting the fitted residuals along a direction

that adapts to the systematic departure of the residuals from the hypothetical

pattern with cross-validation in the single-index model. A more closely related

work is Guo, Wang and Zhu (2016), who checked the single-index models based

on a joint estimation of the dimension reduction matrix. Other works include

Zhu, Guo and Zhu (2017) and Tan, Zhu and Zhu (2018).

2.2. Optimal sampling strategy

To implement the proposed method, it is important to specify the sampling

density f(ω). The conventional choice is to let f(ω) be the uniform distribution

(Stute and Zhu (2002); Guo, Wang and Zhu (2016)), which corresponds to sim-

ple uniform sampling. However, uniform sampling may not be optimal in that

informative subsamples are not be selected. Under certain local alternatives, the

asymptotic distribution of Tf is also normal, but with a positive mean, which

depends on f(ω). This implies that choosing an appropriate sampling density

f(ω) will maximize the power of this test.
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Next, we provide a result that sheds lights on how to determine the opti-

mal sampling density. First, we need the following to facilitate the derivation.

Let (β∗,g∗) = arg min(β,g)∈Θ⊗G E {Y −G(X;β,g)}2. Under H0, it is clear that

(β∗,g∗) = (β0,g0).

Assumption 1. (Moments condition) For κ = 4 + γ with small enough γ > 0,

E(εκ | X) ≤ C1 <∞, where C1 > 0 is a fixed constant.

Assumption 2. (Density function) The density function of ω, f(ω), is contin-

uous on the compact support ω ∈ Ω, satisfying 0 < infω∈Ω f(ω) ≤ supω∈Ω f(ω) <

∞.

Assumption 3. (Kernel function) K(·) is a continuous, nonnegative, bounded,

and symmetric kernel function with a bounded first-order derivative.

Assumption 4. (Model) The semiparametric model can be approximated using

a first-order Taylor expansion,

G(X; β̂, ĝ) = G(X;β,g) +∇G>β (X; β̃, g̃)(β̂ − β) +∇G>g (X; β̃, g̃)(ĝ − g),

where ∇Gg(X;β,g) =
{
∇Gg1(X;β, z), . . . ,∇Ggq(X;β, z)

}>
, with ∇Ggk(X;β, z)

= ∂G(X;β, z)/∂zk. Here, g̃k(ν) lies between gk(ν) and ĝk(ν), for k = 1, . . . , q,

and β̃ lies between β and β̂. And, ∇Gβ(X;β,g) = ∂G(X;β,g)/∂β. Fur-

ther, ∇Gβ and ∇Gg are Lipschitz continuous, and 0 < maxβ∈Θ,g∈G(E{∇Gβ(Xi;

β, gk)}2,E{∇Gg(Xi;β, gk)}2) ≤ C2 < ∞, for i = 1, . . . , n, with some positive

constant C2.

Assumption 5. (Asymptotic representation) Suppose ‖β̂ − β∗‖ = Op(n
−1/2).

Assume that all link functions, g1, . . . , gq, own a common compact support Γ,

and their estimators admit the following asymptotic expansions:

sup
ν∈Γ

∣∣∣∣∣ĝk(ν)− g∗k(ν)−Rk(ν)b2 − n−1Hk(ν)

n∑
i=1

φk(Xi)Qb(uki − ν)εi

∣∣∣∣∣ = Op(n
−1/2),

for k = 1, . . . , q, where uki is a measurable function of Xi, R(·), H(·), and

φ(·) are bounded continuous functions. For some positive integer r ≥ 2, the rth

derivative of gk(·) is bounded. Qb(·) is a bounded, symmetric, and rth order

continuously differentiable kernel function with smoothing parameter b, satisfying∫
Qb(u)du = 1,

∫
uiQb(u)du = 0, and

∫
urQb(u)du 6= 0, for 0 ≤ i < r, b → 0,

and nb→∞ as n→∞.

Assumption 6. (Bandwidth) The testing bandwidth h satisfies h→ 0, nh→∞,

and nh1/2b2r → 0 as n→∞, with positive integer r ≥ 2.



SAS MODEL CHECKING 309

Remark 1. Assumptions 1−3 are standard in kernel-based methods, though

some of them may not be the weakest possible. For instance, we only require

that f(·) be Lipschitz continuous and bounded away from zero if some other

conditions are imposed. Assumption 4 is a regularity condition on the semipara-

metric model. This is reasonable because we cannot expect our procedure to

work well if G(·) is not in a regular form. The formulation is quite mild and can

be satisfied by all commonly used semiparametric models. Assumption 5 sets

theoretical requirements for the estimates of the model, and is fulfilled by most

semiparametric estimation methods and models, including the partially linear

model (Speckman (1988)), additive model (Horowitz and Mammen (2004)), vary-

ing coefficient model (Fan and Zhang (1999)), and single-index model (Ichimura

(1993)), under the condition that the nonparametric part g is a twice continu-

ously differentiable function on Ω; see also Xia (2009). Assumption 6 gives the

bandwidth requirements for implementing the test Vf with an asymptotic normal

calibration. The optimal rate of the nonparametric estimation n−1/5 appears to

be not allowed if we set b = h for simplicity and consider the case r = 2. This is

very common in nonparametric specification tests, and certain under-smoothing

is necessary (see Fan, Zhang and Zhang (2001)). �

Consider the local alternative model as Y = G(X;β,g) + δnl(ω) + ε. Thus,

the corresponding local alternatives become

H1n : M(ω) = δnl(ω) for ω ∈ Ω, (2.3)

where M(ω) = E(ε | θ>X = ω), δn → 0 as n → ∞, and l(ω) is continuously

differentiable on Ω satisfying E
{
l2(ω)

}
<∞ and bounded away from zero almost

everywhere. Under (2.3), δnl(ω) characterizes the model difference from the null

to the alternative, which goes to zero as n → ∞. Then, we have the following

result.

Theorem 1. Suppose Assumptions 1–6 hold. Under the local alternatives (2.3)

with δn = (nh1/2)−1/2, the test based on Tf reaches its asymptotic best power if

the sampling density f(ω) ∝M2(ω).

Under the local alternative (2.3), E(Tf ) = Ef
{
l2(ω)

}
/σV and the asymptotic

variance σ2
V does not depend on f(ω) and l(ω). As a result, we can obtain an

explicit power expression that depends on Ef
{
l2(ω)

}
. Theorem 1 enlightens us

to construct a locally most powerful test by choosing the sampling distribution

f(ω) as a linear function of M2(ω). A similar optimization technique, Cauchy’s

inequality, is adopted in Wang, Zhu and Ma (2018) to derive the nonuniform
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sampling strategy under some optimality criterion. However, it is an estimation

problem, and its focus is to estimate the sampling probabilities when full data are

available, which is quite different to our testing procedure. In our work, we only

need to sample the data point X with sampling density f(·), and then observe

its corresponding response Y . Because the sampling density is related to the

underlying model structure, we call this the Structure-Adaptive-Sampling (SAS)

procedure.

2.3. Estimation of optimal density f(·)

The optimal sampling density depending on M(ω) contains the unknown

function l(ω) in Theorem 1. As a result, we cannot apply an exact f(ω) directly

in a practical implementation. Hence, it is necessary to obtain raw but informative

estimates using a pilot study. Then, an approximately optimal sampling plan can

be achieved. Assume we have the data set S0 = {X0i, Y0i}n0

i=1 for the pilot study,

where n0 ≤ n and {X0i}n0

i=1 are uniformly sampled from X . Given θ, let {ε̂0i}n0

i=1

be the fitted residuals based on S0. Then, a consistent estimator of M(ω) is

M̂(ω) =

n0∑
i=1

Khf
(ω0i − ω)ε̂0i

n0∑
i=1

Khf
(ω0i − ω)

, (2.4)

where ω0i = θ>X0i, and hf is a prespecified bandwidth that satisfies hf → 0 and

n0hf/ log n0 →∞ as n0 →∞. By Theorem 1, the optimal distribution f(ω) can

be estimated by

f̂(ω) =
max{ξn0

, M̂2(ω)}∫
max{ξn0

, M̂2(ω)}dω
, (2.5)

where ξn0
is fixed as O {(log n0)c/(n0hf )}, for c > 1. The use of ξn0

in (2.5)

ensures that the estimated density is bounded away from zero, especially under

H0, where M(ω) = 0 for any ω ∈ Ω. By our theoretical results given in the

Appendix, supω |M(ω)| = op(ξ
1/2
n0 ) under H0, and f̂(ω) degenerates to a uniform

distribution with probability tending to one, that is, f̂(ω) = 1/ |Ω|.
The next result shows that the effect of replacing M(ω) by appropriate es-

timators can be asymptotically negligible, and the efficiency of the locally most

powerful test can still be achieved under some mild conditions.

Theorem 2. Assume Assumptions 1–6 and (n0/n)(h2
f/h)1/2/(log n0)c → ∞ all

hold. Under the local alternatives H1n (2.3), the power function of our SAS test

with f̂(ω) can be approximated by
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Πf = Φ

(∫
l4(ω)dω/

∫
l2(ω)dω

σV
− zα

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal,

and zα is the corresponding upper-α quantile.

Note that Ef
{
l2(ω)

}
is the alternative mean of the test statistic Vf and

satisfies Ef
{
l2(ω)

}
≤
∫
l4(ω)dω/

∫
l2(ω)dω. Thus, using the estimated density

f̂(ω) in (2.5) yields a more powerful test.

Furthermore, a more compelling result is that the optimal sampling strategy

could be more prominent when the signal functionM(ω) exhibits a sparse pattern.

Consider the following sequence of “singular” local alternatives:

H′1n : M(ω) = δ′nl(ω) for ω ∈ Ωn, (2.6)

where Ωn ⊂ Ω satisfying |Ωn| ≈ an, with an → 0 a deterministic sequence, and

l(ω) bounded away from zero on Ωn almost everywhere. The main feature of

these “singular” local alternatives is that they have narrow spikes and change

rapidly as the sample size n increases. In other words, the alternatives in (2.6)

can be regarded as sparse/high-frequency alternatives, whereas those in (2.3) can

be viewed as dense/low-frequency alternatives.

Corollary 1. Consider the “singular” local alternative (2.6) with δ′n = (nh1/2

a
1/2
n )−1/2, an/h → ∞, and infω∈Ωn

l(ω) ≥ lmin > 0. Suppose the conditions in

Theorem 2 hold. If (n0/n)(h2
f/h)1/2/{a1/2

n (log n0)c} → ∞, the asymptotic power

of our sampling test with f̂(ω) is not smaller than Φ(µ(f,Ωn)/σV (f,Ωn) − zα),

where µ(f,Ωn) = |Ωn|−1/2 l2min and σ2
V (f,Ωn) = 2σ4 |Ωn|

∫
K2(u)du.

The condition an/h → ∞ in Corollary 1 ensures that our test works well if

the sparse signal size of Ωn goes to zero more slowly than h does as n increases.

The advantage of the proposed test under (2.6) is that the conditions imposed

on the estimating bandwidth hf are more relaxed in Corollary 1. That is, if

an = h1/2, the optimal rate of the nonparametric bandwidth hf = O(n
−1/5
0 ) can

be allowed, as long as the testing bandwidth h satisfies nh3/4/n
4/5
0 → 0.

2.4. The SAS-based testing procedure

Our procedure for model checking is summarized as follows.

To generate n samples at Step 3, we could estimate the sampling proba-

bilities using (2.5) for N possible data points in X , and then draw n sampling

points {Xi}ni=1 by a multinomial distribution. This sampling procedure is fast to

implement with the computational complexity O(Nn0hf ). Note that the com-
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Figure 1. Empirical sizes and powers (%) for the tests with different sampling methods
under Scenarios I−III when errors follow N (0, 1) independently and the design points X
are from N (0, Ip). The gray dotted line is the significance level α = 0.05.

Algorithm 1 Model checking via structure-adaptive-sampling

Step 1 (Initialization) Specify K(·), n0, n, hf , h, and θ;
Step 2 (Pilot study) Estimate model (1.1) based on S0 = {X0i, Y0i}n0

i=1, and compute
the fitted residuals {ε̂0i}n0

i=1, where X0i are uniformly sampled from X ;

Step 3 (Sampling) Obtain f̂(ω) using (2.5) with M̂(ω) in (2.4) based on S0 and

{ε̂0i}n0
i=1; sample n data points Xi with f̂(ω) from X and obtain the corresponding Yi

as S = {Xi, Yi}ni=1;
Step 4 (Test) Compute {ε̂i}ni=1 based on S, and build Tf̂ using (2.2); further, reject
H0 if Tf̂ > zα.

putational complexity for the estimation of G(·) is generally linear in the sample

size; thus, the computing time of the pilot study is O(n0). Therefore, the com-

putation of our SAS testing procedure is O(n0 +Nn0hf +n2h), where O(n2h) is

the complexity of computing T
f̂

in Step 4.

We use a numerical example to demonstrate the performance of our SAS

test. We sample n = 1,000 data points and n0 = 300 pilot samples from X
with size N = 105, and consider three alternative models. See Scenarios I−III

in Section 4.1 for details. Figure 1 compares the power curves of our proposed

procedure, SAS, with those of three other sampling-based tests. These tests differ

only in their sampling strategies. Specifically, OS uses the so-called “oracle”

density M2(ω)/
∫
M2(ω)dω as if M(ω) is known, and US0 and US use a uniform

distribution to sample n and n+n0 points, respectively, for building Tf . The pilot

study (if needed) for all methods is based on n0 observations. The improvement

of our adaptive-sampling-based test over US0 and US is clear. The OS approach
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has superior performance as expected, but the difference between SAS and OS

becomes smaller than US0 and US as the signal δ increases.

In the foregoing discussion, we assume the alternative model is E(ε | X) =

M(θ>X) 6= 0 for any vector θ. In fact, we cannot expect this model to hold ex-

actly. A more realistic assumption is that E(ε | X) = MB(B>X), where B is a p×
d matrix with unknown d ≥ 1. In such a situation, we may work with a misspeci-

fied model. However, as long as the alternative satisfies E
{
MB(B>X) | θ>X

}
6=

0, the proposed test still works well, and its power function can be verified us-

ing ΠMB
= Φ(µ(f,B,θ)/σV (B,θ) − zα), where σ2

V (B,θ) = 2σ4|Ψ|
∫
K2
d(s)ds

with B>X ∈ Ψ and a d-dimensional kernel function Kd(·), and µ(f,B,θ) =

Ef
[
E
{
MB(B>X)

}
| θ>X

]2
. Note that if E

{
E(ε | X) | θ>X

}
is a function of

θ>X, say d = 1, then ΠMB
reduces to the one given in Theorem 2.

3. Practical Guidelines

In this section, several practical issues on implementing the SAS procedure

are discussed, including the choices of projection direction and bandwidths as

well as the determination of n0.

3.1. Determination of θ

A key aspect of the implementation of the SAS procedure is the selection of

the projection direction θ. Actually, one can assign a fixed θ based on practical

requirements or estimate it using some dimension reduction techniques. For ex-

ample, we want to check whether there might be a nonlinear relationship between

the response Y and the covariate x1 when the null hypothesis is a linear function.

In this case, we can directly set θ = (1, 0, . . . , 0)>.

In general, we can obtain a reliable estimation of θ in the pilot study with

some techniques on sufficient dimension reduction (SDR). To identify the di-

mension reduction subspace, the literature contains many proposals, such as the

classical sliced inverse regression (SIR, Li (1991)), sliced average variance esti-

mation (SAVE, Cook and Weisberg (1991)), directional regression (DR, Li and

Wang (2007)), and likelihood acquired directions (Cook and Forzani (2009)).

Specifically, Xia et al. (2002) proposed the minimum average variance estimate

(MAVE) to estimate the reduction space with fewer regularity conditions on the

covariates X.

Next, we demonstrate the asymptotic properties of the test statistic T
f̂

when

θ is estimated using a pilot study (Step 2 in Algorithm 1).
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Assumption 7. (Projection direction) The estimated projection direction with a

sample of size n0 satisfies θ̂ − θ = Op(n
−1/2
0 ) as n0 →∞, where

θ = argmin
α:‖α‖2=1

E
{
ε− E(ε | α>X = ω)

}2
.

Assumption 7 is very mild and typically holds for most SDR methods.

Theorem 3. Suppose Assumptions 1–7 and n0h
3/2 →∞ hold. The variance σ2

V

can be consistently estimated by σ̂2
V = {n(n− 1)}−1 2h

∑n
i=1

∑n
j 6=i ε̂

2
i ε̂

2
jK

2
h(ω̂i −

ω̂j){f̂(ω̂i)f̂(ω̂j)}−1. We have the following results:

(i) Under the null hypothesis H0 (2.1), T
f̂

L−→ N (0, 1);

(ii) Under the local alternative H1n (2.3) with (n0/n)(h2
f/h)1/2/(log n0)c → ∞

and δn = (nh1/2)−1/2, T
f̂
− {
∫
l4(ω)dω/

∫
l2(ω)dω}/σ̂V

L−→ N (0, 1).

Theorem 3 can be viewed as a counterpart of the asymptotic normality re-

sult given in Zheng (1996) or Guerre and Lavergne (2005) as shown in (2.2), by

generalizing a parametric null specification model to a much more generic semi-

parametric one (1.1). Owing to the involvement of the estimations of both θ and

G(·), the technical details of our theory are not straightforward and cannot be

obtained from those existing works.

Theorem 3 implies that our SAS procedure achieves the best power with θ̂

from an asymptotic viewpoint, and the results in Theorem 2 can still be achieved.

This is further verified by numerical comparisons over a wide range of values of

θ in the Supplementary Material, Table S1. In this paper, we use the MAVE

method (Xia et al. (2002)) to estimate θ in the pilot study, owing to its easy

implementation with the R package MAVE.

3.2. Bandwidth selection

Like many other smoothing-based tests, the performance of the SAS test

possibly depends on the bandwidth h in the test statistic T
f̂

and on the hf
in the density estimator (2.4). By Corollary 1, the optimal hf for estimator

M̂(ω) can achieve the order O(n
−1/5
0 ). Thus, we take the empirical bandwidth

formula hf = 0.5sd(ω0)n
−1/5
0 as a rule of thumb, where sd(ω0) denotes the sample

standard deviation of ω0 = {θ>X0i}n0

i=1.

In contrast to the estimating bandwidth hf , it is widely known that selecting

a bandwidth h for optimal testing power is an open problem (Hart (1997); Stute

et al. (2005)). Asymptotically, a range of bandwidths that satisfy Assumption
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6 will retain the consistency of the test, whereas a larger bandwidth generally

results in better power from Theorem 2. However, in practice, the condition

h → 0 restricts h to not being too large, and the condition nh3/4/n
4/5
0 → 0

ensures that h cannot be too small. Based on our numerical results, the ob-

served significance changes only mildly over a wide range of values of h, and

we recommend h =
{
hf (n0/n)1/5

}2+η
with some η > 0, so that the condition

(n0/n)(h2
f/h)1/2/{a1/2

n (log n0)c} → ∞ in Corollary 1 is roughly valid. This choice

works well for a wide range of models and pilot sample sizes, as shown in Section

4.

3.3. Choice of sample size

In practice, we could uniformly sample n0 data points as S0 for the pilot

study. Note that there is a trade-off in the selection of n0 between estimation

efficiency and computational complexity. Intuitively, a larger n0 would attain

more accurate estimations of the density function f̂(·) and projection direction

θ (if needed), but involves a greater computational burden. To satisfy our theo-

retical requirements, we could roughly consider n0 = bn3/5(log n)c0c, with some

c0 > 0. Our simulations show that reliable estimations could be obtained, and

the performance of the SAS method is not affected too much as long as n0 ≥ 200

in the pilot study, which seems to be acceptable for a large-scale data set.

Note too that better performance would be expected when n is larger. How

large the sample size n is allowed to be depends on practitioners’ resource con-

straints, such as computational power, measurement costs, and processing time.

4. Numerical Studies

In this section, we examine the performance of our proposed SAS procedure

using Monte Carlo simulation studies and a real data example.

4.1. Simulation studies

The data are generated by the model Y = G(X;β,g) + ε, where ε is dis-

tributed from N (0, 1), and the covariates X are drawn independently from the

whole space X . Consider that full data points X with N = |X | = 105 are in-

dependent and identically distributed (i.i.d) from N (0,Σ). Two classes of Σ

are explored: one is the identity matrix Ip, and the other has the components

(Σ)ij = 0.5|i−j|, for i, j = 1, . . . , p. We denote these two as the “IID” and “COR”

cases, respectively. The sample size n is fixed as 1,000. Three scenarios for

G(X;β,g) are considered:
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• Scenario I (Linear Model): G(X;β,g) = β>X + δ · 0.4|θ>X|3 under p = 4,

β = (1, 1,−1,−1)>/2, and θ = (1,−1, 0, 0)>/
√

2;

• Scenario II (Single-index Model): G(X;β,g) = 2 exp(−β>X)+δ·0.4(θ>X)2

under p = 6, β = (1,−1, 0, 0, 0, 0)>/
√

2, and θ = (0, 0, 1,−1, 0, 0)>/
√

2;

• Scenario III (Multi-index Model): G(X;β,g) = (β>1 X)2 + (β>2 X)2 + δ ·
0.8 exp(−0.4θ>X) under p = 4, β1 = (1, 0, 0, 0)>, β2 = (0, 1, 0, 0)>, and

θ = (0, 0, 1, 0)>.

where δ ≥ 0, and δ = 0 corresponds to the null hypothesis in (1.2). All simulation

results are based on 500 replications.

We fix the target significance level α as 0.05 and evaluate the performance

of the SAS procedure by comparing the empirical sizes under the null and the

powers under the alternatives. We discuss the choices of kernel functions for

the nonparametric test statistics in the Supplementary Material Table S2, and

find that the effect of the kernel functions can be ignored. The Epanechnikov

kernel function is applied here. As discussed in Section 3.2, we consider the

empirical bandwidth formula hf = 0.5sd(ω0)n
−1/5
0 in the density estimator (2.5)

and h =
{
hf (n0/n)1/5

}2+η
in the test statistics T

f̂
for some η > 0, where sd(ω0) is

the sample standard deviation of ω0 = {θ>X0i}n0

i=1. Table 1 reports the empirical

sizes and powers of the SAS procedure with different bandwidths when Σ is from

the “IID” case. We observe that three different values of η ∈ (0, 0.2] present

similar results: the empirical sizes and powers are not significantly different across

all the settings. In addition, our SAS procedure is not affected too much under

the null and presents reliable power under the alternatives when the sample size

n0 in the pilot study is larger than 200. Hence, η = 0.1 and n0 = 300 are used in

the rest of the simulations.

We next compare our SAS procedure with several benchmarks. In addition to

the aforementioned methods with a uniform sampling strategy, namely US0 and

US, we also consider two other existing methods. The first is from Guo, Wang

and Zhu (2016), in which they proposed a dimension reduction model-adaptive

local smoothing test for parametric single-index models. We refer to this method

as Guo for simplicity. The second is a global testing approach from Stute and

Zhu (2002) (SZ), who developed a dimension reduction test and approximated

the distribution of the test statistics based on a certain empirical process. To

make a fair comparison, we apply Guo and SZ on a subset with n+ n0 samples.

The covariates X are uniformly sampled from X , and we use a wild bootstrap of

500 times to mimic their critical values.
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Table 1. Empirical sizes and powers (%) of the SAS procedure with different bandwidths
under Scenarios I−III when Σ is from the “IID” case.

Scenario I Scenario II Scenario III

n0 η
δ

0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50

0.05 5.8 91.0 100.0 4.2 9.2 58.2 5.0 5.4 26.8
200 0.1 5.6 90.8 100.0 4.4 9.2 57.8 4.8 5.4 25.4

0.2 6.6 90.0 99.6 4.6 9.0 57.2 4.8 5.4 23.4
0.05 6.6 97.0 100.0 4.2 16.6 75.2 4.4 9.0 32.2

300 0.1 5.8 97.0 99.8 4.4 17.4 75.4 5.2 9.0 31.8
0.2 5.8 95.6 99.8 4.2 16.8 74.2 4.6 9.0 30.2
0.05 7.0 98.0 100.0 4.6 19.8 85.8 4.6 8.8 38.6

400 0.1 7.4 97.6 100.0 4.2 19.6 85.6 4.8 9.2 37.4
0.2 7.2 97.4 100.0 4.0 18.8 84.6 4.8 9.2 35.2

Scenario I Scenario II Scenario III
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Figure 2. Empirical sizes and powers (%) for SAS, US0, and US under Scenarios I−III.

Figure 2 compares the empirical sizes and powers of SAS, US0, and US. Our

SAS outperforms US0 and US uniformly across all settings. This is not surprising,

because the “optimal” sampling in SAS considers the data structure, as in our

theoretical analysis in Section 2.3. US usually exhibits greater power than that of

US0, because the test statistic of the former is based on a larger set with sample

size n + n0. However, US performs a little poorly in terms of the empirical size

than US0, since the samples for the tests are dependent on the estimated θ in
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Figure 3. Empirical sizes and powers (%) for SAS, US0, US, Guo in Guo, Wang and Zhu
(2016), and SZ in Stute and Zhu (2002) under Scenario I.

the pilot study.

In Figure 3, we further compare the proposed method SAS with Guo from

Guo, Wang and Zhu (2016) and SZ from Stute and Zhu (2002) under Scenario I.

In most cases, SAS performs effectively and leads to a higher power than that of

the competitors. SZ does not perform well. Because the local smoothing based

methods work better than the global testing procedure SZ for local alternatives,

as suggested by existing numerical studies in the literature. We also observe that

the SAS test tends to be more conservative than the Guo method slightly when

the signal δ is very small, especially under the “COR” case. This is because Guo

uses n+ n0 samples for testing. However, the power of SAS increases quickly as

δ increases, and its adaptive-sampling advantage becomes remarkable.

In what follows, we consider one general varying coefficient model.

• Scenario IV (Varying coefficient model): G(X;β,g)= β1(X1)X2+β2(X1)X3

+δ ·0.3(θ>X)3 under p = 4, β1(X1) = sin(X1)+cos(X1), β2(X1) = 2X1(1−
X1), and θ = (0, 1, 1, 1)>/

√
3. X1 ∼ U(0, 1), and X2, X3, X4 ∼ N (0, Ip),

where U(0, 1) is the standard uniform distribution.

In Scenario IV, we examine the robustness of the proposed test when the

errors εi are from different distributions. Figure 4 shows the empirical sizes

and powers for SAS, US0, and US under three standardized error distributions,

N (0, 1), χ2(1), and t(3). Again, it can be seen that SAS outperforms US0 and

US uniformly, and there are no significant differences among the power curves
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Figure 4. Empirical sizes and powers (%) for SAS, US0, and US under Scenario IV.

Table 2. Computing times (seconds) for SAS, US0, and US when εi are i.i.d from N (0, 1)
and the full sample size N is from 103 to 106 under Scenario IV.

δ
Method

N
103 104 105 106

SAS 0.237 0.787 3.913 29.907
0.00 US0 0.215 0.251 0.239 0.259

US 0.414 0.471 0.310 0.350
FULL 0.426 7.794 750.735 77,033.543
SAS 0.233 0.487 3.405 30.336

0.25 US0 0.196 0.222 0.230 0.252
US 0.268 0.316 0.307 0.330
FULL 0.432 7.845 790.955 78,946.865
SAS 0.233 0.484 3.407 30.164

0.5 US0 0.196 0.222 0.234 0.254
US 0.267 0.316 0.305 0.324
FULL 0.433 7.832 795.734 81,033.674

under different error distributions.

Finally, to further investigate the computational benefit of our SAS proce-

dure in large-scale data sets, the computing time is reported in Table 2. As

the full sample size N increases, the subsampling methods take significantly less

computing time compared to the full data approach. We also observe that the

computing time of the SAS procedure increases roughly linearly as the sample

size N increases, but the time based on the full sample increases quadratically,

which is consistent with our theoretical computing cost analysis. It is not sur-

prising that US0 and US run fast, since no sampling distribution needs to be

estimated.
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Table 3. The estimated p-value and MSPE of WEC data set.

p-value MSPE
Model SAS US0 US
LM 0.000 0.000 0.000 164.686
MIM2 0.005 0.097 0.055 0.201
MIM3 0.970 0.444 0.848 0.195
MIM4 0.928 0.607 0.525 0.200

4.2. Real data analysis

Wave energy converters (WECs) are of interest to governments and indus-

try as a way of complementing other renewable energy sources (Neshat et al.

(2018)) because they have advantages in terms of high availability of resources.

However, although huge amounts of information for WECs can be recorded and

monitored using buoys, analyzing all the collected data incurs a heavy comput-

ing burden. To overcome this challenge, we apply the proposed SAS to the

“Wave Energy Converters Data Set.” This data set includes all 216,000 mea-

suring sample points under three real wave scenarios from the southern coast

of Australia, and is available from UCI Machine Learning Repository http:

//archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters.

The interest in this problem is to study the relationship between the total

absorbed wave power output (Y ) and the WECs positions (X). Here, we focus

on the first three WEC positions, that is, p = 6. Since the power output is often

positive but large, we take the logarithm transformation to the response Y . We

randomly select 70% of the full data as the training set (N = 151,200) and use

the rest as the validation set. For the pilot study, n0 = 300 samples are uniformly

sampled from the training set, and are used to estimate the projection direction

θ and the optimal sampling distribution f(·).
In this application, we would like to check whether the linear model (LM)

and multi-index model (MIM) are sufficient to describe the relationship between

the response and the covariates. Specifically, we denote the MIM with two indices

as MIM2. MIM3 and MIM4 are defined similarly. In Table 3, we compare the

estimated p-values of SAS, US0, and US under different model assumptions.

It is clear that all three methods suggest a nonlinear relationship between

wave power and the WECs positions, as shown by the p-values being equal to

zero under the linear model assumption. Consider the significance level α of 0.05.

We find that US0 and US perform similarly, and both tend to choose MIM2 for

model construction. However, SAS suggests MIM3 is more reliable because it

has a much smaller p-value 0.005 than those of the other two methods under the

http://archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters
http://archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters
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model assumption MIM2. This is probably because the full data consists of three

real wave scenarios. The result can be verified further by comparing the mean

squared prediction errors (MSPE) on the test data. In the last column of Table

3, the MSPEs under MIM3 are much smaller than those of the other models.

5. Conclusion

Model checking in large-scale data sets is an important preliminary step for

statistical analysis and machine learning. In this paper, we present the structure-

adaptive-sampling (SAS) test in a general semiparametric framework to over-

come the large-scale data set computational bottleneck for a limited budget or

resources. The SAS procedure selects the most informative samples with an

optimal sampling procedure. It is shown that our proposed method can asymp-

totically achieve the locally best power. The asymptotic and numerical results

demonstrate the advantages of the proposed procedure in terms of testing and

computation by comparing it with the uniform sampling strategy and other ex-

isting model checking approaches.

In general, the SAS procedure can be readily extended to many other test-

ing problems with sampling techniques in modern large-scale data sets analysis,

such as clustering several regression curves or data sets, as long as the design

point sampling is allowed in the process. Our analysis shows that the covariate

correlation plays an important role in the performance of SAS. Though our re-

sults reveal that the superiority of the proposed method is valid under certain

correlations, it would be of interest to incorporate the correlation information

into the testing procedure in an efficient way. In addition, we only use a small

pilot data set to estimate the projection direction θ when no further information

is given. Additional research is required to obtain a more accurate estimation of

the projection direction for test power improvement.

Supplementary Material

The online Supplementary Material contains the proofs of several technical

lemmas, the proof of the estimated dimension reduction direction, and additional

simulation results.
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Appendix

A. Proofs

In this Appendix, we prove the main theoretical results in our paper. Be-

fore we present the proofs of the main results, we first state several essen-

tial lemmas whose proofs can be founded in the Supplementary Material. De-

note Υ∗j = G(Xj ; β̂, ĝ) − G(X;β∗,g∗) and Υ∗ = (Υ∗1, . . . ,Υ
∗
n)>. Under H0,

Υ∗j = G(Xj ; β̂, ĝ) −G(X;β0,g0) due to (β∗,g∗) = (β0,g0). For notational sim-

plicity, we denote the following form as

Wn(s, t) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

sitj√
f(ωi)f(ωj)

Kh(ωi − ωj),

where s = (s1, . . . , sn)> and t = (t1, . . . , tn)> are two sequences. For example,

our test statistic can be written as Vf (θ) = Wn(ε̂, ε̂), where ε̂ = (ε̂1, . . . , ε̂n)>,

ε̂i = Yi −G(Xi; β̂, ĝ).

Lemma 1. Suppose the Assumptions 1–3 and 6 hold. Denote ε = (ε1, . . . , εn)>.

With a given θ, then under H0, we have nh1/2Wn(ε, ε)/σV
L−→ N (0, 1).

Lemma 2. Suppose the Assumptions 4 and 5 hold, then

sup
ν∈Γ

∣∣∣G(X; β̂, ĝ(ν))−G(X;β∗,g∗(ν))
∣∣∣ = Op

{
b2 + n−1/2 +

(
nb

log n

)−1/2
}
.

Lemma 3. Suppose the Assumptions 1–6 hold. With a given θ, then under H0,

we have: (i) Wn(ε,Υ∗) = op(n
−1h−1/2); (ii) Wn(Υ∗,Υ∗) = op(n

−1h−1/2).

Lemma 4. Suppose the Assumptions 1–6 hold. Given L(·) is a continuously dif-

ferentiable function, which satisfies |L(X)| ≤ ϕ(X) for all X ∈ Rp and E
{
ϕ2(X)

}
< ∞. Denote L = {L(Xi)}ni=1. With a given θ, then under H0, the following
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result holds

Wn(ε,L) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

εiL(Xj)√
f(ωi)f(ωj)

Kh(ωi − ωj) = Op(n
−1/2).

Lemma 5. Suppose Assumptions 1–3 hold. With a given θ, then for the density

estimator f̂(ω) in (2.5) from the pilot study, we have

sup
ω∈Ω
|f̂(ω)− f(ω)| = Op

(
h2
f +

√
log n0

n0hf

)
.

We give a sketch of our proofs. We first derive the asymptotic distribution

of our SAS test statistic with a given dimension reduction direction θ. Next,

the method of deriving the optimal sampling distribution f(·) is conducted in

Theorem 1. Then, we give the power function for our SAS test in Theorem 2. At

last, we extend our sampling strategy to the “singular” signal case in Corollary

1. The relevant proof of estimated dimension reduction direction is delineated in

the Supplementary Material.

Proposition 1. Suppose Assumptions 1–6 hold. Under the local alternatives

H1n (2.3) with δn = (nh1/2)−1/2 and a given θ, we have Tf −Ef
{
l2(ω)

}
/σV

L−→
N (0, 1).

Proof. Our SAS test statistic is Tf = nh1/2Vf (θ). Note that Vf (θ) has the

following decomposition

Vf (θ) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

εi√
f(ωi)

Kh(ωi − ωj)
εj√
f(ωj)

− 2

n(n− 1)

n∑
i=1

n∑
j 6=i

εi√
f(ωi)

Kh(ωi − ωj)
Υ∗j√
f(ωj)

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Υ∗i√
f(ωi)

Kh(ωi − ωj)
Υ∗j√
f(ωj)

=: Wn(ε, ε)− 2Wn(ε,Υ∗) +Wn(Υ∗,Υ∗),

where ε = (ε1, . . . , εn)> and εi = Yi −G(Xi;β
∗,g∗) = δnl(ωi) + εi under H1n.

Similarly, we can write the first term as Wn(ε, ε) = Wn(ε, ε) + 2δnWn(ε, l) +

δ2
nWn(l, l) where l = (l(ω1), . . . , l(ωn))>. Note that Wn(l, l) is a U-statistic of

order two with kernel Hn(ωi, ωj), say Hn(ωi, ωj) = l(ωi)l(ωj)Kh(ωi − ωj){f(ωi)

f(ωj)}−1/2, and
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E {Hn(ω1, ω2)} = E [E {Hn(ω1, ω2)|ω1}]

=
1

h

∫
K(u)l(ω)l(ω − hu)

√
f(ω)f(ω − hu)hdudω

=

∫
K(u)l2(ω)f(ω)dudω + o(1)

= Ef
{
l2(ω)

}
+ o(1).

E
{
H2
n(ω1, ω2)

}
=

1

h2

∫
l2(ωi)l

2(ωj)

f(ωi)f(ωj)
K2

(
ωi − ωj
h

)
f(ωi)f(ωj)dωidωj

=
1

h

∫
K2(u)du ·

∫
l2(ωj + hu)l2(ωj)dωj

=
1

h

∫
K2(u)du ·

∫
l4(ωj)dωj + o

(
1

h

)
= O

(
1

h

)
= o(n).

By Lemma S.2, we can get Wn(l, l) = Ef
{
l2(ω)

}
+ op(1). Combining this con-

clusion with the results in Lemma 1 and Lemma 3, we have nh1/2Wn(ε, ε)/σV −
Ef
{
l2(ω)

}
/σV

L−→ N (0, 1).

Next, we consider the second term Wn(ε,Υ∗) = Wn(ε,Υ∗) + δnWn(l,Υ∗).

By Lemma 2 and

1

n(n− 1)

n∑
i=1

n∑
j 6=i

l(ωi)√
f(ωi)

1√
f(ωj)

Kh(ωi − ωj) = Ef {l(ω)}+ op(1),

we claim that Wn(l,Υ∗) = Op(n
−1/2)Op

{
b2 + n−1/2 + (nb/ log n)−1/2

}
. As a

consequence, we have Wn(ε,Υ∗) = op(n
−1h−1/2) by Lemma 3.

Finally, it can be checked that Wn(Υ∗,Υ∗) = op(n
−1h−1/2) by Lemma 3,

from which the assertion of the proposition holds.

Proof of Theorem 1.

By Proposition 1, it implies that the asymptotic power function of pro-

posed test based on Tf only depends on Ef
{
l2(ω)

}
/σV . Note that σ2

V =

2σ4|Ω|
∫
K2(u)du is a constant not depending on the density f(ω) under a pre-

specified kernel function K(·). According to Cauchy-Schwarz inequality, we have

Ef
{
l2(ω)

}
=

∫
l2(ω)f(ω)dω ≤

{∫
l4(ω)dω

}1/2{∫
f2(ω)dω

}1/2

,

and the equality holds if and only if f(ω) = ρl2(ω), where ρ is some constant.
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Thus, if the sampling distribution f(ω) is proportional to l2(ω), i.e. f(ω) =

l2(ω)/
∫
l2(ω)dω, we can maximize the asymptotic power function. That is the

locally best power will be reached by choosing f(ω) = l2(ω)/
∫
l2(ω)dω.

Proof of Theorem 2.

The test statistic is T
f̂

with estimated f̂(ω) from the pilot study. Under the

local alternatie H1n, the power is Πf = Pr(T
f̂
> zα). By Proposition 1, we have

Pr(T
f̂
> zα)− Φ

(
− zα +

E
f̂
l2(ω)

σV

)
P→ 0.

Using the uniform convergence rate given in Lemma 5, we have

E
f̂

{
l2(ω)

}
−
∫
l4(ω)dω∫
l2(ω)dω

P→ 0,

provided that the order of signal of strength is larger than that the maximum

noise level say (nh1/2)−1/2/
√

log n0/n0hf →∞. The condition (n0/n)(h2
f/h)1/2/

(log n0)c →∞ implies that the result holds.

Proof of Corollary 1.

For simplicity, we assume there is only one signal region Ωn, and the proof

for the case with more than one region is similar. By condition (n0/n)(h2
f/h)1/2/

{a1/2
n (log n0)c} → ∞, it suffices to show that the Nadaraya-Watson estimator of

M(ω) in (2.4) is still a uniformly consistent one except for the boundary under

“singular” local alternatives (2.6) (Ren et al. (2020)), say

sup
ω∈Ωn\Bh

∣∣∣M̂(ω)−M(ω)
∣∣∣ = Op

(
h2
fδ
′
n +

√
an log n0

n0hf

)
,

sup
ω∈(Ω\Ωn)\Bh

∣∣∣M̂(ω)
∣∣∣ = Op

(√
an log n0

n0hf

)
,

where Bh denotes a one-dimensional interval with radius h that is around the

boundary of Ωn. The rate of bias term is obvious as εi = δnl(ωi) + εi under (2.6),

and the rate of variance term is reasonable because it uniformly takes maximum

over ω ∈ Ωn. Then, we have∫
Ωn∪Bh

f(ω)dω = 1 +Op

(√
an log n0

n0hf

)
, Pr

{
f(ωi) < ξ1/2

n0
,∀ωi /∈ Ωn ∪ Bh

}
→ 1,
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where ξn0
is the threshold defined in (2.5). Hence, we have

Pr(T
f̂
> zα|X )− Φ

(
µ(f,Ωn)

σV (f,Ωn)
− zα

)
P→ 0,

where σ2
V (f,Ωn) ≈ 2σ4|Ωn|

∫
K2(u)du, and

µ(f,Ωn) = nh1/2δ′n
2
∫

Ωn∪Bh

l2(ω)f(ω)dω

≈ nh1/2δ′n
2

∫
Ωn\Bh

l4(ω)dω∫
Ωn\Bh

l2(ω)dω

≥ nh1/2δ′n
2

∫
Ωn
l2(ω)l2mindω∫

Ωn
l2(ω)dω

= a−1/2
n l2min.

Thus, the power of our SAS is not small than Φ(µ(f,Ωn)/σV (f,Ωn) − zα).

Finally, by the assumption that an → 0, the asymptotic power converges to 1.
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