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Abstract: The receiver operating characteristic (ROC) curve provides a compre-

hensive performance assessment of a continuous biomarker over the full threshold

spectrum. Nevertheless, a medical test often dictates operating at a certain high

level of sensitivity or specificity. A diagnostic accuracy metric directly targeting

clinical utility is specificity at the controlled sensitivity level, or vice versa. While

the empirical point estimation is readily adopted in practice, the nonparametric in-

terval estimation is difficult because the variance involves density functions, owing

to the estimated threshold. In addition, even with a fixed threshold, many standard

confidence intervals for the binomial proportion, including the Wald interval, can

exhibit erratic behaviors. This study is motivated by the superior performance of

the score interval for binomial proportion, and we propose a novel extension for

the biomarker problem. We also develop an exact bootstrap procedure and es-

tablish the consistency of the bootstrap variance estimator. Both single-biomarker

evaluation and two-biomarker comparison are investigated. Extensive simulation

studies demonstrated competitive performance of our proposals. An application to

aggressive prostate cancer diagnosis is also provided.

Key words and phrases: Diagnostic test, exact bootstrap, score confidence interval,

sensitivity at controlled specificity, specificity at controlled sensitivity.

1. Introduction

Fueled by rapid recent advances in the scientific knowledge of molecular

biology and high-throughput omics technologies, a large number of candidate

biomarkers are being identified for disease diagnosis and prognosis, and the pre-

diction of response to specific therapeutic interventions. Biomarker evaluation

and comparison has become especially important for their validation and fur-

ther clinical translation to ultimately improve and advance clinical practice (e.g.,

Tzoulaki, Siontis and Ioannidis (2011); Ioannidis and Panagiotou (2011)). Many
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biomarkers are continuous, which means their dichotomization at a threshold

is necessary for binary clinical testing. Sensitivity and specificity vary with the

threshold, giving rise to the receiver operating characteristic (ROC) curve. While

the ROC curve fully characterizes the performance of a biomarker over the com-

plete threshold spectrum, only the point where the test is intended to operate

is clinically relevant. For example, with aggressive prostate cancer diagnosis, a

positive non-invasive test would be confirmed by biopsy. As a result, the cost of

a false negative greatly outweighs that of a false positive. In this circumstance,

the non-invasive test needs to attain a high sensitivity, say 95% (e.g., Catalona

et al. (1998); Sanda et al. (2017)), to be clinically useful. Therefore, specificity

at the controlled sensitivity level is a more sensible accuracy metric than, say,

the area under the ROC curve, which is popular in practice. Of course, sensitiv-

ity at a controlled specificity level could be more relevant in a different clinical

context. Nevertheless, the two correspond to the same statistical problem, upon

transposing the roles of cases and controls. We focus on the former throughout

this article.

While the empirical estimator of specificity at a controlled sensitivity level is

straightforward to obtain, the nonparametric interval estimation is complicated

by the fact that the variance involves density functions of the biomarker for case

and control populations (cf. Linnet (1987); Pepe (2003)). Pepe (2003) suggested

using kernel smoothing for the density estimation. However, this approach can

be sensitive to the bandwidth choice, and choosing an appropriate bandwidth

is often challenging with practical sample sizes. Furthermore, the approach is

not invariant to a monotone transformation of the biomarker. As an alternative,

Platt, Hanley and Yang (2000) and Zhou and Qin (2005) proposed adopting

resampling bootstrap procedures. Nevertheless, the uncertainty from resampling

affects reproducibility, despite that the error can be made small by increasing the

resampling size.

If the threshold is fixed, the problem reduces to the interval estimation for

binomial proportion. Nevertheless, even with this basic problem, many stan-

dard confidence intervals exhibit erratic behaviors (Agresti and Coull (1998);

Brown, Cai and DasGupta (2001, 2002)). In particular, the simple and widely

used Wald interval tends to have considerable under-coverage. Here, the score

interval (Wilson (1927)) is recognized for its superior performance. Agresti and

Coull (1998) suggested an adjusted Wald interval, mimicking the score interval to

achieve better coverage performance. These results have influenced the interval

estimation for our problem, that is, with an estimated threshold. Zhou and Qin

(2005) incorporated the Agresti–Coull adjustment in their proposals, although
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the justification is not clear in this new context.

In this article, we propose a novel extension of the score interval for bi-

nomial proportion to specificity at a controlled sensitivity level. As another

contribution, we develop an exact bootstrap procedure and establish the con-

sistency of the bootstrap variance estimator. In Section 2, we evaluate a sin-

gle biomarker. In Section 3, we compare two biomarkers, under both unpaired

and paired designs (cf. Pepe (2003)). A bias analysis of the empirical speci-

ficity at controlled sensitivity is provided in Section 4, leading to an alternative

point estimate and, subsequently, the associated confidence intervals. Simula-

tions are reported in Section 5, and an illustration is given in Section 6 with

prostate cancer detection. Final remarks are provided in Section 7. Technical

details, including proofs, are relegated to the Appendix. An R package that im-

plements the proposed methods is publicly available at the first author’s website

http://web1.sph.emory.edu/users/yhuang5.

2. Proposed Method for Single-Biomarker Evaluation

Consider a biomarker of interest M . Denote the case and control variables by

M• and M◦, respectively. Write their distribution functions as F•(t) ≡ Pr(M• ≤
t) and F◦(t) ≡ Pr(M◦ ≤ t), respectively, and the quantile function of the former

as F−1
• (p) ≡ inf{t : F•(t) ≥ p}. The case sample consists of n• independent

replicates of M•: M•i, i = 1, . . . , n•, whereas the control sample comprises n◦
independent replicates of M◦: M◦i, i = 1, . . . , n◦. Adopt the convention that

reaching or exceeding a given threshold results in a positive diagnosis. With

ρ0 ∈ (0, 1) as the controlled level of sensitivity, the largest threshold is τ0 =

F−1
• {(1 − ρ0)+} such that the sensitivity defined as Pr(M• ≥ τ0) is at least ρ0.

Accordingly, the specificity is φ0 ≡ F◦(τ0−). Their natural plug-in estimators are

given by

τ̂ = F̂−1
• {(1− ρ0)+}, φ̂ = F̂◦(τ̂−),

where F̂• and F̂◦ are the empirical versions of F• and F◦, respectively. Under

regularity conditions, φ̂ is asymptotically normal with mean φ0 and variance

σ2 = σ2
1 + σ2

2 ≡
{
F ′◦(τ0)

F ′•(τ0)

}2 ρ0(1− ρ0)

n•
+
φ0(1− φ0)

n◦
, (2.1)

where F ′• and F ′◦ are the derivatives of F• and F◦, respectively; see Greenhouse

and Mantel (1950), Hsieh and Turnbull (1996), and Pepe (2003), among others,

and also Theorem 1, presented later. The variance has two components: σ2
1,

resulting from the threshold estimation, and σ2
2, from the empirical specificity

http://web1.sph.emory.edu/users/yhuang5
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with given threshold τ0. As discussed in Section 1, the involvement of density

functions complicates the variance estimation.

2.1. Exact bootstrap

Bootstrapping is an effective approach to variance estimation. Platt, Han-

ley and Yang (2000) and Zhou and Qin (2005) suggested the routine resampling

implementation. To improve reproducibility, we develop an exact bootstrap pro-

cedure and show its feasibility for this problem.

We focus first on the threshold estimation with the cases. Maritz and Jarrett

(1978) and Efron (1979) derived the exact bootstrap distribution for a sample

order statistic. From their result, we obtain a resampling scheme that is equiva-

lent to the bootstrap resampling with respect to a sample quantile. Denote the

ceiling function by d·e.

Lemma 1. Consider an independent and identically distributed sample of a ran-

dom variable with size n. Denote the empirical cumulative distribution function

by F̂ and its bootstrap counterpart by F ∗. For any p ∈ (0, 1), conditional on the

observed data, F ∗−1(p) has the same distribution as F̂−1(B), where independent

random variable B follows Beta(dnpe, n− dnpe+ 1).

Remark 1. This lemma was deduced from Maritz and Jarrett (1978) and Efron

(1979). However, it might become more intuitive in light of a representation of

the distribution of F̂−1(p). That is, F̂−1(p) as an order statistic can be shown

to have the same distribution as F−1(B), where F is the underlying cumulative

distribution function under consideration.

This result does not impose any restriction on the underlying distribution,

which can be continuous, discrete, or a mixture of the two. Write τ∗ as the boot-

strap counterpart of τ̂ . Given that τ̂ is the {(1 − ρ0)+}-quantile, the bootstrap

distribution of τ∗ is the same as F̂−1
• (1−B•), where B• ∼ Beta(n•−r+1, r) and

r ≡ dn•(1− ρ0)+e. That is, the bootstrap distribution assigns to order statistics

M•[i], i = 1, . . . , n•, with the same probabilities as 1 − B• to the n• intervals

evenly split between zero and one. This resampling equivalence facilitates effi-

cient computation with the exact bootstrap. Moreover, this novel perspective of

τ∗ can be exploited in a large-sample study, as shown later.

Now, we turn to the specificity estimation with the controls, at a given thresh-

old τ∗. Let φ∗ be the bootstrap counterpart of φ̂. Write Pr∗ as the bootstrap

probability, that is, conditional on the observed data. The conditional bootstrap

probability mass function is
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Pr∗(φ∗ = φ | τ∗) =

(
n◦
n◦φ

)
F̂◦(τ

∗−)n◦φ{1− F̂◦(τ∗−)}n◦(1−φ), (2.2)

for φ ∈ {0, 1/n◦, . . . , (n◦ − 1)/n◦, 1}. Upon rescaling by n◦, this is a binomial

distribution with size n◦ and success probability F̂◦(τ
∗−).

Because the case and control samples are independent of each other, com-

bining the preceding results gives the bootstrap distribution of the specificity at

controlled sensitivity ρ0:

Pr∗(φ∗ = φ) =

n•∑
i=1

Pr∗(τ∗ = M•[i])Pr∗(φ∗ = φ | τ∗ = M•[i]), (2.3)

for φ ∈ {0, 1/n◦, . . . , (n◦− 1)/n◦, 1}. This exact bootstrap distribution is feasible

to compute, although care is needed to avoid numerical underflow and overflow.

Write E∗ and Var∗ as the conditional expectation and variance, respectively,

given the observed data. The bootstrap variance estimator of φ̂ is Var∗(φ
∗):

σ̂2 = Var∗{F̂◦(τ∗−)}+ E∗[n
−1
◦ F̂◦(τ

∗−){1− F̂◦(τ∗−)}]
≡ σ̂2

1 + σ̂2
2, (2.4)

which are estimators of σ2
1 and σ2

2, respectively, as components of σ2 given in (2.1).

The consistency and asymptotic normality of φ̂ have long been known; see, for

example, Greenhouse and Mantel (1950). However, theoretical justification may

not have been provided even for the consistency of the bootstrap distribution,

and much less for that of the bootstrap variance estimator; in general, the former

does not necessarily imply the latter (e.g., Ghosh et al. (1984); Shao (1990)). The

following result focuses on the bootstrap distribution and variance. Nevertheless,

the asymptotic properties of φ̂ are also stated, mostly for completeness, with

weaker assumptions imposed. We also provide a proof, from which the consistency

of the bootstrap distribution immediately follows.

Theorem 1. Suppose that the following conditions hold: (i) the size ratio of

the cases and controls n•/n◦ converges to a nonzero finite constant as n• + n◦
approaches ∞; (ii) ρ0 ∈ (0, 1); and (iii) F• and F◦ are differentiable at the

threshold τ0, with F ′•(τ0) > 0. Then, φ̂ is strongly consistent for φ0, and asymp-

totically normal with mean φ0 and variance σ2, as given in (2.1). At the same

time, n
1/2
◦ (φ∗ − φ̂) conditional on the data converges in distribution to the same

limit as n
1/2
◦ (φ̂ − φ0). Furthermore, under the additional condition (iv) F• and

F◦ are continuously differentiable in a neighborhood around τ0, n•σ̂
2
1, n◦σ̂

2
2, and

subsequently n◦σ̂
2 converge in probability to n•σ

2
1, n◦σ

2
2, and n◦σ

2, respectively.
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2.2. Confidence intervals

Using the bootstrap variance estimator σ̂2, a Wald 100(1 − α)% confidence

interval is given by φ̂ ± zα/2σ̂, where zα/2 is the (α/2)-quantile of the standard

normal distribution. The interval is truncated with [0, 1] to respect the param-

eter range. Another common and simple interval is the percentile 100(1 − α)%

confidence interval, which is the interval between the α/2- and (1−α/2)-quantiles

of the bootstrap distribution.

We propose a novel confidence interval. For binomial proportion, Agresti and

Coull (1998) and Brown, Cai and DasGupta (2001, 2002), among others, showed

that the score interval (Wilson (1927)) has good coverage accuracy, even for a

very small sample size. It outperforms many other competitors, including the

Wald interval and the “exact” interval of Clopper and Pearson (1934). Like the

Wald interval, the score interval is inverted from a hypothesis test. However, the

score interval adopts the null variance. Unfortunately, the estimated specificity

at controlled sensitivity is the proportion of an overdispersed binomial, owing to

the estimated threshold. Therefore, its variance is not fully determined by the

null specificity. We overcome this issue by estimating the overdispersion factor

using σ̂2σ̂−2
2 . The resulting score interval is given by{

φ :
(φ̂− φ)2

n−1
◦ φ(1− φ)σ̂2σ̂−2

2

< z2
α/2

}
, (2.5)

which has an explicit expression, with the two bounds as solutions to a quadratic

equation. Because the denominator approaches zero as φ goes to zero or one, this

interval is guaranteed to be contained in the parameter range [0, 1].

All three confidence intervals are invariant to a monotone transformation of

the biomarker. Owing to the exact bootstrap, they are also perfectly reproducible.

3. Two-Biomarker Comparison

Another common task in biomarker research is to compare two biomarkers,

say X and Y . Denote the quantities in Section 2 associated with each biomarker

by adding a subscript “X” or “Y.” At the common controlled sensitivity ρ0, the

specificity difference δ0 ≡ φ0X−φ0Y between the two provides a meaningful mea-

sure of their clinical utility difference. Using the estimated thresholds τ̂X and τ̂Y ,

we obtain the corresponding estimated specificities φ̂X and φ̂Y and, subsequently,

their estimated difference δ̂ = φ̂X− φ̂Y . This point estimation procedure remains

the same for the two biomarkers measured in two independent studies or in the
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same one, that is, under an unpaired or a paired design, respectively (cf. Pepe

(2003)). However, the inference is different, and also more complicated.

3.1. Unpaired comparison

With two biomarkers measured in independent studies, the bootstrap dis-

tributions of φ̂X and φ̂Y are independent of each other. Then, the bootstrap

variance estimator and the distribution of the difference in specificity δ̂ can be

easily obtained. Subsequently, the Wald and percentile confidence intervals for

δ0 are constructed in the same fashion as for the single-biomarker evaluation in

Section 2.2.

Nevertheless, it is unclear how to construct a score interval. To follow the

approach for the single-biomarker evaluation, the two null specificities at the

controlled sensitivity would be needed. However, they are not determined, except

for their difference δ. We suggest instead combining δ and the other biomarker’s

estimated specificity, that is, δ + φ̂Y and φ̂X − δ, as estimated specificities under

the null for biomarkers X and Y , respectively. To this end, we propose the

following score confidence interval for δ0:[
δ : (δ̂ − δ)2 < z2

α/2

{
σ̂2
X

n◦X σ̂2
2X

(δ + φ̂Y )(1− δ − φ̂Y )

+
σ̂2
Y

n◦Y σ̂2
2Y

(φ̂X − δ)(1− φ̂X + δ)

}]
. (3.1)

In contrast to the more standard form as in (2.5), the variance component above

is moved to the other side of the inequality. Because δ + φ̂Y and φ̂X − δ are

not guaranteed to be bounded between zero and one, the variance component

may not necessarily be positive. The current form is more sensible, because a

negative variance component is against, rather than for, the null. Just like (2.5)

for the single-biomarker evaluation, the confidence interval (3.1) has an explicit

expression, with the two bounds being the solutions to a quadratic equation; the

existence of the solutions can be easily shown. The interval is truncated by [−1, 1]

to respect the parameter range.

3.2. Paired comparison

Denote the pair of biomarkers by (X•, Y•)
> for a case and (X◦, Y◦)

> for

a control. The case sample consists of n• independent replicates, (X•i, Y•i)
>,

for i = 1, . . . , n•, and the control sample comprises n◦ independent replicates,

(X◦i, Y◦i)
>, for i = 1, . . . , n◦.
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To derive the exact bootstrap distribution, we start with the cases. For

s, t = 0, 1, introduce

m̂•st(x, y) = #{I(X•i ≤ x) = s, I(Y•i ≤ y) = t : i = 1, . . . , n•}.

Write m̂•(x, y) = {m̂•11(x, y), m̂•10(x, y), m̂•01(x, y), m̂•00(x, y)}> and m∗•(x, y) =

{m∗•11(x, y),m∗•10(x, y),m∗•01(x, y),m∗•00(x, y)}> as its bootstrap counterpart. Be-

cause (τ∗X , τ
∗
Y )> may take a value only in Ω = {X•i : i = 1, . . . , n•} × {Y•j : j =

1, . . . , n•}, we have

Pr∗(τ∗X ≤ X•i, τ∗Y ≤ Y•j) = Pr∗{m∗•11(X•i, Y•j) +m∗•10(X•i, Y•j) ≥ r,
m∗•11(X•i, Y•j) +m∗•01(X•i, Y•j) ≥ r}; (3.2)

recall r ≡ dn•(1− ρ0)+e. The right-hand side above can be calculated from the

fact that

m∗•(X•i, Y•j) | observed data ∼ Multinomial

{
n•,

m̂•(X•i, Y•j)

n•

}
.

Now, with the controls, we derive the bootstrap distribution of δ∗, the boot-

strap counterparts of δ̂, conditional on the thresholds τ∗X and τ∗Y . In parallel to

their case counterparts, introduce

m̂◦st(x, y) = #{I(X◦i ≤ x) = s, I(Y◦i ≤ y) = t : i = 1, . . . , n◦},

for s, t = 0, 1, and subsequently m̂◦(x, y) and m∗◦(x, y). It is clear that

m∗◦(τ
∗
X , τ

∗
Y ) | observed data, τ∗X , τ

∗
Y ∼ Multinomial

{
n◦,

m̂◦(τ
∗
X , τ

∗
Y )

n◦

}
,

from which the bootstrap distribution of δ∗ given τ∗X and τ∗Y can be obtained.

For that purpose, δ∗ = {m∗◦10(τ∗X , τ
∗
Y )−m∗◦01(τ∗X , τ

∗
Y )}/n◦ as δ̂ = {m̂◦10(τ̂X , τ̂Y )−

m̂◦01(τ̂X , τ̂Y )}/n◦.
Combining the preceding results gives the bootstrap distribution of δ∗. The

bootstrap variance estimator of δ̂ is given by

σ̂2
δ = Var∗{E∗(δ∗ | τ∗X , τ∗Y )}+ E∗{Var∗(δ

∗ | τ∗X , τ∗Y )}

=
∑

(x,y)>∈Ω

[
{n−1
◦ m̂◦10(x, y)− n−1

◦ m̂◦01(x, y)− E∗δ∗}2

+n−2
◦ m̂◦10(x, y){1− n−1

◦ m̂◦10(x, y)}+ n−2
◦ m̂◦01(x, y){1− n−1

◦ m̂◦01(x, y)}

+2n−3
◦ m̂◦10(x, y)m̂◦01(x, y)

]
Pr∗(τ∗X = x, τ∗Y = y), (3.3)
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where E∗δ
∗ =

∑
(x,y)>∈Ω n

−1
◦ {m̂◦10(x, y)− m̂◦01(x, y)}Pr∗(τ∗X = x, τ∗Y = y). This

computation is obviously more intensive than that for the single-biomarker eval-

uation, but is still feasible.

Theorem 2. Suppose that at least one of the two correlations, between I(X• ≤
τ0X) and I(Y• ≤ τ0Y ) and between I(X◦ ≤ τ0X) and I(Y◦ ≤ τ0Y ), is less than

one. Under conditions (i), (ii), and (iii) in Theorem 1, as for each biomarker,

conditional on the data, n
1/2
◦ (δ∗− δ̂) converges in distribution to the same limit as

n
1/2
◦ (δ̂−δ0), which is normal with mean zero. If condition (iv) in Theorem 1 holds

additionally for each biomarker, n◦σ̂
2
δ converges in probability to the asymptotic

variance of n
1/2
◦ (δ̂ − δ0).

Asymptotic degeneracy of the joint distribution of φ̂X and φ̂Y is avoided with

the above correlation condition.

Using the bootstrap variance estimator and bootstrap distribution of δ̂, the

Wald and percentile confidence intervals can be constructed for δ0. For the score

confidence interval, we build upon that for the unpaired comparison, as given

in (3.1), by further accounting for the difference between σ̂2
δ and σ̂2

X + σ̂2
Y :[

δ : (δ̂ − δ)2 <
z2
α/2σ̂

2
δ

n◦(σ̂2
X + σ̂2

Y )

{
σ̂2
X

σ̂2
2X

(δ + φ̂Y )(1− δ − φ̂Y )

+
σ̂2
Y

σ̂2
2Y

(φ̂X − δ)(1− φ̂X + δ)

}]
. (3.4)

Like the previous ones, this score confidence interval has an explicit expression,

with the two bounds as solutions to a quadratic equation. We truncate the

interval by [−1, 1] to respect the parameter range.

4. Alternative Point Estimator for Improved Performance

Here, we focus on the single-biomarker evaluation, as in Section 2. The

estimated threshold is the dn•(1−ρ0)+eth order statistic of the cases. Because of

the discrete nature, intuitively, the bias of φ̂ would have an oscillating component

with variable n•. A more formal analysis, given in the Appendix, shows that

E(φ̂)− φ0 =
F ′◦(τ0)

F ′•(τ0)

(
dn•(1− ρ0)+e

n• + 1
− 1 + ρ0

)
+

{
F ′′◦ (τ0)

F ′•(τ0)2
− F ′◦(τ0)F ′′• (τ0)

F ′•(τ0)3

}
ρ0(1− ρ0)

2n•
+ o(n−1

• ), (4.1)
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provided F• is continuous and strictly increasing, and the second derivatives, F ′′•
and F ′′◦ , exist and are continuous in a neighborhood of τ0. This bias result is

sharper than that of Lloyd and Yong (1999, Thm. 2). While both bias terms

are of order n−1
• , the first one is the oscillating component. For example, with

fixed ρ0 = 0.95, the first term vanishes whenever 0.05(n•+1) is an integer, which

occurs at increments of 20.

This bias analysis suggests an alternative point estimator free of this oscil-

lating bias component. Write b·c as the floor function. Consider two threshold

estimates as the b(n•+1)(1−ρ0)cth and the d(n•+1)(1−ρ0)eth order statistics of

the case biomarkers. If the two order statistics are the same, they lead to the esti-

mated specificity φ̂, because b(n•+1)(1−ρ0)c ≤ dn•(1−ρ0)+e ≤ d(n•+1)(1−ρ0)e.
Otherwise, obtain the weighted average of the empirical specificities at these

two thresholds as φ̃, with weights d(n• + 1)(1 − ρ0)e − (n• + 1)(1 − ρ0) and

(n• + 1)(1− ρ0)− b(n• + 1)(1− ρ0)c, respectively. It is straightforward to show

E(φ̃)− φ0 =

{
F ′′◦ (τ0)

F ′•(τ0)2
− F ′◦(τ0)F ′′• (τ0)

F ′•(τ0)3

}
ρ0(1− ρ0)

2n•
+ o(n−1

• ). (4.2)

The two estimators, φ̂ and φ̃, are asymptotically equivalent to each other to the

first order, and coincide when (n• + 1)(1 − ρ0) is an integer. This construction

is reminiscent of the usual definition of the sample median, which is the average

of the two middle-order statistics in the case of an even sample size. Indeed,

it can be applied to the threshold estimation instead. However, we do not do

so because the resulting specificity estimator would no longer be invariant to a

monotone transformation of the biomarker.

By replacing φ̂ with φ̃, we obtain alternatives to the Wald and score con-

fidence intervals in Section 2.2. The variance components are kept the same,

although the exact bootstrap for φ̃ may be developed. This same approach also

leads to new Wald and score intervals for the two-biomarker comparison discussed

in Section 3.

Note that φ̃ still shares the same non-oscillating bias component of order n−1
•

with φ̂. It is possible to further develop an estimator that is unbiased to order

n−1
• using, for example, a delete-d jackknife. However, this bias reduction may

not reduce mean squared error. In fact, preliminary numerical studies did not

show a performance improvement in the resulting confidence intervals. Therefore,

we did not pursue this further.
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5. Simulations

Extensive simulations were conducted to evaluate the proposed methods un-

der practical sample sizes. Throughout, the controlled sensitivity level was set

to 95%, and the nominal level of the confidence intervals was set to 95%. Under

each setup, 1,000 replications were simulated. The setups with equal case and

control sizes are reported here. The others are included in the Supplementary

Material; the results were largely similar.

5.1. Single-biomarker evaluation

For comparison, we included several existing confidence intervals. In one,

we employed kernel smoothing for the density estimation to construct a Wald

interval. To preserve the parameter range, this interval for logit-transformed

specificity was first formulated and then back-transformed, as described in Pepe

(2003). We adopted the univariate adaptive kernel density estimation of Sil-

verman (1986), as implemented in function ajk() of R package Quantreg with

default tuning parameters. Unlike other confidence intervals being studied, this

kernel-smoothing approach is not invariant to a monotone transformation of the

biomarker. Therefore, we also applied the same method to the data after an

exponential transformation of the biomarker, because biomarkers are often non-

negative and have skewed distributions in practice. Among confidence intervals

based on the resampling bootstrap, Zhou and Qin (2005) reported that their

“BTII” interval performed best. This Zhou–Qin interval was implemented with

two resampling sizes, 200 and 500. A size of 200 is usually considered sufficient for

Wald confidence intervals (cf. Efron and Tibshirani (1994, Sec. 6.4)), although a

size of 500 was adopted in the simulations of Zhou and Qin (2005). In addition,

we constructed this interval based on our exact bootstrap, equivalent to the case

of an infinite resampling size.

Both the case and the control biomarkers followed normal distributions with

unit variance but different means, to achieve a specified specificity at the con-

trolled 95% sensitivity. In the simulations, the original Zhou–Qin interval showed

considerable variability from the resampling. Nevertheless, this variability was

not reflected in the coverage probability and averaged length. Thus, only the

exact bootstrap version is included in the reporting; the resampling variability

is shown in Section 6. Figure 1 shows the coverage probabilities and averaged

lengths of these confidence intervals over a grid of φ0 between 0.1 and 0.9, with

mesh size 0.005, in the setting of the case and control sample sizes (n•, n◦) being

(50,50). The kernel smoothing method could be sensitive to the scale on which a
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Figure 1. Simulation summaries of 95% confidence intervals for specificity at controlled
95% sensitivity in the single-biomarker evaluation, under fixed sizes n• = n◦ = 50 and
variable φ0. KS is the kernel smoothing-based Wald confidence intervals, as in Pepe
(2003), whereas KS-exp corresponds to the KS applied to exponentially transformed
biomarker data.

biomarker is measured. With both of the scales considered, these intervals tended

to be much wider and more conservative than the others. The exact bootstrap-

based Wald and percentile intervals had similar averaged length, shorter than

the kernel smoothing ones, but longer than the Zhou–Qin and score intervals.

However, the Wald intervals had considerable under-coverage, except at small

φ0, whereas the percentile interval had coverage always above the nominal level.

Overall, the Zhou–Qin and score intervals performed best, reaching the nominal

coverage level with the shortest averaged length over most of φ0. Between them,

the score intervals tended to have a shorter length in the middle value range of

φ0, whereas the Zhou–Qin interval was tighter at the extremes.

These confidence intervals were also evaluated with fixed φ0 = 0.2, 0.4, 0.6,

and 0.8, and variable sample size n• = n◦ from 20 to 200. The three best

performers, the two score intervals using φ̂ and φ̃ and the Zhou–Qin interval, are

reported in Figure 2. Except for the case of φ0 = 0.8, the Zhou–Qin interval had

an oscillating pattern in the coverage probability, apparently due to the bias of
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Figure 2. Simulation summaries of 95% confidence intervals for specificity at controlled
95% sensitivity in the single-biomarker evaluation, under fixed φ0 and variable sizes
n• = n◦. Score intervals, based on φ̂ and φ̃, and the exact bootstrap-based Zhou–Qin
are included, with the same labeling as in Figure 1.

the adopted point estimate φ̂, as discussed in Section 4, and considerable under-

coverage could arise at certain sample sizes. Not surprisingly, this occurred to

the score interval using φ̂ as well. In contrast, the coverage probability of the

score interval using φ̃ was much more stable, with little oscillation.

Many of these confidence intervals are closely related to those for binomial

proportion (Agresti and Coull (1998); Brown, Cai and DasGupta (2001)). Nev-

ertheless, the behavior patterns appeared to be different, at least when the case

and control sizes were comparable. Oscillation in coverage could arise, but mainly

because of the way that the threshold is estimated.

5.2. Two-biomarker comparison

We report unpaired comparison studies with n•X = n◦X = n•Y = n◦Y
and paired comparison studies with n• = n◦; the results with other sample size



206 HUANG ET AL.

setups were similar. Case and control sizes of 50 and 200 were considered. With

the unpaired comparison, each biomarker was simulated in the same fashion as

in Section 5.1. Under the paired comparison, (X◦, Y◦)
> followed the standard

bivariate normal distribution with a 0.5 correlation coefficient, and (X•, Y•)
>

had a location shift from that distribution to attain the specified specificity at

controlled 95% sensitivity for each biomarker.

Table 1 shows the coverage probabilities and averaged lengths of the exact

bootstrap-based Wald, percentile, and score confidence intervals for difference in

specificity at controlled 95% sensitivity. All confidence intervals were reasonably

close to the nominal level, but they all tended to be conservative when the sample

size was smaller. The two score intervals, without and with the oscillating bias-

correction for the point estimate, were similar, both being considerably shorter

than the other three, for both unpaired and paired comparisons alike.

The kernel smoothing-based Wald interval can be extended to the two-

biomarker comparison. However, it was not included in our study in light of its

less competitive performance in the single-biomarker evaluation. On the other

hand, the Zhou–Qin interval may be extended as well. We studied its exact boot-

strap version, although the results are not included in the table. The Zhou–Qin

interval also tended to be conservative. It was slightly shorter than the Wald and

percentile intervals, but much wider than the score ones.

6. Illustration with Aggressive Prostate Cancer Detection

This development was motivated by prostate cancer research to evaluate

biomarkers for the detection of aggressive prostate cancer, that is, a Gleason

score ≥ 7, among men undergoing their first-time biopsy. Two biomarkers of

interest are serum prostate health index (phi) and urine PCA3. A total of 512

participants enrolled from four urology groups affiliated with three academic med-

ical centers, consisting of 155 cases and 357 controls, per pathology testing on

prostate biopsies (Sanda et al. (2017)). They provided post-urinary specimens

after digital rectal examination and serum specimens, both before biopsy, and

had their phi and PCA3 assayed. The metric of specificity at 95% sensitivity was

adopted to evaluate the biomarker performance.

Figure 3 shows the analysis results. To reach 95% sensitivity, the estimated

phi and PCA3 thresholds were 22.4 and 7.6, respectively. Their corresponding

empirical specificities were 24.6% and 17.4%, which became 24.1% and 16.1%

upon the oscillating bias correction. For each biomarker, various 95% confidence

intervals for the specificity were constructed. The original Zhou–Qin interval, via
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Table 1. Simulation summary statistics of exact bootstrap-based 95% confidence intervals
for difference in specificity at controlled 95% sensitivity in the two-biomarker comparison.

unpaired biomarkers paired biomarkers
Wald Pct Score Wald Pct Score

φ0X δ0 size φ̂ φ̃ φ̂ φ̃ φ̂ φ̃ φ̂ φ̃
0.2 0.0 50 C 966 968 987 976 979 979 978 991 982 986

L 579 579 576 467 445 516 516 515 430 409
200 C 950 951 975 956 955 959 956 979 963 958

L 293 293 292 275 268 261 261 261 248 242
0.4 0.2 50 C 956 963 985 970 970 964 974 986 970 965

L 671 671 663 540 525 600 600 595 500 486
200 C 939 942 966 942 944 948 949 972 955 953

L 339 339 337 318 313 303 303 302 288 284
0.0 50 C 964 958 981 968 962 968 974 993 971 978

L 749 749 744 594 584 658 658 657 545 535
200 C 938 933 963 941 935 946 940 972 951 945

L 380 380 378 355 352 337 337 336 319 317
0.6 0.4 50 C 955 956 984 946 947 962 968 989 955 958

L 671 674 668 556 551 607 608 605 517 512
200 C 955 953 971 959 942 964 955 980 961 957

L 339 339 337 321 319 306 306 304 293 291
0.2 50 C 957 959 981 957 955 964 970 991 963 969

L 752 753 751 601 600 663 663 664 552 552
200 C 944 941 968 949 943 961 959 979 966 957

L 381 381 379 356 356 339 339 337 321 321
0.0 50 C 962 960 980 959 956 970 964 993 966 962

L 760 760 765 599 609 669 669 675 551 560
200 C 956 949 970 954 949 964 959 983 966 959

L 380 380 379 355 358 339 339 338 321 324
0.8 0.6 50 C 960 959 980 927 928 967 969 979 927 932

L 582 586 592 519 522 537 539 544 486 488
200 C 953 950 969 946 944 960 956 971 949 944

L 290 290 288 281 281 264 264 263 257 258
0.4 50 C 957 962 973 936 939 968 969 978 936 942

L 679 679 685 562 569 608 608 612 519 526
200 C 956 949 966 947 948 961 957 979 960 954

L 337 337 335 319 321 305 305 304 291 293
0.2 50 C 957 963 979 944 958 965 966 985 953 951

L 690 690 701 552 569 614 614 622 510 526
200 C 961 960 967 956 947 961 962 979 963 967

L 337 337 336 316 321 304 304 303 288 293
0.0 50 C 970 961 989 957 946 971 971 990 970 969

L 619 619 639 492 519 551 551 569 454 480
200 C 965 956 975 962 952 974 967 983 967 963

L 289 289 289 272 279 258 258 259 245 252
size = n•X = n◦X = n•Y = n◦Y for unpaired, and size = n• = n◦ for paired comparison.

C: coverage probability (×1000); L: average interval length (×1000). Pct: percentile interval.
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Figure 3. Analysis results of the prostate cancer study: point estimates and 95% confi-
dence intervals of specificity at 95% sensitivity for phi and PCA3 as diagnostic biomark-
ers for aggressive prostate cancer. KS and KS-log are the kernel smoothing-based Wald
confidence intervals, as applied to untransformed and logarithm-transformed biomarker
data, respectively. For the resampling Zhou–Qin (ZQ) confidence interval with a given
resampling size (rs), ranges of the left and right bounds over 100 runs are provided.

the resampling bootstrap, exhibited considerable variability under resampling

sizes of both 200 and 500. Other intervals also showed appreciable differences.

A paired comparison was made between phi and PCA3, and 95% confidence

intervals were constructed for their difference in specificity at controlled 95%

sensitivity. The score intervals were tighter than the Wald and percentile ones,

which is consistent with the simulation results.

We also estimated the areas under the ROC curves. They were 0.792 (95%

confidence interval: 0.750 – 0.835) and 0.696 (95% confidence interval: 0.647 –

0.744) for phi and PCA3, respectively. The difference was statistically significant,

with a p-value of 0.003. Although the area under the ROC curve is a commonly

used accuracy metric, its interpretation is different. As noted in Section 1, speci-

ficity at controlled 95% sensitivity is clinically more sensible in this application.
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7. Discussion

We have investigated interval estimation for specificity at a controlled sensi-

tivity level. Exact bootstrap is advocated over kernel smoothing and resampling

bootstrap for the inference. Furthermore, we have proposed novel score confi-

dence intervals, which showed competitive or superior performance in compari-

son with existing ones in the single-biomarker evaluation and the two-biomarker

comparison.

We have limited our scope to confidence intervals on the basis of the em-

pirical specificity at controlled sensitivity or its variants, for their robustness.

However, there is an extensive body of literature on kernel-based estimators of

the ROC curve, including Zou, Hall and Shapiro (1997) and Lloyd (1998). Lloyd

and Yong (1999) showed that such estimators have a smaller mean squared er-

ror asymptotically than that of the empirical estimator, given a proper choice

of the smoothing bandwidth. Hall, Hyndman and Fan (2004) investigated the

confidence intervals based on the kernel-smoothed ROC curve and kernel-based

variance estimation. Theoretically, this approach could lead to an accuracy gain.

Nevertheless, an appropriate selection of a multitude of smoothing parameters is

required, and further development would be needed for wide practical adoption.

Supplementary Material

Additional simulation results, with unequal case and control sizes, are avail-

able in the Supplementary Material. They are for both the single-biomarker

evaluation and the two-biomarker comparison.
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Appendix: Proofs and Other Technical Details

Proof of Lemma 1

Since nF ∗(x) ∼ Binomial{n, F̂ (x)} given the data,

Pr∗{F ∗(x) ≥ p} = Pr∗{nF ∗(x) ≥ dnpe}

=

n∑
k=dnpe

(
n

k

)
F̂ (x)k{1− F̂ (x)}n−k
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= dnpe
(

n

dnpe

)∫ F̂ (x)

0
ydnpe−1(1− y)n−dnpe dy

= Pr∗{B ≤ F̂ (x)},

where the third equality follows by induction from n downward as the value of

dnpe. By a basic result of quantile function (e.g., Serfling (1980, Lemma 1.1.4)),

F ∗(x) ≥ p if and only if F ∗−1(p) ≤ x, and B ≤ F̂ (x) if and only if F̂−1(B) ≤ x.

The assertion then follows.

Proof of Theorem 1

Write D[a, b] as the space of cadlag functions in [a, b] with some a and b such

that a < τ0 < b. Endow such a space with the supremum norm and their product

with the max supremum norm. In light of φ̂ = F̂◦[F̂
−1
• {(1 − ρ0)+}−], φ̂ is the

plug-in estimator in the map {F•, F◦} 7→ φ0 decomposed as

F• ∈ D[a, b] 7→ τ0 ∈ R

F◦ ∈ D[a, b]

 7→ φ0 ∈ R.

With F• being differentiable with positive derivative at τ0, F• 7→ τ0 is Hadamard-

differentiable at F• tangentially to the set of functions h ∈ D[a, b] that are contin-

uous at τ0, with derivative−h(τ0)/F ′•(τ0) (e.g., van der Vaart (1998, Lemma 21.3)).

Meanwhile, given F◦ being differentiable at τ0, it can be shown that (τ0, F◦) 7→ φ0

is Hadamard-differentiable at (τ0, F◦) tangentially to the set {k : ∈ R} × {l : ∈
D[a, b], continuous at τ0}, with derivative F ′◦(τ0)k + l(τ0). By the chain rule,

{F•, F◦} 7→ φ0 is then Hadamard-differentiable at {F•, F◦} tangentially to the set

{h : ∈ D[a, b], continuous at τ0} × {l : ∈ D[a, b], continuous at τ0}, with deriva-

tive −h(τ0)F ′◦(τ0)/F ′•(τ0) + l(τ0). As the Hadamard-differentiability implies con-

tinuity, φ̂ is strongly consistent for φ0 following the strong consistency of {F̂•, F̂◦}
for {F•, F◦} by the Glivenko–Cantelli theorem. With the weak convergence of

n
1/2
• (F̂• − F•) and n

1/2
◦ (F̂◦ − F◦), φ̂ is AN(φ0, σ

2) following the functional delta

method and the asymptotic normality of {F̂•(τ0), F̂◦(τ0)} by the central limit

theorem. Furthermore, by the results on empirical bootstrap and delta method

for bootstrap (van der Vaart (1998, Thm. 23.7 and 23.9)), the conditional distri-

bution of n
1/2
◦ (φ∗ − φ̂) given the observed data converges in distribution to the

same limit as n
1/2
◦ (φ̂− φ0).

To investigate the bootstrap variance estimator, F̂◦(τ
∗−) is an important

building block as shown in (2.4). Write φ(ρ) = F◦[F
−1
• {(1− ρ)+}−] and φ̂(ρ) =

F̂◦[F̂
−1
• {(1 − ρ)+}−]; of course, φ0 ≡ φ(ρ0) and φ̂ ≡ φ̂(ρ0). By Lemma 1,
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F̂◦(τ
∗−) is equivalent to φ̂(B•) in conditional distribution. As a fact, B• has the

same distribution as C1/(C1 + C2) with C1 ∼ χ2(2n• − 2r + 2), C2 ∼ χ2(2r),

and C1 ⊥⊥ C2. Therefore, B• converges almost surely to ρ0 by strong law of

large numbers and continuous mapping theorem, and n
1/2
• (B• − ρ0) converges in

distribution to N{0, ρ0(1− ρ0)} by the central limit theorem and delta method.

Furthermore, we give a bound on the tail probability of B• on the basis of the

sub-Gaussianity of the Beta distribution (Marchal and Arbel (2017)). Since both

B• and 1−B• are {4(n• + 2)}−1 sub-Gaussian,

Pr{|B• − E(B•)| > b} ≤ 2 exp{−2(n• + 2)b2} (A.1)

for any constant b.

The asymptotic normality result on φ̂ can be extended to the weak con-

vergence of φ̂(ρ) in a neighborhood of ρ around ρ0 under the additional condi-

tion (iv). The arguments are essentially the same, upon appropriate modifica-

tions of domain and range spaces of the functions involved and with extended re-

sult on Hadamard differentiability of the quantile function (van der Vaart (1998,

Lemma 21.4)). Given that n
1/2
◦ {φ̂(ρ) − φ(ρ)} converges weakly to a Gaussian

process in a neighborhood of ρ around ρ0, for any dn◦ ↓ 0, one can show

sup
|d|≤dn◦

|φ̂(ρ0 + d)− φ̂(ρ0)− φ(ρ0 + d) + φ(ρ0)| = op(n
−1/2
◦ );

see, for example, Huang (2017, Appendix). Meanwhile, the differentiability of

φ(ρ) at ρ0 implies

sup
|d|≤dn◦

d−1|φ(ρ0 + d)− φ(ρ0)− φ′(ρ0)d| = o(1),

where φ′(ρ0) = −F ′◦(τ0)/F ′•(τ0).

Let cn• = {log n•/(n• + 2)}1/2. Following (A.1), Pr{|B• − E(B•)| > cn•} ≤
2n−2
• . Given E(B•) − ρ0 = O(n−1

• ), |B• − ρ0| = |B• − E(B•)| + O(n−1
• ). Note

that E∗ takes expectation over B•. Then,

E∗{φ̂(B•)} = E∗[φ̂(B•)I{|B• − E(B•)| ≤ cn•}] +O(n−2
• )

= φ̂(ρ0) + φ′(ρ0)E[(B• − ρ0)I{|B• − E(B•)| ≤ cn•}]
+op{n−1/2

• + E|B• − ρ0|}
= φ̂+ op(n

−1/2
• ),

since E|B•−E(B•)| = O(n
−1/2
• ) following Var(B•) = O(n−1

• ) by Jensen’s inequal-
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ity. Similarly, E∗{φ̂(B•)
2} = φ̂2 + op(n

−1/2
• ). Therefore, n◦σ̂

2
2 = E∗[φ̂(B•){1 −

φ̂(B•)}] converges to n◦σ
2
2 in probability. By similar arguments,

σ̂2
1 = E∗[{φ̂(B•)− φ̂+ op(n

−1/2
• )}2]

= E[{φ′(ρ0)(B• − ρ0)}2I{|B• − E(B•)| ≤ cn•}] + o(n−1
• )

= σ2
1 + o(n−1

• ).

Then, n•σ̂
2
1 converges to n•σ

2
1 in probability. Thus, n◦σ̂

2 converges to n◦σ
2 in

probability as well.

Proof of Theorem 2

The arguments for the proof of Theorem 1 with a single biomarker extend in

a straightforward fashion to the two-biomarker problem, for the estimation with

correlated specificities at a common controlled sensitivity level. Subsequently,

the claims on the difference in specificity follow.

Bias analysis of φ̂ in Section 4

Following Remark 1, τ̂ has the same distribution as F−1
• (1 − B•). Thus,

E(φ̂) = E{E(φ̂ | τ̂)} = E{F◦(τ̂)} = E{φ(B•)}. In light of (A.1) and with

cn• = {log n•/(n• + 2)}1/2,

E{φ(B•)} = E{φ(B•)I(|B• − E(B•)| ≤ cn•)}+O(n−2
• )

= φ{E(B•)}+ φ′{E(B•)}E[{B• − E(B•)}I(|B• − E(B•)| ≤ cn•)]

+E

{[
φ′′{E(B•)}

2
+ o(1)

]
{B• − E(B•)}2I(|B• − E(B•)| ≤ cn•)

}
+O(n−2

• )

= φ{E(B•)}+

{
φ′′(ρ0)

2
+ o(1)

}
E[{B• − E(B•)}2] +O(n−2

• )

= φ0 + φ′(ρ0)

(
1− r

n• + 1
− ρ0

)
+ φ′′(ρ0)

ρ0(1− ρ0)

2n•
+ o(n−1

• ),

which gives equation (4.1). The second equation above is an application of Taylor

expansion, with the existence and continuity of φ′′(·) in a neighborhood of ρ0

under the assumptions given.
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