
Statistica Sinica: Supplement

1

Tests of Unit Root Hypothesis with

Heavy-tailed Heteroscedastic Noises

Rui She

Southwestern University of Finance and Economics

Supplementary Material

S1. Technical Proofs

Proof of Theorem 2.1. Denote

ξnt = n−1/2 yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2
. (S1.1)

Then Tn can be rewritten as Tn =
∑n

t=1 ξnt. Under H0, by the symme-

try of ηt and ∆yt = εt = ηtht, we can see that E[ξnt|Ft−1] = 0, where

Fi = σ(ηt, t ≤ i). Therefore, {ξnt} is a martingale difference sequence. By

Theorem 18.1 in Billingsley (1999), we only need to show that, as n→∞,

n∑
t=1

E[ξ2
nt1(|ξnt|>ε)] −→ 0, for any ε > 0, (S1.2)

n∑
t=1

E[ξ2
nt|Ft−1]

p−→ σ2. (S1.3)
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Notice that supt≤n |ξnt| ≤ n−1/2, then (S1.2) obviously holds. For (S1.3),

we have

n∑
t=1

E[ξ2
nt|Ft−1] =

1

n

n∑
t=1

E

(
η2
t h

2
t

1 + η2
t h

2
t

∣∣∣Ft−1

)
− 1

n

n∑
t=1

1

1 + y2
t−1

E

(
η2
t h

2
t

1 + η2
t h

2
t

∣∣∣Ft−1

)
.

Since ht = h(ηt−1, ηt−2, · · · ) and {ηt} is i.i.d., the ergodic theorem implies

that

1

n

n∑
t=1

E

(
η2
t h

2
t

1 + η2
t h

2
t

∣∣∣Ft−1

)
p−→ σ2. (S1.4)

Furthermore, it is obvious that

1

n

n∑
t=1

1

1 + y2
t−1

E

(
η2
t h

2
t

1 + η2
t h

2
t

∣∣∣Ft−1

)
≤ 1

n

n∑
t=1

1

1 + y2
t−1

. (S1.5)

For the right side in (S1.5), as an →∞, for any δ > 0, we have

1

n

n∑
t=1

1

1 + y2
t−1

=

∫ 1

0

a−2
n

a−2
n + S2

n(τ)
dτ ≤

∫ 1

0

δ

δ + S2
n(τ)

dτ . (S1.6)

By Assumption 2.1 and the Skorohod representation theorem in Jakubowski

(1997), there exists {S̃n(τ)}(S̃(τ)) in D[0, 1] such that S̃n(τ)(S̃(τ)) has the

same distribution with Sn(τ)(S(τ)), and S̃n(τ) converges to S̃(τ) almost

surely in S-topology. Then, by the properties of S-topology in Corollary

2.9 in Jakubowski (1997), we have∫ 1

0

δ

δ + S̃2
n(τ)

dτ
a.s−→
∫ 1

0

δ

δ + S̃2(τ)
dτ .

Therefore, we have∫ 1

0

δ

δ + S2
n(τ)

dτ
d−→
∫ 1

0

δ

δ + S2(τ)
dτ . (S1.7)
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By the dominated convergence theorem, it follows that∫ 1

0

δ

δ + S2(τ)
dτ

a.s.−→ 0, as δ → 0. (S1.8)

Thus, by (S1.6)-(S1.8), we have shown that

1

n

n∑
t=1

1

1 + y2
t−1

p−→ 0. (S1.9)

As a result, (S1.3) holds from (S1.4)-(S1.5) and (S1.9), which completes the

proof for H0.

On the other hand, under H1, since ∆yt = εt+(φ−1)yt−1 with |φ| < 1,

it is not hard to see that {ξnt} is no longer a martingale difference sequence.

Notice that

1√
n
Tn =

1

n

n∑
t=1

yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2
p−→ E

(
yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2

)
,

as n→∞. Now, we further show that

E

(
yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2

)
< 0. (S1.10)

Note that

E

(
yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2

)
= E

{
E

(
yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2

∣∣∣Ft−1

)}
.

Let F (x) be the distribution function of ηt. Since ηt is symmetric and

independent with ht and yt−1, we have

E

(
yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2

∣∣∣Ft−1

)
=

1

(1 + y2
t−1)1/2

×
∫ ∞

0

{
(xht + (φ− 1)yt−1)yt−1

[1 + (xht + (φ− 1)yt−1)2]1/2
− (xht − (φ− 1)yt−1)yt−1

[1 + (xht − (φ− 1)yt−1)2]1/2

}
dF (x).
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Since the function y/(1 + y2)1/2 is strictly increasing function on the real

line, then by the fact φ < 1, we get that for any given yt−1 6= 0,

(xht + (φ− 1)yt−1)yt−1

[1 + (xht + (φ− 1)yt−1)2]1/2
− (xht − (φ− 1)yt−1)yt−1

[1 + (xht − (φ− 1)yt−1)2]1/2
< 0, for x ∈ R.

Thus, we have

E

(
yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2

∣∣∣Ft−1

)
≤ 0, (S1.11)

where ‘ =’ holds if and only if yt−1 = 0. Furthermore, by the fact that

yt = φyt−1 + ηtht and P (ηt 6= 0) > 0 and ht is positive, it is clear to see

that P (yt−1 6= 0) > 0, which implies that (S1.10) holds. Hence, under H1,

we have shown that

1√
n
Tn

p−→ E

(
yt−1∆yt

(1 + y2
t−1)1/2[1 + (∆yt)

2]1/2

)
< 0. (S1.12)

This completes the whole proof.

Proof of Theorem 3.1. Under H0, following the proof in Owen (2001),

we first consider the magnitude of the Lagrange multiplier λ, which satisfies

g(λ) ≡
n∑
t=1

Zt(1)

1 + λZt(1)
= 0. (S1.13)
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Denote θ = sign(λ), then

0 = |θg(λ)|

=

∣∣∣∣θ n∑
t=1

Zt(1)−
n∑
t=1

|λ|Z2
t (1)

1 + λZt(1)

∣∣∣∣
≥

n∑
t=1

|λ|Z2
t (1)

1 + λZt(1)
−
∣∣∣ n∑
t=1

Zt(1)
∣∣∣. (S1.14)

By the fact that maxt≤n |Zt(1)| ≤ 1 and (S1.14) and 1 + λZt(1) > 0, it

follows that

|λ|
1 + |λ|

n∑
t=1

Z2
t (1) ≤

∣∣∣ n∑
t=1

Zt(1)
∣∣∣. (S1.15)

Notice that Zt(1) =
√
nξnt, where ξnt is defined in (S1.1). Furthermore, by

(S1.3) and the bounded convergence theorem and Theorem 2.1, we get that

n−1

n∑
t=1

Z2
t (1)

p−→ σ2, n−1/2

n∑
t=1

Zt(1)
d−→ N(0, σ2). (S1.16)

Thus, (S1.15)-(S1.16) implies that

λ = Op(n
−1/2). (S1.17)

Let γt = λZt(1) and then we have

max
t≤n
|γt| = Op(n

−1/2). (S1.18)

Then, by (S1.13) and (S1.17)-(S1.18), it follows that

0 = n−1

n∑
t=1

Zt(1)
(

1− γt +
γ2
t

1 + γt

)
= n−1

n∑
t=1

Zt(1)− n−1

n∑
t=1

λZ2
t (1) +Op(n

−1).
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Therefore, we have

λ =
[
n−1

n∑
t=1

Z2
t (1)

]−1[
n−1

n∑
t=1

Zt(1)
]

+Op(n
−1). (S1.19)

For l(1), by Taylor expansion, it is straightforward to show that

l(1) = 2
n∑
t=1

γt −
n∑
t=1

γ2
t +

n∑
t=1

2γ3
t

3(1 + λtγt)3
, (S1.20)

where λt ∈ [0, 1] for t = 1, · · · , n. By (S1.18)-(S1.20) and (S1.16), it follows

that

l(1) = 2
n∑
t=1

γt −
n∑
t=1

γ2
t +Op(n

−1/2)

= 2λ
n∑
t=1

Zt(1)− λ2

n∑
t=1

Z2
t (1) + op(1)

=
[
n−1

n∑
t=1

Z2
t (1)

]−1[
n−1/2

n∑
t=1

Zt(1)
]2

+ op(1)

d−→ χ2
1, (S1.21)

as n→∞. This completes the proof for l(1) under H0.

Under H1, we first show that l(1)
p−→∞. Note that the Lagrange dual

function of l(1) is given by

d(µ1, µ2) = inf
pt>0

{
−2
∑n

t=1 log(npt) + µ1(
∑n

t=1 pt − 1) + µ2

∑n
t=1 ptZt(1)

}
,

where µ1, µ2 are any real numbers. By definition, it is obvious that d(µ1, µ2) ≤
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l(1). Then, if we choose µ1 = 2n and µ2 = 2nλ1, it is not hard to show that

n−1l(1) ≥ n−1d(2n, 2nλ1)

= 2n−1

n∑
t=1

log(1 + λ1Zt(1))

= 2λ1n
−1

n∑
t=1

Zt(1) +Op(λ
2
1),

where we only need the restriction that 1 + λ1Zt(1) > 0. Then, by (S1.12)

and n−1/2Tn = n−1
∑n

t=1 Zt(1), we can see that when λ1 = −n−1/2, it follows

that

l(1)
p−→∞. (S1.22)

Next, we show that l(φ)
d−→ χ2

1 under H1. In this case, it follows that

Zt(φ) =
yt−1εt

(1 + y2
t−1)1/2(1 + εt2)1/2

. (S1.23)

Notice that {Zt(φ)} is still a martingale difference sequence. Then, by the

similar argument for Theorem 2.1 and the ergodic theorem, it is not hard

to show that

n−1

n∑
t=1

Z2
t (φ)

p−→ σ2
1, n−1/2

n∑
t=1

Zt(φ)
d−→ N(0, σ2

1), (S1.24)

where σ2
1 = E{y2

t−1ε
2
t/[(1+y2

t−1)(1+ε2
t )]}. Finally, using the same procedure

for (S1.21), we can get the conclusion. This completes the proof.

Proof of Theorem 3.2. Under H0, using the same procedure in proof of
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Theorem 3.1, it follows that

|λ|
1 + |λ|maxt≤n+1 |Zt(1)|

n+1∑
t=1

Z2
t (1) ≤

∣∣∣ n+1∑
t=1

Zt(1)
∣∣∣. (S1.25)

By (S1.16) and bn = o(n), we can directly show that

|Zn+1(1)| = op(
√
n), (S1.26)

and then

n−1

n+1∑
t=1

Z2
t (1)

p−→ σ2, n−1/2

n+1∑
t=1

Zt(1)
d−→ N(0, σ2). (S1.27)

Then, by (S1.25)-(S1.27), we have gotten that

λ = Op(n
−1/2). (S1.28)

Let γt = λZt(1) for t = 1, · · · , n+ 1. By (S1.26), it follows that

max
t≤n+1

|γt| = op(1). (S1.29)

Then, by the similar arguments for (S1.21), we have la(1)
d−→ χ2

1, as n →

∞.

Furthermore, under H1, since bn/n + 1/bn = o(1), we can choose the

negative number λ2 with the condition that λ2 = o(1) and λ2n → ∞ and
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λ2bn = o(1), then

la(1) ≥ 2
n+1∑
t=1

log(1 + λ2Zt(1))

= 2λ2

n+1∑
t=1

Zt(1) +Op(nλ
2
2)

p−→∞.

On the other hand, by (S1.24), we can show that |Zn+1(φ)| = op(
√
n) and

n−1

n+1∑
t=1

Z2
t (φ)

p−→ σ2
1, n−1/2

n+1∑
t=1

Zt(φ)
d−→ N(0, σ2

1). (S1.30)

Then, it is easy to get that la(φ)
d−→ χ2

1, as n → ∞. This completes the

proof.

Proof of Corollary 3.1. Since the proof process is very close to those

in Theorems 3.1-3.2, we only present some key points and the details are

omitted.

Under H0, by the fact that ρ(x) is a bounded and odd function, we can

easily show that

n−1

n∑
t=1

Z2
t (1)

p−→ σ2
ρ, n−1/2

n∑
t=1

Zt(1)
d−→ N(0, σ2

ρ),

where σ2
ρ = E(ρ2(εt)). Similarly, under H1, we have

n−1

n∑
t=1

Z2
t (φ)

p−→ σ2
ρ(1), n−1/2

n∑
t=1

Zt(φ)
d−→ N(0, σ2

ρ(1)),

where σ2
ρ(1) = E[y2

t−1ρ
2(εt)/(1 + y2

t−1)].
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Under H1, it is clear to see that

n−1

n∑
t=1

Zt(1)
p−→ µρ ≡ E

[ yt−1

1 + y2
t−1

ρ(∆yt)
]
.

Then, we have

µρ = E

{
E
[ yt−1

1 + y2
t−1

ρ(ηtht + (φ− 1)yt−1)
∣∣∣Ft−1

]}
.

Furthermore, it follows that

E
[ yt−1

1 + y2
t−1

ρ(ηtht + (φ− 1)yt−1)
∣∣∣Ft−1

]
=

yt−1

1 + y2
t−1

(S1.31)

×
∫ ∞

0

[ρ(xht + (φ− 1)yt−1)− ρ(xht − (φ− 1)yt−1)]dF (x).

Without loss of generality, ρ(x) is assumed to be an increasing function.

Case 1: If ρ(x) is a strictly increasing function, then by φ− 1 < 0, we

get that for any given yt−1 6= 0,

yt−1[ρ(xht + (φ− 1)yt−1)− ρ(xht − (φ− 1)yt−1)] < 0,∀x ∈ R.

Then, it follows that, ∀yt−1 6= 0,

E
[ yt−1

1 + y2
t−1

ρ(ηtht + (φ− 1)yt−1)
∣∣∣Ft−1

]
< 0. (S1.32)

Case 2: If ρ(x) > ρ(y), ∀x > 0, y < 0 and the density of ηt is positive

in a neighbourhood of zero denoted as [−a, a] for some a > 0, then

(i). When yt−1 > 0, it follows that ρ(xht + (φ− 1)yt−1)− ρ(xht − (φ−

1)yt−1) ≤ 0, and ρ(xht + (φ − 1)yt−1) − ρ(xht − (φ − 1)yt−1) < 0, if |x| ≤
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min {a, (1− φ)yt−1/ht}, then

E
[ yt−1

1 + y2
t−1

ρ(ηtht + (φ− 1)yt−1)
∣∣∣Ft−1

]
< 0.

(ii). When yt−1 < 0, it follows that ρ(xht + (φ− 1)yt−1)− ρ(xht− (φ−

1)yt−1) ≥ 0, and ρ(xht + (φ − 1)yt−1) − ρ(xht − (φ − 1)yt−1) > 0, if |x| ≤

min {a, (φ− 1)yt−1/ht}, then

E
[ yt−1

1 + y2
t−1

ρ(ηtht + (φ− 1)yt−1)
∣∣∣Ft−1

]
< 0.

Therefore, (S1.32) always holds for two cases. Then, by the fact that

yt = φyt−1 +ηtht and P (ηt 6= 0) > 0 and ht is positive, it is clear to see that

P (yt−1 6= 0) > 0, which implies that µρ < 0. In other words, we have

n−1

n∑
t=1

Zt(1)
p−→ µρ < 0. (S1.33)

This completes the proof.

Now, following the standard procedures in Qin and Lawless (1994), we

give the proofs for Theorem 4.1. Before that, we need the following two

lemmas.

Lemma 1. Suppose that yt satisfies model (4.1) and the conditions in The-
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orem 4.1 hold, then under H0, it follows that

n−1/2

n∑
t=1

Z̃t,2(1, µ0) = n−1/2

n∑
t=1

wt + op(1); (S1.34)

n−1/2

n∑
t=1

Z̃t(1, µ0)
d−→ N(0,Σ); (S1.35)

n−1

n∑
t=1

Z̃t(1, µ0)Z̃′t(1, µ0)
p−→ Σ; (S1.36)

n−1

n∑
t=1

∂Z̃t(1, µ0)

∂µ

p−→ a, (S1.37)

where the matrix Σ = diag{σ2, 1} and the vector a = (−E(1 + ε2
t )
−3/2, 0)′.

Proof of Lemma 1. For (S1.34), it is sufficient to show that, for any δ >

1/2

n−1/2

n∑
t=1

yt−1

(1 + y2
t−1)δ

Z̃t,1(1, µ0)
p−→ 0. (S1.38)

Notice that {n−1/2 yt−1

(1+y2t−1)δ
Z̃t,1(1, µ0), t = 1, · · · , n} is a martingale differ-

ence sequence with respect to Ft and has the uniform bound n−1/2, then

by Theorem 18.1 Billingsley (1999), we only need to show that

n−1

n∑
t=1

y2
t−1

(1 + y2
t−1)2δ

p−→ 0. (S1.39)

By Cauchy inequality, it follows that

n−1

n∑
t=1

y2
t−1

(1 + y2
t−1)2δ

≤

√√√√n−1

n∑
t=1

y4
t−1

(1 + y2
t−1)2

×

√√√√n−1

n∑
t=1

1

(1 + y2
t−1)4δ−2

≤

√√√√n−1

n∑
t=1

1

(1 + y2
t−1)4δ−2

.
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By Assumption 2.1 and an/n → c ∈ [0,∞], and using the same proce-

dure for (S1.9), it is straightforward to get that n−1
∑n

t=1 (1 + y2
t−1)−4δ+2 =

op(1). This completes the proof for (S1.34). Furthermore, applying (S1.34),

(S1.35)-(S1.37) can be directly proved by martingale central limit theorem

and the ergodic theorem.

Denote l̃(φ, µ) = −2 log(L̃(φ, µ)), then we have the next lemma.

Lemma 2. Under H0 and the same conditions in Lemma 1, as n→∞, with

probability to one, the function l̃(1, µ) attains its minimum value at some

point µ̃ in the interior of the ball |µ − µ0| ≤ n−1/3, and µ̃ and λ̃ = λ(µ̃)

satisfy

Q1n(µ̃, λ̃) = 0 and Q2n(µ̃, λ̃) = 0,

where

Q1n(µ,λ) = n−1

n∑
t=1

Z̃t(1, µ)

1 + λ′Z̃t(1, µ)
;

Q2n(µ,λ) = n−1

n∑
t=1

1

1 + λ′Z̃t(1, µ)

{
∂Z̃t(1, µ)

∂µ

}′
λ.

Proof of Lemma 2. Review that for any fixed µ, by Lagrange multiplier

technique, we have

l̃(1, µ) = 2
n∑
t=1

log[1 + λ′Z̃t(1, µ)], (S1.40)
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where λ is a function with respect to µ and satisfies Q1n(µ,λ) = 0. Then,

it is not hard to get that

ρn−1

n∑
t=1

Z̃t(1, µ) ≥ ‖λ‖
1 + ‖λ‖maxt ‖Z̃t(1, µ)‖

n−1

n∑
t=1

˜ρ′Zt(1, µ)Z̃′t(1, µ)ρ,

(S1.41)

where ‖ · ‖ is the Euclidean norm and ρ = λ/‖λ‖.

Note that, by the definitions of Z̃t(1, µ), it is easy to see that there

exists a constant C0, such that

sup
µ∈R

max
t
‖Z̃t(1, µ)‖ ≤ C0, sup

µ∈R
max
t

∥∥∥∥∂kZ̃t(1, µ)

∂µk

∥∥∥∥ ≤ C0, (S1.42)

where k = 1, 2, 3. Furthermore, using Taylor expansion, in the domain

|µ− µ0| ≤ n−1/3, we uniformly have

sup
|µ−µ0|≤n−1/3

n−1
∥∥∥ n∑
t=1

Z̃t(1, µ)−
n∑
t=1

Z̃t(1, µ0)
∥∥∥ = Op(n

−1/3);

(S1.43)

sup
|µ−µ0|≤n−1/3

n−1
∥∥∥ n∑
t=1

Z̃t(1, µ)Z̃′t(1, µ)−
n∑
t=1

Z̃t(1, µ0)Z̃′t(1, µ0)
∥∥∥ = Op(n

−1/3).

(S1.44)

Then, by (S1.41) and (S1.43)-(S1.44), and (S1.35)-(S1.36), we have

sup
|µ−µ0|≤n−1/3

‖λ‖
1 + ‖λ‖C0

= Op(n
−1/3),

which implies that

sup
|µ−µ0|≤n−1/3

‖λ‖ = Op(n
−1/3). (S1.45)



S1. TECHNICAL PROOFS15

Then, it follows that

λ =
[
n−1

n∑
t=1

Z̃t(1, µ)Z̃′t(1, µ)
]−1[

n−1

n∑
t=1

Z̃t(1, µ)
]

+Op(n
−2/3). (S1.46)

Now, consider the boundary |µ − µ0| = n−1/3, by (S1.40), (S1.42) and

(S1.46), we have

l̃(1, µ) = n

{[
n−1

n∑
t=1

Z̃t(1, µ0) + n−1

n∑
t=1

∂Z̃t(1, µ0)

∂µ
(µ− µ0) +Op(n

−2/3)
]′

×
[
n−1

n∑
t=1

Z̃t(1, µ)Z̃′t(1, µ)
]−1

×
[
n−1

n∑
t=1

Z̃t(1, µ0) + n−1

n∑
t=1

∂Z̃t(1, µ0)

∂µ
(µ− µ0) +Op(n

−2/3)
]}

+Op(1),

Then, by the fact |µ − µ0| = n−1/3 and using (S1.36)-(S1.37) and (S1.43)-

(S1.44), it follows that, with probability to one,

inf
|µ−µ0|=n−1/3

n−1/3l̃(1, µ) ≥ a′Σa/2, (S1.47)

On the other hand, when µ = µ0, it is not hard to show that

l̃(1, µ0) = Op(1). (S1.48)

Then, with probability to one, the minimizer µ̃ of l̃(1, µ) satisfies |µ̃−µ0| <

n−1/3. Therefore, ∂l̃(1, µ̃)/∂µ = 0, which implies that Q2n(µ̃, λ̃) = 0.

Based on the above two lemmas, we can prove Theorem 4.1 as follows.

Proof of Theorem 4.1. Taking derivatives of Q1n and Q2n with respect
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to µ and λ, we have

∂Q1n(µ0,0)

∂µ
= n−1

n∑
t=1

∂Z̃t(1, µ0)

∂µ
,
∂Q1n(µ0,0)

∂λ′
= −n−1

n∑
t=1

Z̃t(1, µ0)Z̃′t(1, µ0);

∂Q2n(µ0,0)

∂µ
= 0,

∂Q2n(µ0,0)

∂λ′
= n−1

n∑
t=1

{
∂Z̃t(1, µ0)

∂µ

}′
.

By the definitions of Z̃t(1, µ), there exists a constant C0 such that

sup
µ∈R

max
t
‖Z̃t(1, µ)‖ ≤ C0, sup

µ∈R
max
t

∥∥∥∥∂kZ̃t(1, µ)

∂µk

∥∥∥∥ ≤ C0, (S1.49)

where k = 1, 2, 3. Expanding Q1n(µ̃, λ̃) and Q2n(µ̃, λ̃) at (µ0,0), and by

Lemma 2 and (S1.49), we can show that

∂Q1n(µ0,0)

∂λ′
λ̃ +

∂Q1n(µ0,0)

∂µ
(µ̃− µ0) = −Q1n(µ0,0) + op(n

−1/2), (S1.50)

∂Q2n(µ0,0)

∂λ′
λ̃ +

∂Q2n(µ0,0)

∂µ
(µ̃− µ0) = op(n

−1/2). (S1.51)

Denote

an = n−1

n∑
t=1

∂Z̃t(1, µ0)

∂µ
and Σn = n−1

n∑
t=1

Z̃t(1, µ0)Z̃′t(1, µ0). (S1.52)

It follows from Lemma 1 and (S1.50)-(S1.51) that

√
n(µ̃− µ0) = −(a′nΣ

−1
n an)−1a′nΣ

−1
n ×

√
nQ1n(µ0,0) + op(1), (S1.53)

√
nλ̃ = Σ−1

n

[
I− an(a′nΣ

−1
n an)−1a′nΣ

−1
n

]
×
√
nQ1n(µ0,0) + op(1).

(S1.54)

On the other hand, by Lemma 2, we have l̃(1) = l̃(1, µ̃). Then, by (S1.53)-
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(S1.54), we can show that

l̃(1, µ̃) = 2
n∑
t=1

log[1 + λ̃′Z̃t(1, µ̃)]

= (
√
nλ̃)′Σn(

√
nλ̃) + op(1)

= [
√
nΣ−1/2

n Q1n(µ0,0)]′ × [I−An]× [
√
nΣ−1/2

n Q1n(µ0,0)] + op(1),

where An = Σ
−1/2
n an(a′nΣ

−1
n an)−1a′nΣ

−1/2
n . By Lemma 1, it is obvious that

An
p−→ A = Σ−1/2a(a′Σ−1a)−1a′Σ−1/2.

Meanwhile, since A = A′ and A2 = A, the trace of I−A is 1. Furthermore,

√
nΣ
−1/2
n Q1n(µ0,0)

d−→ N(0, I) from Lemma 1, then we get that l̃(1, µ̃)
d−→

χ2
1.

On the other hand, under H1, by the ergodic theorem, it follows that

n−1

n∑
t=1

Z̃t,2(1, µ0)
p−→ E

yt−1[εt + (φ− 1)yt−1]

(1 + y2
t−1)δ{1 + [εt + (φ− 1)yt−1]2}1/2

. (S1.55)

Then, using the same arguments for (S1.10), it is direct to prove that

E
yt−1[εt + (φ− 1)yt−1]

(1 + y2
t−1)δ{1 + [εt + (φ− 1)yt−1]2}1/2

< 0. (S1.56)

Meanwhile, for any fixed µ, we have

l̃(1, µ) ≥ d(µ), (S1.57)

where d(µ) is defined as

d(µ) = inf
pt>0

{
−2
∑n

t=1 log(npt) + 2n(
∑n

t=1 pt − 1) + 2nλ3

∑n
t=1 ptZ̃t,2(1, µ)

}
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with λ3 = −n−1/2. Then, it is obvious that

l̃(1, µ) ≥ −2n−1/2

n∑
t=1

Z̃t,2(1, µ) +Op(1),

where Op(1) uniformly holds in the domain |µ− µ0| ≤ n−1/3. Furthermore,

by (S1.56) and (S1.49), we have shown that, with probability to one,

l̃(1) = inf
µ
l̃(1, µ) ≥ −

√
nE

yt−1[εt + (φ− 1)yt−1]

(1 + y2
t−1)1/2{1 + [εt + (φ− 1)yt−1]2}1/2

−→∞.

This completes the whole proof.

Proof of Theorem 4.2. Like the proof of Lemma 1, and using Assump-

tion 4.1, we can easily show that

Z̄n = n−1/2

n∑
t=1

Z̄t(1,θ0)
d−→ N(0, Σ̄); Σ̄n = n−1

n∑
t=1

Z̄t(1,θ0)Z̄′t(1,θ0)
p−→ Σ̄;

n−1

n∑
t=1

∂Z̄t,1(1,θ0)

∂θ′
p→ b̄1; n−1

n∑
t=1

∂Z̄t,2(1,θ0)

∂θ′
p→ 0; n−1

n∑
t=1

∂Z̄t,2+j(1,θ0)

∂θ′
p→ b̄2+j.

Meanwhile, for any k = 1, 2, 3, there exists some constant C0 such that

sup
θ

max
t
‖Z̄t(1,θ)‖ ≤ C0, sup

θ
max
t

∥∥∥∥∂kZ̄t(1,θ)

∂θk

∥∥∥∥ ≤ C0, (S1.58)

Then, it is not hard to show that

l̄(1) = [Σ̄−1/2
n Z̄n]′ × [I− Ā]× [Σ̄−1/2

n Z̄n] + op(1),

where Ā = Σ̄−1/2B̄(B̄′Σ̄−1B̄)−1B̄′Σ̄−1/2 with B̄ = (b̄1,0, b̄3, · · · , b̄r+2)′.

Then l̄(1)
d→ χ2

1 since the trace of I − Ā is 1. Under H1, it is not hard to
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prove that

n−1

n∑
t=1

Z̄t,2(1,θ0)
p−→ µ0 < 0, (S1.59)

where µ0 is defined as

µ0 = E
yt−1[εt + (φ− 1)yt−1]

(1 + y2
t−1)δ[1 +

∑r
j=1 (∆yt−j)2]3/2{1 + [εt + (φ− 1)yt−1]2}1/2

.

Then, the conclusion holds by the same arguments for Theorem 4.1.
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S2. Simulation for Confidence Interval

In this section, we also examine the length of the 95% confidence interval

for the regression parameter with a sample size n = 100, 300 and φ =

0.95, 0.9 and 0.85. The results are summarized in Tables 1–4 below. Several

observations can be deduced from these tables. First, the confidence interval

length derived by la(φ) is very close to that by l(φ). Second, the heavier

tail implies the shorter interval in the proposed methods. Third, both l(φ)

and la(φ) provide much better inferences than that by ELT, especially when

Eη2
t =∞.

Table 1: Average lengths calculated for the confidence intervals based on the empirical likelihood

methods with α ∈ (1, 2) and n = 100

εt ∼model (5.1) εt ∼model (5.2)

ηt ∼ φ l(φ) la(φ) ELT l(φ) la(φ) ELT

N(0, 1) 0.95 0.1778 0.1894 0.2799 0.1681 0.1794 0.2687

0.90 0.2386 0.2549 0.3240 0.2248 0.2399 0.3142

0.85 0.2794 0.2976 0.3547 0.2737 0.2911 0.3439

Laplace 0.95 0.1330 0.1424 0.3159 0.1327 0.1418 0.2913

0.90 0.1882 0.1999 0.3772 0.1836 0.1969 0.3486

0.85 0.2313 0.2476 0.4059 0.2251 0.2427 0.3868

t3 0.95 0.1397 0.1495 0.3294 0.1357 0.1448 0.3046

0.90 0.1939 0.2070 0.3921 0.1833 0.1944 0.3489

0.85 0.2374 0.2551 0.4330 0.2198 0.2342 0.3943

t2 0.95 0.1086 0.1157 0.3760 0.1116 0.1192 0.3467

0.90 0.1540 0.1639 0.4396 0.1545 0.1653 0.4127

0.85 0.1939 0.2068 0.5002 0.1893 0.2032 0.4934
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Table 2: Average lengths calculated for the confidence intervals based on the empirical likelihood

methods with α ∈ (1, 2) and n = 300

εt ∼model (5.1) εt ∼model (5.2)

ηt ∼ φ l(φ) la(φ) ELT l(φ) la(φ) ELT

N(0, 1) 0.95 0.0878 0.0898 0.1602 0.0856 0.0876 0.1501

0.90 0.1308 0.1342 0.1892 0.1250 0.1279 0.1773

0.85 0.1618 0.1657 0.2049 0.1533 0.1576 0.1953

Laplace 0.95 0.0613 0.0627 0.1787 0.0648 0.0663 0.1672

0.90 0.0954 0.0975 0.2153 0.0978 0.1000 0.1996

0.85 0.1233 0.1264 0.2408 0.1254 0.1281 0.2280

t3 0.95 0.0705 0.0723 0.1955 0.0694 0.0708 0.1751

0.90 0.1042 0.1064 0.2330 0.0994 0.1017 0.2148

0.85 0.1285 0.1319 0.2532 0.1215 0.1245 0.2328

t2 0.95 0.0497 0.0507 0.2367 0.0523 0.0535 0.2177

0.90 0.0802 0.0823 0.2868 0.0801 0.0822 0.2647

0.85 0.1058 0.1084 0.3486 0.1019 0.1041 0.3047

Table 3: Average lengths calculated for the confidence intervals based on the empirical likelihood

methods with α ∈ (0, 1) and n = 100

εt ∼model (5.1) εt ∼model (5.2)

ηt ∼ φ l(φ) la(φ) ELT l(φ) la(φ) ELT

N(0, 1) 0.95 0.2086 0.2230 0.3218 0.1807 0.1929 0.2964

0.90 0.2777 0.2949 0.3765 0.2516 0.2686 0.3524

0.85 0.3276 0.3483 0.3995 0.3066 0.3267 0.3748

Laplace 0.95 0.1353 0.1441 0.3659 0.1327 0.1411 0.3398

0.90 0.1955 0.2095 0.4181 0.1895 0.2032 0.3953

0.85 0.2518 0.2696 0.4647 0.2373 0.2537 0.4379

t2 0.95 0.1272 0.1359 0.4647 0.1154 0.1229 0.3856

0.90 0.1772 0.1883 0.5278 0.1628 0.1732 0.4729

0.85 0.2267 0.2428 0.6114 0.2065 0.2210 0.5178

Cauchy 0.95 0.0467 0.0495 1.1544 0.0418 0.0447 0.9664

0.90 0.0783 0.0833 1.6059 0.0725 0.0777 1.3169

0.85 0.1139 0.1210 2.3172 0.1048 0.1118 1.5173
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Table 4: Average lengths calculated for the confidence intervals based on the empirical likelihood

methods with α ∈ (0, 1) and n = 300

εt ∼model (5.1) εt ∼model (5.2)

ηt ∼ φ l(φ) la(φ) ELT l(φ) la(φ) ELT

N(0, 1) 0.95 0.0991 0.1014 0.1894 0.0903 0.0926 0.1743

0.90 0.1470 0.1510 0.2168 0.1362 0.1395 0.1991

0.85 0.1860 0.1898 0.2333 0.1707 0.1742 0.2212

Laplace 0.95 0.0548 0.0559 0.2151 0.0555 0.0570 0.1921

0.90 0.0966 0.0994 0.2494 0.0933 0.0956 0.2335

0.85 0.1276 0.1306 0.2774 0.1256 0.1287 0.2543

t2 0.95 0.0531 0.0546 0.2836 0.0536 0.0548 0.2444

0.90 0.0918 0.0942 0.3528 0.0861 0.0881 0.3074

0.85 0.1214 0.1241 0.3667 0.1124 0.1154 0.3569

Cauchy 0.95 0.0079 0.0081 1.0902 0.0081 0.0083 0.9136

0.90 0.0212 0.0218 1.5566 0.0225 0.0230 1.2913

0.85 0.0441 0.0450 1.9520 0.0412 0.0422 1.6862


