.1

FEATURE-WEIGHTED ELASTIC NET: USING FEATURES OF FEATURES" FOR BETTER PREDICTION

J. Kenneth Tay¹, Nima Aghaeepour^{2,3,4}, Trevor Hastie^{1,4}

and Robert Tibshirani^{1,4}

¹Department of Statistics, Stanford University

²Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University ³Department of Pediatrics, Stanford University

⁴Department of Biomedical Data Sciences, Stanford University

Supplementary Material

The online supplementary materials provide (i) details on an alternative algorithm with θ as a parameter, (ii) the proof for Theorem 1, (iii) details on the simulation study in Section 5, and (iv) details on the simulation study in Section 7.

S1 Alternative algorithm with θ as a parameter

Assume that \mathbf{y} and the columns of \mathbf{X} are centered so that $\hat{\beta}_0 = 0$ and we can ignore the intercept term in the rest of the discussion. If we consider θ as an argument of the objective function, then we wish to solve

$$\begin{aligned} (\hat{\beta}, \hat{\theta}) &= \operatorname*{argmin}_{\beta, \theta} \ J_{\lambda, \alpha}(\beta, \theta) \\ &= \operatorname*{argmin}_{\beta, \theta} \ \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{j=1}^p w_j(\theta) \left[\alpha |\beta_j| + \frac{1-\alpha}{2} \beta_j^2\right]. \end{aligned}$$

J is not jointly convex β and θ , so reaching a global minimum is a difficult task. Instead, we content ourselves with reaching a local minimum. A reasonable approach for doing so is to alternate between optimizing β and θ : the steps are outlined in Algorithm 2.

Unfortunately, Algorithm 2 is slow due to repeated solving of the elastic net problem in Step 2(b)ii for each λ_i . The algorithm does not take advantage of the fact that once α and θ are fixed, the elastic net problem can be solved quickly for an entire path of λ values. We have also found that Algorithm 2 does not predict as well as Algorithm 1 in our simulations.

S2 Proof of Theorem 1

For the moment, consider the more general penalty factor $w_j(\theta) = \frac{\sum_{\ell=1}^p f(\mathbf{z}_\ell^T \theta)}{p f(\mathbf{z}_j^T \theta)}$, where f is some function with range $[0, +\infty)$. (Fwelnet makes the choice

Algorithm 2 Minimizing the fwelnet objective function via alternating minimization

- 1. Select a value of $\alpha \in [0, 1]$ and a sequence of λ values $\lambda_1 > \ldots > \lambda_m$.
- 2. For i = 1, ..., m:
 - (a) Initialize $\beta^{(0)}(\lambda_i)$ at the elastic net solution for λ_i . Initialize $\theta^{(0)} = \mathbf{0}$.
 - (b) For $k = 0, 1, \ldots$ until convergence:
 - i. Fix $\beta = \beta^{(k)}$, update $\theta^{(k+1)}$ via gradient descent. That is, set $\Delta \theta = \left. \frac{\partial J_{\lambda_i,\alpha}}{\partial \theta} \right|_{\beta=\beta^{(k)},\theta=\theta^{(k)}}$ and update $\theta^{(k+1)} = \theta^{(k)} - \eta \Delta \theta$, where η is the step size computed via backtracking line search to ensure that $J_{\lambda_i,\alpha} \left(\beta^{(k)}, \theta^{(k+1)} \right) < J_{\lambda_i,\alpha} \left(\beta^{(k)}, \theta^{(k)} \right)$.
 - ii. Fix $\theta = \theta^{(k+1)}$, update $\beta^{(k+1)}$ by solving the elastic net with updated penalty factors $w_i(\theta^{(k+1)})$.

 $f(x) = e^x.)$

First note that if feature j belongs to group k, then $\mathbf{z}_j^T \theta = \theta_k$, and its penalty factor is

$$w_j(\theta) = \frac{\sum_{\ell=1}^p f(\mathbf{z}_\ell^T \theta)}{pf(\mathbf{z}_j^T \theta)} = \frac{\sum_{\ell=1}^p f(\theta_\ell)}{pf(\theta_k)} = \frac{\sum_{\ell=1}^K p_\ell f(\theta_\ell)}{pf(\theta_k)},$$

where p_{ℓ} denotes the number of features in group ℓ . Letting $v_k = \frac{f(\theta_k)}{\sum_{\ell=1}^{K} p_{\ell} f(\theta_{\ell})}$ for $k = 1, \ldots, K$, minimizing the fwelnet objective function (3.2) over β and θ reduces to

minimize
$$\frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_2^2 + \frac{\lambda}{p} \sum_{k=1}^K \frac{1}{v_k} \left[\alpha \|\beta^{(k)}\|_1 + \frac{1-\alpha}{2} \|\beta^{(k)}\|_2^2 \right].$$

For fixed β , we can explicitly determine the v_k values which minimize the expression above. By the Cauchy-Schwarz inequality,

$$\frac{\lambda}{p} \sum_{k=1}^{K} \frac{1}{v_k} \left[\alpha \left\| \beta^{(k)} \right\|_1 + \frac{1-\alpha}{2} \left\| \beta^{(k)} \right\|_2^2 \right] \\
= \frac{\lambda}{p} \left(\sum_{k=1}^{K} \frac{1}{v_k} \left[\alpha \left\| \beta^{(k)} \right\|_1 + \frac{1-\alpha}{2} \left\| \beta^{(k)} \right\|_2^2 \right] \right) \left(\sum_{k=1}^{K} p_k v_k \right) \\
\ge \frac{\lambda}{p} \left(\sum_{k=1}^{K} \sqrt{p_k} \left[\alpha \left\| \beta^{(k)} \right\|_1 + \frac{1-\alpha}{2} \left\| \beta^{(k)} \right\|_2^2 \right] \right)^2.$$
(S2.1)

Note that equality is attainable for (S2.1): letting $a_k = \sqrt{\frac{\left[\alpha \|\beta^{(k)}\|_1 + \frac{1-\alpha}{2} \|\beta^{(k)}\|_2^2\right]}{p_k}},$

equality occurs when there is some $c \in \mathbb{R}$ such that

$$c \cdot \frac{1}{v_k} \left[\alpha \left\| \beta^{(k)} \right\|_1 + \frac{1 - \alpha}{2} \left\| \beta^{(k)} \right\|_2^2 \right] = p_k v_k \quad \text{for all } k,$$
$$v_k = \sqrt{c} a_k \quad \text{for all } k.$$

Since $\sum_{k=1}^{K} p_k v_k = 1$, we have $\sqrt{c} = \frac{1}{\sum_{k=1}^{K} p_k a_k}$, giving $v_k = \frac{a_k}{\sum_{k=1}^{K} p_k a_k}$ for all k. A solution for this is $f(\theta_k) = a_k$ for all k, which is feasible for f having range $[0, \infty)$. (Note that if f only has range $(0, \infty)$, the connection still holds if $\lim_{x \to -\infty} f(x) = 0$ or $\lim_{x \to +\infty} f(x) = 0$: the solution will just have $\theta = +\infty$ or $\theta = -\infty$.)

Thus, the fwelnet solution is

$$\underset{\beta}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \frac{\lambda}{p} \left(\sum_{k=1}^{K} \sqrt{p_{k} \left[\alpha \|\beta^{(k)}\|_{1} + \frac{1-\alpha}{2} \|\beta^{(k)}\|_{2}^{2} \right]} \right)^{2}.$$
(S2.2)

When $\alpha = 0$, the penalty term is convex. Writing in constrained form, (S2.2) becomes minimizing $\frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$ subject to

$$\left(\sum_{k=1}^{K} \sqrt{p_k} \left\|\beta^{(k)}\right\|_2\right)^2 \le C \text{ for some constant } C,$$
$$\sum_{k=1}^{K} \sqrt{p_k} \left\|\beta^{(k)}\right\|_2 \le \sqrt{C}.$$

Converting back to Lagrange form again, there is some $\lambda' \ge 0$ such that the fwelnet solution is

$$\underset{\beta}{\operatorname{argmin}} \quad \frac{1}{2} \left\| \mathbf{y} - \mathbf{X} \beta \right\|_{2}^{2} + \lambda' \sum_{k=1}^{K} \sqrt{p_{k}} \left\| \beta^{(k)} \right\|_{2}.$$

S3 Details on simulation study in Section 5

S3.1 Setting 1: Noisy version of the true β

- 1. Set $n = 100, p = 50, \beta \in \mathbb{R}^{50}$ with $\beta_j = 2$ for $j = 1, ..., 5, \beta_j = -1$ for j = 6, ..., 10, and $\beta_j = 0$ otherwise.
- 2. Generate $x_{ij} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- 3. For each $SNR_y \in \{0.5, 1, 2\}$ and $SNR_Z \in \{0.5, 2, 10\}$:

(a) Compute
$$\sigma_y^2 = \left(\sum_{j=1}^p \beta_j^2\right) / SNR_y$$
.

- (b) Generate $y_i = \sum_{j=1}^p x_{ij}\beta_j + \varepsilon_i$, where $\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_y^2)$ for $i = 1, \ldots, n$.
- (c) Compute $\sigma_Z^2 = \operatorname{Var}(|\beta|)/SNR_Z$.
- (d) Generate $z_j = |\beta_j| + \eta_j$, where $\eta_j \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_Z^2)$. Treat this as a column matrix to get $\mathbf{Z} \in \mathbb{R}^{p \times 1}$.

S3.2 Setting 2: Grouped data setting

- 1. Set n = 100, p = 150.
- 2. For j = 1, ..., p and k = 1, ..., 15, set $z_{jk} = 1$ if $10(k-1) < j \le 10k$, $z_{jk} = 0$ otherwise.

- 3. Generate $\beta \in \mathbb{R}^{150}$ with $\beta_j = 3$ or $\beta_j = -3$ with equal probability for $j = 1, \ldots, 10G, \beta_j = 0$ otherwise. G = 1 for the first scenario where the response depends on the first group only, and G = 4 for the second scenario where it depends on the first 4 groups.
- 4. Generate $x_{ij} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- 5. For each $SNR_y \in \{0.5, 1, 2\}$:
 - (a) Compute $\sigma_y^2 = \left(\sum_{j=1}^p \beta_j^2\right) / SNR_y$.
 - (b) Generate $y_i = \sum_{j=1}^p x_{ij}\beta_j + \varepsilon_i$, where $\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_y^2)$ for $i = 1, \ldots, n$.

S3.3 Setting 3: Noise variables

- 1. Set $n = 100, p = 100, \beta \in \mathbb{R}^{100}$ with $\beta_j = 2$ for $j = 1, \dots, 10$, and $\beta_j = 0$ otherwise.
- 2. Generate $x_{ij} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- 3. For each $SNR_y \in \{0.5, 1, 2\}$:
 - (a) Compute $\sigma_y^2 = \left(\sum_{j=1}^p \beta_j^2\right) / SNR_y.$
 - (b) Generate $y_i = \sum_{j=1}^p x_{ij}\beta_j + \varepsilon_i$, where $\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_y^2)$ for $i = 1, \ldots, n$.

(c) Generate $z_{jk} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ for $j = 1, \ldots, p$ and $k = 1, \ldots 10$. Append a column of ones to get $\mathbf{Z} \in \mathbb{R}^{p \times 11}$.

S4 Details on simulation study in Section 7

- 1. Set n = 150, p = 50.
- 2. Generate $\beta_1 \in \mathbb{R}^{50}$ with

$$\beta_{1,j} = \begin{cases} 5 \text{ or } -5 \text{ with equal probability } & \text{for } j = 1, \dots, 5, \\ 2 \text{ or } -2 \text{ with equal probability } & \text{for } j = 6, \dots, 10, \\ 0 & \text{otherwise.} \end{cases}$$

3. Generate $\beta_2 \in \mathbb{R}^{50}$ with

$$\beta_{2,j} = \begin{cases} 5 \text{ or } -5 \text{ with equal probability } & \text{for } j = 1, \dots, 5, \\ 2 \text{ or } -2 \text{ with equal probability } & \text{for } j = 11, \dots, 15, \\ 0 & \text{otherwise.} \end{cases}$$

4. Generate $x_{ij} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.

5. Generate response 1, $\mathbf{y}_1 \in \mathbb{R}^{150}$, in the following way:

- 6. Generate response 2, $\mathbf{y}_2 \in \mathbb{R}^{150}$, in the following way:
 - (a) Compute $\sigma_2^2 = \left(\sum_{j=1}^p \beta_{2,j}^2\right) / 1.5.$
 - (b) Generate $y_{2,i} = \sum_{j=1}^{p} x_{ij}\beta_{2,j} + \varepsilon_{2,i}$, where $\varepsilon_{2,i} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_2^2)$ for $i = 1, \ldots, n$.