DATA INTEGRATION IN HIGH DIMENSION WITH MULTIPLE QUANTILES

Guorong Dai ${ }^{a}$, Ursula U. Müller ${ }^{b}$ and Raymond J. Carroll ${ }^{b}$
${ }^{a}$ Department of Statistics and Data Science, School of Management, Fudan University Shanghai 200433, China
${ }^{b}$ Department of Statistics, Texas A $\mathcal{G} M$ University
College Station, TX 77843, USA

Supplementary Material

S1 Lemmas

Lemma 1. Use the notation from Section 2 and write

$$
\widetilde{\beta}_{n k m}=n^{1 / 2}\left(X_{k \cdot a}^{\mathrm{T}} B_{n k m} X_{k \cdot a}\right)^{-1} X_{k \cdot a}^{\mathrm{T}} \psi_{n k m}(\varepsilon)
$$

for $k=1, \ldots, K$ and $m=1, \ldots, M$. Then, provided Assumptions 1, 2, 3 and 4 are satisfied, we have $\left\|\widetilde{\beta}_{n k m}\right\|=O_{p}\left\{\left(q_{n} \log n\right)^{1 / 2}\right\}$.

Proof of Lemma 1: We calculate

$$
\begin{align*}
\left\|\widetilde{\beta}_{n k m}\right\|^{2} & =n \psi_{n k m}(\varepsilon)^{\mathrm{T}} X_{k \cdot a}\left(X_{k \cdot a}^{\mathrm{T}} B_{n k m} X_{k \cdot a}\right)^{-2} X_{k \cdot a}^{\mathrm{T}} \psi_{n k m}(\varepsilon) \\
& \leq \lambda_{\min }\left(n^{-1} X_{k \cdot a}^{\mathrm{T}} B_{n k m} X_{k \cdot a}\right)^{-2} n^{-1} \psi_{n k m}(\varepsilon)^{\mathrm{T}} X_{k \cdot a} X_{k \cdot a}^{\mathrm{T}} \psi_{n k m}(\varepsilon) \\
& \leq C n^{-1} \psi_{n k m}(\varepsilon)^{\mathrm{T}} X_{k \cdot a} X_{k \cdot a}^{\mathrm{T}} \psi_{n k m}(\varepsilon) \\
& \leq C n^{-1} q_{n}\left(\max _{1 \leq j \leq q_{n}}\left|\psi_{n k m}(\varepsilon)^{\mathrm{T}} X_{k \cdot j}\right|\right)^{2} \\
& =C n^{-1} q_{n}\left(\max _{1 \leq j \leq q_{n}}\left|\sum_{i=1}^{n} \psi_{k m i}(\varepsilon) X_{k i j}\right|\right)^{2}, \tag{S1.1}
\end{align*}
$$

where the third step uses Assumptions 2 and 3. Since $\psi_{k m i}(\varepsilon) X_{k i j}$ has mean zero and is bounded by Assumption 1, Hoeffding's inequality gives

$$
\operatorname{pr}\left\{\left|\sum_{i=1}^{n} \psi_{k m i}(\varepsilon) X_{k i j}\right| \geq L_{n}(n \log n)^{1 / 2}\right\} \leq 2 \exp \left\{-C L_{n}^{2} \log n\right\}
$$

for any positive sequence $L_{n} \rightarrow \infty$. It follows that

$$
\begin{align*}
& \operatorname{pr}\left\{\max _{1 \leq j \leq q_{n}}\left|\sum_{i=1}^{n} \psi_{k m i}(\varepsilon) X_{k i j}\right| \geq L_{n}(n \log n)^{1 / 2}\right\} \\
& \quad \leq \sum_{j=1}^{q_{n}} \operatorname{pr}\left\{\left|\sum_{i=1}^{n} \psi_{k m i}(\varepsilon) X_{k i j}\right| \geq L_{n}(n \log n)^{1 / 2}\right\} \\
& \quad \leq 2 q_{n} \exp \left\{-C L_{n}^{2} \log n\right\}=2 q_{n} n^{-C L_{n}^{2}} \rightarrow 0, \tag{S1.2}
\end{align*}
$$

where the last step holds true because $q_{n}=o\left(n^{1 / 2}\right)$; see Assumption 4. Therefore

$$
\max _{1 \leq j \leq q_{n}}\left|\sum_{i=1}^{n} \psi_{k m i}(\varepsilon) X_{k i j}\right|=O_{p}\left\{(n \log n)^{1 / 2}\right\} .
$$

This combined with (S1.1) gives $\left\|\widetilde{\beta}_{n k m}\right\|^{2}=O_{p}\left(q_{n} \log n\right)$, which completes the proof.

Lemma 2. Set $\mathcal{M}_{1}^{*}=\left\{\mathcal{D}: \mathcal{D} \in \mathcal{M}, \mathcal{D}^{*} \subset \mathcal{D}\right\}$ and use the notation from Section 3. Let Assumptions 1, 3, 6 and 7 be satisfied. Let c_{4} be the constant from Assumption 7. Then we have, for $k=1, \ldots, K, m=1, \ldots, M$, and any positive sequence L_{n} that tends to infinity and satisfies $L_{n} \rightarrow \infty$ and $1 \leq L_{n}(\log n)^{1 / 2} \leq n^{1 / 10-c_{4} / 5}$,

$$
\begin{aligned}
& \lim _{L_{n} \rightarrow \infty} \operatorname{pr}\left\{\left|\sum_{i=1}^{n}\left\{\rho_{m}\left(Y_{k i}-X_{k i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k m \mathcal{D}}\right)-\rho_{m}\left(\varepsilon_{k m i}\right)\right\}\right|\right. \\
&\left.\leq L_{n}|\mathcal{D}| \log n, \text { for any } \mathcal{D} \in \mathcal{M}_{1}^{*}\right\}=1
\end{aligned}
$$

Proof of Lemma 2: Under Assumptions 1, 3, 6 and 7, Lemma A. 2 in the supplement to Lee et al. (2014) gives

$$
\begin{gather*}
\lim _{L \rightarrow \infty} \lim _{n \rightarrow \infty} \operatorname{pr}\left\{\left\|\widehat{\theta}_{k m \mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right\| \leq L n^{-1 / 2}\left(|\mathcal{D}| \log p_{n}\right)^{1 / 2},\right. \\
\text { for any } \left.\mathcal{D} \in \mathcal{M}_{1}^{*}\right\}=1 \tag{S1.3}
\end{gather*}
$$

Then, as $L_{n} \rightarrow \infty$,

$$
\begin{equation*}
\operatorname{pr}\left\{\left\|\widehat{\theta}_{k m \mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right\| \leq L_{n} n^{-1 / 2}\left(|\mathcal{D}| \log p_{n}\right)^{1 / 2}, \text { for any } \mathcal{D} \in \mathcal{M}_{1}^{*}\right\} \rightarrow 1 \tag{S1.4}
\end{equation*}
$$

Under Assumptions 1, 3, 6 and 7, and since $1 \leq L_{n}(\log n)^{1 / 2} \leq n^{1 / 10-c_{4} / 5}$, we can apply Lemma A. 1 in the supplement to Lee et al. (2014), which
gives

$$
\begin{align*}
&\left.\max _{\mathcal{D} \in \mathcal{M}_{1}^{*}}| | \mathcal{D}\right|^{-1}\left[\widehat{V}_{k m \mathcal{D}}-E\left(\widehat{V}_{k m \mathcal{D}} \mid X_{k \cdot \mathcal{D}}\right)\right. \\
&\left.+2 \sum_{i=1}^{n} X_{k i \mathcal{D}}^{\mathrm{T}}\left(\widehat{\theta}_{k m \mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right) \psi_{k m i}(\varepsilon)\right] \mid=o_{p}(1) \tag{S1.5}
\end{align*}
$$

with $\widehat{V}_{k m \mathcal{D}}=\sum_{i=1}^{n}\left\{\rho_{m}\left(Y_{k i}-X_{k i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k m \mathcal{D}}\right)-\rho_{m}\left(\varepsilon_{k m i}\right)\right\}$. Then we have, on an event that has probability tending to one,

$$
\begin{align*}
& \left|\sum_{i=1}^{n} X_{k i \mathcal{D}}^{\mathrm{T}}\left(\widehat{\theta}_{k m \mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right) \psi_{k m i}(\varepsilon)\right| \\
& \quad \leq\left\|\widehat{\theta}_{k m \mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right\|\left\|\sum_{i=1}^{n} X_{k i \mathcal{D}} \psi_{k m i}(\varepsilon)\right\| \\
& \quad \leq\left\|\widehat{\theta}_{k m \mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right\||\mathcal{D}|^{1 / 2} \max _{1 \leq j \leq p_{n}}\left|\sum_{i=1}^{n} X_{k i j} \psi_{k m i}(\varepsilon)\right| \\
& \quad \leq L_{n} n^{-1 / 2}\left(|\mathcal{D}| \log p_{n}\right)^{1 / 2}|\mathcal{D}|^{1 / 2} L_{n}(n \log n)^{1 / 2} \\
& \quad=L_{n}^{2}|\mathcal{D}| \log n \tag{S1.6}
\end{align*}
$$

for any $\mathcal{D} \in \mathcal{M}_{1}^{*}$. The last but one step uses (S1.2) and (S1.4). From Assumption 7 we have $p_{n}=O\left(n^{c_{3}}\right)$. Hence (S1.2) holds true when q_{n} is substituted by p_{n}. We also have, for any $\theta_{\mathcal{D}} \in \mathbb{R}^{|\mathcal{D}|}$ satisfying $\left\|\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right\| \leq$
$L_{n} n^{-1 / 2}\left(|\mathcal{D}| \log p_{n}\right)^{1 / 2}$,

$$
\begin{align*}
& \left|\sum_{i=1}^{n} E\left\{\rho_{m}\left(Y_{k i}-X_{k i \mathcal{D}}^{\mathrm{T}} \theta_{\mathcal{D}}\right)-\rho_{m}\left(\varepsilon_{k m i}\right) \mid X_{k i}\right\}\right| \\
& \quad=\sum_{i=1}^{n} E\left\{\int_{0}^{X_{k i \mathcal{D}}^{\mathrm{T}}\left(\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right)} I\left(\varepsilon_{k m i} \leq s\right)-I\left(\varepsilon_{k m i} \leq 0\right) d s \mid X_{k i}\right\} \\
& \quad=\sum_{i=1}^{n} \int_{0}^{X_{k i \mathcal{D}}^{\mathrm{T}}\left(\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right)} F_{k m}\left(s \mid X_{k i}\right)-F_{k m}\left(0 \mid X_{k i}\right) d s \\
& \quad=\sum_{i=1}^{n} \int_{0}^{X_{k i \mathcal{D}}^{\mathrm{T}}\left(\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right)} s f_{k m}\left(\bar{s} \mid X_{k i}\right) d s \\
& \quad \leq C\left(\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right)^{\mathrm{T}} \sum_{i=1}^{n}\left(X_{k i \mathcal{D}} X_{k i \mathcal{D}}^{\mathrm{T}}\right)\left(\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right) \\
& \quad \leq C n \lambda_{\max }\left(n^{-1} X_{k \cdot \mathcal{D}}^{\mathrm{T}} X_{k \cdot \mathcal{D}}\right)\left\|\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right\|^{2} \\
& \quad \leq C n\left\|\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right\|^{2} \leq C L_{n}^{2}|\mathcal{D}| \log p_{n} . \tag{S1.7}
\end{align*}
$$

The first step in the above results is from Knight's identity (Knight, 1998).
In the second step, $F_{k m}\left(\cdot \mid X_{k}\right)$ is the conditional distribution function of $\varepsilon_{k m}$ given X_{k}. The third step uses a Taylor expansion with some \bar{s} between 0 and $X_{k i \mathcal{D}}^{\mathrm{T}}\left(\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right)$. The fourth step holds true because of Assumption 3 and the fact that

$$
\begin{aligned}
\sup _{1 \leq i \leq n}\left|X_{k i \mathcal{D}}^{\mathrm{T}}\left(\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right)\right| & \leq \sup _{1 \leq i \leq n}\left\|X_{k i \mathcal{D}}\right\|\left\|\theta_{\mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right\| \\
& \leq C L_{n} d_{n} n^{-1 / 2}(\log n)^{1 / 2} \\
& \leq C n^{4 c_{4} / 5-2 / 5}(\log n)^{1 / 2} \rightarrow 0
\end{aligned}
$$

from Assumptions 1 and 7. Combining (S1.4), (S1.5), (S1.6) and (S1.7)
yields that, for any $\mathcal{D} \in \mathcal{M}_{1}^{*}$,

$$
\begin{aligned}
\widehat{V}_{k m \mathcal{D}} & \leq\left|E\left(\widehat{V}_{k m \mathcal{D}} \mid X_{k \cdot \mathcal{D}}\right)\right|+2\left|\sum_{i=1}^{n} X_{k i \mathcal{D}}^{\mathrm{T}}\left(\widehat{\theta}_{k m \mathcal{D}}-\theta_{k m \mathcal{D}}^{*}\right) \psi_{k m i}(\varepsilon)\right|+|\mathcal{D}| o_{p}(1) \\
& \leq C L_{n}^{2}|\mathcal{D}| \log p_{n}+L_{n}^{2}|\mathcal{D}| \log n+|\mathcal{D}| o_{p}(1) \leq C L_{n}^{2}|\mathcal{D}| \log n
\end{aligned}
$$

with probability approaching one, where the $o_{p}(1)$ term comes from (S1.5). This finishes the proof.

S2 Proofs of the Theorems

Proof of Theorem 1: Under Assumptions 1-4, Lemma 6 of Sherwood and
Wang (2016) gives

$$
\begin{equation*}
\left\|n^{1 / 2}\left(\widehat{\theta}_{k m}-\theta_{k m}^{*}\right)-\widetilde{\beta}_{n k m}\right\|=o_{p}(1) \tag{S2.1}
\end{equation*}
$$

for every k and m, with $\widetilde{\beta}_{n k m}$ defined in Lemma 1. Therefore

$$
\begin{equation*}
\left\|\widehat{\theta}_{k m}-\theta_{k m}^{*}\right\|=O_{p}\left\{n^{-1 / 2}\left(q_{n} \log n\right)^{1 / 2}\right\} . \tag{S2.2}
\end{equation*}
$$

It follows that for every k and m,

$$
\begin{aligned}
\max _{1 \leq j \leq q_{n}}\left|\widehat{\theta}_{k m j}-\theta_{k m j}^{*}\right| \leq\left\|\widehat{\theta}_{k}-\theta_{k}^{*}\right\| & =O_{p}\left\{n^{-1 / 2}\left(q_{n} \log n\right)^{1 / 2}\right\} \\
& =O_{p}\left\{n^{\left(c_{1}-1\right) / 2}(\log n)^{1 / 2}\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\max _{1 \leq j \leq q_{n}}\left\|\widehat{\theta}^{(j)}-\theta^{*(j)}\right\|_{1} & \leq K M \max _{1 \leq k \leq K} \max _{1 \leq m \leq M} \max _{1 \leq j \leq q_{n}}\left|\widehat{\theta}_{k m j}-\theta_{k m j}^{*}\right| \\
& =O_{p}\left\{n^{\left(c_{1}-1\right) / 2}(\log n)^{1 / 2}\right\},
\end{aligned}
$$

which, combined with Assumption 5, yields

$$
\begin{aligned}
\min _{1 \leq j \leq q_{n}}\left\|\widehat{\theta}^{(j)}\right\|_{1} & \geq \min _{1 \leq j \leq q_{n}}\left\|\theta^{*(j)}\right\|_{1}-\max _{1 \leq j \leq q_{n}}\left\|\widehat{\theta}^{(j)}-\theta^{*(j)}\right\|_{1} \\
& \geq C n^{\left(c_{2}-1\right) / 2}-\left\{n^{\left(c_{1}-1\right) / 2}(\log n)^{1 / 2}\right\}=O_{p}\left\{n^{\left(c_{2}-1\right) / 2}\right\} .
\end{aligned}
$$

We assume $\lambda_{n}=o\left\{n^{\left(c_{2}-1\right) / 2}\right\}$, which implies

$$
\begin{equation*}
\operatorname{pr}\left\{\min _{1 \leq j \leq q_{n}}\left\|\widehat{\theta}^{(j)}\right\|_{1} \geq a \lambda_{n}\right\} \rightarrow 1 . \tag{S2.3}
\end{equation*}
$$

The subderivative of the objective function (2.2) with respect to $\theta^{(j)}$ is

$$
\frac{\partial \Gamma_{\lambda_{n}}(\theta)}{\partial \theta^{(j)}}= \begin{cases}\frac{\partial \ell_{n}(\theta)}{\partial \theta^{(j)}}+\lambda_{n} \mathbb{S}\left(\theta^{(j)}\right), & \left\|\theta^{(j)}\right\|_{1} \leq \lambda_{n} \tag{S2.4}\\ \frac{\partial \ell_{n}(\theta)}{\partial \theta^{(j)}}+\mathbb{S}\left(\theta^{(j)}\right) \frac{\left(a \lambda_{n}-\left\|\theta^{(j)}\right\|_{1}\right)}{a-1}, & \lambda_{n}<\left\|\theta^{(j)}\right\|_{1}<a \lambda_{n} \\ \frac{\partial \ell_{n}(\theta)}{\partial \theta^{(j)}}, & a \lambda_{n} \leq\left\|\theta^{(j)}\right\|_{1}\end{cases}
$$

with

$$
\mathbb{S}\left(\theta^{(j)}\right)=\left(\operatorname{Sign}\left(\theta_{11 j}\right), \ldots, \operatorname{Sign}\left(\theta_{1 M j}\right), \ldots, \operatorname{Sign}\left(\theta_{K 1 j}\right), \ldots, \operatorname{Sign}\left(\theta_{K M j}\right)\right)^{\mathrm{T}}
$$

where $\operatorname{Sign}(x)=x /|x|$ for $x \neq 0$ and $\operatorname{Sign}(0)=[-1,1]$. Thus (S2.3) implies that, with probability tending to one, $\widehat{\theta}^{(j)}\left(1 \leq j \leq q_{n}\right)$ belongs to the third case in (S2.4). Combined with the fact that $\widehat{\theta}$ is a local minimizer of $\ell_{n}(\theta)$,
it gives that

$$
\begin{equation*}
0 \in \partial \ell(\theta) /\left.\partial \theta^{(j)}\right|_{\theta=\widehat{\theta}}=\partial \Gamma_{\lambda_{n}}(\theta) /\left.\partial \theta^{(j)}\right|_{\theta=\widehat{\theta}} . \tag{S2.5}
\end{equation*}
$$

Under Assumptions 1-5, the equation (3.5) in Lemma 1 of Sherwood and Wang (2016) yields that for every k and m,

$$
\begin{equation*}
\operatorname{pr}\left\{\max _{q_{n}<j \leq p_{n}}\left|\partial \ell(\theta) / \partial \theta_{k m j}\right|_{\theta=\widehat{\theta}} \mid>\lambda_{n}\right\} \rightarrow 0 \tag{S2.6}
\end{equation*}
$$

Since $\left\|\widehat{\theta}^{(j)}\right\|_{1}=0$ for $q_{n}<j \leq p_{n}$, which belongs to the first case in (S2.4), we have

$$
\begin{equation*}
\partial \Gamma_{\lambda_{n}}(\theta) /\left.\partial \theta^{(j)}\right|_{\theta=\widehat{\theta}}=\partial \ell(\theta) /\left.\partial \theta^{(j)}\right|_{\theta=\widehat{\theta}}+\lambda_{n} \mathbb{S}(\mathbf{0}) \tag{S2.7}
\end{equation*}
$$

Since $\mathbb{S}(\mathbf{0})=\left\{\left(u_{1}, \ldots, u_{K}\right):\left|u_{k}\right| \leq 1, k=1 \ldots, K\right\},(\mathrm{S} 2.6)$ and (S2.7) imply that for $q_{n}<j \leq p_{n}$,

$$
\begin{equation*}
\operatorname{pr}\left\{0 \in \partial \Gamma_{\lambda_{n}}(\theta) /\left.\partial \theta^{(j)}\right|_{\theta=\hat{\theta}}\right\} \rightarrow 1 \tag{S2.8}
\end{equation*}
$$

Combining (S2.5) and (S2.8) completes the proof.

Proof of Theorem 2: Set $\widehat{\beta}_{n}=n^{1 / 2}\left(\widehat{\theta}_{a}-\theta_{a}^{*}\right), \widetilde{\beta}_{n}=n^{-1 / 2} R_{n}^{-1} X_{a}^{\mathrm{T}} \psi_{n}(\varepsilon)$ and write $A_{n} \Sigma_{n}^{-1 / 2} \widetilde{\beta}_{n}=\sum_{i=1}^{n} D_{n i}$, where $D_{n i}=n^{-1 / 2} A_{n} \Sigma_{n}^{-1 / 2} R_{n}^{-1} \delta_{n i}, \delta_{n i}=$ $\left\{\psi_{1 \cdot i}(\varepsilon)^{\mathrm{T}} \otimes X_{1 i a}^{\mathrm{T}}, \ldots, \psi_{K \cdot i}(\varepsilon)^{\mathrm{T}} \otimes X_{\text {Kia }}^{\mathrm{T}}\right\}^{\mathrm{T}}$ and, for every k and $i, \psi_{k \cdot i}(\varepsilon)=$
$\left\{\psi_{k 1 i}(\varepsilon), \ldots, \psi_{k M i}(\varepsilon)\right\}^{\mathrm{T}}$. We have $E\left(D_{n i}\right)=\mathbf{0}$ since $E\left(\delta_{n i}\right)=\mathbf{0}$ and

$$
\begin{aligned}
\sum_{i=1}^{n} E\left(D_{n i} D_{n i}^{\mathrm{T}}\right) & =n^{-1} E\left[A_{n} \Sigma_{n}^{-1 / 2} R_{n}^{-1}\left\{\sum_{i=1}^{n} E\left(\delta_{n i} \delta_{n i}^{\mathrm{T}} \mid \mathcal{X}\right)\right\} R_{n}^{-1} \Sigma_{n}^{-1 / 2} A_{n}^{\mathrm{T}}\right] \\
& =E\left\{A_{n} \Sigma_{n}^{-1 / 2} R_{n}^{-1}\left(n^{-1} X_{a}^{\mathrm{T}} H_{n} X_{a}\right) R_{n}^{-1} \Sigma_{n}^{-1 / 2} A_{n}^{\mathrm{T}}\right\} \\
& =E\left(A_{n} \Sigma_{n}^{-1 / 2} R_{n}^{-1} S_{n} R_{n}^{-1} \Sigma_{n}^{-1 / 2} A_{n}^{\mathrm{T}}\right)=A_{n} A_{n}^{\mathrm{T}} \rightarrow G
\end{aligned}
$$

For any $\eta>0$ we obtain

$$
\begin{aligned}
& \sum_{i=1}^{n} E\left\{\left\|D_{n i}\right\|^{2} I\left(\left\|D_{n i}\right\|>\eta\right)\right\} \\
& \leq \eta^{-2} \sum_{i=1}^{n} E\left(\left\|D_{n i}\right\|^{4}\right) \\
& =(n \eta)^{-2} \sum_{i=1}^{n} E\left\{\left(\delta_{n i}^{\mathrm{T}} R_{n}^{-1} \Sigma_{n}^{-1 / 2} A_{n}^{\mathrm{T}} A_{n} \Sigma_{n}^{-1 / 2} R_{n}^{-1} \delta_{n i}\right)^{2}\right\} \\
& \leq(n \eta)^{-2} \lambda_{\max }^{2}\left(A_{n}^{\mathrm{T}} A_{n}\right) \sum_{i=1}^{n} E\left\{\left(\delta_{n i}^{\mathrm{T}} R_{n}^{-1} \Sigma_{n}^{-1} R_{n}^{-1} \delta_{n i}\right)^{2}\right\} \\
& \leq C n^{-2} \sum_{i=1}^{n} E\left\{\left(\delta_{n i}^{\mathrm{T}} S_{n}^{-1} \delta_{n i}\right)^{2}\right\} \\
& \leq C n^{-2} \sum_{i=1}^{n} E\left\{\lambda_{\min }\left(S_{n}\right)^{-2}\left\|\delta_{n i}\right\|^{4}\right\} \\
& \leq C n^{-2} \sum_{i=1}^{n} E\left(\left\|\delta_{n i}\right\|^{4}\right) \\
& =C n^{-2} \sum_{i=1}^{n} E\left\{\left(\sum_{k=1}^{K} \sum_{m=1}^{M} \psi_{k m i}(\varepsilon)^{2}\left\|X_{k i a}\right\|^{2}\right)^{2}\right\} \\
& \leq C n^{-2} \sum_{i=1}^{n} E\left\{\left(\max _{1 \leq k \leq K}\left\|X_{k i a}\right\|\right)^{4}\right\} \\
& \leq C n^{-1} E\left\{\left(\max _{1 \leq i \leq n} \max _{1 \leq k \leq K}\left\|X_{k i a}\right\|\right)^{4}\right\} \\
& \leq C n^{-1} q_{n}^{2}=o(1)
\end{aligned}
$$

with $\lambda_{\max }(\cdot)$ being the largest eigenvalue of a square matrix. The fourth step in the above display results from the fact that $\lambda_{\max }\left(A_{n}^{\mathrm{T}} A_{n}\right) \rightarrow C$. The
sixth step uses the condition that $\lambda_{\min }\left(S_{n}\right)$ is uniformly bounded away from zero. The last but one step holds true because of Assumption 1, and the last step uses Assumption 4. This shows that the Lindeberg-Feller condition for the central limit theorem is satisfied, i.e. we have

$$
\begin{equation*}
A_{n} \Sigma_{n}^{-1 / 2} \widetilde{\beta}_{n}=\sum_{i=1}^{n} D_{n i} \rightarrow N(\mathbf{0}, G) \text { in distribution }(n \rightarrow \infty) \tag{S2.9}
\end{equation*}
$$

It is obvious that $\widetilde{\beta}_{n}=\left(\widetilde{\beta}_{n 11}^{\mathrm{T}}, \ldots, \widetilde{\beta}_{n 1 M}^{\mathrm{T}}, \ldots, \widetilde{\beta}_{n K 1}^{\mathrm{T}}, \ldots, \widetilde{\beta}_{n K M}^{\mathrm{T}}\right)^{\mathrm{T}}$ with $\widetilde{\beta}_{n k m}$ defined in Lemma 1. Hence, using (S2.1), we have

$$
\left\|\widehat{\beta}_{n}-\widetilde{\beta}_{n}\right\| \leq \sum_{k=1}^{K} \sum_{m=1}^{M}\left\|\widehat{\beta}_{n k m}-\widetilde{\beta}_{n k m}\right\|=o_{p}(1)
$$

It follows that

$$
\begin{aligned}
\left\|A_{n} \Sigma_{n}^{-1 / 2}\left(\widehat{\beta}_{n}-\widetilde{\beta}_{n}\right)\right\|^{2} & =\left(\widehat{\beta}_{n}-\widetilde{\beta}_{n}\right)^{\mathrm{T}} \Sigma_{n}^{-1 / 2} A_{n} A_{n}^{\mathrm{T}} \Sigma_{n}^{-1 / 2}\left(\widehat{\beta}_{n}-\widetilde{\beta}_{n}\right) \\
& \leq \lambda_{\max }\left(A_{n} A_{n}^{\mathrm{T}}\right) \lambda_{\min }\left(\Sigma_{n}\right)^{-1}\left\|\widehat{\beta}_{n}-\widetilde{\beta}_{n}\right\|^{2}=o_{p}(1)
\end{aligned}
$$

In the last step we used $\lambda_{\max }\left(A_{n} A_{n}^{\mathrm{T}}\right) \rightarrow C$, Assumption 2 and the condition that $\lambda_{\min }\left(S_{n}\right)$ is uniformly bounded away from zero. This combined with (S2.9) yields

$$
n^{1 / 2} A_{n} \Sigma_{n}^{-1 / 2}\left(\widehat{\theta}_{a}-\theta_{a}^{*}\right)=A_{n} \Sigma_{n}^{-1 / 2} \widehat{\beta}_{n} \rightarrow N(\mathbf{0}, G) \text { in distribution }(n \rightarrow \infty)
$$

Proof of Theorem 3: Consider the set of overfitted models $\mathcal{M}_{1}=\{\mathcal{D} \in$ $\left.\mathcal{M}: \mathcal{D}^{*} \subset \mathcal{D}, \mathcal{D} \neq \mathcal{D}^{*}\right\}$ and the set of underfitted models $\mathcal{M}_{2}=\{\mathcal{D} \in \mathcal{M}:$ $\left.\mathcal{D}^{*} \not \subset \mathcal{D}\right\}$. Since $\mathcal{M}_{1} \cup \mathcal{M}_{2}=\mathcal{M} \backslash\left\{\mathcal{D}^{*}\right\}$ it suffices to show

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \operatorname{pr}\left\{\min _{\mathcal{D} \in \mathcal{M}_{1}} \operatorname{MQBIC}(\mathcal{D})>\operatorname{MQBIC}\left(\mathcal{D}^{*}\right)\right\}=1, \tag{S2.10}\\
& \lim _{n \rightarrow \infty} \operatorname{pr}\left\{\min _{\mathcal{D} \in \mathcal{M}_{2}} \operatorname{MQBIC}(\mathcal{D})>\operatorname{MQBIC}\left(\mathcal{D}^{*}\right)\right\}=1 \tag{S2.11}
\end{align*}
$$

We first prove (S2.10). Write $\widehat{W}_{\mathcal{D}}=n^{-1} \sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{i=1}^{n} \rho_{m}\left(Y_{k i}-\right.$ $\left.X_{k i D}^{\mathrm{T}} \widehat{\theta}_{k m \mathcal{D}}\right)$ and $W^{*}=n^{-1} \sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{i=1}^{n} \rho_{m}\left(\varepsilon_{k m i}\right)$. From Lemma 2 we know that we can choose some sequence L_{n} that does not depend on \mathcal{D} and satisfies $L_{n} \rightarrow \infty, L_{n}=o\left(T_{n}\right)$ and $n^{-1} L_{n} d_{n} \log n \rightarrow 0$ such that for $k=1, \ldots, K$ and $m=1, \ldots, M$,

$$
\begin{align*}
& \operatorname{pr}\left\{\left|\sum_{i=1}^{n}\left\{\rho_{m}\left(Y_{i}-X_{k i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k m \mathcal{D}}\right)-\rho_{m}\left(\varepsilon_{k m i}\right)\right\}\right|\right. \\
& \left.\quad \leq(M K)^{-1} L_{n}|\mathcal{D}| \log n, \text { for any } \mathcal{D} \in \mathcal{M}_{1}^{*}\right\} \rightarrow 1 . \tag{S2.12}
\end{align*}
$$

Since

$$
\begin{aligned}
& \left|\widehat{W}_{\mathcal{D}}-W^{*}\right| \\
& \leq n^{-1} \sum_{k=1}^{K} \sum_{m=1}^{M}\left|\sum_{i=1}^{n}\left\{\rho_{m}\left(Y_{i}-X_{k i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k m \mathcal{D}}\right)-\rho_{m}\left(Y_{i}-X_{k i \mathcal{D}^{*}}^{\mathrm{T}} \theta_{k m \mathcal{D}^{*}}^{*}\right)\right\}\right|,
\end{aligned}
$$

we have

$$
\operatorname{pr}\left\{\left|\widehat{W}_{\mathcal{D}}-W^{*}\right| \leq n^{-1} L_{n}|\mathcal{D}| \log n, \text { for any } \mathcal{D} \in \mathcal{M}_{1}^{*}\right\} \rightarrow 1
$$

It follows that

$$
\begin{align*}
& \operatorname{pr}\left\{\left|\widehat{W}_{\mathcal{D}}-\widehat{W}_{\mathcal{D}^{*}}\right| \leq n^{-1} L_{n}\left(|\mathcal{D}|+\left|\mathcal{D}^{*}\right|\right) \log n,\right. \\
& \left.\quad \text { for any } \mathcal{D} \in \mathcal{M}_{1}^{*}\right\} \rightarrow 1 \tag{S2.13}
\end{align*}
$$

and that

$$
\begin{equation*}
\operatorname{pr}\left\{\widehat{W}_{\mathcal{D}^{*}} \geq C, \text { for any } \mathcal{D} \in \mathcal{M}_{1}^{*}\right\} \rightarrow 1 \tag{S2.14}
\end{equation*}
$$

Here we used Assumption 9 and the fact that $n^{-1} L_{n}\left|\mathcal{D}^{*}\right| \log n \rightarrow 0$ (Assumption 7). Therefore, with probability tending to one,

$$
\begin{align*}
& \min _{\mathcal{D} \in \mathcal{M}_{1}} \operatorname{MQBIC}(\mathcal{D})-\operatorname{MQBIC}\left(\mathcal{D}^{*}\right) \\
= & \min _{\mathcal{D}_{\in \mathcal{M}_{1}}}\left[\log \left\{1+\widehat{W}_{\mathcal{D}^{*}}^{-1}\left(\widehat{W}_{\mathcal{D}}-\widehat{W}_{\mathcal{D}^{*}}\right)\right\}+(2 n)^{-1} T_{n}\left(|\mathcal{D}|-\left|\mathcal{D}^{*}\right|\right) \log n\right] \\
\geq & \min _{\mathcal{D} \in \mathcal{M}_{1}}\left\{-2 \widehat{W}_{\mathcal{D}^{*}}^{-1}\left|\widehat{W}_{\mathcal{D}}-\widehat{W}_{\mathcal{D}^{*}}\right|+(2 n)^{-1} T_{n}\left(|\mathcal{D}|-\left|\mathcal{D}^{*}\right|\right) \log n\right\} \\
\geq & \min _{\mathcal{D}_{\mathcal{M}} \mathcal{M}_{1}}\left\{-C n^{-1} L_{n}\left(|\mathcal{D}|+\left|\mathcal{D}^{*}\right|\right) \log n+\right. \\
& \left.(2 n)^{-1} T_{n}\left(|\mathcal{D}|-\left|\mathcal{D}^{*}\right|\right) \log n\right\} . \tag{S2.15}
\end{align*}
$$

The first inequality in the above derivation comes from the fact that $\log (1+$ $x) \geq-2|x|$ for any $|x| \in(-1 / 2,1 / 2)$, from equation (S2.13) combined with $n^{-1} L_{n} d_{n} \log n \rightarrow 0$, and from (S2.14). The last step holds true because of (S2.13) and (S2.14). Then (S2.15) implies (S2.10) because $L_{n}=o\left(T_{n}\right)$ and $|\mathcal{D}|>\left|\mathcal{D}^{*}\right|$.

To prove equation (S2.11) we introduce $\mathcal{D}^{\prime}=\mathcal{D} \cup \mathcal{D}^{*}$ for any $\mathcal{D} \in$
\mathcal{M}_{2}. Since q is fixed by Assumption 7, there is a parameter with minimum absolute value $\nu>0$, i.e. $\nu=\min _{1 \leq k \leq K} \min _{1 \leq m \leq M} \min _{j \in \mathcal{D}^{*}}\left|\theta_{k m j}^{*}\right|>0$. Since (S1.3) still holds for any set in $\mathcal{M}_{2}^{*}=\left\{\mathcal{D} \subset\left\{1, \ldots, p_{n}\right\}:|\mathcal{D}| \leq\right.$ $\left.2 d_{n}, \mathcal{D}^{*} \subset \mathcal{D}\right\}$, we have

$$
\begin{equation*}
\operatorname{pr}\left\{\max _{\mathcal{D} \in \mathcal{M}_{2}}\left\|\widehat{\theta}_{k m \mathcal{D}^{\prime}}-\theta_{k m \mathcal{D}^{\prime}}^{*}\right\| \leq \nu\right\} \rightarrow 1 \tag{S2.16}
\end{equation*}
$$

For $k=1, \ldots, K, m=1, \ldots, M$ and any $\mathcal{D} \in \mathcal{M}_{2}$, let $\widetilde{\theta}_{k m \mathcal{D}^{\prime}}$ be a $\left|\mathcal{D}^{\prime}\right| \times 1$ vector, i.e. the dimension of $\widetilde{\theta}_{k m \mathcal{D}^{\prime}}$ is given by the number of indices in the set $\mathcal{D}^{\prime}=\mathcal{D} \cup \mathcal{D}^{*}$. We define it as an extended version of $\widehat{\theta}_{k m \mathcal{D}}$: the components of $\widetilde{\theta}_{k m \mathcal{D}^{\prime}}$ that correspond to the index set \mathcal{D} coincide with the components of $\widehat{\theta}_{k m \mathcal{D}}$; the remaining components are filled with zeros. For example, if $\mathcal{D}=\{1,3\}, \mathcal{D}^{*}=\{1,2\}$ and $\widehat{\theta}_{k m \mathcal{D}}=\{1.4,0.7\}$, then $\mathcal{D}^{\prime}=\{1,2,3\},\left|\mathcal{D}^{\prime}\right|=3$ and $\widetilde{\theta}_{k m \mathcal{D}^{\prime}}=(1.4,0,0.7)^{\mathrm{T}}$. Since $\mathcal{D}^{*} \not \subset \mathcal{D}$, there exist some k_{0} and m_{0} such that $\left\|\widetilde{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right\| \geq \nu$. Combined with (S2.16) and since the check function is convex, this implies that there exists a $\left|\mathcal{D}^{\prime}\right| \times 1$ vector $\bar{\theta}_{\mathcal{D}^{\prime}}$ such that $\left\|\bar{\theta}_{\mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right\|=\nu$ and

$$
\begin{aligned}
\sum_{i=1}^{n} \rho_{m_{0}}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}} \bar{\theta}_{\mathcal{D}^{\prime}}\right) & \leq \sum_{i=1}^{n} \rho_{m_{0}}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}} \widetilde{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}\right) \\
& =\sum_{i=1}^{n} \rho_{m_{0}}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k_{0} m_{0} \mathcal{D}}\right)
\end{aligned}
$$

Now set $G_{\mathcal{D}^{\prime}}(\omega)=n^{-1} \sum_{i=1}^{n}\left\{\rho_{m_{0}}\left(\varepsilon_{k_{0} m_{0} i}-X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}} \omega\right)-\rho_{m_{0}}\left(\varepsilon_{k_{0} m_{0} i}\right)\right\}$ and
$B_{\nu}\left(\mathcal{D}^{\prime}\right)=\left\{\omega \in \mathbb{R}^{\left|\mathcal{D}^{\prime}\right|}:\|\omega\|=\nu\right\}$. Then we have, for any $\mathcal{D} \in \mathcal{M}_{2}$,

$$
\begin{align*}
& n^{-1} \sum_{i=1}^{n}\left\{\rho_{m_{0}}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k_{0} m_{0} \mathcal{D}}\right)-\rho_{m_{0}}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}} \widehat{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}\right)\right\} \\
& \geq n^{-1} \sum_{i=1}^{n}\left\{\rho_{m_{0}}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}} \bar{\theta}_{\mathcal{D}^{\prime}}\right)-\rho_{m_{0}}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}} \widehat{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}\right)\right\} \\
& =G_{\mathcal{D}^{\prime}}\left(\bar{\theta}_{\mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right)-G_{\mathcal{D}^{\prime}}\left(\widehat{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right)+ \\
& \quad E\left\{G_{\mathcal{D}^{\prime}}\left(\bar{\theta}_{\mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right) \mid X_{k_{0} \cdot \mathcal{D}^{\prime}}\right\}-E\left\{G_{\mathcal{D}^{\prime}}\left(\bar{\theta}_{\mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right) \mid X_{k_{0} \cdot \mathcal{D}^{\prime}}\right\} \\
& \geq \\
& \quad \inf _{\omega \in B_{\nu}\left(\mathcal{D}^{\prime}\right)} E\left\{G_{\mathcal{D}^{\prime}}(\omega) \mid X_{k_{0} \cdot \mathcal{D}}\right\} \tag{S2.17}\\
& \quad-\sup _{\omega \in B_{\nu}\left(\mathcal{D}^{\prime}\right)}\left|G_{\mathcal{D}^{\prime}}(\omega)-E\left\{G_{\mathcal{D}^{\prime}}(\omega) \mid X_{k_{0} \cdot \mathcal{D}^{\prime}}\right\}\right|-G_{\mathcal{D}^{\prime}}\left(\widehat{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right) .
\end{align*}
$$

Similar to (S1.7), we have, for any $\mathcal{D}^{\prime} \in \mathcal{M}_{2}^{*}$ and $\omega \in B_{\nu}\left(\mathcal{D}^{\prime}\right)$,

$$
\begin{align*}
& E\left\{G_{\mathcal{D}^{\prime}}(\omega) \mid X_{k_{0} \cdot \mathcal{D}^{\prime}}\right\} \\
& =n^{-1} \sum_{i=1}^{n} \int_{0}^{X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}} \omega} F_{k_{0} m_{0}}\left(s \mid X_{k_{0} i \mathcal{D}^{\prime}}\right)-F_{k_{0} m_{0}}\left(0 \mid X_{k_{0} i \mathcal{D}^{\prime}}\right) d s \\
& =n^{-1} \sum_{i=1}^{n} \int_{0}^{X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}} \omega}{ }_{s} f_{k_{0} m_{0}}\left(\bar{s} \mid X_{k_{0} i \mathcal{D}^{\prime}}\right) d s \\
& \geq C \omega^{\mathrm{T}}\left\{n^{-1} \sum_{i=1}^{n}\left(X_{k_{0} i \mathcal{D}^{\prime}} X_{k_{0} i \mathcal{D}^{\prime}}^{\mathrm{T}}\right)\right\} \omega \\
& \geq C \lambda_{\min }\left(n^{-1} X_{k_{0} \cdot \mathcal{D}^{\prime}}^{\mathrm{T}} X_{k_{0} \cdot \mathcal{D}^{\prime}}\right)\|\omega\|^{2}=C\|\omega\|^{2}, \tag{S2.18}
\end{align*}
$$

where the third step uses Assumption (3) and the last step Assumption (6).
Then, under Assumptions 1, 3, 6 and 7, Lemma A. 3 in the supplement to Lee et al. (2014) gives

$$
\begin{equation*}
\max _{\mathcal{D}^{\prime} \in \mathcal{M}_{2}^{*}} \sup _{\omega \in B_{\nu}\left(\mathcal{D}^{\prime}\right)}\left|G_{\mathcal{D}^{\prime}}(\omega)-E\left\{G_{\mathcal{D}^{\prime}}(\omega) \mid X_{k_{0} \cdot \mathcal{D}^{\prime}}\right\}\right|=o_{p}(1) \tag{S2.19}
\end{equation*}
$$

It is obvious that $(\mathrm{S} 2.12)$ is still valid when \mathcal{M}_{1}^{*} is substituted by \mathcal{M}_{2}^{*}.
Hence

$$
\operatorname{pr}\left\{\max _{\mathcal{D}^{\prime} \in \mathcal{M}_{2}^{*}}\left|G_{\mathcal{D}^{\prime}}\left(\widehat{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right)\right| \leq C n^{-1} L_{n} d_{n} \log n\right\} \rightarrow 1,
$$

which gives $\max _{\mathcal{D}^{\prime} \in \mathcal{M}_{2}^{*}}\left|G_{\mathcal{D}^{\prime}}\left(\widehat{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}-\theta_{k_{0} m_{0} \mathcal{D}^{\prime}}^{*}\right)\right|=o_{p}(1)$. This, combined with (S2.17), (S2.18) and (S2.19) implies that, with probability approaching one,

$$
\begin{align*}
& n^{-1} \min _{\mathcal{D} \in \mathcal{M}_{2}} \sum_{i=1}^{n}\left\{\rho_{m}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k_{0} m_{0} \mathcal{D}}\right)-\right. \\
& \left.\quad \rho_{m}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}^{\prime}} \widehat{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}\right)\right\} \geq 2 C . \tag{S2.20}
\end{align*}
$$

Since $\mathcal{D} \in \mathcal{D}^{\prime}$ we have $\sum_{i=1}^{n}\left\{\rho_{m}\left(Y_{k i}-X_{k i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k m \mathcal{D}}\right)-\rho_{m}\left(Y_{k i}-X_{k i \mathcal{D}^{\prime}} \widehat{\theta}_{k m \mathcal{D}^{\prime}}\right)\right\} \geq 0$ for any k, m and $\mathcal{D} \in \mathcal{M}_{2}$. It follows

$$
\begin{aligned}
& \widehat{W}_{\mathcal{D}}-\widehat{W}_{\mathcal{D}^{\prime}} \\
& =n^{-1} \sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{i=1}^{n}\left\{\rho_{m}\left(Y_{k i}-X_{k i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k m \mathcal{D}}\right)-\rho_{m}\left(Y_{k i}-X_{k i \mathcal{D}^{\prime}} \widehat{\theta}_{k m \mathcal{D}^{\prime}}\right)\right\} \\
& \geq n^{-1} \sum_{i=1}^{n}\left\{\rho_{m}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}}^{\mathrm{T}} \widehat{\theta}_{k_{0} m_{0} \mathcal{D}}\right)-\rho_{m}\left(Y_{k_{0} i}-X_{k_{0} i \mathcal{D}^{\prime}} \widehat{\theta}_{k_{0} m_{0} \mathcal{D}^{\prime}}\right)\right\} .
\end{aligned}
$$

This, combined with (S2.20), gives

$$
\begin{equation*}
\operatorname{pr}\left\{\min _{\mathcal{D} \in \mathcal{M}_{2}}\left(\widehat{W}_{\mathcal{D}}-\widehat{W}_{\mathcal{D}^{\prime}}\right) \geq 2 C\right\} \rightarrow 1 \tag{S2.21}
\end{equation*}
$$

Then, with probability tending to one,

$$
\begin{align*}
& \min _{\mathcal{D} \in \mathcal{M}_{2}} \operatorname{MQBIC}(\mathcal{D})-\operatorname{MQBIC}\left(\mathcal{D}^{\prime}\right) \\
& =\min _{\mathcal{D} \in \mathcal{M}_{2}}\left[\log \left\{1+\widehat{W}_{\mathcal{D}^{\prime}}^{-1}\left(\widehat{W}_{\mathcal{D}}-\widehat{W}_{\mathcal{D}^{\prime}}\right)\right\}-(2 n)^{-1} T_{n}\left(\left|\mathcal{D}^{\prime}\right|-|\mathcal{D}|\right) \log n\right] \\
& \geq \min _{\mathcal{D} \in \mathcal{M}_{2}}\left[\min \left\{\log 2, \widehat{W}_{\mathcal{D}^{\prime}}^{-1}\left(\widehat{W}_{\mathcal{D}}-\widehat{W}_{\mathcal{D}^{\prime}}\right) / 2\right\}-(2 n)^{-1} T_{n}\left|\mathcal{D}^{*}\right| \log n\right] \\
& \geq \min _{\mathcal{D} \in \mathcal{M}_{2}}\left[\min \left\{\log 2, \widehat{W}_{\mathcal{D}^{\prime}}^{-1} C\right\}-(2 n)^{-1} T_{n}\left|\mathcal{D}^{*}\right| \log n\right]>0 \tag{S2.22}
\end{align*}
$$

The first inequality comes from the fact that $\log (1+x) \geq \min \{x / 2, \log 2\}$ for any $x \geq 0$. The second inequality uses (S2.21). The last step uses Assumption 8 and the fact that (S 2.14) is still valid when \mathcal{M}_{1}^{*} is substituted by \mathcal{M}_{2}^{*}. Since $(\mathrm{S} 2.10)$ can be easily extended to any $\mathcal{D} \in\left(\mathcal{M}_{2}^{*} \backslash\left\{\mathcal{D}^{*}\right\}\right)$, we know that, with probability tending to one, $\operatorname{MQBIC}\left(\mathcal{D}^{\prime}\right) \geq \operatorname{MQBIC}\left(\mathcal{D}^{*}\right)$ for any $\mathcal{D}^{\prime} \in \mathcal{M}_{2}^{*}$. This and (S 2.22) yield

$$
\begin{aligned}
& \min _{\mathcal{D} \in \mathcal{M}_{2}} \operatorname{MQBIC}(\mathcal{D})-\operatorname{MQBIC}\left(\mathcal{D}^{*}\right) \\
& =\min _{{\mathcal{D} \in \mathcal{M}_{2}}\left\{\operatorname{MQBIC}(\mathcal{D})-\operatorname{MQBIC}\left(\mathcal{D}^{\prime}\right)+\operatorname{MQBIC}\left(\mathcal{D}^{\prime}\right)-\operatorname{MQBIC}\left(\mathcal{D}^{*}\right)\right\}}^{\geq \min _{\mathcal{D} \in \mathcal{M}_{2}}\left\{\operatorname{MQBIC}(\mathcal{D})-\operatorname{MQBIC}\left(\mathcal{D}^{\prime}\right)\right\}>0}
\end{aligned}
$$

with probability tending to one. This proves (S2.11).

S3 Additional Results of Simulations

In this section we check the asymptotic normality stated in Theorem 2 of Section 2 using simulations. Under the setting of Table 2 in Section 4 with
$(n, p)=(200,1000), T=(\log p) / 3$ and the regression model

$$
\begin{equation*}
Y_{k i}=X_{k i}^{\mathrm{T}} \alpha_{k}^{*}+0.7 \xi_{k i} X_{k i 3} \quad(k=1,2 ; i=1, \ldots n) \tag{S3.1}
\end{equation*}
$$

we consider two components, $\widehat{\theta}_{113}$ and $\widehat{\theta}_{15(20)}$, of the estimator generated by our data integration (DI) approach. The corresponding covariates $X_{1 i 3}$ and $X_{1 i(20)}$ affect the response $Y_{1 i}$ via the terms $0.7 \xi_{1 i} X_{1 i 3}$ and $X_{1 i}^{\mathrm{T}} \alpha_{1}^{*}$ in (S3.1), respectively. In Figures 1 and 2 we present the histograms of the two components based on 1,000 simulated data sets. We can see the curves in the plots are unimodal, approximately symmetric and bell-shaped, which confirms the asymptotic normality stated in Theorem 2.

Bibliography

Knight, K. (1998). Limiting distributions for ℓ_{1} regression estimators under general conditions. Annals of Statistics 18, 755-770.

Lee, E. R., H. Noh, and B. U. Park (2014). Model selection via Bayesian information criterion for quantile regression models. Journal of the American Statistical Association 109, 216-229.

Sherwood, B. and L. Wang (2016). Partially linear additive quantile regression in ultra-high dimension. Annals of Statistics 44, 288-317.

Figure 1: Histogram of $\widehat{\theta}_{113}$ generated by our data integration (DI) method. The setting is the same as Table 2 in Section 4 with $(n, p)=(200,1000)$ and $T=(\log p) / 3$.

Figure 2: We consider the same scenario as Figure 1 but now investigate $\widehat{\theta}_{15(20)}$.

