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Abstract: We consider the problem of model selection for a high-dimensional gen-

eralized estimating equation (GEE) in a marginal regression analysis for clustered

or longitudinal data. Because the GEE method only makes assumptions about the

first two moments, the full likelihood is not specified. Therefore, the likelihood-

based model selection criteria cannot be applied directly. This paper introduces a

generalized model selection criterion based on a quadratic form of the residuals. Us-

ing the large deviation result of the quadratic forms, we choose appropriate penalty

terms on the model complexity. Lastly, we establish the model selection consistency

of the proposed criterion for a divergent number of covariates.

Key words and phrases: Generalized estimation equation, generalized information

criterion, large deviation, model selection consistency.

1. Introduction

With big data, model selection is essential to determine a subset of useful

covariates. We consider the problem of model selection on generalized estimating

equations (GEE) for clustered or longitudinal data. Because the full likelihood

of multivariate clustered data is often difficult to specify, Liang and Zeger (1986)

extended the generalized linear models (McCullough and Nelder (1989)) to in-

clude correlated data, thus proposing the GEE. The GEE estimate is consistent,

even when the working correlation matrix is misspecified. Li (1997) investigated

the consistency of the GEE using a minimax approach. Xie and Yang (2003)

established a more comprehensive large-sample theory for the GEE, including

consistency and asymptotic normality. Balan and Schiopu-Kratina (2005) pro-

vide a rigorous study on the GEE under a pseudo-likelihood framework. These

works all assume that the number of covariates p is fixed, and that the number of

clusters n goes to infinity. Recently, a great amount of work has been devoted to

high-dimensional data analysis; see Donoho (2000), Fan and Li (2001), Fan and

Lv (2008), and Lv and Fan (2009) for a comprehensive review.

Corresponding author: Xin Gao, Department of Mathematics and Statistics York University, Toronto,
ON M3J 1P3, Canada. E-mail: xingao@mathstat.yorku.ca.

https://doi.org/10.5705/ss.202020.0197
mailto:xingao@mathstat.yorku.ca


238 WU, GAO AND CARROLL

For correlated data, Wang (2011) established the consistency of GEE esti-

mates under the “large n, diverging p” scenario under the true model. When

the number of predictors, true and zero, both diverge, there is a multitude of

competing models. No study has been done to investigate the properties of GEE

estimates under various competing models, including underfitting models. In this

study, we develop a methodology for this problem, along with rates of convergence

and model selection strategies for high-dimensional GEE.

The lack of a likelihood formulation makes using a traditional likelihood-

based model selection criterion challenging. Based on the GEE approach, several

model selection methods for marginal models have been developed. Pan (2001)

extended Akaike’s work on the Akaike information criterion (Akaike (1974)) and

proposed the quasi-likelihood information criterion (QIC). The QIC combines the

quasi-likelihoods of each observation using an independent assumption, whereas

each observation’s quasi-likelihood is evaluated using the GEE estimates under

any working correlation. Cantoni, Flemming and Ronchetti (2005) proposed

a generalized version of Mallows’ Cp from Mallows (1973) by minimizing the

prediction error. Wang and Qu (2009) developed a Bayesian information criterion

type of criterion (BIQIF) using the quadratic inference function of Qu, Lindsay

and Li (2000). The model selection consistency of the BIQIF was established

for a finite number of covariates. Fang, Ning and Li (2020) proposed a new

quadratic decorrelated inference function approach for high-dimensional GEEs.

For a divergent number of parameters, the limiting distribution of the estimator

is established. The proposed test can be used to perform variable selections,

while controlling the false discovery rate. A GEE model selection criterion that

is consistent for an unbounded number of predictors has yet to be developed.

For model selection using the full likelihood, Chen and Chen (2008) developed

the extended Bayesian information criterion (EBIC) for high-dimensional linear

regression. Gao and Song (2010) developed the composite likelihood Bayesian

information criterion (CLBIC) for high-dimensional correlated data. Both the

EBIC and the CLBIC are proved to be selection consistent when the total num-

ber of predictors tends to infinity and the number of true predictors is bounded

by a constant. To deal with the situation where the true number of predictors

is unbounded, Zhang and Shen (2010) proposed a corrected risk inflation crite-

rion. Kim, Kwon and Choi (2012) proposed a generalized information criterion

(GIC) with modified penalty terms. The consistency of both criteria are estab-

lished for a linear regression model with an unbounded true model size. In a

more general setup, including linear regression, generalized linear models, and

data integration of several correlated models, Gao and Carroll (2017) proposed a
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likelihood-based information criterion with an appropriately chosen penalty term,

and demonstrated its model selection consistency for an unbounded true model

size.

We aim to develop an information criterion for a GEE with a divergent num-

ber of predictors and an unbounded true model size. In contrast to the likelihood

setting in Gao and Carroll (2017), there is no likelihood available to evaluate the

model fitting under the GEE. Instead of a likelihood formulation, we consider a

goodness-of-fit measure. Because the working covariance matrix is used to model

the within-cluster covariance structure, we use the working covariance matrix

and the fitted residuals together to construct a quadratic form that serves as the

goodness-of-fit measure for the candidate model. In Spokoiny and Zhilova (2013),

exact large deviation results are established for quadratic forms based on a ran-

dom vector satisfying the exponential moment conditions. Gao and Carroll (2017)

extend the large deviation results to the asymptotic setting for quadratic forms,

based on sample mean type of random vectors. Studying the large deviation re-

sult of the goodness-of-fit measure enables us to choose an appropriate penalty

size on the model complexity to ensure the model selection consistency. Rather

surprisingly, we show that the proposed information criterion is selection consis-

tent for the marginal mean model, even if the working correlation is misspecified.

This model selection robustness is an extension of the estimation consistency of

the GEE estimator under a misspecification of the underlying working correla-

tion. To the best of our knowledge, this is the first result on the model selection

consistency for the GEE under the large n and diverging pn scenario.

The rest of the paper is structured as follows. In Section 2, we investigate the

convergence rate of the GEE estimates under various competing models. Then,

we introduce the GIC and establish its model selection consistency under the

large n and divergent p setting. In Section 3, the performance of the proposed

model selection criterion is evaluated using numerical studies and a real-data

analysis.

2. Model Selection for GEEs

2.1. GEEs

Suppose n clusters are randomly selected for a study. These could be subjects

with repeated measurements. The size of the ith cluster is mi. For cluster

i = 1, . . . , n, let Yi = (Yi1, . . . , Yimi
)T be an mi × 1 response vector with mean

E(Yi) = µi, where µi = (µi1, µi2, . . . , µimi
)T . Let Xi = (Xi1, Xi2, . . . , Ximi

)T

denote the mi× pn design matrix of covariates for the ith cluster. We consider a
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marginal regression model, g(µij) = xTijβ, where g() is a known link function, and

β = (β1, β2, . . . , βpn)T denotes the pn-dimensional regression coefficients. Let Ai
be a diagonal matrix with elements Var(Yij) = ν(µij)φ, where φ is the dispersion

parameters and ν() is the variance function. Let Ri be the working correlation

matrix and Vi = A
1/2
i RiA

1/2
i φ be the working covariance matrix. For simplicity,

we assume throughout that φ = 1. A discussion for the dispersion parameter

φ 6= 1 is provided in Section 3.

The true correlation matrix is denoted as R∗i , and is usually unknown. The

working correlation matrix, Ri, is user defined, and can be unstructured or struc-

tured, such as independent, autocorrelation, or compound symmetry. The work-

ing correlation matrix, Ri(%), involves an unknown correlation parameter %, which

can be estimated using the method of moments or another set of estimating equa-

tions. Liang and Zeger (1986) proposed using the following GEE to solve for the

unknown regression parameter:

U(β)|
β=β̂

=

n∑
i=1

Di(β)TVi(β)−1{Yi − µi(β)}|
β=β̂

= 0, (2.1)

where Di(β) = ∂µi(β)/∂βT . When pn is fixed, the GEE solution β̂ is n−1/2-

consistent, even with the misspecified working correlation matrix Ri. Wang

(2011) further proved that under certain regularity conditions, if the number

of regression parameters pn is diverging and p2
n/n → 0, the GEE estimator β̂ is

(pn/n)1/2-consistent.

2.2. A quadratic form of goodness-of-fit measure

Because the GEE model only requires assumptions on the first and second

moments, the true likelihood is not specified. Alternatively, one can integrate

the multivariate quasi score vectors to obtain the quasi-likelihood. However, such

multivariate integration is path dependent and does not lead to a unique quasi-

likelihood. In Pan (2001) QIC, the quasi-likelihood of each observation from a

cluster is added together under a working independence assumption. However,

the consistency of the QIC for model selection under either finite or diverging pn
is not established.

Consider a divergent number pn of covariates, where pn → ∞ and pn ≤ n.

Let s be a subset of {1, 2, . . . , pn}. The model with βk = 0, for all k /∈ s, is

denoted as a model s. Let β̂s denote the GEE estimate under the model s. We

propose using the working covariance matrix and the fitted residual vectors to
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form a quadratic form, and use it as a goodness-of-fit measure for the model s:

Q(β̂s) =
1

2

n∑
i=1

{Yi − µi(β̂s)}TAi(β̂F )−1/2R−1
i Ai(β̂F )−1/2{Yi − µi(β̂s)}, (2.2)

where β̂F denotes the GEE estimates under the full model. Using β̂F in the

variance function ensures that the variances are consistently estimated. In the

quadratic form, the working correlation matrix Ri can be any positive-definite

matrix with diagonal entries equal to one. Note that both Ai(β̂F ) and Ri remain

the same for different competing models in equation (2.2). The estimated vari-

ances Ai(β̂F ) are evaluated under the full model. This is similar in spirit to the

Mallows Cp statistics using the standard error obtained from the model using all

predictors. Let V̂ −1
i = Ai(β̂F )−1/2R−1

i Ai(β̂F )−1/2. Then, equation (2.2) can be

reformulated as

Q(β̂s) =
1

2

n∑
i=1

{Yi − µi(β̂s)}T V̂ −1
i {Yi − µi(β̂s)}. (2.3)

Throughout this paper, V̂i denotes the estimated covariance matrix evaluated

at the full model, and Vi(β̂s) denotes the working covariance matrix evaluated

at a competing model s. Equation (2.3) is similar to the Gaussian pseudo-

likelihood of Carey and Wang (2011), which takes the form of −2−1{
∑n

i=1{Yi −
µi(β̂s)}TVi(β̂s)−1{Yi − µi(β̂s)} + log(|Vi(β̂s)|)}. Similarly, Kim, Kwon and Choi

(2012) used the weighted sum of the squares of the residuals as a goodness-of-fit

measure to construct information criteria for a linear regression. The quadratic

form can be considered an extension of the weighted sum of the squares of the

residuals that incorporates the within-cluster correlation between the observa-

tions.

2.3. GIC

Let T denote the true model and dT be the size of the true model T . Let

β∗T denote the true values of the parameters under the model T . Consider all the

competing models s in the model space S. Let ds denote the number of covariates

in the model s, with ds ≤ pn. If s is overfitting, T ⊆ s; whereas if s is underfitting,

T 6⊆ s. The sets of underfitting models and overfitting models are denoted as S−
and S+, respectively. The true model T belongs to S+. As n increases to infinity,

the model space S, all sub-models s and the true model T all depend on n, and

dT is unbounded.

The true parameter values under an overfitting model s are denoted as β∗s ,
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where the common dT elements are the same as β∗T , and the remaining ds − dT
elements are zero. For any underfitting model s ∈ S−, it is assumed there exist

unique pseudo true parameters β∗s such that
∑n

i=1Di(β
∗
s )TVi(β

∗
s )−1 {µi(β∗T ) −

µi(β
∗
s )} = 0. This definition of the pseudo true parameter values is similar to that

used in the maximum likelihood estimation under misspecified models (White

(1981, 1982)), and it depends on the sample size.

We propose the following GIC for model selection on GEE models:

GIC(s) = 2Q(β̂s) + d∗sγn. (2.4)

The first term of the GIC is the quadratic form, which reflects the goodness-of-fit

for a given model s. The second term is the penalty for model complexity, which

enforces sparsity on the selected model. The γn is a sequence of penalties on

the complexity of the model, and d∗s is the effective degrees of freedom of the

model s (Pan (2001); Varin and Vidoni (2005); Gao and Song (2010)). We define

d∗s = tr{Ws(β
∗
s )Ω−1

s (β∗s )}, where the variability matrix W (β∗s ) = n−1Cov{U(β∗s )}
and the sensitivity matrix Ω(β∗s ) = −n−1E{∂U(βs)/∂β

T
s |β∗s }. If the working

correlation is correctly specified and the marginal regression model is the true

model T , the variability matrix and sensitivity matrix are the same and d∗s =

dT . If the model s is the true or overfitting model, because E{Yi − µi(β∗s )} =

0, the variability matrix and sensitivity matrix can be expressed as W (β∗s ) =

n−1
∑n

i=1Di(β
∗
s )TVi(β

∗
s )−1Cov(Yi)Vi(β

∗
s )−1Di(β

∗
s ) and Ω(β∗s ) = n−1

∑n
i=1

Di(β
∗
s )TVi(β

∗
s )−1Di(β

∗
s ), respectively.

2.4. Estimation consistency under various competing models

In this section, we investigate the estimation consistency of the GEE estima-

tor under various competing models. We first introduce some notation. Let ||.||
denote the Euclidean norm, ||.||max denote the largest absolute value in a matrix

or vector, λmax(.) and λmin(.) denote the largest and smallest eigenvalues, respec-

tively, of a matrix, and Tr(.) denote the trace of a matrix. Let [.][i,j], [.][i,], and

[.][,j] denote the (i, j)th element, the ith row vector, and the jth column vector

of a matrix, respectively.

Assumption 1. The maximum cluster size m = maximi is assumed to be

bounded. As n → ∞, pn → ∞, and p5
n log pn/n → 0, the distance between the

true model T and any underfitting model s satisfies

lim inf
n

min
s∈S−

n−1 [
∑n

i=1{µi(β∗T )− µi(β∗s )}T {µi(β∗T )− µi(β∗s )}]
(p3
n log pn/n)1/2

=∞.
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This assumption ensures the identifiability of the true model. Similar identi-

fiability conditions are assumed (Chen and Chen (2008); Fan and Lv (2011); Gao

and Carroll (2017)). The term n−1
∑n

i=1{µi(β∗T )−µi(β∗s )}T {µi(β∗T )−µi(β∗s )}mea-

sures the distance between the true model T and a competing model s. For exam-

ple, consider a multivariate Gaussian distribution with an identity covariance ma-

trix. Then, the distance between the true model T and a competing model s takes

the form n−1
∑n

i=1{µi(β∗T )−µi(β∗s )}T {µi(β∗T )−µi(β∗s )}, which coincides with the

Kullback–Leibler distance n−1E{l(β∗T )−l(β∗s )} based on the likelihood. By defini-

tion, the true model is the most parsimonious model that ensures µi(β
∗
T ) = E(Yi),

for all i. In contrast, for an underfitting model s ∈ S−, µi(β
∗
s ) 6= E(Yi) = µi(β

∗
T ),

for some i. If n−1[
∑n

i=1{µi(β∗T )− µi(β∗s )}T {µi(β∗T )− µi(β∗s )}] is as large as O(1),

then the assumption is easily satisfied given (p3
n log pn/n)1/2 → 0. For nontrivial

cases, we allow the minimum distance between the true model T and any com-

peting underfitting model s to approach zero, provided that it converges to zero

at a rate slower than (p3
n log pn/n)1/2.

Assumption 2. For any model s ∈ S and any βs in the small neighborhood

||βs−β∗s || ≤ (p2
n log pn/n)1/2, there exist two positive values b1 and b2 such that all

the eigenvalues of Ω(βs), W (βs), n
−1
∑n

i=1X
T
i Xi, and Cov(Yi), for i = 1, . . . , n,

are bounded from below by b1 and bounded from above by b2. The two constants

b1 and b2 are universal for all s ∈ S.

The condition of bounded eigenvalues is a common assumption in the liter-

ature on estimations with diverging dimensions. A similar assumption can be

found in Assumption (A3) of Wang (2011).

We define the linear predictor function ζij(β) = XT
ijβ, the mean function

µij(β) = g−1{ζij(β)}, and the variance function Aij(β) = ν{µij(β)} = ν[

g−1{ζij(β)}]. Let Λij(β) = ∂µij(β)/∂ζij(β) and Λi(β) = diag{Λij(β), for j = 1,

. . . ,m}, a diagonal matrix of dimension mi.

Assumption 3. For all s ∈ S and all i, j, k, there exist positive values b3 and b4
such that the covariates and the linear predictors are uniformly bounded |Xijk| <
b4, and |ζij(β∗s )| < b4. On the bounded region of ζij(β

∗
s ), we assume the inverse of

the link function g−1(.) has continuous derivatives up to the third order, which are

all bounded by b4. We assume the variance functions are uniformly bounded away

from zero, with Aij(β
∗
s ) > b3. Furthermore, on the bounded region of µij(β

∗
s ), the

variance function ν(.) has continuous derivatives up to the second order, which

are all bounded by b4.
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The commonly used link functions and variance functions all satisfy the

continuity and smoothness conditions required in Assumption 3. For exam-

ple, given that the linear predictors are bounded, the logistic link g−1(w) =

exp(w)/{1 + exp(w)} and variance function ν(w) = w(1−w) both have bounded

second and third derivatives.

In this study, large deviation results are used as an important tool to establish

the estimation consistency and model selection consistency in large pn settings.

Let ψ denote a random vector and O denote a positive-definite matrix. Large

deviation results for the quadratic form ψTOψ were established by Spokoiny and

Zhilova (2013) for a sub-exponential random vector that satisfies an exponential

moment condition:

log[E{exp(tTψ)}] ≤ ||t||
2

2
, ||t|| ≤ ρ, (2.5)

where ρ is a positive constant. Define PG = Tr[O] and V 2
G = Tr[O2]. Based on

Corollary 4.2 in Spokoiny and Zhilova (2013), for ρ2/4 > K > VG/3,

Pr(ψTOψ > PG +K) ≤ 10.4 exp

(
−K

6

)
. (2.6)

This key result establishes the exponential decay of the tail probability for

a quadratic form. Such an exponential decay rate is crucial for the control of

the overall model selection error. We show that by choosing an appropriate

penalty term, the model selection error rate for each competing model can be

derived using equation (2.6), which is exponentially small. The total number of

competing models is of the order of 2pn . By the Bonferroni inequality, the overall

model selection error rate will be less than the sum of each individual error, and

the sum can be controlled to have the limiting value of zero. This sub-exponential

condition is often used in the high-dimensional data analysis literature (Ning and

Liu (2017); Fang, Ning and Li (2020)). Gao and Carroll (2017) show that the

exponential moment condition in equation (2.5) can be satisfied asymptotically

by sample mean types of statistics if the original random vector satisfies the

following cumulant boundedness condition.

Definition 1. For a random vector Z of dimension m, let C(t) denote its cu-

mulant generating function, with t being an m-dimensional real vector. The

cumulant boundedness condition requires that the first two derivatives of the cu-

mulant generating function satisfy |∂C(0)/∂tk| ≤ b5 and |∂2C(0)/∂tk∂tl| ≤ b5.

Furthermore, there exists a constant b6 such that with ||t|| ≤ b6, the absolute

values of all the third derivatives of its cumulant generating function satisfy
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|∂3C(t)/∂tk∂tl∂tr| ≤ b5.

Let Qi(β) = {Yi−µi(β)}T V̂ −1
i {Yi−µi(β)} and Ui(β) = Di(β)TVi(β)−1{Yi−

µi}. Let Ui(β)[k] denote the kth element of vector Ui(β), Ui(β)
(1)
[kl] denote ∂Ui(β)[k]

/∂β[l], and Ui(β)
(2)
[klr] denote ∂Ui(β)

(1)
[kl]/∂β[r].

Assumption 4. There exists a neighborhood ||βs − β∗s || ≤ (p2
n log pn/n)1/2, such

that Qi(β
∗
s ), Ui(β

∗
s )[k], Ui(β

∗
s )

(1)
[kl], and Ui(βs)

(2)
[klr] satisfy the cumulant boundedness

condition in Definition 1 uniformly for all models s ∈ S.

The cumulant boundedness condition holds for the exponential family in

generalized linear models (Gao and Carroll (2017)). Under the GEE model, we

use Lemma S2.1 to show that Assumption 4 is satisfied if the joint distribution of

each cluster belongs to the multivariate exponential family and each observation

is a sub-Gaussian random variable. Using the large deviation results in Spokoiny

and Zhilova (2013) and Gao and Carroll (2017), we obtain the asymptotic orders

of the following terms.

Lemma 1. Under Assumption 4, for all k, l, r ∈ {1, 2 . . . pn}, all models s ∈
S, and βs in the neighborhoods ||βs − β∗s || ≤ (p2

n log pn/n)1/2, the zero-centered

terms |Q(β∗s ) − E{Q(β∗s )}|, |U(β∗s )[k] − E{U(β∗s )[k]}|, |U(β∗s )
(1)
[kl] − E{U(β∗s )

(1)
[kl]}|,

and |U(βs)
(2)
[klr] − E{U(βs)

(2)
[klr]}| are of order Op{(npn log pn)1/2} uniformly.

Next, we investigate the consistency of the GEE estimator under different

competing models.

Theorem 1. Under Assumptions 1–4, as n→∞, there exists a solution β̂s to the

score equation U(β̂s) = 0 such that it falls within an (p2
n log pn/n)1/2 neighborhood

of β∗s , for all s ∈ S, with probability tending to 1.

Theorem 1 implies that the GEE estimator has a convergence rate of (p2
n log pn

/n)1/2 uniformly for all s ∈ S. Compared with the convergence rate of (pn/n)1/2

established in Wang (2011) for the true model, this uniform convergence rate has

an extra factor of (pn log pn)1/2, owing to the multitude of competing models.

Lemma 2. Under Assumptions 1–4, for all models s ∈ S+ and i = 1, 2 . . . n,

max[|λmax{V −1
i (β̂F ) − V −1

i (β̂s)}|, |λmin{V −1
i (β̂F ) − V −1

i (β̂s)}|] = Op{(p3
n log pn

/n)1/2}, and max[|λmax{V −1
i (β̂F ) − V −1

i (β∗s )}|, |λmin{V −1
i (β̂F ) − V −1

i (β∗s )}|] =

Op{(p3
n log pn/n)1/2}.

For true and overfitting models, Lemma 2 measures the distance between the

two matrices Vi(β̂s) and Vi(β
∗
s ).
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2.5. Model selection consistency

In this section, we establish the model selection consistency of the proposed

GIC under the large n and divergent pn scenario. Our approach consists of two

steps. First, we show that the difference in the goodness-of-fit measures between

two competing models s and T can be approximated by quadratic forms, and

the approximation errors are uniformly bounded across the model space. Second,

based on the quadratic forms, we apply the large deviation result to quantify the

size of the penalty γn.

Lemma 3. Under Assumptions 1–4, there exists a matrix Resd in which all ele-

ments are of op{(p3
n log pn/n)1/2}, such that β̂s−β∗s = n−1{Ω(β∗s )+Resd}−1U(β∗s ),

where the op{(p3
n log pn/n)1/2} term holds for all models s ∈ S+.

Lemma 3 approximates the distance of β̂s to β∗s as the product of a small

perturbation of the information matrix and the score vector.

Lemma 4. Under Assumptions 1–4, the differences between the goodness-of-fit

measures can be approximated as quadratic forms:

2{Q(β̂s)−Q(β∗s )} = −n(β∗s − β̂s)TΩ(β∗s )(β∗s − β̂s){1 + op(1)}
= −n−1UT (β∗s )Ω(β∗s )−1U(β∗s ){1 + op(1)},

where the op(1) term holds for all models s ∈ S+.

Lemma 4 shows that the differences in the goodness-of-fit measures can be

approximated by score-type and Wald-type quadratic forms. Next, Lemma 5

establishes the asymptotic order of these quadratic forms.

Lemma 5. Under Assumptions 1–4,

sup
s∈S+

|Q(β̂s)−Q(β∗s )| = Op(p
2
n log pn);

sup
s∈S−

|Q(β̂s)−Q(β∗s )| = Op{(np3
n log pn)1/2}.

We now establish the consistency result for the proposed GIC. For any over-

fitting model s, define a matrix Ds = (IdT , 0dT ,ds−dT ), with IdT being an iden-

tity matrix with dimension dT × dT , and 0dT ,ds−dT denoting a matrix of zeros

with dimension dT × (ds − dT ). For every overfitting model s, let ∆s denote

the quadratic form n−1U(β∗s )T Ω(β∗s )−1U(β∗s ). According to Lemma 4, we have

2Q(β̂s) − 2Q(β̂T ) = −∆s/T {1 + op(1)}, with ∆s/T = n−1U(β∗s )TMs/TU(β∗s ),

where Ms/T denotes the difference matrix Ω(β∗s )−1 −DT
s Ω(β∗T )−1Ds.
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Lemma 6. Under Assumptions 1–4, for overfitting model s ∈ S+, Ms/T =

Ω(β∗s )−1 −DT
s Ω(β∗T )−1Ds is nonnegative definite.

Define Cs = W 1/2(β∗s )Ms/TW
1/2(β∗s ). It can be shown that Tr(Cs) = d∗s−d∗T .

Let ω = maxs∈S(d∗s−d∗T )/(ds−dT ) denote the ratio of effective degrees of freedom

over the true degrees of freedom. For the true likelihood setting, ω = 1.

Lemma 7. Assume ω is bounded away from zero and infinity. Let γn = 6ω(1 +

γ) log pn for some γ > 0 or γn = 6ω(1 + log log pn) log pn. Under Assumptions

1–4,

Pr

{
max

s∈S+,s 6=T

∆s/T

d∗s − d∗T
> γn

}
= o(1).

Theorem 2. Assume ω is bounded away from zero and infinity. Let γn = 6ω(1+

γ) log pn, for some γ > 0 or γn = 6ω(1 + log log pn) log pn. Under Assumptions

1–4, as n→∞,

Pr

{
min

s∈S,s6=T
GIC(s) > GIC(T )

}
→ 1.

In practice, the effective degrees of freedom d∗s = Tr{Ws(β
∗
s )Ω−1

s (β∗s )} is not

known and we estimate it using d̂s = Tr{Ws(β̂s)Ω
−1
s (β̂s)}. In the following lemma,

we show the estimator is consistent for the unknown effective degrees of freedom.

Lemma 8. Under Assumptions 1–4, as n→∞,

|d∗s − d̂s| = Op

{(
p5
n log pn
n

)1/2}
,

and the consistency result holds uniformly over the model space.

In light of this new lemma, in Equation (2.4), if the effective degrees of

freedom is replaced by its estimate, the model selection consistency of the criterion

still holds true.

Corollary 1. Under Assumptions 1–4, as n→∞,

Pr

{
min

s∈S,s6=T
GIC(s) > GIC(T )

}
→ 1,

with GIC(s) = 2Q(β̂s) + d̂sγn.

Throughout all the asymptotic discussions above, we rely on the full model

with size pn to obtain the consistent variance estimate V̂i. Alternatively, we can

constrain the competing models to be bounded by size sn and assume sn � pn. If

so, the sample size requirement of p5
n log pn/n→ 0 can be relaxed to s5

n log pn/n→



248 WU, GAO AND CARROLL

0, where pn can be allowed to be greater than n. However, with pn > n, we cannot

obtain the variance estimate under the full model. This is a common problem for

model selection in high-dimensional regression problems (Kim, Kwon and Choi

(2012)). If we can identify a set of sn variables that includes all relevant variables

with probability one asymptotically, we can obtain a consistent variance estimate

for this model. This is the additional requirement for the relaxation of pn to sn.

Theorem 2 provides the asymptotic order for γn = 6ω(1 + log log pn) log pn
to guarantee the model selection consistency. Given that ω is usually unknown

and log log pn is rather small compared to log pn, we could choose a different

γn = c log pn, where c is a constant. The empirical studies in Section 3 and the

Supplementary Material show that c = 1 or c = 2 generates the most satisfactory

model selection results in the cases examined in our simulations, whereas for

c ≥ 3, the GIC tends to have a lower positive selection rate (PSR). In practice,

we suggest using the penalty term γ = c log pn, where c = 1 or 2.

When pn is large, an exhaustive search among all 2pn candidate models is

computationally infeasible. Zhao and Yu (2006) established the Lasso’s (Tib-

shirani (1996)) variable selection consistency under the irrepresentable condi-

tion for linear regression. Wang, Zhou and Qu (2012) proposed a penalized

GEE method using the smoothly clipped absolute deviation (SCAD) (Fan and

Li (2001)) penalty and established its variable selection consistency. Thus, the

penalized GEE with a Lasso or SCAD penalty can be used to generate different

candidate models under a sequence of shrinkage parameters λn. However, the

penalized methods depend on the model selection criteria to choose the opti-

mum penalty size. Given a specific penalty size, the penalized method can be

used to generate a subset model. Using the proposed model selection criterion to

evaluate different subset models, one can choose the subset model for which the

criterion is minimized. Cross-validation (Wang, Li and Tsai (2007)) can be used

as an alternative model selection criterion. However, it is more computationally

intensive because it requires separate steps for training and cross-validation.

Section 2.5 illustrates that the GIC is selection consistent, with the working

correlation matrix Ri being any arbitrary positive-definite matrix. Hence, the se-

lection consistency is robust against a misspecification of the working correlation.

This matrix Ri needs to be fixed when we compare the GICs across different com-

peting models. In practice, the choice of the working correlation matrix Ri used

in the criterion could impact its model selection efficiency. In our simulation,

we compare different choices of Ri, including independence, AR-1, compound

symmetry, and an unstructured working correlation. When the cluster size does

not depend on i, Balan and Schiopu-Kratina (2005) suggest using the following
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formula to estimate the unstructured working correlation matrix:

R̂B =
1

n

n∑
i=1

A
−1/2
i (β̃F ){Yi − µi(β̃F )}{Yi − µi(β̃F )}TA−1/2

i (β̃F ), (2.7)

where β̃F is a preliminary consistent estimator under the full model using the

independent working correlation matrix. Wang (2011) proved that under a large

n, diverging pn scenario, the estimated working correlation matrix is (pn/n)1/2-

consistent to the true correlation matrix.

For simplicity, we assume φ = 1 here. When φ is unknown, we can estimate

it using the full model, denoting it as φ̂F (Pan (2001)). The residual quadratic

form of equation (2.2) is rescaled as follows:

Q(β̂s) =
1

2φ̂F

n∑
i=1

{Yi − µi(β̂s)}TAi(β̂F )−1/2R−1Ai(β̂F )−1/2{Yi − µi(β̂s)}. (2.8)

The proof of the model selection consistency remains the same given that φ̂F
remains a constant across all candidate models.

3. Numerical Analysis

3.1. Simulations

We conduct simulations on clustered binary responses and clustered Gaussian

responses. We consider different settings with the sample size n = 500 or 1000,

the number of covariates pn = 500 or 1000, and the cluster size m = 10 or 20.

The number of true covariates dT is set be 50. For j = 1, 2, . . . , dT , βj is drawn

from the uniform distribution U(0.05, 0.5), whereas for j = dT +1, dT +2, . . . , pn,

βj is set as zero. For the jth observation in the ith cluster, we simulate the as-

sociated covariates Xij = (xij1 . . . xijpn)T , and the mean parameter is denoted as

µij = logit−1(XT
ijβ) for a binary response and µij = XT

ijβ for a Gaussian response.

The covariates Xijk are partitioned into independent blocks of 50 covariates, and

within each block, the 50 covariates are simulated from a multivariate normal

distribution, with variances equal to one and off-diagonal covariances all equal

to 0.5|k−k
′|, where k and k′ are indices for the covariates. For each cluster i,

Yi is simulated from a multivariate binary distribution or Gaussian distribution

with mean µi and an unstructured correlation matrix. For each data set, a com-

mon unstructured correlation matrix is used for all the clusters, whereas different

data sets are simulated under different correlation matrices. The R package “Sim-

CorMultRes” (Touloumis (2019)) is used to simulate the correlated multivariate
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binary distribution. We use the Lasso (Friedman, Hastie and Tibshirani (2009))

to generate a sequence of subset models, and use the proposed GIC to select the

best subset model. With regard to the penalty term, Theorem 2 provides a the-

oretical value of 6ω× d∗s log pn. We set the penalty term to c× d∗s log pn, where c

is a constant multiplicative factor and c is varied from one to four. This penalty

term has the same asymptotic order as the theoretical penalty term. We run 100

simulations and evaluate the mean and standard deviation of the PSRs and false

discovery rates (FDRs) of Pan’s QIC (Pan (2001)) and our proposed GIC.

In Table 1, we compare the PSR and FDR of different methods on multivari-

ate normal responses. It is shown that our proposed method has a high PSR and

a low FDR, similar to those of the cross-validation method. The advantage of our

method is its computational simplicity, whereas cross-validation is more compu-

tationally intensive and requires a data partition and separate steps for training

and cross-validation. We also compare our method with the QIC, which has a

much higher FDR than those of our method and the cross-validation method.

This demonstrates that with large pn, the QIC tends to select overfitting mod-

els. This is because the QIC uses an AIC type of penalty, which is too small to

control the error rate. Table 2 compares the proposed GIC with other methods

for multivariate binary responses; the results are similar to the comparison on

multivariate normal responses.

We vary the multiplicative factor of c from one to four and examine how the

sensitivity and selectivity of our method changes. It is observed that when c = 1

or 2, the proposed GIC achieves a high PSR and a low FDR. When c increases,

the GIC tends to have a lower PSR and FDR; as shown by Tables 1 and 2 in the

Supplementary Material. The PSR and FDR decrease faster with the increase of

c in binary data than they do in normal data.

For the proposed GIC method, because the true correlation matrix is un-

structured, the choice of an unstructured working correlation matrix using the

formula from Balan and Schiopu-Kratina (2005) outperforms the independent,

exchangeable, and autoregression correlation matrices. As shown in Table 3 in

the Supplementary Material, the performance of the proposed GIC improves with

a higher PSR and a lower FDR with increasing number of clusters n or an in-

creasing cluster size m.

3.2. Real-data analysis

We apply our proposed model selection method to data from the University

of Michigan Health and Retirement Study (HRS). The data are generated from

a longitudinal study that surveyed approximately 20,000 older adults in Amer-
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Table 1. The PSR and FDR of different methods for normal response.

n=1,000 p=1,000 n=500 p=500

mean std mean std mean std mean std

PSR PSR FDR FDR PSR PSR FDR FDR

QIC Independent 1.0000 0.0000 0.6937 0.0326 1.0000 0.0000 0.5401 0.0607

Exchangeable 1.0000 0.0000 0.6937 0.0326 1.0000 0.0000 0.5395 0.0599

AR1 1.0000 0.0000 0.6937 0.0326 1.0000 0.0000 0.5401 0.0607

Unstructured 1.0000 0.0000 0.7281 0.0136 1.0000 0.0000 0.7109 0.0324

GIC Independent 1.0000 0.0000 0.1077 0.0460 1.0000 0.0000 0.0871 0.0449

(c=1) Exchangeable 1.0000 0.0000 0.0961 0.0511 1.0000 0.0000 0.0705 0.0450

AR1 1.0000 0.0000 0.1073 0.0471 1.0000 0.0000 0.0860 0.0461

Unstructured 1.0000 0.0000 0.0226 0.0295 1.0000 0.0000 0.0272 0.0355

GIC Independent 1.0000 0.0000 0.0012 0.0047 1.0000 0.0000 0.0008 0.0038

(c=2) Exchangeable 1.0000 0.0000 0.0028 0.0095 1.0000 0.0000 0.0015 0.0065

AR1 1.0000 0.0000 0.0012 0.0047 1.0000 0.0000 0.0008 0.0038

Unstructured 1.0000 0.0000 0.0012 0.0047 1.0000 0.0000 0.0004 0.0027

GIC Independent 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

(c=3) Exchangeable 1.0000 0.0000 0.0004 0.0028 1.0000 0.0000 0.0000 0.0000

AR1 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Unstructured 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

GIC Independent 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

(c=4) Exchangeable 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

AR1 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Unstructured 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

CV Independent 1.0000 0.0000 0.0034 0.0127 1.0000 0.0000 0.0041 0.0160

Exchangeable 1.0000 0.0000 0.0034 0.0127 1.0000 0.0000 0.0049 0.0167

AR1 1.0000 0.0000 0.0034 0.0127 1.0000 0.0000 0.0041 0.0159

Unstructured 1.0000 0.0000 0.0139 0.0438 1.0000 0.0000 0.0217 0.0474

The true parameter size dT is 50 and the cluster size m is 10. The free multiplicative constant c for the
penalty is set to 1, 2, 3, or 4. QIC denotes the quasi-likelihood information criterion, GIC denotes the
generalized information criterion, and CV denotes cross-validation.

ica. Information about their financial situations, family structures, and different

health factors were collected every two years over two decades. In total, 2,652

individuals provided 10 repeated depression status measurements from 1996 to

2014. There are 316 valid covariates, with less than 4% of missing data. We

use the proposed model selection method to choose important predictors of the

depression status of older adults. The missing value is imputed using the median

value for numerical variables, and using the mode value for categorical variables.

The Lasso method is used to generate the regularization path. We randomly
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Table 2. The PSR and FDR of different methods for binary response.

n=1,000 p=1,000 n=500 p=500

mean std mean std mean std mean std

PSR PSR FDR FDR PSR PSR FDR FDR

QIC Independent 1.0000 0.0000 0.7093 0.0241 0.9974 0.0084 0.5677 0.0735

Exchangeable 1.0000 0.0000 0.7099 0.0241 0.9974 0.0084 0.5677 0.0735

AR1 1.0000 0.0000 0.7093 0.0241 0.9974 0.0084 0.5677 0.0735

Unstructured 1.0000 0.0000 0.7234 0.0179 0.9976 0.0082 0.6163 0.0677

GIC Independent 0.9982 0.0081 0.0596 0.0476 0.9182 0.0710 0.0250 0.0548

Exchangeable 0.9982 0.0081 0.0574 0.0454 0.9194 0.0715 0.0265 0.0561

AR1 0.9980 0.0083 0.0584 0.0471 0.9180 0.0708 0.0246 0.0550

Unstructured 0.9990 0.0066 0.0445 0.0399 0.9498 0.0538 0.0242 0.0381

The true parameter size dT is 50 and the cluster size m is 10. The free multiplicative constant c for the
penalty is one. QIC denotes the quasi-likelihood information criterion and GIC denotes the generalized
information criterion.

split the data into two parts, with 80% as the training set and 20% as the test

set, five times. We use the GIC, QIC, and cross-validation methods to determine

the best subset model. The QIC method chooses 71 variables with an AUC of

0.9114, the GIC method with c = 1 chooses 18 variables with an AUC of 0.9135,

and the cross-validation method chooses 20 variables with an AUC of 0.9135.

In comparison, the GIC tends to select fewer variables than does the QIC, with

similar predictive power, and the GIC performs similarly to cross-validation in

this data set.

4. Conclusion

We propose a GIC to select important covariates for a GEE with a diverging

number of covariates. The proposed GIC is based on a goodness-of-fit measure

that takes a quadratic form of the fitted residuals. The variable selection for the

mean model of the GEE is robust to a misspecification of the underlying correla-

tion structure. This approach of constructing a quadratic form as a model fitting

measure and using its large deviation properties to determine the appropriate

penalty can be extended to other high-dimensional model selection problems.

Our method focuses on the selection of mean models with a fixed working

correlation structure. Future research is needed to develop methods for the joint

selection of the mean and covariance structure with a divergent number of co-

variates.
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Supplementary Material

The online Supplementary Material contains proofs of Lemmas 1 to 8 in the

main paper, and several technical lemmas, and additional simulation results.
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Appendix

In the following proofs, we assume mi = m for simplicity.

Proof of Theorem 1. To establish the existence of a consistent estimator β̂s
within the specified neighborhood, we follow the approach from Portnoy (1988)

and Wang (2011). It suffices to verify the following condition: ∀ ε > 0, there

exists a constant ∆ > 0 such that for all n sufficiently large,

Pr

[
∩s∈S

{
sup

||βs−β∗s ||=∆(p2n log pn/n)1/2
(βs − β∗s )TU(βs) < 0

}]
≥ 1− ε.

Let βs − β∗s = ∆(p2
n log pn/n)1/2v, where v is a unit vector with ||v|| = 1. By

Taylor expansion, there exists a β̃s between βs and β∗s such that U(βs) = U(β∗s )+

U(β̃s)
(1)(βs − β∗s ). We reformulate U(β̃s)

(1) as

n

(
1

n
E{U(β∗s )(1)}+

1

n
[U(β∗s )(1) − E{U(β∗s )(1)}] +

1

n
{U(β̃s)

(1) − U(β∗s )(1)}
)
.

By Assumption 2, −n−1E[U(β∗s )(1)] = Ω(β∗s ), which is a positive definite ma-

trix with bounded eigenvalues. From Lemma 1, the (r, k)th entry of the matrix

n−1[U(β∗s )(1) − E{U(β∗s )(1)}][rk] = Op{(pn log pn/n)1/2}. There exists a β̌s be-

tween β̃s and β∗s such that

1

n
{U(β̃s)

(1)
[rk] − U(β∗s )

(1)
[rk]} =

1

n
U(β̌s)

(2)
[rk](β̃s − β

∗
s ) ≤ 1

n
||U(β̌s)

(2)
[rk]|| × ||β̃s − β

∗
s ||,

where U(β̌s)
(2)
[rk] = {U(β̌s)

(2)
[rk1], U(β̌s)

(2)
[rk2], . . . , U(β̌s)

(2)
[rkds]}

T is a ds×1 vector. Since
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β̌s is between β̃s and β∗s , ||β̃s − β∗s || = Op{(p2
n log pn/n)1/2}. We reformulate:

1

n
U(β̌s)

(2)
[rk] =

1

n
[U(β̌s)

(2)
[rk] − E{U(β̌s)

(2)
[rk]}] +

1

n
E{U(β̌s)

(2)
[rk]}.

From Lemma 1, n−1[U(β̌s)
(2)
[rkl] − E{U(β̌s)

(2)
[rkl]}] = Op{(pn log pn/n)1/2}. This en-

tails n−1||U(β̌s)
(2)
[rk]−E{U(β̌s)

(2)
[rk]}|| = Op{(p2

n log pn/n)1/2}. From Assumption 4,

E{U (2)
i (β̌s)[rkl]} is bounded. Then n−1||E{U(β̌s)

(2)
[rk]}|| = Op (p

1/2
n ). This implies

n−1{U(β̃s)
(1)−U(β∗s )(1)}[rk] = Op{(p3

n log pn/n)1/2}. Thus, U(β̃s)
(1) = n{Ω(β∗s )+

Res}, and each element in the residual matrix Res is Op{(p3
n log pn/n)1/2}. For

true and overfitting models, E{U(β∗s )} = 0. For underfitting models, based on the

definition of β∗s , it can be shown that E{U(β∗s )} = E[
∑n

i=1Di(β
∗
s )TVi(β

∗
s ){Yi −

µi(β
∗
s )}] = E[

∑n
i=1Di(β

∗
s )TVi(β

∗
s ) {Yi−µi(β∗T )}]+

∑n
i=1Di(β

∗
s )TVi(β

∗
s ){µi(β∗T )−

µi(β
∗
s )} = 0 as well. From Lemma 1, we have ||U(β∗s )|| = ||U(β∗s )−E{U(β∗s )}|| =

Op{(np2
n log pn)1/2}. Thus there exists a constant number bu such that ||U(β∗s )|| ≤

bu(np2
n log pn)1/2 for n sufficiently large. In addition, we have

|vTResv| = |
∑
kr

vkvrReskr| ≤ max
kr
|Reskr| × pn × ||v||2

= Op

{(
p5
n log pn
n

)1/2}
= op(1).

Combining the results above, we have

(βs − β∗s )TU(βs)

= (βs − β∗s )TU(β∗s ) + (βs − β∗s )TU(β̃s)
(1)(βs − β∗s )

= ∆

(
p2
n log pn
n

)1/2

vTU(β∗s )−∆2

(
p2
n log pn
n

)
vTn{Ω(β∗s ) +Res}v

= ∆

(
p2
n log pn
n

)1/2

||v|| ∗ ||U(β∗s )|| −∆2p2
n log pn[λmin{Ω(β∗s )}+ op(1)]||v||2

= ∆

(
p2
n log pn
n

)1/2

bu(np2
n log pn)1/2 −∆2p2

n log pn[λmin{Ω(β∗s )}+ op(1)]

= p2
n log pn(bu∆− [λmin{Ω(β∗s )}+ op(1)]∆2).

Therefore by choosing ∆ large enough, (βs − β∗s )TU(βs) is negative for all {βs :

||βs − β∗s || = ∆(p2
n log pn/n)1/2} and all s ∈ S.
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Proof of Theorem 2. First for overfitting models s ∈ S+, we have

min
s∈S+,s 6=T

GIC(s)−GIC(T )

= 2

{
min

s∈S+,s 6=T
Q(β̂s)−Q(β̂T )

}
+ (d∗s − d∗T )γn

> − max
s∈S+,s 6=T

∆s/T + (d∗s − d∗T )γn + op(1).

According to Lemma 7, Pr{maxs∈S+,s 6=T ∆s/T /(d
∗
s − d∗T ) > γn} = o(1).

Therefore Pr{mins∈S+,s 6=T GIC(s) > GIC(T )} → 1. Next for the underfitting

models, we have mins∈S− GIC(s)−GIC(T ) = 2{mins∈S− Q(β̂s)−Q(β̂T )}+ (d∗s −
d∗T )γn. We further decompose the difference in the quadratic forms:

Q(β̂s)−Q(β̂T )

= Q(β̂s)−Q(β∗s ) +Q(β∗s )−Q(β∗T ) +Q(β∗T )−Q(β̂T )

= {Q(β̂s)−Q(β∗s )}+ {Q(β∗T )−Q(β̂T )}+ [Q(β∗s )−Q(β∗T )

− E{Q(β∗s )−Q(β∗T )}] + [E{Q(β∗s )−Q(β∗T )}].

Based on Lemma 1, Q(β∗s )−Q(β∗T )− E{Q(β∗s )−Q(β∗T )} = Op{(npn log pn)1/2}.
Lemma 5 implies Q(β̂T )−Q(β∗T ) = Op(p

2
n log pn) and Q(β∗s )−Q(β̂s) = Op{(np3

n

log pn)1/2}. Next we determine the order of E{Q(β∗s )−Q(β∗T )}. First we estimate

the order of following term.

n∑
i=1

2E[{Yi − µi(β∗T )}T V̂ −1
i {µi(β

∗
T )− µi(β∗s )}]

=

n∑
i=1

2E[{Yi − µi(β∗T )}T (V̂ −1
i − V ∗−1

i ){µi(β∗T )− µi(β∗s )}]

+

n∑
i=1

2E[{Yi − µi(β∗T )}TV ∗−1

i {µi(β∗T )− µi(β∗s )}]

=

n∑
i=1

2E[{Yi − µi(β∗T )}T (V̂ −1
i − V ∗−1

i ){µi(β∗T )− µi(β∗s )}].

According to Lemma S2.6, E{n−1
∑n

i=1 |Yij − µij(β∗T )|} is bounded. Based on

Lemma S2.2 and Lemma 2, ||µi(β∗T )−µi(β∗s )||max is bounded for all i and ||V̂ −1
i −

V ∗
−1

i ||max =Op{(p3
n log pn/n)1/2}. This means

∑n
i=1 2E[{Yi−µi(β∗T )}T V̂ −1

i {µi(β∗T )

− µi(β
∗
s )}] = Op{(np3

n log pn)1/2}. Next we estimate the order of E{Q(β∗s ) −
Q(β∗T )} and show that it is the leading term.
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2E{Q(β∗s )−Q(β∗T )}

= E

[
n∑
i=1

{Yi − µi(β∗T ) + µi(β
∗
T )− µi(β∗s )}T V̂ −1

i {Yi − µi(β
∗
T )

+ µi(β
∗
T )− µi(β∗s )} − {Yi − µi(β∗T )}T V̂ −1

i {Yi − µi(β
∗
T )}

]

= E

[
n∑
i=1

{µi(β∗s )− µi(β∗T )}T V̂ −1
i {µi(β

∗
s )− µi(β∗T )}

]

+

n∑
i=1

2E

[
{Yi − µi(β∗T )}T V̂ −1

i {µi(β
∗
T )− µi(β∗s )}

]

≥ E{λmini
(V̂ −1
i )}

n∑
i=1

{µi(β∗s )− µi(β∗T )}T {µi(β∗s )− µi(β∗T )}

+Op{(np3
n log pn)1/2}.

Lemma S2.2 implies that Aij(β̂F ) is uniformly bounded from zero and infinity

for all i and therefore λmini
(V̂ −1
i ) is a positive value bounded away from zero.

Furthermore based on Assumption 1,
∑n

i=1{µi(β∗s )−µi(β∗T )}T {µi(β∗s )−µi(β∗T )}/
(np3

n log pn)1/2 → ∞. This means E{Q(β∗s ) − Q(β∗T )}/ (np3
n log pn)1/2 → ∞.

As ω is bounded, |d∗s − d∗T | = ω|ds − dT | = O(pn). So E{Q(β∗s ) − Q(β∗T )} is

the leading term in the difference between the two information criteria. Thus

Pr{mins∈S,s6=T GIC(s) > GIC(T )} → 1.
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