FEATURE-WEIGHTED ELASTIC NET: USING FEATURES OF FEATURES" FOR BETTER PREDICTION

J. Kenneth Tay ${ }^{1}$, Nima Aghaeepour ${ }^{2,3,4}$, Trevor Hastie ${ }^{1,4}$ and Robert Tibshirani ${ }^{1,4}$
${ }^{1}$ Department of Statistics, Stanford University
${ }^{2}$ Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University
${ }^{3}$ Department of Pediatrics, Stanford University
${ }^{4}$ Department of Biomedical Data Sciences, Stanford University

Supplementary Material

The online supplementary materials provide (i) details on an alternative algorithm with θ as a parameter, (ii) the proof for Theorem 1, (iii) details on the simulation study in Section 5 , and (iv) details on the simulation study in Section 7 .

S1 Alternative algorithm with θ as a parameter

Assume that \mathbf{y} and the columns of \mathbf{X} are centered so that $\hat{\beta}_{0}=0$ and we can ignore the intercept term in the rest of the discussion. If we consider θ as an argument of the objective function, then we wish to solve

$$
\begin{aligned}
(\hat{\beta}, \hat{\theta}) & =\underset{\beta, \theta}{\operatorname{argmin}} J_{\lambda, \alpha}(\beta, \theta) \\
& =\underset{\beta, \theta}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p} w_{j}(\theta)\left[\alpha\left|\beta_{j}\right|+\frac{1-\alpha}{2} \beta_{j}^{2}\right] .
\end{aligned}
$$

J is not jointly convex β and θ, so reaching a global minimum is a difficult task. Instead, we content ourselves with reaching a local minimum. A reasonable approach for doing so is to alternate between optimizing β and θ : the steps are outlined in Algorithm 2.

Unfortunately, Algorithm 2 is slow due to repeated solving of the elastic net problem in Step 2(b)ii for each λ_{i}. The algorithm does not take advantage of the fact that once α and θ are fixed, the elastic net problem can be solved quickly for an entire path of λ values. We have also found that Algorithm 2 does not predict as well as Algorithm 1 in our simulations.

S2 Proof of Theorem 1

For the moment, consider the more general penalty factor $w_{j}(\theta)=\frac{\sum_{\ell=1}^{p} f\left(\mathbf{z}_{\ell}^{T} \theta\right)}{p f\left(\mathbf{z}_{j}^{T} \theta\right)}$, where f is some function with range $[0,+\infty$). (Fwelnet makes the choice

```
Algorithm 2 Minimizing the fwelnet objective function via alternating minimization
    1. Select a value of \(\alpha \in[0,1]\) and a sequence of \(\lambda\) values \(\lambda_{1}>\ldots>\lambda_{m}\).
```

2. For $i=1, \ldots, m$:
(a) Initialize $\beta^{(0)}\left(\lambda_{i}\right)$ at the elastic net solution for λ_{i}. Initialize $\theta^{(0)}=\mathbf{0}$.
(b) For $k=0,1, \ldots$ until convergence:
i. Fix $\beta=\beta^{(k)}$, update $\theta^{(k+1)}$ via gradient descent. That is, set $\Delta \theta=\left.\frac{\partial J_{\lambda_{i}, \alpha}}{\partial \theta}\right|_{\beta=\beta^{(k)}, \theta=\theta^{(k)}}$ and update $\theta^{(k+1)}=\theta^{(k)}-\eta \Delta \theta$, where η is the step size computed via backtracking line search to ensure that $J_{\lambda_{i}, \alpha}\left(\beta^{(k)}, \theta^{(k+1)}\right)<J_{\lambda_{i}, \alpha}\left(\beta^{(k)}, \theta^{(k)}\right)$.
ii. Fix $\theta=\theta^{(k+1)}$, update $\beta^{(k+1)}$ by solving the elastic net with updated penalty factors $w_{j}\left(\theta^{(k+1)}\right)$.
$\left.f(x)=e^{x}.\right)$
First note that if feature j belongs to group k, then $\mathbf{z}_{j}^{T} \theta=\theta_{k}$, and its penalty factor is

$$
w_{j}(\theta)=\frac{\sum_{\ell=1}^{p} f\left(\mathbf{z}_{\ell}^{T} \theta\right)}{p f\left(\mathbf{z}_{j}^{T} \theta\right)}=\frac{\sum_{\ell=1}^{p} f\left(\theta_{\ell}\right)}{p f\left(\theta_{k}\right)}=\frac{\sum_{\ell=1}^{K} p_{\ell} f\left(\theta_{\ell}\right)}{p f\left(\theta_{k}\right)},
$$

where p_{ℓ} denotes the number of features in group ℓ. Letting $v_{k}=$ $\frac{f\left(\theta_{k}\right)}{\sum_{\ell=1}^{K} p_{\ell} f\left(\theta_{\ell}\right)}$ for $k=1, \ldots, K$, minimizing the fwelnet objective function (3.2) over β and θ reduces to

$$
\underset{\beta, \theta}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}+\frac{\lambda}{p} \sum_{k=1}^{K} \frac{1}{v_{k}}\left[\alpha\left\|\beta^{(k)}\right\|_{1}+\frac{1-\alpha}{2}\left\|\beta^{(k)}\right\|_{2}^{2}\right] .
$$

For fixed β, we can explicitly determine the v_{k} values which minimize the expression above. By the Cauchy-Schwarz inequality,

$$
\begin{align*}
& \frac{\lambda}{p} \sum_{k=1}^{K} \frac{1}{v_{k}}\left[\alpha\left\|\beta^{(k)}\right\|_{1}+\frac{1-\alpha}{2}\left\|\beta^{(k)}\right\|_{2}^{2}\right] \\
& =\frac{\lambda}{p}\left(\sum_{k=1}^{K} \frac{1}{v_{k}}\left[\alpha\left\|\beta^{(k)}\right\|_{1}+\frac{1-\alpha}{2}\left\|\beta^{(k)}\right\|_{2}^{2}\right]\right)\left(\sum_{k=1}^{K} p_{k} v_{k}\right) \\
& \geq \frac{\lambda}{p}\left(\sum_{k=1}^{K} \sqrt{p_{k}\left[\alpha\left\|\beta^{(k)}\right\|_{1}+\frac{1-\alpha}{2}\left\|\beta^{(k)}\right\|_{2}^{2}\right]}\right)^{2} \tag{S2.1}
\end{align*}
$$

Note that equality is attainable for $($ S2.1 $)$: letting $a_{k}=\sqrt{\frac{\left[\alpha\left\|\beta^{(k)}\right\|_{1}+\frac{1-\alpha}{2}\left\|\beta^{(k)}\right\|_{2}^{2}\right]}{p_{k}}}$, equality occurs when there is some $c \in \mathbb{R}$ such that

$$
\begin{aligned}
c \cdot \frac{1}{v_{k}}\left[\alpha\left\|\beta^{(k)}\right\|_{1}+\frac{1-\alpha}{2}\left\|\beta^{(k)}\right\|_{2}^{2}\right] & =p_{k} v_{k} & \text { for all } k, \\
v_{k} & =\sqrt{c} a_{k} & \text { for all } k .
\end{aligned}
$$

$$
\text { Since } \sum_{k=1}^{K} p_{k} v_{k}=1, \text { we have } \sqrt{c}=\frac{1}{\sum_{k=1}^{K} p_{k} a_{k}} \text {, giving } v_{k}=\frac{a_{k}}{\sum_{k=1}^{K} p_{k} a_{k}}
$$ for all k. A solution for this is $f\left(\theta_{k}\right)=a_{k}$ for all k, which is feasible for f having range $[0, \infty)$. (Note that if f only has range $(0, \infty)$, the connection still holds if $\lim _{x \rightarrow-\infty} f(x)=0$ or $\lim _{x \rightarrow+\infty} f(x)=0$: the solution will just have $\theta=+\infty$ or $\theta=-\infty$.)

Thus, the fwelnet solution is

$$
\begin{equation*}
\underset{\beta}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}+\frac{\lambda}{p}\left(\sum_{k=1}^{K} \sqrt{p_{k}\left[\alpha\left\|\beta^{(k)}\right\|_{1}+\frac{1-\alpha}{2}\left\|\beta^{(k)}\right\|_{2}^{2}\right]}\right)^{2} . \tag{S2.2}
\end{equation*}
$$

When $\alpha=0$, the penalty term is convex. Writing in constrained form, (S2.2) becomes minimizing $\frac{1}{2}\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}$ subject to

$$
\begin{aligned}
\left(\sum_{k=1}^{K} \sqrt{p_{k}}\left\|\beta^{(k)}\right\|_{2}\right)^{2} & \leq C \text { for some constant } C \\
\sum_{k=1}^{K} \sqrt{p_{k}}\left\|\beta^{(k)}\right\|_{2} & \leq \sqrt{C}
\end{aligned}
$$

Converting back to Lagrange form again, there is some $\lambda^{\prime} \geq 0$ such that the fwelnet solution is

$$
\underset{\beta}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}+\lambda^{\prime} \sum_{k=1}^{K} \sqrt{p_{k}}\left\|\beta^{(k)}\right\|_{2} .
$$

S3 Details on simulation study in Section 5

S3.1 Setting 1: Noisy version of the true β

1. Set $n=100, p=50, \beta \in \mathbb{R}^{50}$ with $\beta_{j}=2$ for $j=1, \ldots, 5, \beta_{j}=-1$ for $j=6, \ldots, 10$, and $\beta_{j}=0$ otherwise.
2. Generate $x_{i j} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$ for $i=1, \ldots, n$ and $j=1, \ldots, p$.
3. For each $S N R_{y} \in\{0.5,1,2\}$ and $S N R_{Z} \in\{0.5,2,10\}$:
(a) Compute $\sigma_{y}^{2}=\left(\sum_{j=1}^{p} \beta_{j}^{2}\right) / S N R_{y}$.
(b) Generate $y_{i}=\sum_{j=1}^{p} x_{i j} \beta_{j}+\varepsilon_{i}$, where $\varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{y}^{2}\right)$ for $i=$ $1, \ldots, n$.
(c) Compute $\sigma_{Z}^{2}=\operatorname{Var}(|\beta|) / S N R_{Z}$.
(d) Generate $z_{j}=\left|\beta_{j}\right|+\eta_{j}$, where $\eta_{j} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{Z}^{2}\right)$. Treat this as a column matrix to get $\mathbf{Z} \in \mathbb{R}^{p \times 1}$.

S3.2 Setting 2: Grouped data setting

1. Set $n=100, p=150$.
2. For $j=1, \ldots, p$ and $k=1, \ldots 15$, set $z_{j k}=1$ if $10(k-1)<j \leq 10 k$, $z_{j k}=0$ otherwise.
3. Generate $\beta \in \mathbb{R}^{150}$ with $\beta_{j}=3$ or $\beta_{j}=-3$ with equal probability for $j=1, \ldots, 10 G, \beta_{j}=0$ otherwise. $G=1$ for the first scenario where the response depends on the first group only, and $G=4$ for the second scenario where it depends on the first 4 groups.
4. Generate $x_{i j} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$ for $i=1, \ldots, n$ and $j=1, \ldots, p$.
5. For each $S N R_{y} \in\{0.5,1,2\}$:
(a) Compute $\sigma_{y}^{2}=\left(\sum_{j=1}^{p} \beta_{j}^{2}\right) / S N R_{y}$.
(b) Generate $y_{i}=\sum_{j=1}^{p} x_{i j} \beta_{j}+\varepsilon_{i}$, where $\varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{y}^{2}\right)$ for $i=$ $1, \ldots, n$.

S3.3 Setting 3: Noise variables

1. Set $n=100, p=100, \beta \in \mathbb{R}^{100}$ with $\beta_{j}=2$ for $j=1, \ldots, 10$, and $\beta_{j}=0$ otherwise.
2. Generate $x_{i j} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$ for $i=1, \ldots, n$ and $j=1, \ldots, p$.
3. For each $S N R_{y} \in\{0.5,1,2\}$:
(a) Compute $\sigma_{y}^{2}=\left(\sum_{j=1}^{p} \beta_{j}^{2}\right) / S N R_{y}$.
(b) Generate $y_{i}=\sum_{j=1}^{p} x_{i j} \beta_{j}+\varepsilon_{i}$, where $\varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{y}^{2}\right)$ for $i=$ $1, \ldots, n$.
(c) Generate $z_{j k} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$ for $j=1, \ldots, p$ and $k=1, \ldots 10$. Append a column of ones to get $\mathbf{Z} \in \mathbb{R}^{p \times 11}$.

S4 Details on simulation study in Section 7

1. Set $n=150, p=50$.
2. Generate $\beta_{1} \in \mathbb{R}^{50}$ with

$$
\beta_{1, j}= \begin{cases}5 \text { or }-5 \text { with equal probability } & \text { for } j=1, \ldots, 5 \\ 2 \text { or }-2 \text { with equal probability } & \text { for } j=6, \ldots, 10 \\ 0 & \text { otherwise }\end{cases}
$$

3. Generate $\beta_{2} \in \mathbb{R}^{50}$ with

$$
\beta_{2, j}= \begin{cases}5 \text { or }-5 \text { with equal probability } & \text { for } j=1, \ldots, 5 \\ 2 \text { or }-2 \text { with equal probability } & \text { for } j=11, \ldots, 15, \\ 0 & \text { otherwise. }\end{cases}
$$

4. Generate $x_{i j} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$ for $i=1, \ldots, n$ and $j=1, \ldots, p$.
5. Generate response $1, \mathbf{y}_{1} \in \mathbb{R}^{150}$, in the following way:
(a) Compute $\sigma_{1}^{2}=\left(\sum_{j=1}^{p} \beta_{1, j}^{2}\right) / 0.5$.
(b) Generate $y_{1, i}=\sum_{j=1}^{p} x_{i j} \beta_{1, j}+\varepsilon_{1, i}$, where $\varepsilon_{1, i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{1}^{2}\right)$ for $i=1, \ldots, n$.
6. Generate response $2, \mathbf{y}_{2} \in \mathbb{R}^{150}$, in the following way:
(a) Compute $\sigma_{2}^{2}=\left(\sum_{j=1}^{p} \beta_{2, j}^{2}\right) / 1.5$.
(b) Generate $y_{2, i}=\sum_{j=1}^{p} x_{i j} \beta_{2, j}+\varepsilon_{2, i}$, where $\varepsilon_{2, i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{2}^{2}\right)$ for $i=1, \ldots, n$.
