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S1. Technical Proofs

Proof of Theorem 2.1. Denote

n-1/2 Y1 AYy
(1+ g2 ) 2[1 + (D)2

(S1.1)

Then T,, can be rewritten as 7, = > ;" &n. Under Hy, by the symme-

try of n, and Ay, = & = nhy, we can see that E[&|F;—1] = 0, where

Fi = o(n,t <1). Therefore, {,:} is a martingale difference sequence. By

Theorem 18.1 in Billingsley (1999), we only need to show that, as n — oo,

Z ElE21(gn)>0) — 0, for any € > 0,

t=1

Y ElEF] = 0%
t=1

(S1.2)

(S1.3)
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Notice that sup,<,, x| < n™/2, then (S1.2) obviously holds. For (S1.3),
we have

ZE nt|‘Ft 1] = E< 2 2 ftl)-
ntl ;hy

Since hy = h(ni_1,Mi—2,-+) and {m;} is i.i.d., the ergodic theorem implies

1 n
n 2h2
t=1

Furthermore, it is obvious that

1l 1 nihi
_Z 2 E 272
ni= 14y, L+ nih;

For the right side in (S1.5), as a,, — oo, for any § > 0, we have

1 a—2 1 5
_ — —n ___ dr < — dr. 1.
Zuytl / 7+ S207) T—/o sromt B0

By Assumption 2.1 and the Skorohod representation theorem in Jakubowski

1< 1 n2h?
A E
t 1) nzlwt{l <1+77?h?

t=1

that

E_l) -5 02 (S1.4)

1 — 1
L)<= . 1.
El)_nzlwf_l (515)

t=1

(1997), there exists {S,(7)}(S(7)) in D[0, 1] such that S, (7)(S(7)) has the
same distribution with S,(7)(S(7)), and S,(7) converges to S(7) almost
surely in S-topology. Then, by the properties of S-topology in Corollary

2.9 in Jakubowski (1997), we have

Ly Ly
/édT%/ — % 4
o 0+ S2() o 0+ 5(7)

Therefore, we have

1 1
1) d 1)
- dT — — dT. 1.
/o s+ s2(m / s+ 2 (51.7)
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By the dominated convergence theorem, it follows that

1
5 a.s.
—_— ' . 1.
/0 5+SQ(7)dT—>O’ as 0 — 0 (51.8)

Thus, by (S1.6)-(S1.8), we have shown that

1 & 1
> — 0. (S1.9)
n—=1+y;

As a result, (S1.3) holds from (S1.4)-(S1.5) and (S1.9), which completes the
proof for H.

On the other hand, under Hy, since Ay, = e+ (¢ — 1)y—1 with |¢] < 1,
it is not hard to see that {&,;} is no longer a martingale difference sequence.

Notice that

1 1 ¢ Y1 Ayy P ( Y1 Ayy )
—T,=— — K )
Vn nE:(L+%1P”U+(Awﬁ”Q (1+y2 )2 (1 + (Agy)*)H?

t=1

as n — 0o. Now, we further show that

E Y18 <0. (S1.10)
(1+ g2 )V2[1+ (Ay) )2

Note that

1A 1A
E( Yt—1LYt . )zE{E( Yt—1Yt ; ‘-7:1;—1)}-
(T4 y )21+ (Age) ]2 (T4 y )21+ (Ag) ]2
Let F(x) be the distribution function of 7;. Since 7, is symmetric and

independent with h; and y;_1, we have

( Z/tflAyt ba ): 1
(14 g2 V2[4 (D)2l ()2

o [ T L P

L+ (zh + (¢ = Dyer)1V2 [L+ (why — (¢ — D)yi—1)?]/?
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Since the function /(1 + y2)'/2 is strictly increasing function on the real

line, then by the fact ¢ < 1, we get that for any given y, ;1 # 0,

(why + (0 — D)ye—1)ye1 B (hy — (0 — D)ye—1)ye1
1+ (@he + (¢ = Dyer)?M? [+ (zhy — (6 — Dye1)?]M/?

<0, for xr € R.

Thus, we have

1A
E( Yr—1Y¢

Foi) <o, S1.11
T At B ”)— (1.1

where ° =’ holds if and only if y;_; = 0. Furthermore, by the fact that
y¢ = oyi—1 + mhy and P(n # 0) > 0 and hy is positive, it is clear to see
that P(y;—1 # 0) > 0, which implies that (S1.10) holds. Hence, under Hy,

we have shown that

1 1A
T, i)E( e ) <0. (S1.12)
Vi (1 + g )21 + (D))
This completes the whole proof. O

Proof of Theorem 3.1. Under H, following the proof in Owen (2001),

we first consider the magnitude of the Lagrange multiplier A, which satisfies

n

gN) =) HZ;—% = 0. (S1.13)

t=1
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Denote 6 = sign()\), then

0=16g(\)|

e "L A|Z2()
_‘etzztu)—ZlH—ztm‘

>;1|i\§2t ‘Zzt ‘ (S1.14)

By the fact that max;<, |Z:(1)] < 1 and (S1.14) and 1 4+ AZ;(1) > 0, it

follows that

A n n
Al S 2201) < \ZZM)(. (S1.15)
L+ =
Notice that Z;(1) = \/n&,, where &, is defined in (S1.1). Furthermore, by

(S1.3) and the bounded convergence theorem and Theorem 2.1, we get that
nlizf(n S *1/2ZZt —Ly N(0,02). (S1.16)

Thus, (S1.15)-(S1.16) implies that
A= 0,(n"1?). (S1.17)

Let 7, = AZ;(1) and then we have
max 1| = O, (n~1?). (S1.18)

Then, by (S1.13) and (S1.17)-(S1.18), it follows that

1 - '71:2
=n Y Z,) (1 -y +
n ; t( )( Ve 1+%>
=n"' Y Z(1) =0 Y AZ(1) + Op(n7Y).
t=1 t=1
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Therefore, we have

A= {nfl i 23(1)} - {nfl i Zt(1)} +0,(n™). (S1.19)

For (1), by Taylor expansion, it is straightforward to show that

_22% Z%JFZ 1—?&% (S1.20)

where \; € [0,1] fort =1,--- ,n. By (S1.18)-(51.20) and (S1.16), it follows

that

1) =2 zn:% -~ Zn:%? +0,p(n7'7?)
t=1
= QAXn:Zt( AQZZz +o,(1
t=1
- [n_l En: 23(1)} [ ~1/2 Z } +0,(1)
t=1 =
L\, (S1.21)
as n — o0o. This completes the proof for /(1) under Hy.

Under H,, we first show that [(1) = co. Note that the Lagrange dual

function of I(1) is given by

(s ) = inf { =230 Tog(npy) + 1 (g pe = 1) + 2 iy meZi(1)

pt>0

where p1, pio are any real numbers. By definition, it is obvious that d(puq, p2) <
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[(1). Then, if we choose 3 = 2n and puy = 2nAy, it is not hard to show that

n~ (1) > ntd(2n, 2n)\)

—9on ! z”: log(1 4+ A\ Z(1))

t=1

= 2)\177/ Z Zt + O >\2)

where we only need the restriction that 1 + A1 Z;(1) > 0. Then, by (S1.12)
and n=Y/2T,, =n~tS°1 | Z,(1), we can see that when \; = —n~1/2 it follows

that
1(1) = 0. (S1.22)

Next, we show that {(¢) N X7 under H;. In this case, it follows that

Yt—1E¢
(L4 )2 (1 + g2V

Zi(¢) = (S1.23)

Notice that {Z;(¢)} is still a martingale difference sequence. Then, by the
similar argument for Theorem 2.1 and the ergodic theorem, it is not hard

to show that
Y ZHe) o, n 1/222 —Ly N(0,02), (S1.24)

where 0?2 = E{y? e2/[(1+y? ,)(1+¢?)]}. Finally, using the same procedure

for (S1.21), we can get the conclusion. This completes the proof. O

Proof of Theorem 3.2. Under H, using the same procedure in proof of
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Theorem 3.1, it follows that

A nt1 ; } nt1 ’
Z7(1) < Zi(1)]. S1.25
1+ |)\]maXt§n+1 ’Zt(1)| ; t< ) - ; t( ) ( )
(51.16) and b,, = o(n), we can directly show that
| Znn(D)] = 0p(v/n), (S1.26)
and then
n+1 n+1
Ty Z(1) s o ‘1/222 —Ly N(0,02). (S1.27)
t=1
Then, by (51.25)-(S1.27), we have gotten that
A= 0,(n"?). (S1.28)
Let vy = AZ;(1) for t =1,--+ ,n+ 1. By (S1.26), it follows that
max || = 0,(1). (51.29)

Then, by the similar arguments for (S1.21), we have [%(1) N X1, as n —

Q.

Furthermore, under Hy, since b,/n + 1/b o(1), we can choose the
negative number Ay with the condition that Ay = o(1) and Ayn — oo and
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Aob, = o(1), then

n+1

1°(1) > 2) log(1 + AaZ(1))

= 2>\2ZZt + 0,(n)\2)

On the other hand, by (S1.24), we can show that |Z,+1(¢)| = 0,(y/n) and

n+1 n+1

Y ZH¢) ot n 1/222 —L5 N(0,02). (S1.30)

Then, it is easy to get that [*(¢) BN X3, as n — oo. This completes the

proof. O

Proof of Corollary 3.1. Since the proof process is very close to those
in Theorems 3.1-3.2, we only present some key points and the details are
omitted.

Under Hy, by the fact that p(x) is a bounded and odd function, we can

easily show that
nlizf(n -5 02, *WZZ 45 N(0,02),
where 02 = E(p?(g;)). Similarly, under H;, we have
n—lizf(qs)L 2 1/222 ) —5 N(0,0%(1)),
t=1

where 02(1) = E[y; 1 p*(e¢) /(1 + y7-))]-
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Under Hy, it is clear to see that

n! Z Z(1) 2, = E[ yt_; p(Ayt)}
—1 L+yiy

Then, we have

Yt—1
—E E[ he + (6 — 1ys_
Ko { 1+yt271/?(77t t (¢ )Z/t 1)

Fia }

Furthermore, it follows that

Yt—1
Fi_1| = S1.31
' 1] I+ ?Jt271 ( )

X /OOO [p(zhe + (¢ — V)ye—1) — p(xhs — (¢ — 1)ys—1)]dF ().

E[ Ye—1

= yf,lp(mht + (¢ — D)yi—1)

Without loss of generality, p(z) is assumed to be an increasing function.
Case 1: If p(z) is a strictly increasing function, then by ¢ — 1 < 0, we

get that for any given y,_1 # 0,

Y1 lp(xhy + (¢ — Dye—1) — p(zhy — (6 — D)y—1)] < 0,Vx € R.

Then, it follows that, Vy; 1 # 0,

E[ Yt—1

T+ y?_lp(ntht + (¢ — 1)y—1)

]—“H] <0. (51.32)

Case 2: If p(x) > p(y), Vo > 0,y < 0 and the density of 7, is positive
in a neighbourhood of zero denoted as [—a, a] for some a > 0, then
(i). When y;_1 > 0, it follows that p(xh; + (¢ — V)ys—1) — p(zhy — (¢ —

Dye—1) <0, and p(xhe + (¢ — Dye—1) — p(ahs — (¢ — Dyy—1) < 0, if |z] <



S1. TECHNICAL PROOFS11

min{a, (1 — ¢)y;_1/hi}, then

Yt—1
E [1 n yf_lp(mht + (¢ — 1)%—1)‘]:1:—1] < 0.

(ii). When ;1 < 0, it follows that p(xh; + (¢ — 1)ys—1) — p(xhy — (¢ —
Dye-1) 2 0, and p(zhy + (¢ — Dy—1) — p(xhe — (¢ — D)y—1) > 0, if |2| <

min{a, (¢ — 1)y;_1/h:}, then

E[ yt712
IT+yi,

p(nehe + (¢ — 1)ye—1) IH] < 0.

Therefore, (S1.32) always holds for two cases. Then, by the fact that
Yy = oY1 +mhy and P(n; # 0) > 0 and hy is positive, it is clear to see that

P(y—1 # 0) > 0, which implies that p, < 0. In other words, we have
n'y " Z(1) 5 p, < 0. (S1.33)
=1

This completes the proof. O

Now, following the standard procedures in Qin and Lawless (1994), we
give the proofs for Theorem 4.1. Before that, we need the following two

lemmas.

Lemma 1. Suppose that y, satisfies model (4.1) and the conditions in The-
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orem 4.1 hold, then under Hy, it follows that

n~1/? Zn: Zio(1, o) = n~ Y2 Xn:wt + 0,(1); (S1.34)
=1 =1
n~t/? i Z:(1, 1) -5 N(0,3); (S1.35)
t=1
_1ZZt 1, p0)Z; (1, o) = s (51.36)
n" Z aZt L) v, o (S1.37)

where the matriz ¥ = diag{c?,1} and the vector a = (—E(1 +2)73/2,0)".

Proof of Lemma 1. For (51.34), it is sufficient to show that, for any § >

1/2

Ty RERYIG ft@}l & Zia(1, o) == 0. (S1.38)
t=1 t—1

Notice that {n~'/2 lftzl )5Zt 1(1, o), t = 1,--- ,n} is a martingale differ-
ence sequence with respect to F; and has the uniform bound n='/2, then

by Theorem 18.1 Billingsley (1999), we only need to show that

n

2
-1 Y1 P
n E — — 0. S1.39

— (L+yi)* ( )

By Cauchy inequality, it follows that

n 2 n

-1 Y1 ?/t 1 _ 1
n — < |n X |n1 e
— (1+yiq)® Z (1+yiy) 2 (1+yi )02

t=1

IN

- 1
nfl — .
LTy
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By Assumption 2.1 and a,/n — ¢ € [0,00], and using the same proce-
dure for (S1.9), it is straightforward to get that n=! >"1 | (1 4+ y2 ;) 10+2 =
0p(1). This completes the proof for (S1.34). Furthermore, applying (51.34),
(S1.35)-(S1.37) can be directly proved by martingale central limit theorem

and the ergodic theorem. O]

Denote l(¢p, u) = —2log(L(¢, 1)), then we have the next lemma.

Lemma 2. Under Hy and the same conditions in Lemma 1, asn — oo, with
probability to one, the function l~(1, @) attains its minimum value at some
point i in the interior of the ball |p — o] < n~ Y3, and i and X = A(fi)

satisfy

Qualit, ) = 0 and Qan(fi, ) =0,

where
- Zt(la:u) .
1 1+ A,Zt(lv :u)7

1 {aZt(Lu)}’)\
“1+NZ(L,p) L Op '

Proof of Lemma 2. Review that for any fixed p, by Lagrange multiplier

an(/% A) = n_l

t

WE

QQH(,U7 )‘) = n_l

t

technique, we have

I(1,p) = 2Zn:10g[1+xzt(1,u)], (S1.40)

t=1
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where X is a function with respect to p and satisfies Q1,, (i, A) = 0. Then,

it is not hard to get that

A 1N
n- Z,(1
p Z 1+ ]| max; || Z, (1, )| Zp WZ(L 1.

t=1

(S1.41)

where || - || is the Euclidean norm and p = A/||A||.
Note that, by the definitions of Z,(1, ), it is easy to see that there

exists a constant Cy, such that

8kzt(17 M)

supmax || Z(1, < Cjy, sup max
sup mis [2,(1,)| < Co. supmax || =

H < Cy, (S1.42)

where £ = 1,2,3. Furthermore, using Taylor expansion, in the domain

|1 — po| < n~/3, we uniformly have

swp 0| 3020w = D0 21, )| = 0,07,
t=1 t=1

lp—po|<n—1/3

(S1.43)

Z,(1, 1) Zi(1, ) Z (1, 10)Z;(1 MO)H = O,y(n~'?).

t= t=1

sup n-
|—po|<n=1/3

(S1.44)
Then, by (S1.41) and (S1.43)-(S1.44), and (S1.35)-(S1.36), we have

A 13
sup ————— =0,(n ,
i TH NG~ O
which implies that
sup  ||[A] = O,(n71/3). (S1.45)

lp—po|<n—1/3
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Then, it follows that

A= [nli Z.(1, 1) Z.(1, u)} - {n* i Z.(1, u)] +0,(nY/?).  (S1.46)

=1
Now, consider the boundary | — uo| = n~%/3, by (S1.40), (S1.42) and
(51.46), we have

z(w—n{[ ZZtluo B

n

1 ~ /
,Uo (1 — po) + Oy(n 2/3)}

—_

t=

[ Y ) 407t 30 P )+ 0,075 |+ 0,)

Then, by the fact | — po| = n/® and using (S1.36)-(S1.37) and (S1.43)-
(S1.44), it follows that, with probability to one,
inf  n7Y8(1, ) > a’Sa/2, (S1.47)
lu—pol=n—1/3
On the other hand, when p = g, it is not hard to show that

I(1, o) = O,(1). (S1.48)

Then, with probability to one, the minimizer i of [ (1, p) satisfies | — po| <

n~1/3. Therefore, 8l~(1, f)/0p = 0, which implies that Qs (/i 5\) =0. m
Based on the above two lemmas, we can prove Theorem 4.1 as follows.

Proof of Theorem 4.1. Taking derivatives of ()1, and ()9, with respect
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to u and A, we have

ann(,uO; 0) -1 - 8Zt<1> IUO) ann(ﬂO; _1
u n ; o ) ON Z #( Mo s Ho);
0Qan(110,0) _ 0 9Qan(110,0) _ - [ 0Z,(1,110)
o ’ ON — o '
By the definitions of Z,(1, 1), there exists a constant Cy such that
O Z,(1
supmaXHZt(l w|l < Co, sup max #H < Cy, (51.49)
HER HER a[l

where k = 1,2,3. Expanding Q1,,(ji, A) and Qo (ji, A) at (u,0), and by

Lemma 2 and (S1.49), we can show that

Qunlp.0) 5 OQunlb0:0) 7, _ 1y — (10, 0) + 0y 72), (SL50)

oON ou
aQQn(Man) 3 8Q2n<,u070> ~ _ -1/2
% A+ o0 (i — po) = 0p(n™"7%). (S1.51)
Denote

n

Z.(1 .
o =n 128 (L) o Y, =n" Zzt 1, 100)Z0(1, o). (S1.52)
t=1

t=1

It follows from Lemma 1 and (S1.50)-(S1.51) that

V(i — po) = —(a, X Ma,) " al B0 X v/nQ 1 (10, 0) 4 0,(1), (51.53)
Vi =3 [I - an<a;2;1an)‘1a;2ﬂ X V/nQ1n (10, 0) + 0p(1).

(S1.54)

On the other hand, by Lemma 2, we have I(1) = I(1, i). Then, by (S1.53)-
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(S1.54), we can show that

[(1,0) =2 log[l + NZ(1, 1)

t=1

= (VRA)Z, (Vi) + 0,(1)

= [VnZ 2 Qua(po, 0)) x [T = A,] x [VnE,2Qun(p0, 0)] + 0,(1),
where A,, = 2, "/%a,(a. $1a,) '’ %,"/%. By Lemma 1, it is obvious that

A, 5 A=3"12a@@x 1 a) ta'n 2
Meanwhile, since A = A’ and A% = A, the trace of I— A is 1. Furthermore,
\/ﬁEﬁl/Qan(uo, 0) SN N(0,1) from Lemma 1, then we get that I(1, 2) N
Xi-
On the other hand, under Hy, by the ergodic theorem, it follows that

Ye-1lee + (0 — 1)ye1]
(L4 i) {1+ [ee + (6 — Dy ]2}/

> Zio(1, o) > E (S1.55)
t=1

Then, using the same arguments for (S1.10), it is direct to prove that

yt—1[5t + (Cb - 1)?/1:—1]

(1+y2 )1+ [er + (¢ — Dy, 1|2 }1/? <0. (S1.56)

Meanwhile, for any fixed p, we have

(L, ) > d(p), (S1.57)

where d(pu) is defined as

() = inf { =257 log(npy) + 20(Sy pe — 1) + 200 Sy peZea(l, 1)}

pe>0
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with A3 = —n Y2, Then, it is obvious that
Z(L M) Z _2n_1/2 Z Zt,?(la M) + Op(l)a
=1
where O, (1) uniformly holds in the domain |y — pio| < n~/3. Furthermore,

by (S1.56) and (S1.49), we have shown that, with probability to one,

S - Yr-1lee + (@ — Dy 00
(1) = “2“(1’”) == ‘/_E(l TR )L+ [+ (0 — Dya2pie oo

This completes the whole proof. O

Proof of Theorem 4.2. Like the proof of Lemma 1, and using Assump-

tion 4.1, we can easily show that

Zo =12 Z,(1,00) <5 N(0,%); B, =07 Zi(1,00)Z(1,0p) - 3

t=1 t=1
= 07;1(1,60) oz 19 = 07Z,944(1,60)
1 t,1\1,Y0) »p t2 0 2 0- 1 t,2+j5(1, Yo
n ; 0 b g —0;n ; — 0

Meanwhile, for any k = 1, 2, 3, there exists some constant C{ such that

OZ,(1,0)
06F

supmtaXHZt(l,B)H < Cy, SUp max H < Cy, (S1.58)
0 0
Then, it is not hard to show that

(1) = [S,'°Z) x 1= A] x [2,7Z,] + 0,(1),

where A — S-V2B(B'S-'B)"'B'S2 with B = (b1,0,bs,--- , byya)’.

Then [(1) KN x? since the trace of I — A is 1. Under Hj, it is not hard to
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prove that

7’L_1 Z Zt,?(]-a 00) L) Lo < 0, (8159)

t=1

where o is defined as

o = E Yi—1ler + (0 — Dy_q] |
(I +y7 [+ S (A )PP+ [+ (6 — Dy 2172

Then, the conclusion holds by the same arguments for Theorem 4.1. O]
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S2. Simulation for Confidence Interval

In this section, we also examine the length of the 95% confidence interval
for the regression parameter with a sample size n = 100,300 and ¢ =
0.95,0.9 and 0.85. The results are summarized in Tables 1-4 below. Several
observations can be deduced from these tables. First, the confidence interval
length derived by [*(¢) is very close to that by I(¢). Second, the heavier
tail implies the shorter interval in the proposed methods. Third, both [(¢)

and [*(¢) provide much better inferences than that by ELT, especially when

Table 1: Average lengths calculated for the confidence intervals based on the empirical likelihood

methods with a € (1,2) and n = 100

et ~model (5.1) et ~model (5.2)
e~ ¢ l¢) 1°(¢) ELT l¢) 1°(¢) ELT
N(0,1) 0.95 0.1778 0.1894 0.2799 0.1681 0.1794 0.2687

0.90 0.2386  0.2549  0.3240 0.2248 0.2399 0.3142

0.85 0.2794 0.2976  0.3547 0.2737 0.2911 0.3439

Laplace 0.95 0.1330 0.1424 0.3159 0.1327 0.1418 0.2913
0.90 0.1882 0.1999 0.3772 0.1836  0.1969 0.3486

0.85 0.2313 0.2476  0.4059 0.2251 0.2427  0.3868

ts 0.95 0.1397 0.1495 0.3294 0.1357 0.1448 0.3046
0.90 0.1939 0.2070 0.3921 0.1833 0.1944 0.3489

0.85 0.2374 0.2551 0.4330 0.2198 0.2342 0.3943

to 0.95 0.1086 0.1157  0.3760 0.1116  0.1192  0.3467
0.90 0.1540 0.1639  0.4396 0.1545 0.1653 0.4127

0.85 0.1939 0.2068 0.5002 0.1893 0.2032 0.4934




S2. SIMULATION FOR CONFIDENCE INTERVAL21

Table 2: Average lengths calculated for the confidence intervals based on the empirical likelihood

methods with o € (1,2) and n = 300

et ~model (5.1) et ~model (5.2)
ne ~ ¢ l¢)  1°(¢) ELT l¢) 1°(¢) ELT
N(0,1) 0.95 0.0878 0.0898 0.1602 0.0856  0.0876 0.1501

0.90 0.1308 0.1342 0.1892 0.1250 0.1279 0.1773
0.85 0.1618 0.1657 0.2049 0.1533  0.1576  0.1953

Laplace 0.95 0.0613  0.0627 0.1787 0.0648 0.0663 0.1672
0.90 0.0954 0.0975 0.2153 0.0978 0.1000 0.1996

0.85 0.1233 0.1264 0.2408 0.1254 0.1281  0.2280

t3 0.95 0.0705 0.0723  0.1955 0.0694 0.0708 0.1751
0.90 0.1042 0.1064 0.2330 0.0994 0.1017 0.2148

0.85 0.1285 0.1319 0.2532 0.1215 0.1245 0.2328

t2 0.95 0.0497  0.0507 0.2367 0.0523  0.0535 0.2177
0.90 0.0802 0.0823 0.2868 0.0801 0.0822 0.2647

0.85 0.1058 0.1084 0.3486 0.1019 0.1041  0.3047

Table 3: Average lengths calculated for the confidence intervals based on the empirical likelihood

methods with o € (0,1) and n = 100

e+ ~model (5.1) et ~model (5.2)
i~ 6 I(6) 1°(¢) ELT i(¢) 1"(¢) ELT
N(0,1) 0.95 0.2086 0.2230 0.3218 0.1807  0.1929 0.2964

0.90 0.2777 0.2949 0.3765 0.2516 0.2686 0.3524

0.85 0.3276  0.3483 0.3995 0.3066  0.3267 0.3748

Laplace 0.95 0.1353 0.1441 0.3659 0.1327 0.1411 0.3398
0.90 0.1955 0.2095 0.4181 0.1895 0.2032 0.3953

0.85 0.2518 0.2696  0.4647 0.2373  0.2537  0.4379

t2 0.95 0.1272  0.1359  0.4647 0.1154 0.1229  0.3856
0.90 0.1772  0.1883 0.5278 0.1628 0.1732 0.4729

0.85 0.2267 0.2428 0.6114 0.2065 0.2210 0.5178

Cauchy 0.95 0.0467 0.0495 1.1544 0.0418  0.0447  0.9664
0.90 0.0783 0.0833 1.6059 0.0725 0.0777 1.3169

0.85 0.1139  0.1210 2.3172 0.1048 0.1118 1.5173




22 RUI SHE

Table 4: Average lengths calculated for the confidence intervals based on the empirical likelihood

methods with a € (0,1) and n = 300

et ~model (5.1) e¢ ~model (5.2)
i~ 6 I(6) 1°(¢) BLT I(¢) 1°(¢) ELT
N(0,1) 0.95 0.0991 0.1014 0.1894 0.0903 0.0926 0.1743

0.90 0.1470  0.1510 0.2168 0.1362 0.1395 0.1991

0.85 0.1860 0.1898 0.2333 0.1707 0.1742 0.2212

Laplace 0.95 0.0548 0.0559 0.2151 0.0555 0.0570 0.1921
0.90 0.0966  0.0994 0.2494 0.0933  0.0956  0.2335

0.85 0.1276  0.1306 0.2774 0.1256  0.1287  0.2543

t2 0.95 0.0531 0.0546 0.2836 0.0536  0.0548 0.2444
0.90 0.0918 0.0942 0.3528 0.0861 0.0881 0.3074

0.85 0.1214 0.1241 0.3667 0.1124 0.1154 0.3569

Cauchy 0.95 0.0079  0.0081  1.0902 0.0081 0.0083 0.9136
0.90 0.0212 0.0218 1.5566 0.0225 0.0230 1.2913

0.85 0.0441 0.0450 1.9520 0.0412 0.0422 1.6862




