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Abstract: We propose a new bias-corrected spline-kernel estimator and a smooth

simultaneous confidence band (SCB) as a global inference tool for the conditional

variance function in a nonparametric regression when the covariates are missing

at random. To adapt to the possible missingness of the covariates, we employ

a Horvitz–Thompson-type weighted spline smoothing to fit the nonparametric re-

gression function. Based on the squared residuals, the weighted kernel method is

then applied to estimate the variance function. Synthesizing the spline smoothing

and kernel regression in one estimator takes advantage of the fast computing speed

of the spline regression, and of the flexible local estimation and easy SCB construc-

tions of the kernel smoothing. The proposed estimator is shown to be oracle-efficient

in the sense that it is as efficient as the ideal one when the mean function and the

selection probabilities are known by the “oracle”, which we use to establish an

asymptotically correct SCB for the variance function. The findings of our empirical

finite-sample studies support our asymptotic theory. An application to a data set

from the Canada 2010/2011 Youth Student Survey illustrates the usefulness of the

proposed techniques.

Key words and phrases: B-spline regression, local linear regression, missing at ran-

dom, oracle efficiency, simultaneous confidence band.

1. Introduction

Variance function estimation is an important procedure in many statistical

analyses, such as stochastic control, risk analysis, the construction of confidence

intervals for a regression function, and the estimation of smoothing parameters.

Research on inferences for the variance function includes the works of Hall and

Carroll (1989) and Wang et al. (2008), who studied the effect of the unknown

mean on the estimation of the variance function, and Müller and Stadtmüller

(1987, 1993), Brown and Levine (2007), and Cai and Wang (2008), who consid-

ered difference-based adaptive nonparametric estimators of the variance function.
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In addition, Ruppert et al. (1997), Fan and Yao (1998), Song and Yang (2009),

and Cai and Yang (2015) estimated the variance function by applying residual-

based nonparametric methods, and Ziegelmann (2002) and Yu and Jones (2004)

derived likelihood-based local linear estimators of the conditional variance func-

tion. Moreover, Zhang (2013) studied a residual-based estimation for the variance

function of functional data.

Most existing works have focused on complete data sets, in which both the

response and the covariate variables are fully observed, without missing values. In

practice, however, problems arise when missing observations are present, which is

common in research areas such as psychology, biomedicine, environmental science,

and socioeconomy. See, for instance, Sun and Wang (2019) and Cai et al. (2021)

for examples of missing covariates in the field of psychological sciences, Särndal

and Lundström (2005) and Liang, Wang and Carroll (2007) for missing response

examples in the field of social and clinical studies, and Meng (2000) for an example

of missing responses in genetics. If such missing values are not completely missing

at random (MAR), any statistical results based on the complete case, ignoring

the missing data, are generally biased. It is thus important to handle missing

data properly.

We consider the following heteroscedastic nonparametric model:

Y = g (X) + ε, (1.1)

with the observations of covariate X partially missing, where E (ε|X = x) =

0,E
(
ε2|X = x

)
= σ2 (x), and g (x) and σ2 (x) are unknown conditional mean

and variance functions, respectively, defined on a compact interval [a, b]. Let the

observations {Xi, Yi}ni=1 and the unobserved errors {εi}ni=1 be independent and

identically distributed (i.i.d.) copies of (X,Y, ε) from (1.1), and denote δi, for

1 ≤ i ≤ n, as binary indicator variables, with δi = 1 if Xi is observed, and δi = 0

otherwise. Furthermore, let

πi = P (δi = 1|Xi, Yi) = P (δi = 1|Yi) = π(Yi)

be the selection probability, which, conditional on Yi, does not depend on Xi, that

is, Xi is MAR. This MAR assumption is common in missing data analyses; see

Liang et al. (2004) and Pérez-González, Vilar-Fernández and González-Manteiga

(2010), among others.

In many applications, we are interested in examining the overall shape of

the noise variance function or testing whether certain functional forms are ade-

quate in describing its global trend. This is also our main focus in this study.
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Specifically, we aim to provide an accurate global inference tool–a simultaneous

confidence band (SCB)–for σ2 (x) when the covariates are MAR. Existing SCB

studies tend to focus on fully observed data. For example, Härdle (1989) and Xia

(1998) constructed SCBs for the univariate kernel regression. Wang and Yang

(2009) proposed SCBs for the polynomial spline regression, and Cai, Low and

Ma (2014) derived adaptive SCBs for wavelet smoothing. Later, Gu and Yang

(2015) extended these SCBs to the link function for a single-index model, Zheng

et al. (2016) to generalized additive models, and Song and Yang (2009) and Cai

and Yang (2015) to the variance function in nonparametric models. Moreover,

Degras (2011), Cao, Yang and Todem (2012), Ma, Yang and Carroll (2012), and

Wang et al. (2020) proposed SCBs for functional data. Zhao and Wu (2008)

considered SCBs for nonparametric time series regression. For partially missing

data, Al-Sharadqah and Mojirsheibani (2019) and Cai et al. (2021) studied SCBs

for the kernel-type regression for the mean function.

However, to the best of our knowledge, there are no related global inference

studies for the variance function when the data are not completely observed. In

the existing literature, Chen and Shao (2001) proposed a jackknife estimator for

the variance function when the response variable is MAR. Pérez-González, Vilar-

Fernández and González-Manteiga (2010) proposed local polynomial estimators

based on the decomposition σ2 (x) = E(Y 2|X = x) − g2 (x) for the conditional

variance function in a fixed-design nonparametric regression in which the response

variable is MAR. Nevertheless, both only studied their corresponding pointwise

properties.

Here, we construct an oracle-efficient SCB as a global inference tool for the

variance function for missing covariate data. In the estimation procedure, we

first employ a Horvitz–Thompson-type weighted spline regression to estimate the

regression function. Based on the squared residuals, we then apply the weighted

kernel smoothing to fit the variance function. The proposed estimator is shown

to be oracle-efficient in the sense that it is as efficient as the ideal one obtained

when the selection probabilities and the mean function are known by the “oracle”.

Using this oracle efficiency, an asymptotic accurate SCB is constructed for the

variance function. The proposed SCB is smooth because it comes from a kernel

regression. It also has an excellent convergence rate for the kernel smoothing and

good coverage probabilities, generally close to the nominal level when the sample

sizes are moderately large.

The remainder of this paper is organized as follows. Our main estimation

procedure and theoretical results are described in Section 2. Some insights of the

proofs of our asymptotic theory are given in Section 3. Specific implementation
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steps to apply the proposed method are provided in Section 4. Simulation results

and a real-data analysis are discussed in Section 5. Section 6 concludes the paper.

Technical proofs are provided in the Supplementary Material.

2. Main Results

In this section, we present our bias-corrected estimation procedure for the

variance function, as well as its uniform theoretical properties. By convention,

for any t-dimensional vector v with ith entry being vi, we write v = (v1, . . . , vt)
T

as a column vector.

According to the nonparametric model (1.1), one has ε = Y − g (X) and

εi = Yi− g (Xi), for 1 ≤ i ≤ n. Denote R = ε2 and Ri = ε2i as the squared errors.

Clearly, if the mean function g (x) were known by the oracle, one could compute

Ri at the observable points Xi. Then, by the fact that E((δi/πi)Ri|Xi) = σ2 (Xi),

to accommodate the missingness, one could employ the bias-corrected Horvitz

and Thompson (1952) type Nadaraya–Watson kernel method to estimate the

variance function σ2 (x); that is, for each x, we estimate σ2 (x) by minimizing the

quantity

argmin
c0∈R

n∑
i=1

δi
πi

(Ri − c0)2Kh (Xi − x)

if g(Xi) and πi are known, where h = hn is a sequence of smoothing parameters

called the bandwidth, and Kh (u) = K (u/h) /h is a recaled kernel function by

the bandwidth h. Denote the resulting estimator as σ̃2NW (x). A simple least

squares calculation leads to

σ̃2NW (x) = n−1f̃−1X (x)

n∑
i=1

δi
πi
Kh (Xi − x)Ri, (2.1)

where f̃X(x) = n−1
∑n

i=1(δi/πi)Kh (Xi − x). Obviously, this would-be estimator

σ̃2NW (x) is infeasible, because it relies on the unavailable mean function g (x) and

the (usually) unknown selection probabilities πi. However, it is useful as a bench-

mark against which feasible estimates can be compared, and as a pivotal medium

by which an asymptotic SCB can be constructed for the variance function.

To mimic the infeasible estimator σ̃2NW (x), a new bias-corrected spline-kernel

estimator for σ2 (x) is proposed:

σ̂2SNW (x) = n−1f̂−1X (x)

n∑
i=1

δi
π̂i
Kh (Xi − x) R̂i, (2.2)
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where f̂X(x) = n−1
∑n

i=1(δi/π̂i)Kh (Xi − x) , π̂i = π̂(Yi) is an estimator of π(Yi),

and R̂ = (R̂1, . . . , R̂n)T , with R̂i = ε̂2i = (Yi − ĝp(Xi))
2, for 1 ≤ i ≤ n, being the

squared residuals. Here, the inverse selection weighted spline estimator ĝp(Xi)

for g(Xi) is given in (2.3). In particular, the selection probabilities are estimated

by applying the usual maximum likelihood approach, with the assumption that

the selection probabilities follow a parametric binary model, such as a logistic or

probit binary regression model (see Hosmer and Lemeshow (2005) for a global

test statistic for examining a pre-assumed binary regression model). Then, the

resulting estimates π̂i for πi are known to be root-n consistent. Furthermore,

ĝp (·) is the weighted spline estimator for the mean function g(·) with

ĝp (·) = argmin
m∈G(p−2)

N [a,b]

n∑
i=1

δi
π̂i
{Yi −m (Xi)}2 , (2.3)

where G
(p−2)
N is the spline space of functions that are piecewise polynomials of

degree (p− 1) for some positive integer p > 0, defined as follows.

Divide the interval [a, b] into (N + 1) subintervals {Sj = [χj , χj+1)}N−1j=0

and SN = [χN , χN+1] using a sequence of equally spaced points {χj}Nj=1, called

interior knots, given as

a = χ0 < χ1 < · · · < χN < χN+1 = b.

The G
(p−2)
N = G

(p−2)
N [a, b] is the space of functions that are polynomials of degree

(p− 1) on each subinterval Sj and that have a continuous (p− 2)th derivative on

the interval [a, b]. For instance, G(−1) represents the space of constant functions

on each Sj , and G(0) is the space of functions that are linear on each Sj and

continuous on [a, b]. Following de Boor (2001), denote the spline basis of G
(p−2)
N

as BJ,p(x), 1− p ≤ J ≤ N . One has G
(p−2)
N = {

∑N
J=1−p αJ,pBJ,p(x), αJ,p ∈ R, x ∈

[a, b]}. It is straightforward that for any x ∈ [a, b], at most (p+1) of the numbers

of B1−p,p(x), . . . , BN,p(x) are between zero and one, with the remainder being

zero. At the same time, algebra shows that the spline space G
(p−2)
N can also be

spanned by the truncated power basis {1, x, . . . , xp−1, (x − χj)
p−1
+ , 1 ≤ j ≤ N},

which is often used in the practice; see de Boor (2001) for details.

The estimator ĝp (x) in (2.3) is defined in terms of {Bj,p (x)}Nj=1−p as follows:

ĝp (x) =

N∑
J=1−p

λ̂J,pBJ,p (x) ,
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where the coefficients λ̂1−p,p, . . . , λ̂N,p are the solution of the following least-

squares problem:(
λ̂1−p,p, . . . , λ̂N,p

)T
= argmin

(λ1−p,p,...,λN,p)∈RN+p

n∑
i=1

δi
π̂i

{
Yi −

∑N

J=1−p
λJ,pBJ,p (Xi)

}2

.

(2.4)

Simple calculations yield

ĝp (x) = (B1−p,p(x), . . . , BN,p(x)) (BT ∆̂B)
−1

BT ∆̂Y, (2.5)

where

B=

B1−p,p(X1) · · · BN,p(X1)
...

. . .
...

B1−p,p(Xn) · · · BN,p(Xn)

 , ∆̂= diag

(
δ1
π̂1
, . . . ,

δn
π̂n

)T
,

and Y= (Y1, . . . , Yn)T .

Recall that σ̃2NW in (2.1) and σ̂2SNW (x) in (2.2) are obtained by applying the

weighted Nadaraya–Watson kernel method to smooth the samples (Xi, Ri)
n
i=1

and (Xi, R̂i)
n
i=1, respectively, which ensures that the resulting variance estimator

is nonnegative. Of course, one can also employ the weighted spline local linear

method to estimate σ2(x). Specifically, the infeasible local linear estimator is

σ̃2LL (x) = eT1 (XTWX)−1XTWR,

where e1 = (1, 0)T , W = diag((δ1/π1)Kh (X1 − x) , . . . , (δn/πn)Kh (Xn − x)), and

X =

1 X1 − x
...

...

1 Xn − x

 , R = (R1, . . . , Rn)T .

The feasible weighted local linear estimator mimicking σ̃2LL (x) is defined as

σ̂2SLL (x) = eT1 (XTŴX)
−1

XTŴR̂,

where Ŵ = diag((δ1/π̂1)Kh (X1 − x) , . . . , (δn/π̂n)Kh (Xn − x)) and R̂ = (R̂1,

. . . , R̂n)T, with R̂i = (Yi − ĝp (Xi))
2, for 1 ≤ i ≤ n. Note that if one employs the

weighted local linear estimator instead of the weighted Nadaraya–Watson kernel

estimator in the second estimation step, the obtained variance estimator would no

longer be guaranteed to be nonnegative. However, it has advantages of automatic
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boundary correction, design adaption, and higher asymptotic efficiency; see Fan

and Gijbels (1996) for details. In the following, for brevity, we use σ̃2(x) as

a generic term to denote both σ̃2NW(x) and σ̃2LL(x), and σ̂2(x) to represent the

corresponding σ̂2SNW(x) and σ̂2SLL(x), when there is no confusion.

Denote the error term Z = R−σ2(X), and let fX,Z(x, z) be the joint density

function of (X,Z). For sequences of real numbers pn and qn, we write pn � qn
to mean pn/qn → 0 as n→∞, and write pn ∼ qn to mean there exists a constant

d 6= 0 such that limn→∞ pn/qn = d. Denote C(p)[a, b] as the space of functions

that have a continuous pth derivative on the interval [a, b]. We use the following

general conditions for our theoretical development.

(A1) The mean function g (x) ∈ C(p) [a, b] , p ≥ 2. The density function fX (x)

of X is positive in the open interval (a, b), with fX (x) ∈ C(1) [a, b], and

fX,Z(x, z) has a continuous first-order partial derivative with respect to x.

(A2) The variance function σ2(x)∈ C(1) [a, b] and E
(
Z2|δ = 1, X = x

)
has a pos-

itive lower bound on [a, b]. In addition, there exists a constant η > 4 such

that E(|Z|2+η
∣∣X) is bounded.

(A3) The kernel K (·) ∈ C(1) [−1, 1] is a symmetric probability density function.

(A4) π (y) follows a parametric binary model and has a positive lower bound de-

noted by cπ. Moreover, it has a bounded second-order partial derivative with

respect to y, and has a bounded first-order partial derivative with respect to

the parameters.

(A5) The bandwidth h = hn satisfies n−1/3 log n� h� n−1/5 log−1/5 n.

(A6) The number of interior knots N satisfies max{n1/(4p), h−1/2(p−1)×log1/2(p−1)

n} � N � min{n1/2 log−1 n, n1/3h1/3 log−2/3 n}.

Assumptions (A1)–(A3) are elementary conditions for nonparametric spline

and kernel smoothing, and are adapted from Fan and Yao (1998), Song and Yang

(2009), and Cai et al. (2021). Assumption (A4) ensures the root-n consistency

that supy |π̂(y)− π (y)| = Op(n
−1/2). Assumptions (A5) and (A6) concern the

choice of the bandwidth h for the weighted kernel smoothing and the number of

interior knots N for the weighted B-spline regression, respectively. Specifically,

one can take any undersmoothing bandwidth h ∼ n−1/5 log−t n for t > 1/5 and

any optimal interior knots N ∼ n1/(2p+1) fulfilling Assumptions (A5) and (A6).

The detailed data-driven procedure is given in Section 4.
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Let [a0, b0] ⊂ (a, b) be an arbitrary compact subinterval of interest. Applying

the weighted local linear SCB theory in Theorem 2 of Cai et al. (2021) to the

sample (δi, Xi, Ri)
n
i=1, one easily obtains the following result.

Theorem 1. Under Assumptions (A1)–(A5), for any t ∈ R,

P

{
ah

[
sup

x∈[a0,b0]

∣∣∣(nh)1/2κ−1/2n v−1/2(x)
{
σ̃2 (x)− σ2 (x)

}∣∣∣− bh
]
≤ t

}
→ exp(−2 exp(−t)), (2.6)

as n→∞, where κn = n−1
∑n

i=1 δi,

ah =

{
− 2 log

(
h

b0 − a0

)}1/2

, bh = ah + 2−1a−1h log(4−1π−2CK),

CK =

∫
(K(1)(u))2du∫
K2(u)du

, v(x) = d(x)f−2X (x)

∫
K2(u)du,

d(x) =

∫
(ε2 − σ2(x))2

π2(m(x) + ε)
fX,ε|δ=1(x, ε)dε.

In Theorem 1, fX,ε|δ=1(x, ε) is the conditional joint density function of the ob-

served (X, ε), and π in bh is a mathematical constant 3.14 · · · , to be distinguished

from the selection probability function π(y). Thus, an asymptotic 100(1 − α)%

infeasible SCB for σ2(x), x ∈ [a0, b0] is

σ̃2 (x)± (nh)−1/2κ1/2n v1/2(x)
(
a−1h q1−α + bh

)
, (2.7)

where q1−α = − log((−1/2) log(1− α)).

Theorem 2. Under Assumptions (A1)–(A6), as n→∞,

sup
x∈[a,b]

∣∣σ̂2 (x)− σ̃2 (x)
∣∣ = Op(n

−1/2).

Theorem 2 shows that, regardless of whether the selection probabilities and

the mean function are known by the oracle or are estimated by the proposed

method, the estimator σ̂2 (x) for σ2(x) is asymptotically as efficient as the ideal

one σ̃2 (x).

Theorem 2 and Slutsky’s Theorem, together with (2.6), imply the following

result.
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Theorem 3. Under Assumptions (A1)–(A6), for any t ∈ R,

P

{
ah

[
sup

x∈[a0,b0]

∣∣∣(nh)1/2κ−1/2n v−1/2(x)
{
σ̂2 (x)− σ2 (x)

}∣∣∣− bh
]
≤ t

}
→ exp(−2 exp(−t)),

as n→∞. Hence, for any α ∈ (0, 1), an asymptotic 100(1−α)% oracle-efficient

SCB for σ2(x), x ∈ [a0, b0] is

σ̂2 (x)± (nh)−1/2κ1/2n v1/2(x)
(
a−1h q1−α + bh

)
.

Note that the theoretical SCBs above for σ2(x) rely on the unknown quantity

v(x). Following Cai et al. (2021), we estimate v(x) by

v̂(x) = κ−1n h0f̂
−2
X (x)n−1

n∑
i=1

δi

π̂2i
K2
h0

(Xi − x)Ẑ2
i ,

where Ẑi = R̂i − σ̂2 (Xi). The bandwidth for f̂X (x) here may be different from

that used in (2.2); we recommend using Silverman’s rule-of-thumb (ROT) band-

width in Silverman (1998, p.48) with the order of n−1/5 computed using the

complete data. According to Theorem 5 of Cai et al. (2021), under the condition

that n−1/3 log n� h0 � n−1/5 log1/5 n, we have

sup
x∈[a0,b0]

|v̂(x)− v(x)| = Op(n
−1/2h

−3/2
0 log1/2 n).

In the simulation studies, we found h0 = 2h (where h is given in the implementa-

tion section (Section 4)) works quite well, and is what we recommend. Because

n−1/2h
−3/2
0 log1/2 n� log−1 n, the following main result is obtained by applying

Slutsky’s Theorem.

Theorem 4. Under Assumptions (A1)–(A6), for any α ∈ (0, 1), an asymptotic

100(1− α)% SCB for σ2(x) over [a0, b0] is

σ̂2 (x)± (nh)−1/2κ1/2n v̂1/2(x)
(
a−1h q1−α + bh

)
. (2.8)

3. Error Decomposition

In this section, we show in detail that the weighted two-step estimator σ̂2 (x)

is asymptotically as efficient as the infeasible one σ̃2 (x) in Theorem 2. For clarity,

we focus on proving the part between σ̃2NW (x) and σ̂2SNW (x). The proof of that for

σ̃2SLL (x) and σ̂2SLL (x) is similar, but with more tedious arguments; see the detailed
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discussion below Proposition 1. To study the estimate error σ̂2SNW (x)− σ̃2NW (x),

we first discuss the spline space G
(p−2)
N and the representation of the weighted

spline estimator ĝp (x) for g(x).

Write Y as the sum of a signal vector g and a noise vector E:

Y = g + E, g = (g (X1) , . . . , g (Xn))T , E = (ε1, . . . , εn)T .

Projecting this relationship into the space G
(p−2)
N , one has

ĝp (x) = g̃p (x) + ε̃p (x) , (3.1)

where

g̃p (x) =

N∑
J=1−p

α̃J,pBJ,p (x) , ε̃p (x) =

N∑
J=1−p

β̃J,pBJ,p (x) .

The vectors (α̃1−p,p, . . . , α̃N,p)
T and (β̃1−p,p, . . . , β̃N,p)

T are solutions to (2.4), but

with Yi replaced by g(Xi) and εi, respectively.

For our theoretical development, we introduce another infeasible weighted

estimator σ̂∗2SNW (x) based on the true selection probabilities, defined as

σ̂∗2SNW (x) = n−1f̃−1X (x)

n∑
i=1

δi
πi
Kh (Xi − x) R̂∗i ,

where R̂∗i = (R̂∗1, . . . , R̂
∗
n)T and R̂∗i = ε̂∗2i = (Yi − ĝ∗p (Xi))

2, for 1 ≤ i ≤ n, which

are the squared residuals from the following weighted spline estimator:

ĝ∗p (·) = argmin
m∈G(p−2)

N [a,b]

n∑
i=1

δi
πi
{Yi −m (Xi)}2 . (3.2)

Therefore,

ĝ∗p (x) = (B1−p,p(x), . . . , BN,p(x)) (BT∆B)−1BT∆Y, (3.3)

where ∆ = diag(δ1/π1, . . . , δn/πn)T , and B is given in (2.5). Similar to (3.1), one

has the decomposition ĝ∗p (x) = g̃∗p (x) + ε̃∗p (x) , where

g̃∗p (x) =

N∑
J=1−p

α̃∗J,pBJ,p (x) , ε̃∗p (x) =

N∑
J=1−p

β̃
∗
J,pBJ,p (x) , (3.4)

in which the vectors (α̃∗1−p,p, . . . , α̃
∗
N,p)

T and (β̃
∗
1−p,p, . . . , β̃

∗
N,p)

T are the solutions

to (3.2), but with Yi replaced by g(Xi) and εi, respectively.
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Taking the difference between σ̂∗2SNW (x) and σ̃2NW (x), one gets

σ̂∗2SNW (x)− σ̃2NW (x)

= n−1f̃−1X (x)

n∑
i=1

δi
πi
Kh (Xi − x)

(
R̂∗i −Ri

)
= n−1f̃−1X (x)

n∑
i=1

δi
πi
Kh (Xi − x)

{(
g(Xi) + εi − g̃∗p (Xi)− ε̃∗p (Xi)

)2 − ε2i}
= I1(x) + I2(x) + I3(x), (3.5)

where

I1(x) = f̃−1X (x)n−1
n∑
i=1

δi
πi
Kh (Xi − x)

(
g(Xi)− g̃∗p (Xi)

)2
+f̃−1X (x)n−1

n∑
i=1

δi
πi
Kh (Xi − x) ε̃∗2p (Xi)

−2f̃−1X (x)n−1
n∑
i=1

δi
πi
Kh (Xi − x)

(
g(Xi)− g̃∗p (Xi)

)
ε̃∗p (Xi) ,

I2(x) = 2f̃−1X (x)n−1
n∑
i=1

δi
πi
Kh (Xi − x)

(
g(Xi)− g̃∗p (Xi)

)
εi,

I3(x) = −2f̃−1X (x)n−1
n∑
i=1

δi
πi
Kh (Xi − x) εiε̃

∗
p (Xi) .

Likewise, one has

σ̂2SNW (x)− σ̂∗2SNW (x)

= n−1f̂−1X (x)

n∑
i=1

δi
π̂i
Kh (Xi − x) R̂i − n−1f̃−1X (x)

n∑
i=1

δi
πi
Kh (Xi − x) R̂∗i

= J1(x) + J2(x) + J3(x), (3.6)

where

J1(x) = f̂−1X (x)n−1
n∑
i=1

δi
π̂i
Kh (Xi − x)

(
R̂i − R̂∗i

)
,

J2(x) = f̂−1X (x)n−1
n∑
i=1

(
δi
π̂i
− δi
πi

)
Kh (Xi − x) R̂∗i ,
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J3(x) =
(
f̂−1X (x)− f̃−1X (x)

)
n−1

n∑
i=1

δi
πi
Kh (Xi − x) R̂∗i .

Therefore, the estimation error σ̂2SNW (x)− σ̃2NW (x) can be decomposed as

σ̂2SNW (x)− σ̃2NW (x) = σ̂2SNW (x)− σ̂∗2SNW (x) + σ̂∗2SNW (x)− σ̃2NW (x)

= I1(x) + I2(x) + I3(x) + J1(x) + J2(x) + J3(x).

Proposition 1. Under Assumptions (A1)–(A6), as n→∞, one has

(a) supx∈[a,b]|I1(x)|=Op(N
−2p+n−1N log n), supx∈[a,b]|J1(x)|=Op(n

−1/2);

(b) supx∈[a,b]|I2(x)|=Op(n
−1/2h−1/2N1−plog1/2n), supx∈[a,b]|J2(x)|=Op(n

−1/2);

(c) supx∈[a,b]|I3(x)|=Op(n
−1h−1/2N3/2log n), supx∈[a,b]|J3(x)|=Op(n

−1/2).

The proof of the results for the weighted spline Nadaraya–Watson estimator

in Theorem 2 relies on Proposition 1. In order to prove the corresponding part

for the weighted spline local linear estimator, one can extend Proposition 1 by

including the terms that contain one more element (Xi − x) in each summation

of I1(x), I2(x), I3(x), J1(x), J2(x), and J3(x). These do not add a great deal of

difficulty, but are rather lengthy and tedious, and thus are omitted.

4. Implementation

In this section, we describe how to implement the proposed oracle-efficient

estimator and the SCBs for the variance function. These will be used in Section

5 for both the simulation studies and the real-data analysis.

The quartic kernel function K(u) = 15(1− u2)2/16, for −1 ≤ u ≤ 1, is used

for the weighted kernel regression, which satisfies Assumption (A3). We take the

range of the covariate variable as (â, b̂), with â = min{Xi : 1 ≤ i ≤ n, δi = 1}
and b̂ = max{Xi : 1 ≤ i ≤ n, δi = 1}, and the compact interval [â0, b̂0] =

[0.9â + 0.1b̂, 0.1â + 0.9b̂] is chosen as the subinterval of interest over which the

SCBs are constructed for the variance function.

Using formulae for ε̃p (x) and g̃p (x) parallel to (S2.1) and (S2.2), respectively,

in the Supplementary Material, it is easy to show that the optimal order of

the number of interior knots N for the weighted spline regression is n1/(2p+1),

satisfying Assumption (A6). In the following, we discuss an approach to select N

using the BIC. Denote the predictor for the ith response Yi by Ŷi(N) = ĝp(Xi),

for 1 ≤ i ≤ n, δi = 1, which depends on the knot number N . The optimal

N̂opt is obtained by minimizing the following BIC value for N over the range of
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0.05n1/(2p+1),min

{
10n1/(2p+1), n/4− p

}]
:

BIC = log(MSE) +
2(N + p) log n

n
,

where MSE= n−1
∑n

i=1(Yi − Ŷi(N))2 and N + p is the number of parameters in

(2.4). Here, the range of
[
0.05n1/(2p+1),min

{
10n1/(2p+1), n/4− p

}]
ensures that

the chosen knot number N̂opt is of order n1/(2p+1) and the total number of the

parameters in the least square estimation (2.4) is less than n/4. Although any

spline order p ≥ 2 may be applied to estimate the mean function g(x), we used

cubic splines (p = 4) in our empirical studies in Section 5.

To further use a kernel regression to compute σ̂2SLL (x) and σ̂2SNW (x), one

can take the bandwidth h = hrot log−t n for any t > 1/5, where hrot is the

ROT bandwidth with order of n−1/5 computed for the complete case; see Fan

and Gijbels (1996), Equation (4.3) for the explicit formula. Clearly, the chosen

bandwidth h ∼ n−1/5 log−t n satisfies Assumption (A5). In our empirical studies,

we applied local linear smoothing in the second estimation step for the variance

function. We found in extensive simulations that h = hrot log−1/2 n works quite

well, and hence is what we recommend.

5. Empirical Studies

5.1. Simulation studies

In this section, we investigate the finite-sample behavior of the proposed

estimator and the asymptotic SCBs for the conditional variance function.

The following four cases are examined:

Case 1: g (x) = x3 exp(x) + 1, σ (x) = x2 + 0.5;

Case 2: g (x) = x3 exp(x) + 1, σ (x) = 3 exp(x)/{2(exp(2x) + 1)};
Case 3: g (x) = sin(πx) + x2 + 1, σ (x) = x2 + 0.5;

Case 4: g (x) = sin(πx) + x2 + 1, σ (x) = 3 exp(x)/{2(exp(2x) + 1)}.

The covariate X was generated from the uniform distribution U [0, 1], and the

error ε from the standard normal distribution N(0, 1). We considered the fol-

lowing selection probability functions: (1) π1(y) = {1 + exp(−2y)}−1, leading

to 5% − 12% of X observations missing; and (2) π2(y) = {1 + exp(0.9 − y)}−1,
leading to 28% − 38% of X observations missing. The sample sizes were n =

200, 400, 600, 800, and the confidence levels were 1 − α = 0.95, 0.99. We consid-

ered the local linear smoothing approach in the second estimation step for the
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Table 1. Empirical coverage frequencies of the SCB in (2.8), the SCB in the complete case
(SCB-CC), and the infeasible SCB in (2.7) (SCB∗), as well as their corresponding average
widths (inside parentheses), under missingness mechanism π1(y) with 1,000 replications.

n 1− α Case 1 Case 2

SCB SCB-CC SCB∗ SCB SCB-CC SCB∗

200
0.95 0.875(1.46) 0.803(1.18) 0.910(1.64) 0.873(0.93) 0.760(0.75) 0.888(1.02)

0.99 0.962(1.82) 0.930(1.47) 0.971(2.04) 0.959(1.15) 0.916(0.93) 0.966(1.26)

400
0.95 0.932(1.26) 0.840(0.92) 0.944(1.33) 0.916(0.79) 0.789(0.60) 0.932(0.83)

0.99 0.985(1.55) 0.955(1.14) 0.986(1.64) 0.985(0.97) 0.942(0.74) 0.991(1.01)

600
0.95 0.950(1.14) 0.818(0.79) 0.951(1.21) 0.928(0.72) 0.746(0.52) 0.927(0.74)

0.99 0.988(1.40) 0.955(0.97) 0.988(1.49) 0.985(0.87) 0.925(0.64) 0.983(0.90)

800
0.95 0.965(1.02) 0.802(0.71) 0.965(1.06) 0.949(0.66) 0.746(0.47) 0.950(0.68)

0.99 0.995(1.25) 0.961(0.87) 0.995(1.30) 0.994(0.80) 0.941(0.58) 0.994(0.82)

n 1− α Case 3 Case 4

SCB SCB-CC SCB∗ SCB SCB-CC SCB∗

200
0.95 0.866(1.31) 0.761(1.09) 0.888(1.45) 0.885(0.76) 0.826(0.67) 0.905(0.79)

0.99 0.951(1.64) 0.891(1.37) 0.960(1.82) 0.971(0.95) 0.941(0.84) 0.979(0.99)

400
0.95 0.897(1.06) 0.758(0.82) 0.911(1.17) 0.930(0.59) 0.864(0.51) 0.932(0.61)

0.99 0.969(1.32) 0.895(1.03) 0.976(1.45) 0.992(0.74) 0.973(0.64) 0.993(0.76)

600
0.95 0.922(0.93) 0.730(0.70) 0.929(1.02) 0.941(0.52) 0.841(0.44) 0.942(0.53)

0.99 0.979(1.16) 0.897(0.87) 0.981(1.27) 0.992(0.64) 0.961(0.54) 0.991(0.65)

800
0.95 0.934(0.83) 0.718(0.62) 0.942(0.88) 0.956(0.47) 0.853(0.39) 0.956(0.47)

0.99 0.983(1.03) 0.881(0.77) 0.987(1.09) 0.995(0.57) 0.973(0.49) 0.993(0.58)

variance function.

We first examine the performance of the proposed SCB for the variance

function when the selection probability function is correctly specified. Tables 1

and 2 show the average widths of the SCB in (2.8) and the coverage frequencies

with which the true variance function is totally covered by the SCB at the equally

spaced points {â0 + k(b̂0 − â0)/400, k = 0, 1, . . . , 400}, with 1,000 replications.

For comparison, we have also listed the coverage frequencies of the SCB in the

complete case by directly ignoring the missing data, denoted by SCB-CC, and

those of the infeasible SCB in (2.7), denoted by SCB∗. In the latter case, v(x)

is computed in the same way as v̂(x) in (2.8), but using the true mean function

and the true selection probability function. Tables 1 and 2 show that in all cases,

(i) the coverage frequencies of the proposed SCB approach the confidence levels

0.95 and 0.99 as the sample size n increases, and they are close to those of the

infeasible ones, and (ii) the obtained SCBs perform better than those of the SCB-

CC, and the widths of the SCBs become narrower as the sample size n increases.
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Table 2. Empirical coverage frequencies of the SCB in (2.8), the SCB in the complete case
(SCB-CC), and the infeasible SCB in (2.7) (SCB∗), as well as their corresponding average
widths (inside parentheses), under missingness mechanism π2(y) with 1,000 replications.

n 1− α Case 1 Case 2

SCB SCB-CC SCB∗ SCB SCB-CC SCB∗

200
0.95 0.846(1.66) 0.793(1.43) 0.902(1.87) 0.800(1.06) 0.793(0.92) 0.877(1.17)

0.99 0.939(2.07) 0.907(1.78) 0.966(2.33) 0.931(1.31) 0.927(1.14) 0.956(1.45)

400
0.95 0.917(1.36) 0.834(1.09) 0.933(1.45) 0.908(0.90) 0.870(0.739) 0.924(0.95)

0.99 0.970(1.68) 0.941(1.35) 0.978(1.80) 0.979(1.11) 0.973(0.91) 0.989(1.17)

600
0.95 0.930(1.23) 0.820(0.94) 0.940(1.30) 0.927(0.80) 0.873(0.64) 0.940(0.83)

0.99 0.981(1.52) 0.940(1.16) 0.989(1.60) 0.981(0.98) 0.967(0.78) 0.988(1.01)

800
0.95 0.950(1.10) 0.832(0.84) 0.951(1.14) 0.946(0.73) 0.881(0.58) 0.956(0.74)

0.99 0.992(1.36) 0.949(1.03) 0.993(1.40) 0.992(0.88) 0.977(0.71) 0.997(0.91)

n 1− α Case 3 Case 4

SCB SCB-CC SCB∗ SCB SCB-CC SCB∗

200
0.95 0.813(1.47) 0.752(1.22) 0.876(1.64) 0.838(0.86) 0.809(0.75) 0.890(0.92)

0.99 0.926(1.85) 0.864(1.53) 0.957(2.06) 0.957(1.08) 0.939(0.94) 0.968(1.16)

400
0.95 0.905(1.22) 0.760(0.92) 0.926(1.32) 0.893(0.69) 0.857(0.58) 0.907(0.71)

0.99 0.974(1.52) 0.906(1.15) 0.983(1.64) 0.979(0.85) 0.969(0.72) 0.981(0.88)

600
0.95 0.916(1.07) 0.732(0.77) 0.915(1.16) 0.931(0.59) 0.855(0.49) 0.931(0.61)

0.99 0.970(1.33) 0.872(0.96) 0.979(1.44) 0.982(0.74) 0.968(0.61) 0.986(0.75)

800
0.95 0.944(0.96) 0.704(0.69) 0.943(1.00) 0.944(0.54) 0.856(0.44) 0.946(0.54)

0.99 0.984(1.19) 0.877(0.85) 0.990(1.25) 0.993(0.66) 0.972(0.54) 0.996(0.67)

All of these results are consistent with our theoretical findings in Theorems 2 and

4.

We next investigate the sensitivity of the proposed SCB to a misspecification

of the missingness mechanism. The selection probability functions π†1(y) = {1 +

exp(−0.3 − 1.6y − 0.2y2)}−1 and π†2(y) = {1 + exp(0.2 − 1.5y − 0.2 sin(y))}−1

were used for this purpose. It is thus not completely correct to employ a linear

logistic regression to fit the selection probabilities. Tables 3 and 4 show the

coverage frequencies and the average widths of the SCB, SCB-CC, and SCB∗ in

these misspecified cases. In all cases, the proposed SCB performs similarly to

the infeasible ones and to those under the correct specification of the selection

probabilities. Furthermore, the proposed SCB performs better than that in the

complete case. This suggests that the proposed method is not very sensitive to a

misspecification of the missingness mechanism.

Figure 1 plots the variance estimate σ̂2SLL (x) (dashed) and the 95% SCB

(thick solid) for σ2(x) (solid) in Cases 1–4, based on the sample sizes n = 400
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Table 3. Empirical coverage frequencies of the SCB in (2.8), the SCB in the complete case
(SCB-CC), and the infeasible SCB in (2.7) (SCB∗), as well as their corresponding average
widths (inside parentheses), with 1,000 replications when the missingness mechanism

π†1(y) is misspecified.

n 1− α Case 1 Case 2

SCB SCB-CC SCB∗ SCB SCB-CC SCB∗

200
0.95 0.901(1.56) 0.831(1.21) 0.924(1.58) 0.896(0.96) 0.803(0.76) 0.902(0.96)

0.99 0.970(1.95) 0.940(1.51) 0.977(1.96) 0.972(1.19) 0.935(0.94) 0.980(1.19)

400
0.95 0.954(1.32) 0.870(0.94) 0.953(1.25) 0.946(0.83) 0.873(0.62) 0.940(0.79)

0.99 0.992(1.63) 0.972(1.17) 0.990(1.54) 0.990(1.01) 0.970(0.75) 0.992(0.96)

600
0.95 0.955(1.21) 0.871(0.81) 0.955(1.09) 0.955(0.75) 0.847(0.53) 0.948(0.69)

0.99 0.993(1.48) 0.967(0.99) 0.990(1.34) 0.998(0.91) 0.957(0.65) 0.998(0.84)

800
0.95 0.969(1.04) 0.884(0.73) 0.968(0.97) 0.960(0.68) 0.811(0.48) 0.946(0.62)

0.99 0.994(1.34) 0.976(0.89) 0.994(1.18) 0.998(0.83) 0.961(0.59) 0.997(0.75)

n 1− α Case 3 Case 4

SCB SCB-CC SCB∗ SCB SCB-CC SCB∗

200
0.95 0.881(1.37) 0.794(1.12) 0.895(1.42) 0.868(0.76) 0.822(0.67) 0.892(0.77)

0.99 0.956(1.71) 0.907(1.40) 0.965(1.78) 0.969(0.95) 0.945(0.84) 0.978(0.97)

400
0.95 0.919(1.13) 0.820(0.84) 0.928(1.11) 0.934(0.61) 0.859(0.52) 0.942(0.60)

0.99 0.975(1.41) 0.928(1.05) 0.981(1.39) 0.988(0.76) 0.974(0.64) 0.993(0.74)

600
0.95 0.940(1.01) 0.790(0.71) 0.951(0.94) 0.949(0.53) 0.901(0.44) 0.947(0.51)

0.99 0.990(1.25) 0.927(0.88) 0.990(1.16) 0.994(0.65) 0.971(0.55) 0.996(0.63)

800
0.95 0.958(0.96) 0.789(0.63) 0.959(0.85) 0.952(0.47) 0.879(0.40) 0.952(0.46)

0.99 0.988(1.19) 0.924(0.78) 0.990(1.05) 0.999(0.59) 0.980(0.49) 0.996(0.56)

(left-sided) and n = 800 (right-sided), under the missingness mechanism π1(y).

The estimate fits better and the SCB becomes narrower for n = 800 than for

n = 400. The plots for other cases are similar, and hence are omitted.

5.2. Real-data analysis

In this section, we apply the proposed method to data from a 2010/2011

youth student survey. The survey was sponsored by Health Canada, and the

target sampling group was pan-Canadian youth students in grades 6–12 between

October 2010 and June 2011. Using the survey, Health Canada aimed to provide

schools, provinces, communities, and parents with timely and reliable information

on tobacco, alcohol, and drug use, as well as other related issues about Canadian

students. More details can be found in the 2010–2011 YSS Student Survey Data

Codebook and https://uwaterloo.ca/canadian-student-tobacco-alcohol-

drugs-survey.

https://uwaterloo.ca/canadian-student-tobacco-alcohol-drugs-survey
https://uwaterloo.ca/canadian-student-tobacco-alcohol-drugs-survey
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Figure 1. Plots of the variance estimate σ̂2
SLL (x) (dashed) and the 95% SCB (thick solid)

for σ2(x) (solid) in Cases 1–4 from the first row to the fourth row, with n = 400 (left)
and n = 800 (right), under missingness mechanism π1(y).
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Table 4. Empirical coverage frequencies of the SCB in (2.8), the SCB in the complete case
(SCB-CC), and the infeasible SCB in (2.7) (SCB∗), as well as their corresponding average
widths (inside parentheses), with 1,000 replications when the missingness mechanism

π†2(y) is misspecified.

n 1− α Case 1 Case 2

SCB SCB-CC SCB∗ SCB SCB-CC SCB∗

200
0.95 0.867(1.49) 0.814(1.22) 0.911(1.71) 0.859(0.94) 0.765(0.78) 0.905(1.04)

0.99 0.958(1.86) 0.931(1.52) 0.976(2.13) 0.959(1.16) 0.918(0.96) 0.979(1.29)

400
0.95 0.926(1.24) 0.840(0.94) 0.933(1.34) 0.932(0.81) 0.826(0.62) 0.938(0.87)

0.99 0.982(1.53) 0.948(1.17) 0.987(1.65) 0.979(0.99) 0.953(0.76) 0.987(1.07)

600
0.95 0.950(1.12) 0.821(0.81) 0.953(1.21) 0.941(0.71) 0.794(0.54) 0.948(0.75)

0.99 0.985(1.38) 0.952(0.99) 0.987(1.48) 0.994(0.86) 0.946(0.66) 0.993(0.92)

800
0.95 0.948(0.99) 0.808(0.73) 0.964(1.06) 0.946(0.65) 0.765(0.49) 0.953(0.68)

0.99 0.995(1.22) 0.963(0.89) 0.993(1.29) 0.992(0.78) 0.949(0.59) 0.998(0.82)

n 1− α Case 3 Case 4

SCB SCB-CC SCB∗ SCB SCB-CC SCB∗

200
0.95 0.840(1.29) 0.740(1.09) 0.877(1.44) 0.881(0.77) 0.823(0.68) 0.903(0.81)

0.99 0.946(1.62) 0.882(1.37) 0.958(1.81) 0.967(0.96) 0.949(0.86) 0.980(1.02)

400
0.95 0.914(1.07) 0.768(0.84) 0.929(1.21) 0.925(0.60) 0.869(0.52) 0.932(0.62)

0.99 0.973(1.33) 0.910(1.04) 0.985(1.50) 0.988(0.75) 0.973(0.65) 0.991(0.78)

600
0.95 0.916(0.92) 0.724(0.71) 0.933(1.03) 0.933(0.52) 0.843(0.44) 0.937(0.54)

0.99 0.980(1.15) 0.881(0.88) 0.983(1.27) 0.988(0.64) 0.955(0.55) 0.990(0.67)

800
0.95 0.936(0.82) 0.688(0.63) 0.945(0.91) 0.946(0.46) 0.862(0.40) 0.946(0.48)

0.99 0.990(1.02) 0.871(0.77) 0.995(1.13) 0.994(0.57) 0.968(0.49) 0.995(0.59)

Mental and physical development during adolescence, as is well known, is

a factor that may affect quality of life in adulthood. Many existing works in

psychology investigate the physical effect of a person’s body mass index (BMI)

on his or her mental development of self-esteem; see, for example, Agarwal et

al. (2013) and Al Ahmari et al. (2019). Here, we concentrate on studying the

variance function of self-esteem with BMI. A subset of the data is used, focusing

on white female youth students in grades 6 to 12. The data contain a variable

for self-esteem, measured by a score ranging from 0 to 12, and one for BMI,

ranging from 10 to 50, computed as weight in kilograms over height in meters

squared. The sample contains data on 5,343 students, all of whom have complete

self-esteem scores, but only 3,565 provide their BMI data (about 33% missing).

The missingness of BMI may be closely related to self-esteem, which suggests

that it is unlikely to be missing completely at random. However, it is plausible to

assume that given self-esteem, the missingness mechanism is no longer dependent
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Figure 2. Plots of the variance estimate σ̂2
SLL (x) (solid), SCBs (thick solid), and null

hypothesis curve σ2(x) ≡ n−1
∑n

i=1(δi/π̂i)R̂i (dashed) for the youth student survey data.

on BMI itself (at least approximately). In other words, the dependence on X of

the missingness mechanism may be expressed through Y , leading to MAR. The

Hosmer–Lemeshow goodness-of-fit test was applied to check the linear logistic re-

gression for the selection probabilities. The resulting p-value was 0.17, indicating

no evidence of poor fit for the missingness mechanism. Thus, the linear logistic

regression was used to model the selection probabilities.

Figure 2 plots the proposed two-step weighted estimator (solid line) and

the 95% SCB (thick solid line) in (2.8) for the variance function. The SCB

was applied to test the homoscedasticity of the data H0 : σ2(x) ≡ σ2. Under

this hypothesis, a consistent estimator σ̂2 = n−1
∑n

i=1(δi/π̂i)R̂i for σ2 was used,

as shown in Figure 2 (dashed horizontal line), where R̂i = (Yi − ĝp (Xi))
2, for

1 ≤ i ≤ n, are the squared residuals from the weighted spline estimator in (2.3).

The null hypothesis curve is completely covered by the 95% SCB, implying that

the homoscedasticity of the data cannot be rejected at the significance level of

0.05. Simple calculations conclude that the minimum confidence level containing

the null curve is 82%; see Figure 2 on the right panel. Hence, the p-value for the

test is 0.18.

6. Conclusion

We have proposed a new two-step bias-corrected spline kernel estimator for

the variance function when the covariates are MAR. The estimation procedure

synthesizes a spline regression and kernel smoothing to take advantage of the

fast computation speed of the former and the uniform convergence property of

the latter. The two-step estimator was justified to be oracle-efficient in the sense

that it is as efficient as the ideal estimator obtained from using the true mean
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function and the true selection probability function. Applying the oracle efficiency

and the uniform convergence property of the kernel regression, an asymptotic

accurate SCB was constructed for the variance function. Our theoretical findings

were supported by finite-sample simulation studies. An analysis of youth student

survey data illustrated the usefulness of the proposed confidence band. Further

research problems include investigating whether these strategies can be extended

to time series (see Fan and Yao (1998), Wang et al. (2014)) and functional data

(see, e.g., Yao, Müller and Wang (2005), Cao, Yang and Todem (2012)), as well

as to the more complex setting of functional linear regression for functional data.

Supplementary Material

The supplement contains technical proofs for the main results.
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