Tests of Unit Root Hypothesis with

Heavy-tailed Heteroscedastic Noises

Rui She
Southwestern University of Finance and Economics

Supplementary Material

S1. Technical Proofs

Proof of Theorem 2.1. Denote

$$
\begin{equation*}
\xi_{n t}=n^{-1 / 2} \frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}} \tag{S1.1}
\end{equation*}
$$

Then T_{n} can be rewritten as $T_{n}=\sum_{t=1}^{n} \xi_{n t}$. Under H_{0}, by the symmetry of η_{t} and $\Delta y_{t}=\varepsilon_{t}=\eta_{t} h_{t}$, we can see that $E\left[\xi_{n t} \mid \mathcal{F}_{t-1}\right]=0$, where $\mathcal{F}_{i}=\sigma\left(\eta_{t}, t \leq i\right)$. Therefore, $\left\{\xi_{n t}\right\}$ is a martingale difference sequence. By Theorem 18.1 in Billingsley (1999), we only need to show that, as $n \rightarrow \infty$,

$$
\begin{align*}
& \sum_{t=1}^{n} E\left[\xi_{n t}^{2} 1_{\left(\left|\xi_{n t}\right|>\epsilon\right)}\right] \longrightarrow 0, \text { for any } \epsilon>0, \tag{S1.2}\\
& \sum_{t=1}^{n} E\left[\xi_{n t}^{2} \mid \mathcal{F}_{t-1}\right] \xrightarrow{p} \sigma^{2} . \tag{S1.3}
\end{align*}
$$

Notice that $\sup _{t \leq n}\left|\xi_{n t}\right| \leq n^{-1 / 2}$, then (S1.2) obviously holds. For (S1.3), we have

$$
\sum_{t=1}^{n} E\left[\xi_{n t}^{2} \mid \mathcal{F}_{t-1}\right]=\frac{1}{n} \sum_{t=1}^{n} E\left(\left.\frac{\eta_{t}^{2} h_{t}^{2}}{1+\eta_{t}^{2} h_{t}^{2}} \right\rvert\, \mathcal{F}_{t-1}\right)-\frac{1}{n} \sum_{t=1}^{n} \frac{1}{1+y_{t-1}^{2}} E\left(\left.\frac{\eta_{t}^{2} h_{t}^{2}}{1+\eta_{t}^{2} h_{t}^{2}} \right\rvert\, \mathcal{F}_{t-1}\right)
$$

Since $h_{t}=h\left(\eta_{t-1}, \eta_{t-2}, \cdots\right)$ and $\left\{\eta_{t}\right\}$ is i.i.d., the ergodic theorem implies that

$$
\begin{equation*}
\frac{1}{n} \sum_{t=1}^{n} E\left(\left.\frac{\eta_{t}^{2} h_{t}^{2}}{1+\eta_{t}^{2} h_{t}^{2}} \right\rvert\, \mathcal{F}_{t-1}\right) \xrightarrow{p} \sigma^{2} . \tag{S1.4}
\end{equation*}
$$

Furthermore, it is obvious that

$$
\begin{equation*}
\frac{1}{n} \sum_{t=1}^{n} \frac{1}{1+y_{t-1}^{2}} E\left(\left.\frac{\eta_{t}^{2} h_{t}^{2}}{1+\eta_{t}^{2} h_{t}^{2}} \right\rvert\, \mathcal{F}_{t-1}\right) \leq \frac{1}{n} \sum_{t=1}^{n} \frac{1}{1+y_{t-1}^{2}} \tag{S1.5}
\end{equation*}
$$

For the right side in (S1.5), as $a_{n} \rightarrow \infty$, for any $\delta>0$, we have

$$
\begin{equation*}
\frac{1}{n} \sum_{t=1}^{n} \frac{1}{1+y_{t-1}^{2}}=\int_{0}^{1} \frac{a_{n}^{-2}}{a_{n}^{-2}+S_{n}^{2}(\tau)} d \tau \leq \int_{0}^{1} \frac{\delta}{\delta+S_{n}^{2}(\tau)} d \tau \tag{S1.6}
\end{equation*}
$$

By Assumption 2.1 and the Skorohod representation theorem in Jakubowski (1997), there exists $\left\{\tilde{S}_{n}(\tau)\right\}(\tilde{S}(\tau))$ in $\mathbb{D}[0,1]$ such that $\tilde{S}_{n}(\tau)(\tilde{S}(\tau))$ has the same distribution with $S_{n}(\tau)(S(\tau))$, and $\tilde{S}_{n}(\tau)$ converges to $\tilde{S}(\tau)$ almost surely in S-topology. Then, by the properties of S-topology in Corollary 2.9 in Jakubowski (1997), we have

$$
\int_{0}^{1} \frac{\delta}{\delta+\tilde{S}_{n}^{2}(\tau)} d \tau \xrightarrow{a . s} \int_{0}^{1} \frac{\delta}{\delta+\tilde{S}^{2}(\tau)} d \tau
$$

Therefore, we have

$$
\begin{equation*}
\int_{0}^{1} \frac{\delta}{\delta+S_{n}^{2}(\tau)} d \tau \xrightarrow{d} \int_{0}^{1} \frac{\delta}{\delta+S^{2}(\tau)} d \tau \tag{S1.7}
\end{equation*}
$$

By the dominated convergence theorem, it follows that

$$
\begin{equation*}
\int_{0}^{1} \frac{\delta}{\delta+S^{2}(\tau)} d \tau \xrightarrow{\text { a.s. }} 0, \text { as } \delta \rightarrow 0 . \tag{S1.8}
\end{equation*}
$$

Thus, by (S1.6)-(S1.8), we have shown that

$$
\begin{equation*}
\frac{1}{n} \sum_{t=1}^{n} \frac{1}{1+y_{t-1}^{2}} \xrightarrow{p} 0 \tag{S1.9}
\end{equation*}
$$

As a result, (S1.3) holds from (S1.4)-(S1.5) and (S1.9), which completes the proof for H_{0}.

On the other hand, under H_{1}, since $\Delta y_{t}=\varepsilon_{t}+(\phi-1) y_{t-1}$ with $|\phi|<1$, it is not hard to see that $\left\{\xi_{n t}\right\}$ is no longer a martingale difference sequence.

Notice that
$\frac{1}{\sqrt{n}} T_{n}=\frac{1}{n} \sum_{t=1}^{n} \frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}} \xrightarrow{p} E\left(\frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}}\right)$,
as $n \rightarrow \infty$. Now, we further show that

$$
\begin{equation*}
E\left(\frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}}\right)<0 \tag{S1.10}
\end{equation*}
$$

Note that

$$
E\left(\frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}}\right)=E\left\{E\left(\left.\frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}} \right\rvert\, \mathcal{F}_{t-1}\right)\right\} .
$$

Let $F(x)$ be the distribution function of η_{t}. Since η_{t} is symmetric and independent with h_{t} and y_{t-1}, we have

$$
\begin{aligned}
& E\left(\left.\frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}} \right\rvert\, \mathcal{F}_{t-1}\right)=\frac{1}{\left(1+y_{t-1}^{2}\right)^{1 / 2}} \\
& \quad \times \int_{0}^{\infty}\left\{\frac{\left(x h_{t}+(\phi-1) y_{t-1}\right) y_{t-1}}{\left[1+\left(x h_{t}+(\phi-1) y_{t-1}\right)^{2}\right]^{1 / 2}}-\frac{\left(x h_{t}-(\phi-1) y_{t-1}\right) y_{t-1}}{\left[1+\left(x h_{t}-(\phi-1) y_{t-1}\right)^{2}\right]^{1 / 2}}\right\} d F(x)
\end{aligned}
$$

Since the function $y /\left(1+y^{2}\right)^{1 / 2}$ is strictly increasing function on the real line, then by the fact $\phi<1$, we get that for any given $y_{t-1} \neq 0$,
$\frac{\left(x h_{t}+(\phi-1) y_{t-1}\right) y_{t-1}}{\left[1+\left(x h_{t}+(\phi-1) y_{t-1}\right)^{2}\right]^{1 / 2}}-\frac{\left(x h_{t}-(\phi-1) y_{t-1}\right) y_{t-1}}{\left[1+\left(x h_{t}-(\phi-1) y_{t-1}\right)^{2}\right]^{1 / 2}}<0$, for $x \in \mathbb{R}$.

Thus, we have

$$
\begin{equation*}
E\left(\left.\frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}} \right\rvert\, \mathcal{F}_{t-1}\right) \leq 0 \tag{S1.11}
\end{equation*}
$$

where ' $=$ ' holds if and only if $y_{t-1}=0$. Furthermore, by the fact that $y_{t}=\phi y_{t-1}+\eta_{t} h_{t}$ and $P\left(\eta_{t} \neq 0\right)>0$ and h_{t} is positive, it is clear to see that $P\left(y_{t-1} \neq 0\right)>0$, which implies that (S1.10) holds. Hence, under H_{1}, we have shown that

$$
\begin{equation*}
\frac{1}{\sqrt{n}} T_{n} \xrightarrow{p} E\left(\frac{y_{t-1} \Delta y_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left[1+\left(\Delta y_{t}\right)^{2}\right]^{1 / 2}}\right)<0 . \tag{S1.12}
\end{equation*}
$$

This completes the whole proof.

Proof of Theorem 3.1. Under H_{0}, following the proof in Owen (2001), we first consider the magnitude of the Lagrange multiplier λ, which satisfies

$$
\begin{equation*}
g(\lambda) \equiv \sum_{t=1}^{n} \frac{Z_{t}(1)}{1+\lambda Z_{t}(1)}=0 . \tag{S1.13}
\end{equation*}
$$

Denote $\theta=\operatorname{sign}(\lambda)$, then

$$
\begin{align*}
0 & =|\theta g(\lambda)| \\
& =\left|\theta \sum_{t=1}^{n} Z_{t}(1)-\sum_{t=1}^{n} \frac{|\lambda| Z_{t}^{2}(1)}{1+\lambda Z_{t}(1)}\right| \\
& \geq \sum_{t=1}^{n} \frac{|\lambda| Z_{t}^{2}(1)}{1+\lambda Z_{t}(1)}-\left|\sum_{t=1}^{n} Z_{t}(1)\right| . \tag{S1.14}
\end{align*}
$$

By the fact that $\max _{t \leq n}\left|Z_{t}(1)\right| \leq 1$ and (S1.14) and $1+\lambda Z_{t}(1)>0$, it follows that

$$
\begin{equation*}
\frac{|\lambda|}{1+|\lambda|} \sum_{t=1}^{n} Z_{t}^{2}(1) \leq\left|\sum_{t=1}^{n} Z_{t}(1)\right| . \tag{S1.15}
\end{equation*}
$$

Notice that $Z_{t}(1)=\sqrt{n} \xi_{n t}$, where $\xi_{n t}$ is defined in (S1.1). Furthermore, by (S1.3) and the bounded convergence theorem and Theorem 2.1, we get that

$$
\begin{equation*}
n^{-1} \sum_{t=1}^{n} Z_{t}^{2}(1) \xrightarrow{p} \sigma^{2}, \quad n^{-1 / 2} \sum_{t=1}^{n} Z_{t}(1) \xrightarrow{d} N\left(0, \sigma^{2}\right) . \tag{S1.16}
\end{equation*}
$$

Thus, (S1.15)-(S1.16) implies that

$$
\begin{equation*}
\lambda=O_{p}\left(n^{-1 / 2}\right) . \tag{S1.17}
\end{equation*}
$$

Let $\gamma_{t}=\lambda Z_{t}(1)$ and then we have

$$
\begin{equation*}
\max _{t \leq n}\left|\gamma_{t}\right|=O_{p}\left(n^{-1 / 2}\right) \tag{S1.18}
\end{equation*}
$$

Then, by (S1.13) and (S1.17)-(S1.18), it follows that

$$
\begin{aligned}
0 & =n^{-1} \sum_{t=1}^{n} Z_{t}(1)\left(1-\gamma_{t}+\frac{\gamma_{t}^{2}}{1+\gamma_{t}}\right) \\
& =n^{-1} \sum_{t=1}^{n} Z_{t}(1)-n^{-1} \sum_{t=1}^{n} \lambda Z_{t}^{2}(1)+O_{p}\left(n^{-1}\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\lambda=\left[n^{-1} \sum_{t=1}^{n} Z_{t}^{2}(1)\right]^{-1}\left[n^{-1} \sum_{t=1}^{n} Z_{t}(1)\right]+O_{p}\left(n^{-1}\right) . \tag{S1.19}
\end{equation*}
$$

For $l(1)$, by Taylor expansion, it is straightforward to show that

$$
\begin{equation*}
l(1)=2 \sum_{t=1}^{n} \gamma_{t}-\sum_{t=1}^{n} \gamma_{t}^{2}+\sum_{t=1}^{n} \frac{2 \gamma_{t}^{3}}{3\left(1+\lambda_{t} \gamma_{t}\right)^{3}}, \tag{S1.20}
\end{equation*}
$$

where $\lambda_{t} \in[0,1]$ for $t=1, \cdots, n$. By (S1.18)-(S1.20) and (S1.16), it follows that

$$
\begin{align*}
l(1) & =2 \sum_{t=1}^{n} \gamma_{t}-\sum_{t=1}^{n} \gamma_{t}^{2}+O_{p}\left(n^{-1 / 2}\right) \\
& =2 \lambda \sum_{t=1}^{n} Z_{t}(1)-\lambda^{2} \sum_{t=1}^{n} Z_{t}^{2}(1)+o_{p}(1) \\
& =\left[n^{-1} \sum_{t=1}^{n} Z_{t}^{2}(1)\right]^{-1}\left[n^{-1 / 2} \sum_{t=1}^{n} Z_{t}(1)\right]^{2}+o_{p}(1) \\
& \xrightarrow{d} \chi_{1}^{2} \tag{S1.21}
\end{align*}
$$

as $n \rightarrow \infty$. This completes the proof for $l(1)$ under H_{0}.
Under H_{1}, we first show that $l(1) \xrightarrow{p} \infty$. Note that the Lagrange dual function of $l(1)$ is given by

$$
d\left(\mu_{1}, \mu_{2}\right)=\inf _{p_{t}>0}\left\{-2 \sum_{t=1}^{n} \log \left(n p_{t}\right)+\mu_{1}\left(\sum_{t=1}^{n} p_{t}-1\right)+\mu_{2} \sum_{t=1}^{n} p_{t} Z_{t}(1)\right\},
$$

where μ_{1}, μ_{2} are any real numbers. By definition, it is obvious that $d\left(\mu_{1}, \mu_{2}\right) \leq$
$l(1)$. Then, if we choose $\mu_{1}=2 n$ and $\mu_{2}=2 n \lambda_{1}$, it is not hard to show that

$$
\begin{aligned}
n^{-1} l(1) & \geq n^{-1} d\left(2 n, 2 n \lambda_{1}\right) \\
& =2 n^{-1} \sum_{t=1}^{n} \log \left(1+\lambda_{1} Z_{t}(1)\right) \\
& =2 \lambda_{1} n^{-1} \sum_{t=1}^{n} Z_{t}(1)+O_{p}\left(\lambda_{1}^{2}\right),
\end{aligned}
$$

where we only need the restriction that $1+\lambda_{1} Z_{t}(1)>0$. Then, by (S1.12) and $n^{-1 / 2} T_{n}=n^{-1} \sum_{t=1}^{n} Z_{t}(1)$, we can see that when $\lambda_{1}=-n^{-1 / 2}$, it follows that

$$
\begin{equation*}
l(1) \xrightarrow{p} \infty . \tag{S1.22}
\end{equation*}
$$

Next, we show that $l(\phi) \xrightarrow{d} \chi_{1}^{2}$ under H_{1}. In this case, it follows that

$$
\begin{equation*}
Z_{t}(\phi)=\frac{y_{t-1} \varepsilon_{t}}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left(1+\varepsilon_{t}^{2}\right)^{1 / 2}} \tag{S1.23}
\end{equation*}
$$

Notice that $\left\{Z_{t}(\phi)\right\}$ is still a martingale difference sequence. Then, by the similar argument for Theorem 2.1 and the ergodic theorem, it is not hard to show that

$$
\begin{equation*}
n^{-1} \sum_{t=1}^{n} Z_{t}^{2}(\phi) \xrightarrow{p} \sigma_{1}^{2}, \quad n^{-1 / 2} \sum_{t=1}^{n} Z_{t}(\phi) \xrightarrow{d} N\left(0, \sigma_{1}^{2}\right), \tag{S1.24}
\end{equation*}
$$

where $\sigma_{1}^{2}=E\left\{y_{t-1}^{2} \varepsilon_{t}^{2} /\left[\left(1+y_{t-1}^{2}\right)\left(1+\varepsilon_{t}^{2}\right)\right]\right\}$. Finally, using the same procedure for (S1.21), we can get the conclusion. This completes the proof.

Proof of Theorem 3.2. Under H_{0}, using the same procedure in proof of

Theorem 3.1, it follows that

$$
\begin{equation*}
\frac{|\lambda|}{1+|\lambda| \max _{t \leq n+1}\left|Z_{t}(1)\right|} \sum_{t=1}^{n+1} Z_{t}^{2}(1) \leq\left|\sum_{t=1}^{n+1} Z_{t}(1)\right| . \tag{S1.25}
\end{equation*}
$$

By (S1.16) and $b_{n}=o(n)$, we can directly show that

$$
\begin{equation*}
\left|Z_{n+1}(1)\right|=o_{p}(\sqrt{n}), \tag{S1.26}
\end{equation*}
$$

and then

$$
\begin{equation*}
n^{-1} \sum_{t=1}^{n+1} Z_{t}^{2}(1) \xrightarrow{p} \sigma^{2}, \quad n^{-1 / 2} \sum_{t=1}^{n+1} Z_{t}(1) \xrightarrow{d} N\left(0, \sigma^{2}\right) . \tag{S1.27}
\end{equation*}
$$

Then, by (S1.25)-(S1.27), we have gotten that

$$
\begin{equation*}
\lambda=O_{p}\left(n^{-1 / 2}\right) . \tag{S1.28}
\end{equation*}
$$

Let $\gamma_{t}=\lambda Z_{t}(1)$ for $t=1, \cdots, n+1$. By (S1.26), it follows that

$$
\begin{equation*}
\max _{t \leq n+1}\left|\gamma_{t}\right|=o_{p}(1) \tag{S1.29}
\end{equation*}
$$

Then, by the similar arguments for (S1.21), we have $l^{a}(1) \xrightarrow{d} \chi_{1}^{2}$, as $n \rightarrow$ ∞.

Furthermore, under H_{1}, since $b_{n} / n+1 / b_{n}=o(1)$, we can choose the negative number λ_{2} with the condition that $\lambda_{2}=o(1)$ and $\lambda_{2} n \rightarrow \infty$ and
$\lambda_{2} b_{n}=o(1)$, then

$$
\begin{aligned}
l^{a}(1) & \geq 2 \sum_{t=1}^{n+1} \log \left(1+\lambda_{2} Z_{t}(1)\right) \\
& =2 \lambda_{2} \sum_{t=1}^{n+1} Z_{t}(1)+O_{p}\left(n \lambda_{2}^{2}\right) \\
& \xrightarrow{p} \infty
\end{aligned}
$$

On the other hand, by (S1.24), we can show that $\left|Z_{n+1}(\phi)\right|=o_{p}(\sqrt{n})$ and

$$
\begin{equation*}
n^{-1} \sum_{t=1}^{n+1} Z_{t}^{2}(\phi) \xrightarrow{p} \sigma_{1}^{2}, \quad n^{-1 / 2} \sum_{t=1}^{n+1} Z_{t}(\phi) \xrightarrow{d} N\left(0, \sigma_{1}^{2}\right) . \tag{S1.30}
\end{equation*}
$$

Then, it is easy to get that $l^{a}(\phi) \xrightarrow{d} \chi_{1}^{2}$, as $n \rightarrow \infty$. This completes the proof.

Proof of Corollary 3.1. Since the proof process is very close to those in Theorems 3.1-3.2, we only present some key points and the details are omitted.

Under H_{0}, by the fact that $\rho(x)$ is a bounded and odd function, we can easily show that

$$
n^{-1} \sum_{t=1}^{n} Z_{t}^{2}(1) \xrightarrow{p} \sigma_{\rho}^{2}, \quad n^{-1 / 2} \sum_{t=1}^{n} Z_{t}(1) \xrightarrow{d} N\left(0, \sigma_{\rho}^{2}\right),
$$

where $\sigma_{\rho}^{2}=E\left(\rho^{2}\left(\varepsilon_{t}\right)\right)$. Similarly, under H_{1}, we have

$$
n^{-1} \sum_{t=1}^{n} Z_{t}^{2}(\phi) \xrightarrow{p} \sigma_{\rho}^{2}(1), \quad n^{-1 / 2} \sum_{t=1}^{n} Z_{t}(\phi) \xrightarrow{d} N\left(0, \sigma_{\rho}^{2}(1)\right),
$$

where $\sigma_{\rho}^{2}(1)=E\left[y_{t-1}^{2} \rho^{2}\left(\varepsilon_{t}\right) /\left(1+y_{t-1}^{2}\right)\right]$.

Under H_{1}, it is clear to see that

$$
n^{-1} \sum_{t=1}^{n} Z_{t}(1) \xrightarrow{p} \mu_{\rho} \equiv E\left[\frac{y_{t-1}}{1+y_{t-1}^{2}} \rho\left(\Delta y_{t}\right)\right] .
$$

Then, we have

$$
\mu_{\rho}=E\left\{E\left[\left.\frac{y_{t-1}}{1+y_{t-1}^{2}} \rho\left(\eta_{t} h_{t}+(\phi-1) y_{t-1}\right) \right\rvert\, \mathcal{F}_{t-1}\right]\right\}
$$

Furthermore, it follows that

$$
\begin{align*}
& E\left[\left.\frac{y_{t-1}}{1+y_{t-1}^{2}} \rho\left(\eta_{t} h_{t}+(\phi-1) y_{t-1}\right) \right\rvert\, \mathcal{F}_{t-1}\right]=\frac{y_{t-1}}{1+y_{t-1}^{2}} \tag{S1.31}\\
& \quad \times \int_{0}^{\infty}\left[\rho\left(x h_{t}+(\phi-1) y_{t-1}\right)-\rho\left(x h_{t}-(\phi-1) y_{t-1}\right)\right] d F(x)
\end{align*}
$$

Without loss of generality, $\rho(x)$ is assumed to be an increasing function.
Case 1: If $\rho(x)$ is a strictly increasing function, then by $\phi-1<0$, we get that for any given $y_{t-1} \neq 0$,

$$
y_{t-1}\left[\rho\left(x h_{t}+(\phi-1) y_{t-1}\right)-\rho\left(x h_{t}-(\phi-1) y_{t-1}\right)\right]<0, \forall x \in \mathbb{R} .
$$

Then, it follows that, $\forall y_{t-1} \neq 0$,

$$
\begin{equation*}
E\left[\left.\frac{y_{t-1}}{1+y_{t-1}^{2}} \rho\left(\eta_{t} h_{t}+(\phi-1) y_{t-1}\right) \right\rvert\, \mathcal{F}_{t-1}\right]<0 \tag{S1.32}
\end{equation*}
$$

Case 2: If $\rho(x)>\rho(y), \forall x>0, y<0$ and the density of η_{t} is positive in a neighbourhood of zero denoted as $[-a, a]$ for some $a>0$, then
(i). When $y_{t-1}>0$, it follows that $\rho\left(x h_{t}+(\phi-1) y_{t-1}\right)-\rho\left(x h_{t}-(\phi-\right.$ 1) $\left.y_{t-1}\right) \leq 0$, and $\rho\left(x h_{t}+(\phi-1) y_{t-1}\right)-\rho\left(x h_{t}-(\phi-1) y_{t-1}\right)<0$, if $|x| \leq$
$\min \left\{a,(1-\phi) y_{t-1} / h_{t}\right\}$, then

$$
E\left[\left.\frac{y_{t-1}}{1+y_{t-1}^{2}} \rho\left(\eta_{t} h_{t}+(\phi-1) y_{t-1}\right) \right\rvert\, \mathcal{F}_{t-1}\right]<0
$$

(ii). When $y_{t-1}<0$, it follows that $\rho\left(x h_{t}+(\phi-1) y_{t-1}\right)-\rho\left(x h_{t}-(\phi-\right.$ 1) $\left.y_{t-1}\right) \geq 0$, and $\rho\left(x h_{t}+(\phi-1) y_{t-1}\right)-\rho\left(x h_{t}-(\phi-1) y_{t-1}\right)>0$, if $|x| \leq$ $\min \left\{a,(\phi-1) y_{t-1} / h_{t}\right\}$, then

$$
E\left[\left.\frac{y_{t-1}}{1+y_{t-1}^{2}} \rho\left(\eta_{t} h_{t}+(\phi-1) y_{t-1}\right) \right\rvert\, \mathcal{F}_{t-1}\right]<0
$$

Therefore, (S1.32) always holds for two cases. Then, by the fact that $y_{t}=\phi y_{t-1}+\eta_{t} h_{t}$ and $P\left(\eta_{t} \neq 0\right)>0$ and h_{t} is positive, it is clear to see that $P\left(y_{t-1} \neq 0\right)>0$, which implies that $\mu_{\rho}<0$. In other words, we have

$$
\begin{equation*}
n^{-1} \sum_{t=1}^{n} Z_{t}(1) \xrightarrow{p} \mu_{\rho}<0 . \tag{S1.33}
\end{equation*}
$$

This completes the proof.

Now, following the standard procedures in Qin and Lawless (1994), we give the proofs for Theorem 4.1. Before that, we need the following two lemmas.

Lemma 1. Suppose that y_{t} satisfies model (4.1) and the conditions in The-
orem 4.1 hold, then under H_{0}, it follows that

$$
\begin{align*}
& n^{-1 / 2} \sum_{t=1}^{n} \tilde{Z}_{t, 2}\left(1, \mu_{0}\right)=n^{-1 / 2} \sum_{t=1}^{n} w_{t}+o_{p}(1) ; \tag{S1.34}\\
& n^{-1 / 2} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right) \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma}) ; \tag{S1.35}\\
& n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right) \tilde{\mathbf{Z}}_{t}^{\prime}\left(1, \mu_{0}\right) \xrightarrow{p} \boldsymbol{\Sigma} ; \tag{S1.36}\\
& n^{-1} \sum_{t=1}^{n} \frac{\partial \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)}{\partial \mu} \xrightarrow{p} \mathbf{a}, \tag{S1.37}
\end{align*}
$$

where the matrix $\boldsymbol{\Sigma}=\operatorname{diag}\left\{\sigma^{2}, 1\right\}$ and the vector $\mathbf{a}=\left(-E\left(1+\varepsilon_{t}^{2}\right)^{-3 / 2}, 0\right)^{\prime}$. Proof of Lemma 1. For (S1.34), it is sufficient to show that, for any $\delta>$ $1 / 2$

$$
\begin{equation*}
n^{-1 / 2} \sum_{t=1}^{n} \frac{y_{t-1}}{\left(1+y_{t-1}^{2}\right)^{\delta}} \tilde{Z}_{t, 1}\left(1, \mu_{0}\right) \xrightarrow{p} 0 . \tag{S1.38}
\end{equation*}
$$

Notice that $\left\{n^{-1 / 2} \frac{y_{t-1}}{\left(1+y_{t-1}^{2}\right)^{\delta}} \tilde{Z}_{t, 1}\left(1, \mu_{0}\right), t=1, \cdots, n\right\}$ is a martingale difference sequence with respect to \mathcal{F}_{t} and has the uniform bound $n^{-1 / 2}$, then by Theorem 18.1 Billingsley (1999), we only need to show that

$$
\begin{equation*}
n^{-1} \sum_{t=1}^{n} \frac{y_{t-1}^{2}}{\left(1+y_{t-1}^{2}\right)^{2 \delta}} \xrightarrow{p} 0 . \tag{S1.39}
\end{equation*}
$$

By Cauchy inequality, it follows that

$$
\begin{aligned}
n^{-1} \sum_{t=1}^{n} \frac{y_{t-1}^{2}}{\left(1+y_{t-1}^{2}\right)^{2 \delta}} & \leq \sqrt{n^{-1} \sum_{t=1}^{n} \frac{y_{t-1}^{4}}{\left(1+y_{t-1}^{2}\right)^{2}}} \times \sqrt{n^{-1} \sum_{t=1}^{n} \frac{1}{\left(1+y_{t-1}^{2}\right)^{4 \delta-2}}} \\
& \leq \sqrt{n^{-1} \sum_{t=1}^{n} \frac{1}{\left(1+y_{t-1}^{2}\right)^{4 \delta-2}}} .
\end{aligned}
$$

By Assumption 2.1 and $a_{n} / n \rightarrow c \in[0, \infty]$, and using the same procedure for (S1.9), it is straightforward to get that $n^{-1} \sum_{t=1}^{n}\left(1+y_{t-1}^{2}\right)^{-4 \delta+2}=$ $o_{p}(1)$. This completes the proof for (S1.34). Furthermore, applying (S1.34), (S1.35)-(S1.37) can be directly proved by martingale central limit theorem and the ergodic theorem.

Denote $\tilde{l}(\phi, \mu)=-2 \log (\tilde{L}(\phi, \mu))$, then we have the next lemma.

Lemma 2. Under H_{0} and the same conditions in Lemma 1, as $n \rightarrow \infty$, with probability to one, the function $\tilde{l}(1, \mu)$ attains its minimum value at some point $\tilde{\mu}$ in the interior of the ball $\left|\mu-\mu_{0}\right| \leq n^{-1 / 3}$, and $\tilde{\mu}$ and $\tilde{\boldsymbol{\lambda}}=\boldsymbol{\lambda}(\tilde{\mu})$ satisfy

$$
Q_{1 n}(\tilde{\mu}, \tilde{\boldsymbol{\lambda}})=0 \text { and } Q_{2 n}(\tilde{\mu}, \tilde{\boldsymbol{\lambda}})=0
$$

where

$$
\begin{aligned}
& Q_{1 n}(\mu, \boldsymbol{\lambda})=n^{-1} \sum_{t=1}^{n} \frac{\tilde{\mathbf{Z}}_{t}(1, \mu)}{1+\boldsymbol{\lambda}^{\prime} \tilde{\mathbf{Z}}_{t}(1, \mu)} \\
& Q_{2 n}(\mu, \boldsymbol{\lambda})=n^{-1} \sum_{t=1}^{n} \frac{1}{1+\boldsymbol{\lambda}^{\prime} \tilde{\mathbf{Z}}_{t}(1, \mu)}\left\{\frac{\partial \tilde{\mathbf{Z}}_{t}(1, \mu)}{\partial \mu}\right\}^{\prime} \boldsymbol{\lambda} .
\end{aligned}
$$

Proof of Lemma 2. Review that for any fixed μ, by Lagrange multiplier technique, we have

$$
\begin{equation*}
\tilde{l}(1, \mu)=2 \sum_{t=1}^{n} \log \left[1+\boldsymbol{\lambda}^{\prime} \tilde{\mathbf{Z}}_{t}(1, \mu)\right] \tag{S1.40}
\end{equation*}
$$

where $\boldsymbol{\lambda}$ is a function with respect to μ and satisfies $Q_{1 n}(\mu, \boldsymbol{\lambda})=0$. Then, it is not hard to get that

$$
\begin{equation*}
\boldsymbol{\rho} n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}(1, \mu) \geq \frac{\|\boldsymbol{\lambda}\|}{1+\|\boldsymbol{\lambda}\| \max _{t}\left\|\tilde{\mathbf{Z}}_{t}(1, \mu)\right\|} n^{-1} \sum_{t=1}^{n} \boldsymbol{\rho}^{\prime} \mathbf{Z}_{t}(1, \mu) \tilde{\mathbf{Z}}_{t}^{\prime}(1, \mu) \boldsymbol{\rho} \tag{S1.41}
\end{equation*}
$$

where $\|\cdot\|$ is the Euclidean norm and $\boldsymbol{\rho}=\boldsymbol{\lambda} /\|\boldsymbol{\lambda}\|$.
Note that, by the definitions of $\tilde{\mathbf{Z}}_{t}(1, \mu)$, it is easy to see that there exists a constant C_{0}, such that

$$
\begin{equation*}
\sup _{\mu \in \mathbb{R}} \max _{t}\left\|\tilde{\mathbf{Z}}_{t}(1, \mu)\right\| \leq C_{0}, \sup _{\mu \in \mathbb{R}} \max _{t}\left\|\frac{\partial^{k} \tilde{\mathbf{Z}}_{t}(1, \mu)}{\partial \mu^{k}}\right\| \leq C_{0} \tag{S1.42}
\end{equation*}
$$

where $k=1,2,3$. Furthermore, using Taylor expansion, in the domain $\left|\mu-\mu_{0}\right| \leq n^{-1 / 3}$, we uniformly have

$$
\begin{array}{r}
\sup _{\left|\mu-\mu_{0}\right| \leq n^{-1 / 3}} n^{-1}\left\|\sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}(1, \mu)-\sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)\right\|=O_{p}\left(n^{-1 / 3}\right) ; \\
\sup _{\left|\mu-\mu_{0}\right| \leq n^{-1 / 3}} n^{-1}\left\|\sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}(1, \mu) \tilde{\mathbf{Z}}_{t}^{\prime}(1, \mu)-\sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right) \tilde{\mathbf{Z}}_{t}^{\prime}\left(1, \mu_{0}\right)\right\|=O_{p}\left(n^{-1 / 3}\right) . \tag{S1.43}
\end{array}
$$

Then, by (S1.41) and (S1.43)-(S1.44), and (S1.35)-(S1.36), we have

$$
\sup _{\left|\mu-\mu_{0}\right| \leq n^{-1 / 3}} \frac{\|\boldsymbol{\lambda}\|}{1+\|\boldsymbol{\lambda}\| C_{0}}=O_{p}\left(n^{-1 / 3}\right)
$$

which implies that

$$
\begin{equation*}
\sup _{\left|\mu-\mu_{0}\right| \leq n^{-1 / 3}}\|\boldsymbol{\lambda}\|=O_{p}\left(n^{-1 / 3}\right) \tag{S1.45}
\end{equation*}
$$

Then, it follows that

$$
\begin{equation*}
\boldsymbol{\lambda}=\left[n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}(1, \mu) \tilde{\mathbf{Z}}_{t}^{\prime}(1, \mu)\right]^{-1}\left[n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}(1, \mu)\right]+O_{p}\left(n^{-2 / 3}\right) \tag{S1.46}
\end{equation*}
$$

Now, consider the boundary $\left|\mu-\mu_{0}\right|=n^{-1 / 3}$, by (S1.40), (S1.42) and (S1.46), we have

$$
\begin{aligned}
\tilde{l}(1, \mu) & =n\left\{\left[n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)+n^{-1} \sum_{t=1}^{n} \frac{\partial \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)}{\partial \mu}\left(\mu-\mu_{0}\right)+O_{p}\left(n^{-2 / 3}\right)\right]^{\prime}\right. \\
& \times\left[n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}(1, \mu) \tilde{\mathbf{Z}}_{t}^{\prime}(1, \mu)\right]^{-1} \\
& \left.\times\left[n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)+n^{-1} \sum_{t=1}^{n} \frac{\partial \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)}{\partial \mu}\left(\mu-\mu_{0}\right)+O_{p}\left(n^{-2 / 3}\right)\right]\right\}+O_{p}(1),
\end{aligned}
$$

Then, by the fact $\left|\mu-\mu_{0}\right|=n^{-1 / 3}$ and using (S1.36)-(S1.37) and (S1.43)-
(S1.44), it follows that, with probability to one,

$$
\begin{equation*}
\inf _{\left|\mu-\mu_{0}\right|=n^{-1 / 3}} n^{-1 / 3} \tilde{l}(1, \mu) \geq \mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a} / 2 \tag{S1.47}
\end{equation*}
$$

On the other hand, when $\mu=\mu_{0}$, it is not hard to show that

$$
\begin{equation*}
\tilde{l}\left(1, \mu_{0}\right)=O_{p}(1) \tag{S1.48}
\end{equation*}
$$

Then, with probability to one, the minimizer $\tilde{\mu}$ of $\tilde{l}(1, \mu)$ satisfies $\left|\tilde{\mu}-\mu_{0}\right|<$ $n^{-1 / 3}$. Therefore, $\partial \tilde{l}(1, \tilde{\mu}) / \partial \mu=0$, which implies that $Q_{2 n}(\tilde{\mu}, \tilde{\boldsymbol{\lambda}})=0$.

Based on the above two lemmas, we can prove Theorem 4.1 as follows.

Proof of Theorem 4.1. Taking derivatives of $Q_{1 n}$ and $Q_{2 n}$ with respect
to μ and $\boldsymbol{\lambda}$, we have

$$
\begin{array}{ll}
\frac{\partial Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)}{\partial \mu}=n^{-1} \sum_{t=1}^{n} \frac{\partial \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)}{\partial \mu}, & \frac{\partial Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)}{\partial \boldsymbol{\lambda}^{\prime}}=-n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right) \tilde{\mathbf{Z}}_{t}^{\prime}\left(1, \mu_{0}\right) ; \\
\frac{\partial Q_{2 n}\left(\mu_{0}, \mathbf{0}\right)}{\partial \mu}=0, & \frac{\partial Q_{2 n}\left(\mu_{0}, \mathbf{0}\right)}{\partial \boldsymbol{\lambda}^{\prime}}=n^{-1} \sum_{t=1}^{n}\left\{\frac{\partial \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)}{\partial \mu}\right\}^{\prime}
\end{array}
$$

By the definitions of $\tilde{\mathbf{Z}}_{t}(1, \mu)$, there exists a constant C_{0} such that

$$
\begin{equation*}
\sup _{\mu \in \mathbb{R}} \max _{t}\left\|\tilde{\mathbf{Z}}_{t}(1, \mu)\right\| \leq C_{0}, \sup _{\mu \in \mathbb{R}} \max _{t}\left\|\frac{\partial^{k} \tilde{\mathbf{Z}}_{t}(1, \mu)}{\partial \mu^{k}}\right\| \leq C_{0} \tag{S1.49}
\end{equation*}
$$

where $k=1,2,3$. Expanding $Q_{1 n}(\tilde{\mu}, \tilde{\boldsymbol{\lambda}})$ and $Q_{2 n}(\tilde{\mu}, \tilde{\boldsymbol{\lambda}})$ at $\left(\mu_{0}, \mathbf{0}\right)$, and by Lemma 2 and (S1.49), we can show that

$$
\begin{align*}
& \frac{\partial Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)}{\partial \boldsymbol{\lambda}^{\prime}} \tilde{\boldsymbol{\lambda}}+\frac{\partial Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)}{\partial \mu}\left(\tilde{\mu}-\mu_{0}\right)=-Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)+o_{p}\left(n^{-1 / 2}\right) \tag{S1.50}\\
& \frac{\partial Q_{2 n}\left(\mu_{0}, \mathbf{0}\right)}{\partial \boldsymbol{\lambda}^{\prime}} \tilde{\boldsymbol{\lambda}}+\frac{\partial Q_{2 n}\left(\mu_{0}, \mathbf{0}\right)}{\partial \mu}\left(\tilde{\mu}-\mu_{0}\right)=o_{p}\left(n^{-1 / 2}\right) \tag{S1.51}
\end{align*}
$$

Denote

$$
\begin{equation*}
\mathbf{a}_{n}=n^{-1} \sum_{t=1}^{n} \frac{\partial \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right)}{\partial \mu} \text { and } \boldsymbol{\Sigma}_{n}=n^{-1} \sum_{t=1}^{n} \tilde{\mathbf{Z}}_{t}\left(1, \mu_{0}\right) \tilde{\mathbf{Z}}_{t}^{\prime}\left(1, \mu_{0}\right) . \tag{S1.52}
\end{equation*}
$$

It follows from Lemma 1 and (S1.50)-(S1.51) that

$$
\begin{align*}
\sqrt{n}\left(\tilde{\mu}-\mu_{0}\right) & =-\left(\mathbf{a}_{n}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{a}_{n}\right)^{-1} \mathbf{a}_{n}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \times \sqrt{n} Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)+o_{p}(1), \tag{S1.53}\\
\sqrt{n} \tilde{\boldsymbol{\lambda}} & =\boldsymbol{\Sigma}_{n}^{-1}\left[\mathbf{I}-\mathbf{a}_{n}\left(\mathbf{a}_{n}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{a}_{n}\right)^{-1} \mathbf{a}_{n}^{\prime} \boldsymbol{\Sigma}_{n}^{-1}\right] \times \sqrt{n} Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)+o_{p}(1) . \tag{S1.54}
\end{align*}
$$

On the other hand, by Lemma 2, we have $\tilde{l}(1)=\tilde{l}(1, \tilde{\mu})$. Then, by (S1.53)-
(S1.54), we can show that

$$
\begin{aligned}
\tilde{l}(1, \tilde{\mu}) & =2 \sum_{t=1}^{n} \log \left[1+\tilde{\boldsymbol{\lambda}}^{\prime} \tilde{\mathbf{Z}}_{t}(1, \tilde{\mu})\right] \\
& =(\sqrt{n} \tilde{\boldsymbol{\lambda}})^{\prime} \boldsymbol{\Sigma}_{n}(\sqrt{n} \tilde{\boldsymbol{\lambda}})+o_{p}(1) \\
& =\left[\sqrt{n} \boldsymbol{\Sigma}_{n}^{-1 / 2} Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)\right]^{\prime} \times\left[\mathbf{I}-\mathbf{A}_{n}\right] \times\left[\sqrt{n} \boldsymbol{\Sigma}_{n}^{-1 / 2} Q_{1 n}\left(\mu_{0}, \mathbf{0}\right)\right]+o_{p}(1)
\end{aligned}
$$

where $\mathbf{A}_{n}=\boldsymbol{\Sigma}_{n}^{-1 / 2} \mathbf{a}_{n}\left(\mathbf{a}_{n}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{a}_{n}\right)^{-1} \mathbf{a}_{n}^{\prime} \boldsymbol{\Sigma}_{n}^{-1 / 2}$. By Lemma 1, it is obvious that

$$
\mathbf{A}_{n} \xrightarrow{p} \mathbf{A}=\boldsymbol{\Sigma}^{-1 / 2} \mathbf{a}\left(\mathbf{a}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{a}\right)^{-1} \mathbf{a}^{\prime} \boldsymbol{\Sigma}^{-1 / 2} .
$$

Meanwhile, since $\mathbf{A}=\mathbf{A}^{\prime}$ and $\mathbf{A}^{2}=\mathbf{A}$, the trace of $\mathbf{I}-\mathbf{A}$ is 1 . Furthermore, $\sqrt{n} \boldsymbol{\Sigma}_{n}^{-1 / 2} Q_{1 n}\left(\mu_{0}, \mathbf{0}\right) \xrightarrow{d} N(\mathbf{0}, \mathbf{I})$ from Lemma 1 , then we get that $\tilde{l}(1, \tilde{\mu}) \xrightarrow{d}$ χ_{1}^{2}.

On the other hand, under H_{1}, by the ergodic theorem, it follows that

$$
\begin{equation*}
n^{-1} \sum_{t=1}^{n} \tilde{Z}_{t, 2}\left(1, \mu_{0}\right) \xrightarrow{p} E \frac{y_{t-1}\left[\varepsilon_{t}+(\phi-1) y_{t-1}\right]}{\left(1+y_{t-1}^{2}\right)^{\delta}\left\{1+\left[\varepsilon_{t}+(\phi-1) y_{t-1}\right]^{2}\right\}^{1 / 2}} . \tag{S1.55}
\end{equation*}
$$

Then, using the same arguments for (S1.10), it is direct to prove that

$$
\begin{equation*}
E \frac{y_{t-1}\left[\varepsilon_{t}+(\phi-1) y_{t-1}\right]}{\left(1+y_{t-1}^{2}\right)^{\delta}\left\{1+\left[\varepsilon_{t}+(\phi-1) y_{t-1}\right]^{2}\right\}^{1 / 2}}<0 . \tag{S1.56}
\end{equation*}
$$

Meanwhile, for any fixed μ, we have

$$
\begin{equation*}
\tilde{l}(1, \mu) \geq d(\mu) \tag{S1.57}
\end{equation*}
$$

where $d(\mu)$ is defined as

$$
d(\mu)=\inf _{p_{t}>0}\left\{-2 \sum_{t=1}^{n} \log \left(n p_{t}\right)+2 n\left(\sum_{t=1}^{n} p_{t}-1\right)+2 n \lambda_{3} \sum_{t=1}^{n} p_{t} \tilde{Z}_{t, 2}(1, \mu)\right\}
$$

with $\lambda_{3}=-n^{-1 / 2}$. Then, it is obvious that

$$
\tilde{l}(1, \mu) \geq-2 n^{-1 / 2} \sum_{t=1}^{n} \tilde{Z}_{t, 2}(1, \mu)+O_{p}(1)
$$

where $O_{p}(1)$ uniformly holds in the domain $\left|\mu-\mu_{0}\right| \leq n^{-1 / 3}$. Furthermore, by (S1.56) and (S1.49), we have shown that, with probability to one,

$$
\tilde{l}(1)=\inf _{\mu} \tilde{l}(1, \mu) \geq-\sqrt{n} E \frac{y_{t-1}\left[\varepsilon_{t}+(\phi-1) y_{t-1}\right]}{\left(1+y_{t-1}^{2}\right)^{1 / 2}\left\{1+\left[\varepsilon_{t}+(\phi-1) y_{t-1}\right]^{2}\right\}^{1 / 2}} \longrightarrow \infty
$$

This completes the whole proof.

Proof of Theorem 4.2. Like the proof of Lemma 1, and using Assumption 4.1, we can easily show that

$$
\begin{aligned}
& \overline{\mathbf{Z}}_{n}=n^{-1 / 2} \sum_{t=1}^{n} \overline{\mathbf{Z}}_{t}\left(1, \boldsymbol{\theta}_{0}\right) \xrightarrow{d} N(\mathbf{0}, \overline{\boldsymbol{\Sigma}}) ; \overline{\boldsymbol{\Sigma}}_{n}=n^{-1} \sum_{t=1}^{n} \overline{\mathbf{Z}}_{t}\left(1, \boldsymbol{\theta}_{0}\right) \overline{\mathbf{Z}}_{t}^{\prime}\left(1, \boldsymbol{\theta}_{0}\right) \xrightarrow{p} \overline{\boldsymbol{\Sigma}} ; \\
& n^{-1} \sum_{t=1}^{n} \frac{\partial \bar{Z}_{t, 1}\left(1, \boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}^{\prime}} \xrightarrow{p} \overline{\mathbf{b}}_{1} ; n^{-1} \sum_{t=1}^{n} \frac{\partial \bar{Z}_{t, 2}\left(1, \boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}^{\prime}} \xrightarrow{p} \mathbf{0} ; n^{-1} \sum_{t=1}^{n} \frac{\partial \bar{Z}_{t, 2+j}\left(1, \boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}^{\prime}} \xrightarrow{p} \overline{\mathbf{b}}_{2+j} .
\end{aligned}
$$

Meanwhile, for any $k=1,2,3$, there exists some constant C_{0} such that

$$
\begin{equation*}
\sup _{\boldsymbol{\theta}} \max _{t}\left\|\overline{\mathbf{Z}}_{t}(1, \boldsymbol{\theta})\right\| \leq C_{0}, \sup _{\boldsymbol{\theta}} \max _{t}\left\|\frac{\partial^{k} \overline{\mathbf{Z}}_{t}(1, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{k}}\right\| \leq C_{0} \tag{S1.58}
\end{equation*}
$$

Then, it is not hard to show that

$$
\bar{l}(1)=\left[\overline{\boldsymbol{\Sigma}}_{n}^{-1 / 2} \overline{\mathbf{Z}}_{n}\right]^{\prime} \times[\mathbf{I}-\overline{\mathbf{A}}] \times\left[\overline{\boldsymbol{\Sigma}}_{n}^{-1 / 2} \overline{\mathbf{Z}}_{n}\right]+o_{p}(1),
$$

where $\overline{\mathbf{A}}=\overline{\boldsymbol{\Sigma}}^{-1 / 2} \overline{\mathbf{B}}\left(\overline{\mathbf{B}}^{\prime} \overline{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{B}}\right)^{-1} \overline{\mathbf{B}}^{\prime} \overline{\boldsymbol{\Sigma}}^{-1 / 2}$ with $\overline{\mathbf{B}}=\left(\overline{\mathbf{b}}_{1}, \mathbf{0}, \overline{\mathbf{b}}_{3}, \cdots, \overline{\mathbf{b}}_{r+2}\right)^{\prime}$.
Then $\bar{l}(1) \xrightarrow{d} \chi_{1}^{2}$ since the trace of $\mathbf{I}-\overline{\mathbf{A}}$ is 1 . Under H_{1}, it is not hard to
prove that

$$
\begin{equation*}
n^{-1} \sum_{t=1}^{n} \bar{Z}_{t, 2}\left(1, \boldsymbol{\theta}_{0}\right) \xrightarrow{p} \mu_{0}<0, \tag{S1.59}
\end{equation*}
$$

where μ_{0} is defined as

$$
\mu_{0}=E \frac{y_{t-1}\left[\varepsilon_{t}+(\phi-1) y_{t-1}\right]}{\left(1+y_{t-1}^{2}\right)^{\delta}\left[1+\sum_{j=1}^{r}\left(\Delta y_{t-j}\right)^{2}\right]^{3 / 2}\left\{1+\left[\varepsilon_{t}+(\phi-1) y_{t-1}\right]^{2}\right\}^{1 / 2}} .
$$

Then, the conclusion holds by the same arguments for Theorem 4.1.

Bibliography

Billingsley, P. (1999). Convergence of Probability Measures, 2nd Ed. Wiley, New York.

Jakubowski, A. (1997). A non-Skorohod topology on the Skorohod space. Electron. J. Probab. 2, 1-21.

Owen, A.B. (2001). Empirical Likelihood, New York: Chapman \& Hall/CRC.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimation equations. Ann. Statist. 22, 300-325.

S2. Simulation for Confidence Interval

In this section, we also examine the length of the 95% confidence interval for the regression parameter with a sample size $n=100,300$ and $\phi=$ $0.95,0.9$ and 0.85 . The results are summarized in Tables $1-4$ below. Several observations can be deduced from these tables. First, the confidence interval length derived by $l^{a}(\phi)$ is very close to that by $l(\phi)$. Second, the heavier tail implies the shorter interval in the proposed methods. Third, both $l(\phi)$ and $l^{a}(\phi)$ provide much better inferences than that by ELT, especially when $E \eta_{t}^{2}=\infty$.

Table 1: Average lengths calculated for the confidence intervals based on the empirical likelihood methods with $\alpha \in(1,2)$ and $n=100$

$\eta_{t} \sim$	ϕ	$\varepsilon_{t} \sim \operatorname{model}(5.1)$			$\varepsilon_{t} \sim \operatorname{model}(5.2)$		
		$l(\phi)$	$l^{a}(\phi)$	ELT	$l(\phi)$	$l^{a}(\phi)$	ELT
$N(0,1)$	0.95	0.1778	0.1894	0.2799	0.1681	0.1794	0.2687
	0.90	0.2386	0.2549	0.3240	0.2248	0.2399	0.3142
	0.85	0.2794	0.2976	0.3547	0.2737	0.2911	0.3439
Laplace	0.95	0.1330	0.1424	0.3159	0.1327	0.1418	0.2913
	0.90	0.1882	0.1999	0.3772	0.1836	0.1969	0.3486
	0.85	0.2313	0.2476	0.4059	0.2251	0.2427	0.3868
t_{3}	0.95	0.1397	0.1495	0.3294	0.1357	0.1448	0.3046
	0.90	0.1939	0.2070	0.3921	0.1833	0.1944	0.3489
	0.85	0.2374	0.2551	0.4330	0.2198	0.2342	0.3943
t_{2}	0.95	0.1086	0.1157	0.3760	0.1116	0.1192	0.3467
	0.90	0.1540	0.1639	0.4396	0.1545	0.1653	0.4127
	0.85	0.1939	0.2068	0.5002	0.1893	0.2032	0.4934

Table 2: Average lengths calculated for the confidence intervals based on the empirical likelihood methods with $\alpha \in(1,2)$ and $n=300$

$\eta_{t} \sim$	ϕ	$\varepsilon_{t} \sim \operatorname{model}(5.1)$			$\varepsilon_{t} \sim \operatorname{model}(5.2)$		
		$l(\phi)$	$l^{a}(\phi)$	ELT	$l(\phi)$	$l^{a}(\phi)$	ELT
$N(0,1)$	0.95	0.0878	0.0898	0.1602	0.0856	0.0876	0.1501
	0.90	0.1308	0.1342	0.1892	0.1250	0.1279	0.1773
	0.85	0.1618	0.1657	0.2049	0.1533	0.1576	0.1953
Laplace	0.95	0.0613	0.0627	0.1787	0.0648	0.0663	0.1672
	0.90	0.0954	0.0975	0.2153	0.0978	0.1000	0.1996
	0.85	0.1233	0.1264	0.2408	0.1254	0.1281	0.2280
t_{3}	0.95	0.0705	0.0723	0.1955	0.0694	0.0708	0.1751
	0.90	0.1042	0.1064	0.2330	0.0994	0.1017	0.2148
	0.85	0.1285	0.1319	0.2532	0.1215	0.1245	0.2328
t_{2}	0.95	0.0497	0.0507	0.2367	0.0523	0.0535	0.2177
	0.90	0.0802	0.0823	0.2868	0.0801	0.0822	0.2647
	0.85	0.1058	0.1084	0.3486	0.1019	0.1041	0.3047

Table 3: Average lengths calculated for the confidence intervals based on the empirical likelihood methods with $\alpha \in(0,1)$ and $n=100$

		$\varepsilon_{t} \sim$ model (5.1)				$\varepsilon_{t} \sim$ model (5.2)		
$\eta_{t} \sim$	ϕ	$l(\phi)$	$l^{a}(\phi)$	ELT		$l(\phi)$	$l^{a}(\phi)$	ELT
$N(0,1)$	0.95	0.2086	0.2230	0.3218		0.1807	0.1929	0.2964
	0.90	0.2777	0.2949	0.3765		0.2516	0.2686	0.3524
	0.85	0.3276	0.3483	0.3995		0.3066	0.3267	0.3748
Laplace	0.95	0.1353	0.1441	0.3659		0.1327	0.1411	0.3398
	0.90	0.1955	0.2095	0.4181		0.1895	0.2032	0.3953
	0.85	0.2518	0.2696	0.4647		0.2373	0.2537	0.4379
t_{2}	0.95	0.1272	0.1359	0.4647		0.1154	0.1229	0.3856
	0.90	0.1772	0.1883	0.5278		0.1628	0.1732	0.4729
	0.85	0.2267	0.2428	0.6114		0.2065	0.2210	0.5178
Cauchy	0.95	0.0467	0.0495	1.1544		0.0418	0.0447	0.9664
	0.90	0.0783	0.0833	1.6059		0.0725	0.0777	1.3169
	0.85	0.1139	0.1210	2.3172		0.1048	0.1118	1.5173

Table 4: Average lengths calculated for the confidence intervals based on the empirical likelihood methods with $\alpha \in(0,1)$ and $n=300$

		$\varepsilon_{t} \sim$ model (5.1)				$\varepsilon_{t} \sim$ model (5.2)		
$\eta_{t} \sim$	ϕ	$l(\phi)$	$l^{a}(\phi)$	ELT		$l(\phi)$	$l^{a}(\phi)$	ELT
$N(0,1)$	0.95	0.0991	0.1014	0.1894		0.0903	0.0926	0.1743
	0.90	0.1470	0.1510	0.2168		0.1362	0.1395	0.1991
	0.85	0.1860	0.1898	0.2333		0.1707	0.1742	0.2212
Laplace	0.95	0.0548	0.0559	0.2151		0.0555	0.0570	0.1921
	0.90	0.0966	0.0994	0.2494		0.0933	0.0956	0.2335
	0.85	0.1276	0.1306	0.2774		0.1256	0.1287	0.2543
t_{2}	0.95	0.0531	0.0546	0.2836		0.0536	0.0548	0.2444
	0.90	0.0918	0.0942	0.3528		0.0861	0.0881	0.3074
	0.85	0.1214	0.1241	0.3667		0.1124	0.1154	0.3569
Cauchy	0.95	0.0079	0.0081	1.0902		0.0081	0.0083	0.9136
	0.90	0.0212	0.0218	1.5566		0.0225	0.0230	1.2913
	0.85	0.0441	0.0450	1.9520		0.0412	0.0422	1.6862

