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S1 Alternative algorithm with θ as a parameter

Assume that y and the columns of X are centered so that β̂0 = 0 and we

can ignore the intercept term in the rest of the discussion. If we consider θ

as an argument of the objective function, then we wish to solve

(β̂, θ̂) = argmin
β,θ

Jλ,α(β, θ)

= argmin
β,θ

1

2
‖y −Xβ‖22 + λ

p∑
j=1

wj(θ)

[
α|βj|+

1− α
2

β2
j

]
.

J is not jointly convex β and θ, so reaching a global minimum is a

difficult task. Instead, we content ourselves with reaching a local minimum.

A reasonable approach for doing so is to alternate between optimizing β and

θ: the steps are outlined in Algorithm 2.

Unfortunately, Algorithm 2 is slow due to repeated solving of the elastic

net problem in Step 2(b)ii for each λi. The algorithm does not take advan-

tage of the fact that once α and θ are fixed, the elastic net problem can

be solved quickly for an entire path of λ values. We have also found that

Algorithm 2 does not predict as well as Algorithm 1 in our simulations.

S2 Proof of Theorem 1

For the moment, consider the more general penalty factor wj(θ) =

∑p
`=1 f(zT` θ)

pf(zTj θ)
,

where f is some function with range [0,+∞). (Fwelnet makes the choice
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Algorithm 2 Minimizing the fwelnet objective function via alternating minimization

1. Select a value of α ∈ [0, 1] and a sequence of λ values λ1 > . . . > λm.

2. For i = 1, . . . ,m:

(a) Initialize β(0)(λi) at the elastic net solution for λi. Initialize θ(0) = 0.

(b) For k = 0, 1, . . . until convergence:

i. Fix β = β(k), update θ(k+1) via gradient descent. That is, set

∆θ =
∂Jλi,α

∂θ

∣∣∣∣
β=β(k),θ=θ(k)

and update θ(k+1) = θ(k) − η∆θ, where η

is the step size computed via backtracking line search to ensure that

Jλi,α

(
β(k), θ(k+1)

)
< Jλi,α

(
β(k), θ(k)

)
.

ii. Fix θ = θ(k+1), update β(k+1) by solving the elastic net with updated

penalty factors wj(θ
(k+1)).
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f(x) = ex.)

First note that if feature j belongs to group k, then zTj θ = θk, and its

penalty factor is

wj(θ) =

∑p
`=1 f(zT` θ)

pf(zTj θ)
=

∑p
`=1 f(θ`)

pf(θk)
=

∑K
`=1 p`f(θ`)

pf(θk)
,

where p` denotes the number of features in group `. Letting vk =

f(θk)∑K
`=1 p`f(θ`)

for k = 1, . . . , K, minimizing the fwelnet objective func-

tion (3.2) over β and θ reduces to

minimize
β,θ

1

2
‖y −Xβ‖22 +

λ

p

K∑
k=1

1

vk

[
α
∥∥β(k)

∥∥
1

+
1− α

2

∥∥β(k)
∥∥2
2

]
.

For fixed β, we can explicitly determine the vk values which minimize

the expression above. By the Cauchy-Schwarz inequality,

λ

p

K∑
k=1

1

vk

[
α
∥∥β(k)

∥∥
1

+
1− α

2

∥∥β(k)
∥∥2
2

]

=
λ

p

(
K∑
k=1

1

vk

[
α
∥∥β(k)

∥∥
1

+
1− α

2

∥∥β(k)
∥∥2
2

])( K∑
k=1

pkvk

)

≥ λ

p

(
K∑
k=1

√
pk

[
α ‖β(k)‖1 +

1− α
2
‖β(k)‖22

])2

. (S2.1)

Note that equality is attainable for (S2.1): letting ak =

√[
α‖β(k)‖

1
+ 1−α

2 ‖β(k)‖2
2

]
pk

,

equality occurs when there is some c ∈ R such that

c · 1

vk

[
α
∥∥β(k)

∥∥
1

+
1− α

2

∥∥β(k)
∥∥2
2

]
= pkvk for all k,

vk =
√
cak for all k.



S2. PROOF OF THEOREM ??5

Since
∑K

k=1 pkvk = 1, we have
√
c =

1∑K
k=1 pkak

, giving vk =
ak∑K

k=1 pkak

for all k. A solution for this is f(θk) = ak for all k, which is feasible for f

having range [0,∞). (Note that if f only has range (0,∞), the connection

still holds if limx→−∞ f(x) = 0 or limx→+∞ f(x) = 0: the solution will just

have θ = +∞ or θ = −∞.)

Thus, the fwelnet solution is

argmin
β

1

2
‖y −Xβ‖22 +

λ

p

(
K∑
k=1

√
pk

[
α ‖β(k)‖1 +

1− α
2
‖β(k)‖22

])2

.

(S2.2)

When α = 0, the penalty term is convex. Writing in constrained

form, (S2.2) becomes minimizing 1
2
‖y −Xβ‖22 subject to

(
K∑
k=1

√
pk
∥∥β(k)

∥∥
2

)2

≤ C for some constant C,

K∑
k=1

√
pk
∥∥β(k)

∥∥
2
≤
√
C.

Converting back to Lagrange form again, there is some λ′ ≥ 0 such that

the fwelnet solution is

argmin
β

1

2
‖y −Xβ‖22 + λ′

K∑
k=1

√
pk
∥∥β(k)

∥∥
2
.
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S3 Details on simulation study in Section 5

S3.1 Setting 1: Noisy version of the true β

1. Set n = 100, p = 50, β ∈ R50 with βj = 2 for j = 1, . . . , 5, βj = −1 for

j = 6, . . . , 10, and βj = 0 otherwise.

2. Generate xij
i.i.d.∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , p.

3. For each SNRy ∈ {0.5, 1, 2} and SNRZ ∈ {0.5, 2, 10}:

(a) Compute σ2
y =

(∑p
j=1 β

2
j

)
/SNRy.

(b) Generate yi =
∑p

j=1 xijβj + εi, where εi
i.i.d.∼ N (0, σ2

y) for i =

1, . . . , n.

(c) Compute σ2
Z = Var(|β|)/SNRZ .

(d) Generate zj = |βj| + ηj, where ηj
i.i.d.∼ N (0, σ2

Z). Treat this as a

column matrix to get Z ∈ Rp×1.

S3.2 Setting 2: Grouped data setting

1. Set n = 100, p = 150.

2. For j = 1, . . . , p and k = 1, . . . 15, set zjk = 1 if 10(k − 1) < j ≤ 10k,

zjk = 0 otherwise.
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3. Generate β ∈ R150 with βj = 3 or βj = −3 with equal probability for

j = 1, . . . , 10G, βj = 0 otherwise. G = 1 for the first scenario where

the response depends on the first group only, and G = 4 for the second

scenario where it depends on the first 4 groups.

4. Generate xij
i.i.d.∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , p.

5. For each SNRy ∈ {0.5, 1, 2}:

(a) Compute σ2
y =

(∑p
j=1 β

2
j

)
/SNRy.

(b) Generate yi =
∑p

j=1 xijβj + εi, where εi
i.i.d.∼ N (0, σ2

y) for i =

1, . . . , n.

S3.3 Setting 3: Noise variables

1. Set n = 100, p = 100, β ∈ R100 with βj = 2 for j = 1, . . . , 10, and

βj = 0 otherwise.

2. Generate xij
i.i.d.∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , p.

3. For each SNRy ∈ {0.5, 1, 2}:

(a) Compute σ2
y =

(∑p
j=1 β

2
j

)
/SNRy.

(b) Generate yi =
∑p

j=1 xijβj + εi, where εi
i.i.d.∼ N (0, σ2

y) for i =

1, . . . , n.
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(c) Generate zjk
i.i.d.∼ N (0, 1) for j = 1, . . . , p and k = 1, . . . 10. Ap-

pend a column of ones to get Z ∈ Rp×11.

S4 Details on simulation study in Section 7

1. Set n = 150, p = 50.

2. Generate β1 ∈ R50 with

β1,j =



5 or − 5 with equal probability for j = 1, . . . , 5,

2 or − 2 with equal probability for j = 6, . . . , 10,

0 otherwise.

3. Generate β2 ∈ R50 with

β2,j =



5 or − 5 with equal probability for j = 1, . . . , 5,

2 or − 2 with equal probability for j = 11, . . . , 15,

0 otherwise.

4. Generate xij
i.i.d.∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , p.

5. Generate response 1, y1 ∈ R150, in the following way:

(a) Compute σ2
1 =

(∑p
j=1 β

2
1,j

)
/0.5.

(b) Generate y1,i =
∑p

j=1 xijβ1,j + ε1,i, where ε1,i
i.i.d.∼ N (0, σ2

1) for

i = 1, . . . , n.
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6. Generate response 2, y2 ∈ R150, in the following way:

(a) Compute σ2
2 =

(∑p
j=1 β

2
2,j

)
/1.5.

(b) Generate y2,i =
∑p

j=1 xijβ2,j + ε2,i, where ε2,i
i.i.d.∼ N (0, σ2

2) for

i = 1, . . . , n.
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