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S1 Alternative algorithm with 6 as a parameter

Assume that y and the columns of X are centered so that Bo = 0 and we
can ignore the intercept term in the rest of the discussion. If we consider

as an argument of the objective function, then we wish to solve

A A

(B,0) = argmin J, ,(3,6)
5,0
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J is not jointly convex 5 and 6, so reaching a global minimum is a
difficult task. Instead, we content ourselves with reaching a local minimum.
A reasonable approach for doing so is to alternate between optimizing 3 and
6: the steps are outlined in Algorithm 2|

Unfortunately, Algorithm [2|is slow due to repeated solving of the elastic
net problem in Step 2(b)ii for each A;. The algorithm does not take advan-
tage of the fact that once v and 6 are fixed, the elastic net problem can
be solved quickly for an entire path of A values. We have also found that

Algorithm [2| does not predict as well as Algorithm [I] in our simulations.

S2 Proof of Theorem [

p T 0
For the moment, consider the more general penalty factor w;(6) = %ﬁ;ﬁ)
bJjiz;

where f is some function with range [0, +00). (Fwelnet makes the choice
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Algorithm 2 Minimizing the fwelnet objective function via alternating minimization

1. Select a value of « € [0, 1] and a sequence of A values A\ > ... > A,
2. Fori=1,...,m:

(a) Initialize 8(°)()\;) at the elastic net solution for \;. Initialize #(°) = 0.
(b) For kK =0,1,... until convergence:

i. Fix g = B®, update 6+ via gradient descent. That is, set
0Jx, .

Al =
a0 B=pk) g=g(k)

and update 8D = 9 — nAg, where 7

is the step size computed via backtracking line search to ensure that
Tri o (ﬁ(k)79(k+1)) < Jx o (ﬁ(k))g(k)).
ii. Fix § = 0%+ update S**1) by solving the elastic net with updated

penalty factors w;(6*+1).
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flz) =€)

First note that if feature 5 belongs to group k, then z?@ = 6, and its

penalty factor is

“f( TO) S0 f0) S pef(6e)

w;(0) = = —
O =@ T 0y el
where p, denotes the number of features in group ¢. Letting v, =
f(0) ; _ L .
—x% . for k = 1,..., K, minimizing the fwelnet objective func-
Zezl pzf(0€>
tion (3.2)) over 5 and 6 reduces to
e 1 2 A u 1 1—a 2
Livex AL B 4+ L7k
minggie 1y = X315+ 530 0 o |0, + 5 5

For fixed (3, we can explicitly determine the v, values which minimize

the expression above. By the Cauchy-Schwarz inequality,
A K 1 1—a 2
Z = (k) (k)
22 |1 5 s
A 1— K
-3 (X e 150 u]) ()
k=1

2

%(Z Pk [al\ﬁ(’“ Il + 1_aHﬁ Hi])- (52.1)

(o[8[, +25= (18]I
Dk ’

Note that equality is attainable for (S2.1)): letting ay = \/
equality occurs when there is some ¢ € R such that

11—«

¢ l O‘Hﬁ(k)H + Hﬁ(k)HQ = PrUk for all &,
Vk 1 2

v = V/cay for all k.
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1
Since Zszl pruk = 1, we have \/c = ———, giving v, = KL

k=1 Prak k1 Pk

for all k. A solution for this is f(6) = ay for all k, which is feasible for f
having range [0, 00). (Note that if f only has range (0, 00), the connection
still holds if lim,, o f(x) = 0 or lim,_, 1 f(z) = 0: the solution will just

have § = 400 or § = —0c0.)

Thus, the fwelnet solution is

2

k=1

. 1 A 11—«
wgin. 3 ly = X3 + 7 (Z \/pk a0l + 5 W”;D

(S2.2)

When a = 0, the penalty term is convex. Writing in constrained

form, (S2.2) becomes minimizing  |ly — XA||2 subject to

K 2
(Z N Hﬁ(k)HQ) < C for some constant C,
k=1

K
> Ve ||B®], < VC.
k=1

Converting back to Lagrange form again, there is some X' > 0 such that

the fwelnet solution is

. K
arg;nin 3 ly — X5||§ + XZ V Pk Hﬁ(k)”Q‘
k=1



6 J. KENNETH TAY, NIMA AGHAEEPOUR, TREVOR HASTIE AND ROBERT TIBSHIRANI

S3 Details on simulation study in Section

S3.1 Setting 1: Noisy version of the true (8

1. Set n =100, p =50, 8 € R with 8; =2 for j =1,...,5, §; = —1 for

= —

Jj=06,...,10, and §; = 0 otherwise.
2. Generate x;; i'ri'wd'./\/'(O,l) fori=1,...,nand j=1,...,p.

3. For each SNR, € {0.5,1,2} and SNR € {0.5,2,10}:

(a) Compute o, = ( - 65) /SNR,.
(b) Generate y; = Z§=1 z;;B; + €;, where ¢; i N(O,as) for 1 =
1,...,n.

(c) Compute 0% = Var(|8|)/SNR.

(d) Generate z; = |B;| + n;, where 7, "% N(0,0%). Treat this as a

column matrix to get Z € RP*!,

S3.2 Setting 2: Grouped data setting

1. Set n = 100, p = 150.

2. Forj=1,...,pand k=1,...15, set 2, = 1 if 10(k — 1) < j < 10k,

zjr = 0 otherwise.
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3. Generate 8 € R with 8; = 3 or 8; = —3 with equal probability for
Jj=1,...,10G, B; = 0 otherwise. G = 1 for the first scenario where
the response depends on the first group only, and G = 4 for the second

scenario where it depends on the first 4 groups.
4. Generate z;; i'fij'./\/’(O,l) fori=1,...,nand j=1,...,p.
5. For each SNR, € {0.5,1,2}:
(a) Compute o, = ( L 5;) /SNR,.
(b) Generate y; = Z;’:l z;; 3 + €i, where ¢; i /\/’(0,05) for 1 =
1,...,n.
S3.3 Setting 3: Noise variables

1. Set n = 100, p = 100, 8 € R with 8; = 2 for j = 1,...,10, and

B; = 0 otherwise.
2. Generate x;; z"rl"vd'/\/'(O,l) fori=1,...,nand j=1,...,p.
3. For each SNR, € {0.5,1,2}:

(a) Compute o, = ( i 5?) /SNR,.
(b) Generate y; = > % i;B; + €;, where &; s N(0,07) for i =

1,...,n.
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(¢) Generate zjj, e N(,1) for j=1,...,pand k = 1,...10. Ap-

pend a column of ones to get Z € RP*11,

S4 Details on simulation study in Section

1. Set n = 150, p = 50.

2. Generate 3; € R with

(

5 or — 5 with equal probability for j =1,...,5,
Bri=1q2or —2 with equal probability for 7 =6,...,10,

0 otherwise.
\

3. Generate 35 € R with

(

5 or — 5 with equal probability for j =1,...,5,

Baj 2 or — 2 with equal probability for j = 11,...,15,

0 otherwise.

\

4. Generate z;; i'fiifl'/\/'(O, I)fori=1,...,nand j=1,...,p.
5. Generate response 1, y; € R in the following way:
(a) Compute o2 = ( i 5%73-) /0.5.

(b) Generate y1;, = Y0, 01 + €14, Where e1; “N(0,02) for

1=1,...,n.
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6. Generate response 2, y» € R in the following way:

(a) Compute o3 = ( 1 5§]> /1.5.
(b) Generate yo,; = Y0, @ijf2; + €24, Where e S N(0,02) for

1=1,...,n.
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