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This supplement provides all the proofs for the main results. Throughout
this supplement, we denote by ||| the Euclidean norm and by |[|£||, the
largest absolute value of the elements of any vector £&. For any [ x k matrix

M = {mij}iﬁLj:p denote HM”oo = maXCERk,C¢OHMQHOO/”CHOO which is
k

easily seen to be equivalent to ||| = max ijl

1<i<1

¥ (x) € Lafa, b], let [[¢ (2) ]| = suPsefay ¢ ()]

|m;;|. For any function

S1 Preliminaries

Lemma S.1. (Theorem 1.2 of Bosq| (1998)) Let &, ... ,&,, be independent

random variables with mean 0. If there exists a constant r > 0 such that
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(Cramér’s Conditions)
E|&|F < 2R EE? < 400 for 1 <i<n, k>3,

then for any t >0

p{ 3

> ¢
i=1

t2
>1 §2exp{— - }
} 43" EE 42t

The next lemma is an important result from de Boor | (2001, p.149)).

Lemma S.2. For any ¢(z) € C®a,b], there exist a constant C, >
0 and a spline function m,(x) € G§$*2) such that ||¢p(x) —my(z)| <
Gy |0 (@)~

For any function ¢ (-), ¢ (-) € Ls[a,b], define the theoretical and em-

pirical inner products as

(W, d)y = [P0 (2) 6 (2) fx (z) da,

and " s
(U, 0)o, = n! Z W—iiﬁ (Xi) o (Xi).

The corresponding norms are defined as ||¢||> = fab<b2 (x) f (z) dx and ||<;§H§n
=n 137 %ig? (X;). Meanwhile, define the following theoretical and em-

i=1
pirical inner product matrices of {B J,p(')}]}le_p:

N N

Vo= ((Bips Bip)a) s jr1ys Ve = ((Bj,p, BJ,J))M)

It is clear that n"'BTAB = \A/p*. Moreover, denote the matrix

JJ'=1-p

N

. L
‘/p = (n—l Z ;Bj,p<Xi)BJ’,p(Xi)> s

=1 J,J'=1—p
and hence n"'BTAB =

Ap. We next give some properties about the inner
product matrices of V, ‘A/;O and ‘A/p* which are needed in the study of the

uniform convergence of 67 (z).
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Lemma S.3. For any positive p, there exists a constant K, depending only

on p such that va_l}loo < K N.
It is a direct conclusion of Lemma A.3 in |Cao et al. | (2012).

Lemma S.4. Under Assumption (A6), one has that

(a) ‘ V;‘ -V, = O,(n"Y2N"1210g"?n);
(b) ‘ f/; _ ‘A/p _ _ Op(n_l/zN_l);
(c) there exist constants Ky, K,3 such that ‘ Vet _= KN and ‘ vl N

< K,3N in probability.

Proof of Lemma [S.4|(a). Denote
9;

T

Ep(X) =n! { By (X)) By (X) — E{BJ,AXZ-)BJI,p(XZ-)}} .

Since B, (%) By y(x) # 0only if £ € [X 7, Xypp) N [Xgrs Xorap) and [J = J'| <
p, one has that

% -l
_in- 6
= max >, IZEBJ@(XZ-)BM(X»—E{Bj,p<xi>BJf,p<X¢>}|
Je{J’:|J'—J|<p} i=1

- 1—;285)21\7 Z ;5‘”' (X3)]

=T el |y —Ji<p} | i=

It is clear that E&; ;(X;) = 0 and

8 2
ES(QLJ/(Xi) <n’Eg {;BLP(XZ')BJ/’Z)(XZ-)}
< n_QC;I E{BJ,IJ()(@')BJ’JD()CL')}2

<c'Cn >N, (S1.1)
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for some constant C' > 0 since max;_p< <y |Bjp(z)| = O(1). On the other

hand,

E& 5 (X)

w7t (B 53,0005, 000 | - [0, (X0 By (X))
n=? (E {B?Lp(Xi)B?I’,p(Xi)} - [E {BJ,p(Xi)BJ’,p(Xi)}F)

> cen 2N

vV

for some ¢ > 0 which holds since
E{B7,(Xi) B ,(X))} > [E{By,(X:) By (X))}’
and by the Mean Value Theorem,

BB, B3, (1) B, ) fx ()

o<

— B2 (B2, (6)/x(6) / 1z ~ N1

fS [XJvXJqu]m[XJ’ aXJ’+p] |J=J'|<p

for some & € (XJ,XJ+p) N (XJ,,XJ,+p) J|J —J'| <p. When k > 3, the k-th

moment E | (Xl)|k is bounded as follows:

k

ko _n |6
E[€,,(X)|" =n " E| = Byy(Xi) By p(Xi) = E{By,(X:) By p(Xi)}

™

< w2 B S By () By (X0 |+ 1BUBs,(X) By (KO

7

1
< w2 p{ S BB

7

IN

n Rkl PO N = n_(k_z)2kc}T_kC*c_lcn_2N_1
2¢
< RO T B (X)) < (TO)k_%! E&5,5(X),
for some constants C*, ¢y > 0. The first inequality is easy to see by math-

ematical induction and Young’s Inequality. Thus, {;;(X;),1 < i < n,
satisfy Cramér’s Conditions with r = 2¢y/n in Lemma [S.1] Then one ob-
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tains that for any given p > 0,

{ Zm

> pn V2N~ 1/2log/ }

p’n'N-tlogn
S 2Zexpq - n 2 . —3/2N—1/210o1/2
4% i EE (Xi) + 4peon=3/2N~1/2log

p~logn
=2expq — 2 172
42N E &5 (X1) + 4pcon=/2N1/21og'? n

< npt

— Y

for some ¢ > 2 by choosing a large enough p, which holds since 4n?N x
E &7, (X1) is bounded by |D and n=/2N1/210g'/? n, — 0 by Assumption
(A6). Therefore,

{1 s [
> {
P

JJ'=1—

< (N +p)*n”*

> pn V2N~ 1/210g }

> pn V2N~ 1/210g }

and hence

> ], S
< Z(N+p)2n t

> pn V2N~ 1/210g }

By Borel-Cantelli’s Lemma, one immediately obtains that

me

which concludes that

max
1-p<J,J'<N

=0, <n_1/2N_1/2 log'/? n) , (51.2)

~

V-V,

p

)= O]D(n_l/QN_l/2 log!/? n),

> (X

=1

= max E
0o 1-p<J<N
J'e{J"|J'=J|<p}
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completing the proof.

Proof of Lemma [S.4|(b). According to (S1.2), one has that

max
1—p<J,J'<N

i 0
n 1Z_BJ7P(Xi)BJ/7P(Xi)

T

i=1

< max_ [B{By,(Xi)Byp(Xi)| + Op(n 2N 10g! 2 n)

T 1-p<J,J'<N
_ -1
=0, (N7).
Hence,
> 7%
v, -V,
o

N0 (T —
n! —( . )Bl,,p(xi)BJ,,p(Xi)

= max E
1-p<J<N — T
1=

J'e{J:|J'—J|<p}

(2

=0 (n_l/Q) (2p=1) | P <N

i 0
n 1 Z Tr_iBJ’p(Xi)BJ,’p(Xi)

i=1

— 0, ("N,
completing the proof.

Proof of Lemma [S.4(c). According to Lemma(S.3] for any (N +p) length
vector n, }V;;lnHoo < KN [0l Thus one has |V,n|| > K;'N7" 9] ..
Since n~Y2N"21og"?n — 0 by Assumption (A6) and Lemma (a), one
has that

v

ol = Wl =55 -5) ]
K 'N7H[nllo = Op(n™ 2N 10g n) ||

K N ], (1= 0y(n™" N2 10g"/ ) )

v

> Ky N7l

in probability for some constant /K, > 0. Therefore, ‘7:(]*—1,,7” < KN ||
which together with Lemma [S.4(b) concludes that, for any (N + p) length

o0
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vector n,
ol 2 (%] (5 %)
> KNl = Op (n 2N [l
> KNl (1= 0y(n1?))
> Ky N7 nl,

for some constant K3 > 0 in probability. Hence ’ V;lnuw < KN |mll o

in probability, completing the proof.
For any function ¢ () € C® [a,b], let ¢ = (¢ (X1),...,¢(X,))T and

denote

7 () = (Bipy (¥) ..., By, () Vi 'n ' BT Ag. (S1.3)

Lemma S.5. Under Assumption (A6), there exist constants M, and M,
such that any function @ (x) given in satisfies

‘ 927; (z) = (x)Hoo < My ,N7*

wn probability.

oy (@) o < My x Nl (@)llo and |

Proof of Lemma [S.5] Let the vector Iy = (1,...,1)" with length N.
Then by Lemma similar to the proof of (51.2)) it is easy to show that

||n’1BTA[NHOO =  max nlizz;ﬁ_z’BJ’p(Xi>

1-p<J<N

max |n* Z _BJ,p<Xi> —E BJ,p(Xl)

1-p<J<N ;
=1

+ max |EBy,(X1)]

1-p<J<N

IN

2

= O,(n YAN"12log™2n) + O(N7Y) = O,(N7).

This together with Lemma [S.4|(c) and the fact that at most (p + 1) of the

numbers By_,,(z), ..., By,(x) are between 0 and 1, others being 0 implies
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that
18 @, = B @ By @)V 0 B A
< (p+ 1| BT A
< 0] In B Al
< (p+ 1|7 nBTAL| e @)
< (p+ DERN [0 BTAL| e ()]l
< P+ DERNCN o (@) = My llp (@), (S1.4)

in probability, where C' is some positive constant and M, = (p + 1) K,»C.
Moreover, according to Lemma , there exists a spline function m,, (z)
€ G%iz) such that m, (z) = 7} (x) and || (z) —m,, (2)|| < Cp||e® HOON_T’.
Then ¢(z) — my(z) € CPa,b] and @} (x) — m} () can be expressed as in
(S1.3) with ¢(x) replaced by ¢(x)—my,(z). Therefore, with this substitution

in one has
|

~ %

2 (@) — e (@)]|

IN

15 (@) =, (@), + Iy (2) — 0 ()]l
M, |l (x) = my ()]l + lImy (2) — @ (@)
(M + 1) |l () = my ()]l

Cyp (M, +1) [P NP = My,N”

I IA

IN

in probability, where M, ,, = C, (M, + 1) H<p(p) HOO The proof is completed.

Lemma S.6. Under Assumptions (A1)-(A5), for any sequence of measur-

able functions s, (x) with ||s, (x)||., = un > 0,

loc

sup [n! g — K, (X; —x) s, (Xi) | = O, <unn_1/2h_1/2 log!/? n) ‘
T
i=1

z€[a,b]

Proof of Lemma [S.6] Denote D,, = n* for 1/(2+7) < A < 1/3, which
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together with Assumption (A5) implies

D;(”H)nl/ghl/2 — 0, Z D;(QM) < 0o, Dyn '2p71? logl/2 n — 0.

n=1

We decompose the noise ¢; as
€ = €1+ €2+ Ly, (S1.5)

where €1 = €ZI(|€Z| > Dn)7 H; = E{€ZI(|€Z| S Dn) |Xz} and €2 = & X
I (le;] < D,,) — p;, in which I (+) is the indicator function.
Firstly, note that

|—E{eil (les| > Dy) | X3}
DE(WH) E {|6i|2+77 ‘Xz}
D)

n n

’ﬂz"

IN

IN

in probability, where C,, is the upper bound of E(|&;|*™" |X;) by Assumption
(A2). Meanwhile, according to Lemma 3 in |Cai et al. | (2021)), one has that

n 51 ~
sup [n' 3" 2K, (X — a)| = sup fX(x)‘ ~0,(1). (S1.6)
z€la,b] =1 T z€a,b]
Thus,
-1 & 61
sup [n Z — K5, (X — ) 80 (Xi) 1
z€|a,b| i—1 T
< unD;("H)C'77 sup ‘fx(x)‘
z€la,b]
=0, (unD;(”“)) =0, (unn_l/Qh_1/2) . (S1.7)
Next, since

> P{I(leal > Dy)} < G, D™ < 0,
n=1 n=1
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Borel-Cantelli’s Lemma implies that
P{w: there exists Ny (w) > 0 such that |e, (w)| < D,, for n> Ny (w)} = 1.
Therefore,
P{w: there exists N (w) such that |&; (w)| < D, for 1<i<n, n>N (w)}=1,
which concludes that
P {w: there exists N (w) such that ¢;; =0 for 1<i<n,n>N (w)} = 1.

Hence, for any v > 0

n

sup |n~t Z iKh (X; — ) 8 (X)) €i1| = Ous.(n77), (S1.8)

z€la,b] i—1 T

where a.s. stands for almost surely.
Finally, we deal with the truncated part g;5. It is easy to see that
E (5i72|Xi) =0 and

E(e},/X:) = E{e1(le| < Dn) X} — i}
= o*(Xi) —E{e}(|e;| > D,) | Xi} — pi?
= 0% (X;) + O, (D," + D2y

For convenience, denote &,, (x) = n*I%Kh (X; — ) s, (X;) €52. One then
gets that E&,, () =0 and
52
B @) = 0BG (G- 0) 5 (), )
1
= w0 0
T ’

;' PE{K; (X —x) s, (Xi)el,}

n

IN

IN

c;luin_Q E {K,QL (X; — ) 5?’2}

ctuZnT2hto? (7) fx () / K?(v)dv{1+u(l1)}.
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The k-th moment E |¢,, (x)|* for k > 3 is bounded as follows:

Bl @) = E{ I @) (€ (2))°}
< DD 22 (2D,) P B (G, (@)

— (quan "D, TR (6 (2))7 < (quanT hTID,) T RIE (&4, (2))7

where ¢ = 2¢;! || K| . Thus &, (z),1 <4 < n, fulfill Cramér’s Conditions
in Lemma [S.1) with r = qu,n"'h™'D,,. Then for large n, one has that

pPuin~'h='logn }

S 2expq — n 2 —1p-1 —1/2p—1/2 1/2
43 E&, (v) + 2pqn=th=tp, Dyn=/2h =12y, log ™/ n

in

> pu,n V2h" 1/210g }

p~logn
=2expq — 5 7
4u?n?h B E2 () + 2pqDyn~1/2h=1/210g"? n
<2n?

by choosing large p which holds since 4nhu,?E&3, (x) is bounded and

D,n~Y2x h=Y21ogt?n — 0. To bound the truncated part uniformly for

all z € [a,b], we discretize [a,b] by equally spaced points a = zq < 1 <
- < xp, = b with M,, = n? One then gets

P{ maxZém ;)
My, n
=0 i=1

<2n Y M, +1).

> pu,n V2h" 1/210g }

> pu,n " V2hY? logl/2 n}

Therefore,

iP{ maXZSm xj)
n=1 =1

> pu,n V22 logh/? }<22n (M, +1)

< 00.
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Borel-Cantelli’s Lemma implies

Z fzn 113]

HlaX

= Oy (un7fl/2ffl/2 logl/2 n) )

Notice that

max in (T
z€[a,b] zzlg ( )
< midx |y &, (a)| + max sup me Ein (25)
7=0 i=1 z€[z),2541] i=1
M, |~
= iix ;fn ()| +
M, —1)
(max sup Zn_l {Kh —x) — Kp (X; — )} 55 (Xi) €02
= w€lzj,xir1] |1
M, —1
<max me z)| + 2¢, IHK H h_QunDn(maX) sup  |r — x|
I=0 aelzj,zj]

<O, (unnfl/%lﬂ log!/2n) + 26 [| KW, b2, Db — @) M,
= Oy, (unn_1/2h‘1/2 log'/? n) : (S1.9)

Thus, (S1.5)), (S1.7)), (S1.8)), and (S1.9) imply the result.

Lemma S.7. There exist positive constants ¢ and C independent of n such

that
2

N N
N~ Z a? < Z ayBj,(v)|| <CN™! Z a?.
J=1-p J=1-p 2 J=1-p

This lemma is adapted from Lemma A.5 of Wang and Yang | (2007)).

Lemma S.8. Under Assumptions (A1) and (A6), as n — oo,

<m1,m2>2’n - <m1,m2)2

T, = sup
! [[mally lImeall,

m1(~),m2(~)€G§572)

= 0,(n"Y2NY210g'? n).

The proof is similar to that of Lemma A.2 in Song and Yang | (2009)
by applying Lemma and is omitted here.
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S2 Proofs of Proposition 1 and Theorem 2

Proof of Proposition 1(a). Note that by the definition of &, (x) given in
(3.4), one has

& (z) = (Bi_pp (2),..., By, (2)) V; 'n 'BTAE.

Applying Lemma [S.1, Borel-Cantelli’s Lemma and the truncation tech-
niques again as in the proof of Lemma [S.6], one has that

N
||n—1BTAEHOO = (n_lzﬂ__Blp(Xi)ei>

%

i=1 P
= 0, (n"YAN"210g" % n).
Thus,
I @l = [|(Br @ By @) Vi BT AR
< o 0 - PN T
< (p+ KN [n'BTAE||
= 0,(n"Y2NY210g'% n). (52.1)

Moreover, according to Lemma there exists a constant M, such that

gy () given in (3.4) satisfies
13 (@) = g(@)|, < MgpN7. (52.2)
Therefore,

2f% ( *IZ L (X = @) (9(X0) — g (X))

sup |Ii(z)] < sup

z€[a,b] z€[a,b]
+ Sl[lpb} 2fx ( _IZ Kh — 1) &2 (X;)
re|a
< 2|ga) - 3 @), %(m)l(i

= O,(N"* +n"'Nlogn).
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We next deal with the second term in Proposition 1(a). Notice that

sup |Ji(z)| < sup
z€[a,b] z€la,b]

w0 30 K (X ) (505 — 3,)

on~! fi! () Z %Kh (Xi — ) (95(X:) — 9p(X0)) (Vs — ﬁ;(Xz‘))‘ :

i=1

+ sup
z€[a,b]

On the one hand, by (2.5) and (3.3), one has that
9, () = (Bipp(2),..., By, () V:'n 'BTAY,
Gp(r) = (Bi_pp(2),...,By,(2) V,'n ' BTAY.

Applying Lemma([S.T| again, similar to the proof of LemmalS.6] one has that

max n ! Z Bjy(Xi) g (Xs)| = Oy (N_l) g
i—1

1-p<J<N
and
max n- ZBJP )il =0, (N7,

1-p<J<N

which imply that

max n_IZ]BJ,p(Xi)Yﬂ < max n_IZBJ7p(XZ‘) lg (X3)]
i=1 i

1-p<J<N 1-p<J<N

+ max n- ZBJP ) |&i]

1—-p<J<N
= O,(N7").
Then one has that
—1pT -1 ~ 4
Hn B AYH max |n — B, (X))Y;
1-p<J<N T
- ~1
< r )l mae a7 S B (XY =0, (N, (824
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and

Hn_lBTAY—n_lBTAYH = max

1-p<J<N

1 & T — T
" z (B Bt

<0, (n_1/2 max n- Z | By, (X =0, (n _1/2]\7_1) . (52.5)

1-p<J<N

By (S2.4)), (S2.5), and Lemma [S.4|b), one has that

195 () = gy (2)]|
- ((Bl_p,p (2), .+ By (@) (V; = V7 ) n ' BTAY

p p

+(Bipp (@), By () V! (n—lBTAY—n—lBTAY> H

- H— (Bipp (@), By @) V™ (V= 1) V' BT AY
+ (Bipp (), By () V! (n’lBTAY—n’lBTAY> H
<@+ |-l |[n L I BraY,
+p+1) Hn—lBTAY—n—lBTAYH
=0y (”_1/2) )
which concludes that
1 — 0; - X 2
sup. |1 @) D K (X — ) (3,(X5) = g,(X0)
xE€|a, i=1 4
~ 2 _
< sup ng(:v) gp($)Hoo = O,(n . (S2.6)

z€a,b]

On the other hand, applying Lemma(S.I|again similar to the proof of Lemma
[S:6] it is easy to show that
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Therefore,

sup
z€[a,b]

o' i (x) Z %Kh (X — ) (95(X3) — §(X3)) (Vi — !?Z(Xi))‘

< sup 2||g;(z) — gy(2)]|  x

z€[a,b) *

n it () Z @Kh (X; — ) {|g(X3) — go(Xa)| + |ei — 5;0@’}‘

sup
z€[a,b] i—1 't
<2||g5(x) — Go(@)]| _ [J9(x) — G5()]|
R "6,
+ 2|35 (x) — Gplx)]| Sl[lpb} fxH (@)™ Z ?Kh (Xi — ) |&i]
rEe|a, i=1 ¢
+ 2|95 () = go(@)|| 155 @)

= O0,(n"VANTP 4 072 4 722N 2 10g! 2 ) = O, (n7Y?). (S2.7)

By (52.3)), (52.6)), and (S2.7)), one obtains that

sup [Ji(x)] = Op(n~"2).

z€[a,b]

Proof of Proposition 1(b). According to Lemma A.5 in |Cai et al.
(2021)), one has that

| Fx@) = ix@)] = 0,77,

[e.o]

which with (S1.6) and Assumption (A1) concludes that

fx'(@)|| = 0,(D),

iR @] = 00, @ - iR @)= o)

(52.8)
Moreover, by Lemma a for g(x) € C® [a,b], there exist a constant
C, and a spline function m,(x) € G%iz) such that [|m,(z) — g (z)]|, <

HOO
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Cp Hg(p) (a:)HOO N7P. One then has that

sup |Iz(z)]
z€[a,b]
L =0 .
- s 2fx" (x)n™! — K (Xi — ) (9(X) = gy (X)) &
z€|a, i—1 1
o s
< sup, 2ft (w)n —Kn (Xi — ) (9(Xi) — my(Xi)) i
z€[a, =1 't
- [y § .
+ SL[lpb] 2fxt (x)n™" Z ;Kh (Xi — ) (mp(X;) — g5 (X4)) &4 -
z€la, i—1

(52.9)

Applying Lemma with s,(z) = g(x) — m,(x) and u,, = O,(NP), one
has that

- iy
Slflpb] 2f ¢ (z)n Y K (X — @) (9(X0) — my (X)) e
z€la, i=1 ¢
= 0,(n"V2h V2N log!? n). (S2.10)

Meanwhile, since both m,,(x) and gy (z) belong to the spline space G2,

one can write m,(r) — g (z) = Z]le_p 6,Bs,(x). By Lemmas ,
and (52.2)), there exists a constant ¢ > 0 such that

N
— a* 2 - g* :
NN 6, < limy = 513 < (L= ) - G,
J=1-p

(1 ="Ta) " 7 W] lmp(e) = " (2115

< (=T 7 W) (@) — 9@ 1% + (@) - 5° (@)%}
- Op(N_Qp)~

IN

Moreover, applying Lemma again with s,,(z) = By, (z) and u,, = O,(1),

one has

n

di
e Tty —Kn (Xi — ) Byp(Xi)ei| = Op(n2h" 2 10g'? ).
z€la,b i=1 7

(S2.11)
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Therefore,
sup, 2fx" ( 712 Kh — ) (my(Xs) — G, (X0)) &
xe|a
~ n 5 N
= Sup Qf)}l (x) n_lz Z 01pBip(X
z€[a,b] i=1 T J=1-p
N 1/2
< sup 2fX Z 9 X
z€[a,b] J=1—p
N " 07 1/2
> {n—l — K (X; — ) BJ,p(Xi)si}
J=1-p =1 i
= 0,(n Y2~ V2N"Plog!? ). (52.12)

Putting ((S2.9)), (S2.10]), and (S2.12)) together, one concludes that

sl[lp] |L(z)] = Op(n—l/zh—l/le—p log"/2 n).
z€la,b

Next, by Lemma it is easy to show that

Y
sup |n~ Z — K, (X; —x)e?| = 0,(1)
z€a,b] =1 i
One then obtains that
-1 - 51 %
sup |n Z — K}, (X; —x) R;
z€[a,b) i1 T
< Sl[lpb] 2y — K (Xi — ) (9(Xy) — g,(X3))?
r€Ela, i=1 "t
— . 5 ~% 2
+ sup |2n Z 7T_Kh (Xi — ) (e — £,(X5))
z€[a,b) =1 1

< 2lloe) - @)% 5w [ o)
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4n~ 12 Kh )522
Uy

=1

+ sup

z€[a,b]

= 0,(1), (S2.13)

G2, s |75 @)

€la,b

which concludes that

sup | ()|

z€[a,b]

n

n_lfx Z( P >)Kh(Xi_x)R:

=1

= sup
z€[a,b]

<7 (y) — 7 (W)lloo |7 ()|, sup

z€la,b]

1 Sy A
n lfxl(x);w_iKh (Xs —2) R;

Proof of Proposition 1(c). By (3 4), one has &, (r) = Sy p/Bj;pBJp(w)
€ Gy P=2) " 1 emmas E E and (| ) imply that there exists a constant
t > 0 such that

N

_ N ~ %2 ~ - .
INTY D B < Bl < =T 5L,
< (1= 7 W)l

é"‘(:L‘)H2 = 0,(n"'Nlogn).

p [eS)

N

Hence, ZJ 1 pBTfp = O,(n ' N?logn), which together with (S2.11)) implies

that

N ~ %
sup |I3(z)| = sup |—2fx'(x _12 p — K (X ijl_pﬂJ,pBJ,p(Xi)
z€a,b] z€[a,b] i—1 1
1/2
< sup [2/5' ()] AN
z€[a,b] J=1—p

97 1/2

N n
d;
sup z; ( -1 Z W_ZKh :E) BJ,p(Xi)ei)

i=1
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— Op(n*1/2Nlog1/2 n)x (N + p)1/2 . Op(nfl/thl/Q 10g1/2 n)

= O,(n *h™2N*?1ogn).

Next, by (S2.8) and (S2.13)), one has

sup |J3(z)| < sup Fol f sup |n- — K ( R
z€|a,b| | 3( )‘ x€|a,b] ( ) X xe[a b] Z T4 )
= Op(n_1/2)-

The proof is completed.

Proof of Theorem 2. According to (3.5) and Proposition 1, one has that

sup_|o5kw () — Gxw (2)] < sup [Li(@)[ + sup |L(x)] + sup |(2)]
z€[a,b) z€a,b] z€[a,b) z€a,b]

= O0,(N"* +n 'Nlogn + n"Y2RTY2 NP log 2 n 4 n Tt hTV2 N 2 log ).
Since n'/?) < N and N < n'/?log™'n in Assumption (A6), one gets that
2

N <« n ' 2and n”'Nlogn < n /2.

Furthermore, by h=1/2=1) 1og!/2P~Y  « N and N < n'/3hY310g7%3 n in
Assumption (A6), one obtains that

n V2R TY2 NP logt 2 n < n Y2 T 2N P logn < nT 2.

Therefore,

sup |65 () — GXw (2)] = Op(n”"?).

z€[a,b]

Next, according to (3.6) and Proposition 1, one obtains that

sup_|05ww () — dxw (2)] < sup [Ji(x)| + sup |Jo(z)] + sup |Jz(x)|
z€[a,b] z€[a,b] z€[a,b] z€[a,b]

= Op(n’l/ .
Therefore,

Sl[lpb] ‘6%NW (z) — 52NW (x){ = Op(”_1/2)7
z€la,
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completing the proof.
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