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FEATURE-WEIGHTED ELASTIC NET: USING

“FEATURES OF FEATURES” FOR “BETTER PREDICTION”
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Abstract: In some supervised learning settings, the practitioner might have addi-

tional information on the features used for prediction. We propose a new method

that leverages this additional information for better prediction. The method, which

we call the feature-weighted elastic net (“fwelnet”), uses these “features of features”

to adapt the relative penalties on the feature coefficients in the elastic net penalty.

In our simulations, fwelnet outperforms the lasso in terms of the test mean squared

error, and usually gives an improvement in terms of the true positive rate or false

positive rate for feature selection. We also compare this method with the group

lasso and Bayesian estimation. Lastly, we apply the proposed method to the early

prediction of preeclampsia, where fwelnet outperforms the lasso in terms of the 10-

fold cross-validated area under the curve (0.84 vs. 0.80, respectively), and suggest

how fwelnet might be used for multi-task learning.

Key words and phrases: Feature information, model selection/variable selection, ,

prediction.

1. Introduction

Consider the usual linear regression model: given n realizations of p pre-

dictors X = {xij}, for i = 1, 2, . . . , n and j = 1, 2, . . . , p, the response y =

(y1, . . . , yn) is modeled as

yi = β0 +

p∑
j=1

xijβj + εi,

with ε having mean zero and variance σ2. Ordinary least squares (OLS) estimates

of βj are obtained by minimizing the residual sum of squares (RSS). There has

been much work on regularized estimators that offer an advantage over OLS

estimates, both in terms of prediction accuracy and interpreting the fitted model.

One popular regularized estimator is the elastic net (Zou and Hastie (2005)).

Letting β = (β1, . . . , βp)
T , the elastic net minimizes the objective function

Corresponding author: J. Kenneth Tay, Department of Statistics, Stanford University, Stanford, CA
94305, USA. E-mail: kjytay@stanford.edu.

https://doi.org/10.5705/ss.202020.0226
mailto:kjytay@stanford.edu


260 TAY ET AL.

J(β0, β) =
1

2
‖y − β01−Xβ‖22 + λ

[
α ‖β‖1 +

1− α
2
‖β‖22

]
.

The elastic net has two tuning parameters: λ ≥ 0, which controls the overall

sparsity of the solution, and α ∈ [0, 1], which determines the relative weight of the

`1- and `2-squared penalties. Setting α = 0 corresponds to the ridge regression

(Hoerl and Kennard (1970)), whereas α = 1 corresponds to the lasso (Tibshirani

(1996)). One reason for the elastic net’s popularity is its computational efficiency:

J is convex in its parameters, so solutions can be found efficiently, even for very

large n and p. In addition, the solution for an entire path of λ-values can be

computed quickly using warm starts (Friedman, Hastie and Tibshirani (2010)).

In some settings, we have information about the features themselves. For

example, in genomics, we know that each gene belongs to one or more genetic

pathways, and we may expect genes in the same pathway to have correlated

effects on the response. Methods that leverage such information are likely to

perform better prediction and inference than methods that ignore it. However,

many popular methods, including the elastic net, do not use such information in

the model-fitting process.

In this study, we develop a framework for organizing such feature information,

and propose a variant of the elastic net that uses this information in model fitting.

We assume that the feature information is quantitative, allowing us to think of

each source as a “feature” of the features. For example, in the genomics setting,

the kth source of information could be the indicator variable for whether the

jth feature belongs to the kth genetic pathway. We organize these “features of

features” into an auxiliary matrix Z ∈ Rp×K , where p is the number of features

and K is the number of sources of feature information. Let zj ∈ RK denote the

jth row of Z as a column vector. We propose assigning each feature a score zTj θ,

that is, a linear combination of its “features of features,” and using these scores

to influence the penalty weight in the elastic net penalty:

Jλ,α,θ(β0, β) =
1

2
‖y − β01−Xβ‖22 + λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2j

]
,

where wj(θ) = f(zTj θ) for some function f . Here, θ is a hyperparameter in RK ,

which the algorithm needs to select. In the final model, zTj θ can be viewed as an

indication of how influential feature j is on the response.

The rest of this paper is organized as follows. In Section 2, we survey past

work on incorporating “features of features” in supervised learning. In Section 3,

we propose a method, the feature-weighted elastic net (“fwelnet”), which uses the
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scores in model fitting. We present connections to the group lasso and Bayesian

estimation in Section 4, and illustrate fwelnet’s performance on simulated data

in Section 5 and on a real-data example in Section 6. In Section 7, we show how

fwelnet can be used in multi-task learning. We end with a discussion and ideas

for future work. The online Supplementary Material contains further details and

proofs.

2. Related Work

The idea of assigning different penalty weights to features in the lasso or

elastic net objective is not new. The adaptive lasso (Zou (2006)) assigns feature

j a penalty weight wj = 1/|β̂OLSj |γ , where β̂OLSj is the estimated OLS coefficent

for feature j and γ > 0 is some hyperparameter. However, the OLS solution

depends only on X and y, and does not incorporate any external information.

In the work closest to ours, Bergersen, Glad and Lyng (2011) propose using the

weights wj = 1/|ηj(y,X,Z)|q, where ηj is some function (possibly varying for j)

and q is a hyperparameter controlling the shape of the weight function. While

the authors present two ideas for what ηj could be, they do not give general

guidance on how to choose these functions, which could drastically influence the

model-fitting algorithm.

There is a correspondence between penalized regression estimates and Baye-

sian maximum a posteriori (MAP) estimates with a particular prior for the coef-

ficients. Within this Bayesian framework, some methods propose using external

feature information to guide the choice of prior. For example, van de Wiel et al.

(2016) take an empirical Bayes approach to estimate the prior for a ridge regres-

sion, whereas Velten and Huber (2021) use variational Bayes to do so for general

convex penalties.

Most previous approaches for penalized regression with external informa-

tion on the features only work with specific types of such information. Several

methods have been developed to use feature grouping information. Here, popular

methods include the group lasso (Yuan and Lin (2006)) and the overlap group

lasso (Jacob, Obozinski and Vert (2009)). The integrative lasso with penalty

factors (IPF-Lasso) (Boulesteix et al. (2017)) gives each group its own penalty

parameter, chosen using cross-validation (CV). Tai and Pan (2007) modify the

penalized partial least squares (PLS) and nearest shrunken centroids methods to

have group-specific penalties.

Other methods incorporate “network-like” or feature similarity information.

The fused lasso (Tibshirani et al. (2005)) adds an `1-penalty to the successive
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differences of the coefficients to impose smoothness on the coefficient profile. The

structured elastic net (Slawski, zu Castell and Tutz (2010)) generalizes the fused

lasso by replacing the `2-squared penalty in the elastic net with βTΛβ, where

Λ is a symmetric, positive semi-definite matrix chosen to reflect some a priori

known structure between the features. Li and Li (2008) present a special case of

the structured elastic net, where Λ is equal to the normalized Laplacian matrix

of the feature network graph. Mollaysa, Strasser and Kalousis (2017) use the

feature information matrix Z to compute a feature similarity matrix, which in

turn is used to construct a penalty term in the loss criterion. Note that their

approach implicitly assumes that the sources of feature information are equally

relevant, which may or may not be the case.

It is not clear how most prior works can be generalized to generic sources

of feature information. Our method has the distinction of being able to work

directly with real-valued feature information and to integrate multiple sources of

feature information. While van de Wiel et al. (2016) claim to be able to handle

binary, nominal, ordinal, and continuous feature information, their method ac-

tually ranks and groups features based on such information, and only uses this

grouping information. Nevertheless, the method is able to incorporate more than

one source of feature information.

3. Feature-weighted Elastic Net (“Fwelnet”)

One way to use the scores zTj θ in model fitting is to give each feature a

different penalty weight in the elastic net objective, based on its score:

Jλ,α,θ(β0, β) =
1

2
‖y − β01−Xβ‖22 + λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2j

]
,

where wj(θ) = f(zTj θ), for some function f . Our proposed method, which we call

“fwelnet,” specifies f :

wj(θ) =

∑p
`=1 exp

(
zT` θ

)
p exp(zTj θ)

. (3.1)

The fwelnet algorithm minimizes this objective function over β0 and β:

(β̂0, β̂) = argmin
β0,β

1

2
‖y − β01−Xβ‖22 + λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2j

]
. (3.2)

There are a number of reasons for this choice of penalty factors. First, when

θ = 0, we have wj(θ) = 1, for all j, reducing fwelnet to the original elastic net.
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Figure 1. Penalty factors that fwelnet assigns to each feature. n = 200, p = 100 with
features in groups of size 10. The response is a noisy linear combination of the first
two groups, with the signal in the first group being stronger than that in the second.
As expected, fwelnet’s penalty weights for the true features (left of blue dotted line) are
lower than those for the null features. The elastic net assigns all features a penalty factor
of one (horizontal red line).

Second, wj(θ) ≥ 1/p, for all j and θ, ensuring that no features have a negligible

penalty. This allows the fwelnet solution to have a wider range of sparsity across λ

hyperparameter values. Third, this formulation provides theoretical connections,

which we detail in Section 4. Finally, a feature’s score has a natural interpretation:

if zTj θ is relatively large, then wj is relatively small, meaning that feature j is

more important to the response, and hence should have a smaller penalty.

We illustrate the last property via a simulated example. In this simulation,

we have n = 200 observations and p = 100 features, which come in groups of

10. The response is a linear combination of the first two groups, with additive

Gaussian noise. The coefficient for the first group is 4 while the coefficient for the

second group is −2, so that the first group exhibits a stronger correlation to the

response than that of the second group. The “features of features” matrix Z ∈
R100×10 is grouping information; that is, zjk = 1{feature j belongs to group k}.
Figure 1 shows the penalty factors wj that fwelnet assigns the features. (The

hyperparameter θ is determined using Algorithm 1, described in Section 3.1.) As

expected, the features in the first group have the smallest penalty factor, followed

by the features in the second group. In contrast, the original elastic net algorithm

assigns penalty factors wj = 1, for all j.
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3.1. Computing the fwelnet solution

It can be easily shown that β̂0 = y −
∑p

j=1 β̂jx·j . Henceforth, we assume

that y and the columns of X are centered such that β̂0 = 0; thus, we can ignore

the intercept term in the rest of the discussion.

For given values of λ, α, and θ, it is easy to solve (3.2): the objective function

is convex in β, and β̂ can be found efficiently using algorithms such as the coor-

dinate descent. However, to deploy fwelnet in practice, we need to determine the

hyperparameter values λ̂ ∈ R, α̂ ∈ R, and θ̂ ∈ RK that give good performance.

When K, the number of sources of feature information, is small, one could run

the algorithm for a grid of θ values, then pick the value that gives the smallest

cross-validated loss. Unfortunately, this approach is computationally infeasible

for even moderate values of K.

To avoid this computational bottleneck, we propose solving the following

minimization problem:

minimize
β(λi),θ(λi)

1

m

m∑
i=1

[
1

2
‖y −Xβ(λi)‖22

+ λi

p∑
j=1

wj(θ(λi))

(
α|βj(λi)|+

1− α
2

βj(λi)
2

)]
subject to θ(λ1) = · · · = θ(λm),

where λ1 > λ2 > · · · > λm is a path of λ hyperparameter values. Here, we

think of θ as an argument of the objective function J . Furthermore, we view

minimizing J as a joint function of β and θ as a heuristic to obtain a good value

of θ. However, to maintain the interpretation of θ as a hyperparameter, we force

θ̂ to be the same across all λ-values. We propose an alternating minimization

(Algorithm 1) to solve this minimization problem. Step 3(c) finds the optimum

solution for β(λ1), . . . , β(λm) for given values of θ(λ1), . . . , θ(λm); Steps 3(a) and

3(b) perform a gradient descent for θ(λ1), . . . , θ(λm) projected to the constraint

set.

Because of the backtracking line search in Step 3(b) and the fact that Step

3(c) solves a convex problem, Algorithm 1 is guaranteed to converge, albeit to

a stationary point. However, because Step 2 initializes β̂(λi) at the elastic net

coefficients, we usually end up with a good solution. In our simulations, con-

vergence was almost always reached within 20 iterations, and often one to three

passes gave a sufficiently good solution.
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Algorithm 1 Fwelnet algorithm.

1. Select a value of α ∈ [0, 1] and a sequence of λ-values λ1 > · · · > λm.

2. For i = 1, . . . ,m, initialize β(0)(λi) at the elastic net solution for the corresponding
λi. Initialize θ(0) = 0.

3. For k = 0, 1, . . . until convergence:

(a) Set ∆θ to be the component-wise mean of (∂Jλi,α/∂θ)|β=β(k),θ=θ(k) over i =
1, . . . ,m.

(b) Set θ(k+1) = θ(k)−η∆θ, where η is the step size computed using a backtracking
line search to ensure that the mean of Jλi,α

(
β(k), θ(k+1)

)
over i = 1, . . . ,m is

less than that of Jλi,α

(
β(k), θ(k)

)
.

(c) For i = 1, . . . ,m, set β(k+1)(λi) = elastic net solution for λi, where the penalty
factor for feature j is wj(θ

(k+1)).

Remark 1. We also considered an approach where θ was not constrained to be

the same across λ-values. While conceptually straightforward, the algorithm was

computationally slow and did not perform as well as Algorithm 1 in prediction.

A sketch of this approach is given in the Supplementary Material S1.

We have developed an R package, fwelnet, that implements Algorithm 1.

Step 3(c) of Algorithm 1 can be performed easily using the glmnet function in

the glmnet R package and specifying the penalty.factor option. In practice,

we use the sequence λ1 > · · · > λm provided by glmnet’s implementation of

the elastic net, because this range of λ-values covers a sufficiently wide range of

models. (In our package, we allow the user to replace the component-wise mean

with the component-wise median in Step 3(a), and to replace the mean with the

median in Step 3(b). We find that these options do not change the performance

much when the default sequence is used, so we recommend using the defaults.)

3.2. Extending fwelnet to generalized linear models

It is easy to extend the elastic net to generalized linear models (GLMs) by

replacing the RSS term with the negative log-likelihood of the data:

(β̂0, β̂) = argmin
β0,β

n∑
i=1

`

yi, β0 +

p∑
j=1

xijβj

+ λ

p∑
j=1

[
α|βj |+

1− α
2

β2j

]
, (3.3)

where `(yi, β0+
∑

j xijβj) is the negative log-likelihood contribution of observation
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i. Fwelnet can be extended to GLMs in a similar fashion:

(β̂0, β̂, θ̂) = argmin
β0,β,θ

n∑
i=1

`

yi, β0 +

p∑
j=1

xijβj

+ λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2j

]
,

(3.4)

with wj(θ) defined in (3.1). Algorithm 1 can be used as-is to solve (3.4). Because

θ only appears in the penalty term, this extension can be implemented easily.

We can rely on glmnet for Steps 2 and 3(c), Step 3(a) is the same as before, and

Step 3(b) simply requires a function that allows us to compute `.

4. Theoretical Connections

4.1. Connection to the group lasso

One common setting where “features of features” arise naturally is when the

features come in non-overlapping groups. Assume that the features in X come

in K non-overlapping groups. Let pk denote the number of features in group

k, and let β(k) denote the subvector of β that belongs to group k. Assume too

that y and the columns of X are centered, such that β̂0 = 0. In this setting,

Yuan and Lin (2006) introduced the group lasso estimate as the solution to the

optimization problem

minimize
β

1

2
‖y −Xβ‖22 + λ

K∑
k=1

∥∥∥β(k)∥∥∥
2
.

The `2-penalty on features at the group level ensures that features belonging

to the same group are either all included in the model or all excluded from it.

Often, the penalty given to group k is modified by a factor of
√
pk to take into

account varying group sizes:

β̂gl,2(λ) = argmin
β

1

2
‖y −Xβ‖22 + λ

K∑
k=1

√
pk

∥∥∥β(k)∥∥∥
2
.

Theorem 1 establishes the connection between fwelnet and the group lasso.

Theorem 1. If the “features of features” matrix Z ∈ Rp×K is given by zjk =

1{feature j ∈ group k}, then minimizing the fwelnet objective function (3.2)

jointly over β0, β, and θ reduces to

argmin
β

1

2
‖y −Xβ‖22 + λ′

∑K
k=1

√
pk

[
α
∥∥β(k)∥∥

1
+

1− α
2

∥∥β(k)∥∥2
2

]
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=


argmin

β

1

2
‖y −Xβ‖22 + λ′

K∑
k=1

√
pk
∥∥β(k)∥∥

2
if α = 0,

argmin
β

1

2
‖y −Xβ‖22 + λ′

(
K∑
k=1

√
pk
∥∥β(k)∥∥

1

)2

if α = 1,

for some λ′ ≥ 0.

The α = 0 case minimizes the RSS and the group lasso penalty, and the

α = 1 case minimizes the RSS and the `1 version of the group lasso penalty. The

proof of Theorem 1 can be found in the Supplementary Material S2.

4.2. Connection to Bayesian estimation

Regularized estimators can often be thought of as the Bayes posterior mode

for a given prior distribution. For example, it is well known that if the prior and

likelihood are given by

β
i.i.d.∼ N (0, τ2I), and y | X, β ∼ N

(
Xβ, σ2I

)
,

respectively, for some τ2, σ2 > 0, then the posterior distribution for β is mini-

mized at the ridge regression solution for λ = σ2/(2τ2). If feature information is

available, a better prior might be one where the βj are exchangeable, conditional

on the zj , that is, βj
i.i.d.∼ G(· | zj), for some prior distribution G. One possible

choice is

βj
ind.∼ N

(
0, v2j τ

2
)
, v2j =

p exp
(
zTj θ

)
∑p

`=1 exp
(
zT` θ

) , (4.1)

for some fixed θ. With this prior, τ2 is the average prior variance for βj , and v2j
modulates the prior variance for each coefficient based on its feature information.

The expression for v2j is simply softmax applied to zTj θ (scaled by p), a function

commonly used to convert a vector of real values to a probability vector. Features

with larger scores zTj θ have correspondingly larger v2j , meaning they are more

likely to have larger coefficients in the model. Straightforward computation shows

that the posterior mode for β is the fwelnet solution (3.2) with α = 0 and λ =

σ2/(2τ2). Algorithm 1 can be viewed as an empirical Bayes approximation to

estimate θ. For other values of α, the fwelnet solution corresponds to the posterior

mode for the following prior on β:

p(βj) ∝ exp

[
−v2j τ2

(
α|βj |+

1− α
2

β2j

)]
, v2j =

p exp
(
zTj θ

)
∑p

`=1 exp
(
zT` θ

) .
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This connection also presents a way to incorporate feature information in a

fully Bayesian framework: instead of estimating θ from the data, we can impose a

prior on it. This direction also gives us an explicit way to encode beliefs about the

relative importance of the sources of side information for the predictive model.

5. A Simulation Study

We tested the performance of fwelnet against other methods in a simulation

study. In the three settings studied, the true signal is a linear combination of the

columns of X, with the true coefficient vector β being sparse. The response y is

the signal corrupted by additive Gaussian noise. In each setting, we gave different

types of feature information to fwelnet to determine the method’s effectiveness.

For all methods, we used CV to select the tuning parameter λ. Unless oth-

erwise stated, the α hyperparameter was set to one (i.e., no `2-squared penalty).

To compare the methods, we considered the mean squared error (MSE) MSE =

E[(ŷ−µ)2] achieved on 10,000 test points, as well as the true positive rate (TPR)

and false positive rate (FPR) of the fitted models. (Note that ŷ denotes the

model’s prediction, whereas µ denotes the true underlying signal. The oracle

model, which knows the true coefficient vector β, can compute µ exactly, and

hence has a test MSE of zero.) We ran each simulation 30 times to obtain esti-

mates for these quantities. (See the Supplementary Material S3 for details of the

simulations.)

5.1. Setting 1: Noisy version of the true |β|

In this setting, we have n = 100 observations and p = 50 features, with the

true signal being a linear combination of just the first 10 features. The feature

information matrix Z has a single column: a noisy version of |β|.
We compared fwelnet against the lasso (using the glmnet package) and the

adaptive lasso (using the OLS solution as the pilot estimator) across a range of

signal-to-noise ratios (SNRs) in both the response y and the feature information

matrix Z (see the Supplementary Material S3.1). The results are shown in Fig-

ure 2. As expected, the test MSE figures for the methods decreased as the SNR

in the response increased. Fwelnet performed best, with its improvement over

the other methods increasing as the SNR in Z increased, up to a point. In terms

of feature selection, fwelnet appeared to have a similar TPR, but a smaller FPR.
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Figure 2. “Feature of features”: noisy version of the true |β|. n = 100, p = 50. The
response is a linear combination of the first 10 features. The SNR for y increases from
left to right; the SNR in Z increases from top to bottom. The left panel shows the test
MSE figures, with the red dotted line indicating the median null test MSE. In the figure
on the right, each point depicts the TPR and FPR of the fitted model for one of 30
simulation runs. Fwelnet performs best in terms of the test MSE, with the improvement
increasing as the SNR in Z increases, up to a point. Fwelnet appears to have a similar
TPR, but a significantly smaller FPR.

5.2. Setting 2: Grouped data setting

In this setting, we have n = 100 observations and p = 150 features, with

the features coming in 15 groups of size 10. The feature information matrix

Z ∈ R150×15 contains group membership information for the features: zjk =

1{feature j ∈ group k}. We compared fwelnet against the lasso, adaptive lasso,

and group lasso (using the grpreg package) across a range of SNRs in the response

y. (For the adaptive lasso, we used the lasso solution, with λ chosen using CV,

as the pilot estimator, because the OLS solution is unidentified in this setting.)

We considered two different responses in this setting. The first response was

a linear combination of the features in the first group only, with additive Gaussian

noise. The results are depicted in Figure 3. In terms of the test MSE, fwelnet

was competitive with the group lasso. In terms of feature selection, fwelnet had

a comparable TPR to that of the group lasso (except in the lowest SNR setting),
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Figure 3. “Feature of features”: grouping data. n = 100, p = 150. The features come
in groups of 10, with the response being a linear combination of the features in the first
group. The SNR for y increases from left to right. The figure on the left shows the
test MSE results, with the red dotted line indicating the median null test MSE. In the
figure on the right, each point depicts the TPR and FPR of the fitted model for one of
30 simulation runs. Fwelnet performs comparably with the group lasso in terms of the
test MSE. Fwelnet has a higher TPR than the lasso and a lower FPR than the group
lasso.

but a drastically smaller FPR. Fwelnet had a better TPR and FPR than the

lasso in this case.

The second response was not as sparse in the features: the true signal was

a linear combination of the first four feature groups. The results are shown in

Figure 4. In this case, fwelnet with α fixed at one lags the group lasso slightly

in terms of the test MSE. Note that fwelnet with α = 1 performs appreciably

better than the lasso when the SNR is higher. Selecting α using CV improved

the test MSE performance of fwelnet slightly, but not enough to outperform the

group lasso; it also came at the cost of a very high FPR.

5.3. Setting 3: Noise variables

In this setting, we have n = 100 observations and p = 80 features, with the

true signal being a linear combination of just the first 10 features. The feature

information matrix Z consists of 10 noise variables that have nothing to do with

the response. Because fwelnet is adapting to these features, we expect it to

perform worse than comparable methods.

We compare fwelnet against the lasso and the adaptive lasso (using the OLS

solution as the pilot estimator): the results are depicted in Figure 5. As ex-

pected, fwelnet has a higher test MSE than that of the lasso, but the decrease in

performance is not drastic. The adaptive lasso performs much more poorly than
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Figure 4. “Feature of features”: grouping data. n = 100, p = 150. The features come
in groups of 10, with the response being a linear combination of the first four groups.
The SNR for y increases from left to right. The left figure shows the test MSE results,
with the red dotted line indicating the median null test MSE. Fwelnet sets α = 1, while
fwelnet CVa selects α using CV. In the figure on the right, each point depicts the TPR
and FPR of the fitted model for one of 30 simulation runs. The group lasso performs
best here. CV for α improves the test MSE performance slightly, but at the expense of
a very high FPR.
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Figure 5. “Feature of features”: 10 noise variables. n = 100, p = 80. The response is a
linear combination of the first 10 features. The SNR for y increases from left to right.
The left figure shows the test MSE results, with the red dotted line indicating the median
null test MSE. In the right figure, each point depicts the TPR and FPR of the fitted
model for one of 30 simulation runs. Fwelnet performs only slightly worse than the lasso
in terms of the test MSE, and has a similar TPR and FPR to those of the lasso.

the other methods. This is likely due to unstable least squares estimates for the

weights owing to p being close to n. Fwelnet attained a similar FPR and TPR

to those of the lasso.
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6. Application: Early Prediction of Preeclampsia

Preeclampsia is a leading cause of maternal and neonatal morbidity and mor-

tality, affecting 5 to 10 percent of all pregnancies. The biological and phenotypi-

cal signals associated with late-onset preeclampsia strengthen during the course

of pregnancy, often resulting in a clinical diagnosis after 20 weeks of gestation

(Zeisler et al. (2016)). An earlier test for late-onset preeclampsia has substantially

higher clinical value, because it enables interventions for improved maternal and

neonatal outcomes (Jabeen et al. (2011)). In this example, we leverage protein

data collected in late pregnancy, which is closer to the onset of preeclampsia, but

of lower clinical utility, to learn about the proteins most helpful for this prediction

task. Then, we use this information to build a model using protein measurements

from early in the pregnancy. Note that the data from late pregnancy is only used

to train the model: for prediction on new patients, we need only the samples

collected during early pregnancy.

We used a data set of 1,125 plasma proteins, measured during various ges-

tational ages of pregnancy (Erez et al. (2017)). The SOMAScan platform used

in this data set produces targeted measurements of a broad range of proteins

that are broadly related to various aspects of human biology. To maintain the

exploratory nature of the study, we did not select specific proteins that are ex-

pected to be related to preeclampsia, based on prior studies. We considered time

points ≤ 20 weeks as “early,” and time points > 20 weeks as “late.” The data

set consists of 166 patients, each with two to six time points, for a total of 666

time-point observations. Protein measurements were log-transformed to reduce

skewness. We used the following procedure to build a predictive model, based on

early time-point data only:

1. Patients were split randomly into two equal-sized buckets. For patients in

the first bucket, we used only their late time points (83 patients with 219

time points). For patients in the second bucket, we used only their early

time points (83 patients with 116 time points).

2. We trained an elastic net logistic regression model on the late time points

for patients in the first bucket to predict whether the patient would have

preeclampsia (using the log-transformed protein measurements as predic-

tors). Here, α was set to 0.5 and λ was selected using CV. We extracted

the model coefficients at the λ-value that gave the highest CV area under

the curve (AUC).
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Figure 6. Early prediction of preeclampsia: Plot of the 10-fold CV AUC, plotted against
the number of nonzero coefficients for each model, trained on early time-point data only.
For each method, the model with the highest CV AUC is marked by a dot. To reduce
clutter in the figure, the ±1 standard error bars are drawn for just these models. Fwelnet
achieved a higher CV AUC for the same model size, that is, the number of features with
nonzero coefficients.

3. We trained a fwelnet logistic regression model on the early time points for

patients in the second bucket, using the absolute values of the late time-

point model coefficients as feature information. Here, α was set to one, and

we computed the 10-fold CV AUC for the entire path of λ-values.

When performing CV in Steps 2 and 3, we made sure that observations from

one patient all belonged to the same CV fold to avoid “contamination” of the

held-out fold. One can also run the fwelnet model with additional sources of

feature information for each of the proteins.

Figure 6 shows a plot of the 10-fold CV AUC for the fwelnet model in Step

3 and the baseline lasso model against the number of features in the model. The

lasso obtains a maximum CV AUC of 0.80, and fwelnet obtains the largest CV

AUC of 0.84.

In running the workflow several times, we noted that the results were some-

what dependent on (i) how the patients were split into the two buckets in Step 1,

and (ii) how patients were split into CV folds when training the models in Steps

2 and 3. We found that if the late-time point model had few nonzero coefficients,

then the fwelnet model for the early time-point data was very similar to the lasso.
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This matches our intuition: few nonzero coefficients means injecting very little

additional information through fwelnet’s relative penalty factors. Nevertheless,

we did not encounter cases in which running fwelnet resulted in a worse CV AUC

than that of the lasso.

7. Using Fwelnet for Multi-task Learning

We now apply fwelnet to multi-task learning. Here, we have a single model

matrix X, but are interested in multiple responses y1, . . . ,yB. If there is some

common structure between the signals in the responses, it can be advantageous

to fit models for them simultaneously. This is especially useful if the responses

have a low SNR.

We demonstrate how fwelnet can be used to learn better models in the setting

with two responses, y1 and y2. The idea is to use the absolute values of the

coefficients of one response as the external information for the other response.

That way, a feature that has a larger influence on one response is likely to be

given a correspondingly lower penalty weight when fitting the other response.

Algorithm 2 presents one possible way of doing so.

Algorithm 2 Using fwelnet for multi-task learning

1. Initialize β
(0)
1 and β

(0)
2 at the lambda.min elastic net solutions for (X,y1) and

(X,y2), respectively, that is, the value of the hyperparameter λ that minimizes
cross-validated error.

2. For k = 0, 1, . . . until convergence:

(a) Set Z2 = |β(k)
1 |. Run fwelnet with (X,y2,Z2) and set β

(k+1)
2 to be the

lambda.min solution.

(b) Set Z1 = |β(k+1)
2 |. Run fwelnet with (X,y1,Z1) and set β

(k+1)
1 to be the

lambda.min solution.

We tested the effectiveness of Algorithm 2 (with step 2 run for three itera-

tions) on simulated data. We generated 150 observations with 50 independent

features. The signal in response 1 is a linear combination of features 1 to 10,

while the signal in response 2 is a linear combination of features 1 to 5 and 11 to

15. The coefficients are set such that those for the common features (i.e., features

one to five) have larger absolute values than those for the features specific to one

response. The SNRs in response 1 and response 2 are 0.5 and 1.5, respectively.

(See the Supplementary Material S4 for more details of the simulation.)

We compared Algorithm 2 against the following: (i) the individual lasso
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Figure 7. Application of fwelnet to multi-task learning. n = 150, p = 50. Response 1 is a
linear combination of features 1 to 10, while response 2 is a linear combination of features
1 to 5 and 11 to 15. The SNRs for the responses are 0.5 and 1.5, respectively. The left
figure shows the test MSE figures, with the red dotted line indicating the median null test
MSE. The right figure shows the TPR and FPR of the fitted model (each point being one
of 50 simulation runs). Fwelnet outperforms the individual lasso and the multi-response
lasso in terms of the test MSE for both responses. Fwelnet also appears to have a better
FPR than the other methods and a better TPR than the individual lasso.

(ind lasso), where the lasso is run separately for y1 and y2; and (ii) the multi-

response lasso (mt lasso) (Obozinski, Taskar and Jordan (2010)), where the co-

efficients belonging to the same feature across the responses are given a joint

`2-penalty. Because of the `2-penalty, a feature is either included or excluded in

the model for all the responses at the same time.

Figure 7 shows the results for 50 simulation runs. Fwelnet outperforms the

other two methods in terms of the test MSE, as evaluated on 10,000 test points.

The individual lasso performs well for the higher SNR response, but poorly for

the lower SNR response. The multi-response lasso is able to borrow strength

from the higher SNR response to obtain good performance on the lower SNR

response. However, because the models for both responses are forced to have the

same set of features, performance suffers on the higher SNR response. Fwelnet

has the ability to borrow strength across responses, without being hampered by

this restriction.

8. Discussion

In this paper, we have proposed a method for exploiting external information

about predictor variables. We do this by organizing these “features of features”

as a matrix Z ∈ Rp×K , and modifying model-fitting algorithms by assigning each

feature a score, zTj θ, based on this auxiliary information. We have proposed one

such method, “fwelnet,” which imposes a penalty modification factor wj(θ) =
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`=1 exp(zT` θ)/p exp(zTj θ) for the elastic net algorithm.

This method is widely applicable in that there are no restrictions on the

type of feature information that can be incorporated into Z, as long as it is

real-valued. As such, we recommend using fwelnet whenever feature information

is available (e.g., grouping information, prior guesses on feature importance).

When the feature information is relevant to the prediction problem, in that it has

some signal on how important a feature is to predicting the response, we expect

fwelnet to outperform competing methods. At the same time, simulation setting 3

(Section 5.3) shows that using irrelevant feature information can be detrimental to

the fit. In practice, we recommend using domain knowledge to guide the selection

of side information for the model. We also recommend fitting the vanilla elastic

net and comparing the CV error of the two methods: this comparison will show

whether the feature information was relevant to the prediction problem.

There is much scope for future work:

• Interpretation of zTj θ and θ. As noted in the Introduction, zTj θ can be

viewed as an indication of how influential feature j is on the response,

because a larger zTj θ corresponds to a smaller penalty weight wj(θ) (see

Equations (3.1) and (3.2)).

The interpretation for θ is not as straightforward. When Z ∈ Rp×K is

orthonormal, we can interpret θk as the relative importance of the kth source

of feature information for identifying important features for the prediction

problem. However, this interpretation becomes less clear when there are

correlations between the columns of Z. In the extreme case, where there

is multicollinearity in Z, θ is not identified, even though zTj θ is unique.

These are the same issues one faces when interpreting OLS coefficients in

the presence of feature correlations.

• Different choices of side information Z. We have explored a few different

choices of side information, including prior coefficient estimates and group

membership. It would be interesting to evaluate fwelnet’s effectiveness when

using other types of side information. One natural extension of group mem-

bership is probabilistic group membership, where each feature is assigned

a probability distribution across the K groups. Another extension is over-

lapping groups, where each row of Z need not sum to one. Then, Z as a

p×p similarity matrix is another option, which can be thought of as a com-

bination of the two extensions above, with group j being associated with

feature j, and the degree of group membership measured by how similar

each feature is to feature j.
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• Whether θ should be treated as a parameter or a hyperparameter, and how

to determine its value. We introduced θ as a hyperparameter for (3.2). This

gives us the clear interpretation for θ described above. However, the grid

search computation to find its optimal value grows exponentially with the

number of sources of feature information. To avoid this growth, we suggested

a descent algorithm for θ based on its gradient with respect to the fwelnet

objective function. Other methods for hyperparameter optimization can be

applied, including the random search (e.g., Bergstra and Bengio (2012)) and

Bayesian optimization (e.g., Snoek, Larochelle and Adams (2012)).

One could consider θ as an argument of the fwelnet objective function

to be minimized over jointly with β. This approach gives us a theoretical

connection to the group lasso (Section 4.1). However, we obtain different

estimates of θ for each value of the hyperparameter λ, which may be unde-

sirable for interpretation. The objective function is also not jointly convex

in θ and β, so different minimization algorithms could end up at different

local minima. Our attempts to make this approach work (see the Supple-

mentary Material S1) did not fare as well in terms of prediction performance

and was computationally expensive.

• Choice of penalty modification factor. While the penalty modification factor

wj(θ) we have proposed works well in practice and has several desirable

properties, we make no claim about its optimality.

• Extending the use of scores beyond the elastic net. The use of feature scores

zTj θ in modifying feature weights is a general idea that could apply to any

supervised learning algorithm. More work needs to be done on how such

scores can be incorporated, with particular focus on how θ can be learned

through the algorithm.

An R language package fwelnet that implements our method is available at

https://www.github.com/kjytay/fwelnet.

Supplementary Material

The online Supplementary Material provides the following: (i) details on an

alternative algorithm with θ as a parameter; (ii) details on the simulation study

in Section 5; (iii) a proof for Theorem 1; and (iv) details on the simulation study

in Section 7.

https://www.github.com/kjytay/fwelnet
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