INTERVAL ESTIMATION FOR OPERATING CHARACTERISTIC OF CONTINUOUS BIOMARKERS WITH CONTROLLED SENSITIVITY OR SPECIFICITY

Yijian Huang¹, Isaac Parakati²,

Dattatraya H. Patil¹, and Martin G. Sanda¹

¹Emory University

and ²Ann & Robert H. Lurie Children's Hospital of Chicago

Supplementary Material

Additional simulations, with unequal case and control sizes, were conducted; other features of the setups were the same as those in the main paper. For the single-biomarker evaluation, Figures S.1 and S.2 show the results when $n_{\bullet} = n_{\circ}/2$, whereas Figures S.3 and S.4 pertain to the situations with $n_{\bullet} = n_{\circ} \times 2$. Both sets are counterparts of Figures 1 and 2 in the main paper. For the two-biomarker comparison, Table S.1 reports situations with both $n_{\bullet} = n_{\circ}/2$ and $n_{\bullet} = n_{\circ} \times 2$, in parallel to Table 1 in the main paper.

Figure S.1: Simulation summaries of 95% confidence intervals for specificity at controlled 95% sensitivity in the single-biomarker evaluation, under fixed sizes, $n_{\bullet} = 50$ and $n_{\circ} = 100$, and variable ϕ_0 . KS is the kernel smoothing-based Wald confidence intervals, as in Pepe (2003), whereas KS-exp corresponds to the KS applied to exponentially transformed biomarker data.

Figure S.2: Simulation summaries of 95% confidence intervals for specificity at controlled 95% sensitivity in the single-biomarker evaluation, under fixed ϕ_0 and variable sizes $n_{\bullet} = n_{\circ}/2$. Score intervals, based on $\hat{\phi}$ and $\tilde{\phi}$, and the exact bootstrap-based Zhou–Qin are included, with the same labeling as in Figure S.1.

Figure S.3: Simulation summaries of 95% confidence intervals for specificity at controlled 95% sensitivity in the single-biomarker evaluation, under fixed sizes, $n_{\bullet} = 100$ and $n_{\circ} = 50$, and variable ϕ_0 . KS is the kernel smoothing-based Wald confidence intervals, as in Pepe (2003), whereas KS-exp corresponds to the KS applied to exponentially transformed biomarker data.

Figure S.4: Simulation summaries of 95% confidence intervals for specificity at controlled 95% sensitivity in the single-biomarker evaluation, under fixed ϕ_0 and variable sizes $n_{\bullet} = n_{\circ} \times 2$. Score intervals, based on $\hat{\phi}$ and $\tilde{\phi}$, and the exact bootstrap-based Zhou–Qin are included, with the same labeling as in Figure S.3.

HUANG, PARAKATI, PATIL AND SANDA

				unpaired biomarkers						paired biomarkers					
				Wald Pct			Score			Wald		Pct Score		ore	
ϕ_{0X}	δ_0	n_{\bullet}/n_{\circ}		$\widehat{\phi}$	$\widetilde{\phi}$		$\widehat{\phi}$	$\widetilde{\phi}$	ć	$\widehat{\phi}$	$\widetilde{\phi}$		$\widehat{\phi}$	$\widetilde{\phi}$	
0.2	0.0	75/150	С	960	967	977	962	968	90	64	971	985	967	975	
			\mathbf{L}	431	431	427	375	370	38	87	387	384	344	339	
		150/75	С	960	967	981	962	964	9!	59	959	984	963	962	
			L	387	387	386	347	342	3_4	44	344	344	315	310	
0.4	0.2	75/150	С	946	951	975	947	950	9!	53	956	980	955	960	
			\mathbf{L}	510	510	502	443	439	40	60	460	453	409	405	
		150/75	\mathbf{C}	963	963	978	959	958	90	63	970	984	969	970	
			L	449	449	447	403	400	40	01	401	399	367	364	
	0.0	75/150	С	948	950	972	951	956	95	54	958	987	958	960	
			\mathbf{L}	576	576	568	495	492	5	19	519	511	457	455	
		150/75	\mathbf{C}	962	965	982	963	965	90	51	959	984	961	960	
			\mathbf{L}	502	502	500	447	445	4^{\prime}	44	444	443	405	403	
0.6	0.4	75/150	С	950	953	975	944	944	95	55	958	979	943	951	
			\mathbf{L}	521	521	509	459	458	4'	73	474	461	426	425	
		150/75	С	949	950	976	950	950	90	51	965	987	957	960	
			L	448	448	445	408	407	40	04	404	402	375	374	
	0.2	75/150	С	954	952	970	956	959	95	55	961	986	959	959	
			\mathbf{L}	586	586	576	505	505	53	30	530	518	468	468	
		150/75	С	953	953	976	951	952	95	58	960	984	960	956	
			\mathbf{L}	501	501	500	448	448	44	46	446	444	407	407	
	0.0	75/150	С	954	953	974	953	956	90	68	972	984	970	971	
			\mathbf{L}	597	597	584	511	513	53	39	539	526	473	476	
		150/75	\mathbf{C}	957	951	979	956	951	90	65	966	983	962	965	
			L	503	503	501	448	450	44	45	445	443	405	408	
0.8	0.6	75/150	С	956	955	969	931	933	90	60	962	978	937	935	
			\mathbf{L}	457	458	447	421	422	4	18	419	407	391	391	
		150/75	C	942	949	977	955	946	90	<u>60</u>	965	982	938	942	
			\mathbf{L}	389	389	387	368	368	3	57	357	355	340	341	
	0.4	75/150	\mathbf{C}	966	967	969	943	945	90	65	968	980	942	947	
			L	531	532	519	469	470	48	85	485	473	436	438	
		150/75	C	961	957	974	960	964	9	55	949	986	940	949	
			\mathbf{L}	450	450	448	409	411	40)7	407	405	377	378	
	0.2	75/150	\mathbf{C}	961	959	964	952	953	90	66	970	979	959	962	
			L	543	543	528	469	473	49	94	494	478	437	441	
		150/75	C	957	959	972	954	951	90	57	962	992	956	962	
			L	451	451	450	405	409	40	94	404	403	370	374	
	0.0	75/150	С	969	966	976	963	964	90	68	970	981	964	966	
		4 80 /	L	488	488	469	420	427	4	38	438	422	387	393	
		150/75	C	966	962	986	966	964	9'	76	974	992	978	972	
			\mathbf{L}	395	395	395	353	360	- 35	52	352	353	321	327	

Table S.1: Simulation summary statistics of exact bootstrap-based 95% confidence intervals for difference in specificity at controlled 95% sensitivity in the two-biomarker comparison.

For unpaired comparison, $n_{\bullet X} = n_{\bullet Y}$ and $n_{\circ X} = n_{\circ Y}$ were set to n_{\bullet} and n_{\circ} , respectively. C: coverage probability (×1000); L: average interval length (×1000). Pct: percentile interval.