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Abstract: In this study, we focus on the analysis of high-dimensional data that come

from multiple sources (“experiments”), and thus have different, possibly correlated

responses, but share the same set of predictors. The measurements of the predic-

tors may be different across experiments. We introduce a new regression approach,

using multiple quantiles to select those predictors that affect any of the responses

at any quantile level and to estimate the nonzero parameters. Our approach dif-

fers from established methods by being able to handle heterogeneity in data sets

and heavy-tailed error distributions, two difficulties that are often encountered in

complex data scenarios. Our estimator minimizes a penalized objective function

that aggregates the data from the different experiments. We establish the model

selection consistency and asymptotic normality of the estimator. In addition, we

present an information criterion that can be used for consistent model selection.

Simulations and two data applications illustrate the advantages of our method in

recovering the underlying regression models. These advantages come from taking

the group structure induced by the predictors across experiments and the quantile

levels into account.

Key words and phrases: Data integration, high dimensional data, information cri-

terion, penalized quantile regression.

1. Introduction

To set the stage for this work on data integration (DI), consider K data

sets from K different populations, where K is some fixed number, with linear

regression models

Yk = XT
k α
∗
k + Uk (k = 1, . . . ,K). (1.1)

Here, Yk is a scalar response, Xk is a p-dimensional predictor, α∗k is a p-dimensional

parameter vector, and Uk is the error term. Zellner (1962) referred to this set of

models as seemingly unrelated regressions and proposed the idea of estimating the

regression parameters simultaneously using a generalized least squares method.

The responses in model (1.1) are different, but dependent. The predictors are
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the same in the K data sets, but not their values. This can occur, for example,

if individuals are assessed through various responses from different experiments

and the predictor values are measured in different ways (Gao and Carroll (2017)).

Model (1.1), with the assumption that E(Uk | Xk) = 0, can also be written

as a heterogenous linear regression model,

E(Yk −XT
k α
∗
k | Xk) = 0 (k = 1, . . . ,K).

We consider the same scenario, but pursue a different approach. Instead of mod-

eling the conditional mean of the response given the covariates, we assume hetero-

geneous linear regression models for the conditional quantiles Qτm(Xk) at various

quantile levels τm (m = 1, . . . ,M); that is

E{I(Yk ≤ XT
k θ
∗
km)− τm | Xk} = 0 (k = 1, . . . ,K), (1.2)

where I(·) is the indicator function and θ∗km is a p-dimensional parameter vector.

This is equivalent to

pr(Yk ≤ XT
k θ
∗
km | Xk) = pr{Yk ≤ Qτm(Xk) | Xk} = τm

(m = 1, . . . ,M ; k = 1, . . . ,K). We are interested in the high-dimensional data

situation and, therefore, let the dimension p = pn of the parameter vector tend

to infinity as the sample size n increases. In addition, we assume that the data

are sparse, that is, most of the parameters are zero, which means that only a

fraction of the predictors affect the responses.

An important goal is to identify the relevant predictors. One possible ap-

proach is to aggregate each predictor’s effect in all experiments by forming groups.

In our scenario, all responses share the same set of predictors. Hence, we have

a natural group structure: the parameters of different quantiles and experiments

that belong to the same predictor constitute a group; see Gao and Carroll (2017),

who develop a group penalized estimation method using a pseudolikelihood. To

handle the unspecified dependence between the responses in the K experiments,

they pool the marginal likelihoods and impose an L2-group penalization on the

grouped parameters. The group penalty was introduced in a 1999 Australian Na-

tional University Ph.D. thesis by S. Bakin, and then applied to group selection

questions by Yuan and Lin (2006). Gao and Carroll (2017) use it to select predic-

tors that are influential in any of the experiments. Their main tool is the smoothly

clipped absolute deviation (SCAD) penalty (Fan and Li (2001)). In addition, Gao

and Carroll (2017) use the concept of the Bayesian information criterion to de-
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velop a pseudolikelihood information criterion that applies to high-dimensional

scenarios. Their pseudolikelihood approach is an important advance, and useful

when the distribution of the error can be modeled parametrically, which is not

assumed in our case.

In this study, we use a linear quantile regression approach based on model

(1.2); that is, we do not work with a likelihood, but with a different objective

function. Quantile regression was introduced by Koenker and Bassett (1978); see

also Koenker (2005). In contrast to classical regression, it provides a global pic-

ture of the predictors’ effects on the distribution of the responses, and it is robust

to heavy-tailed distributions. In high-dimensional settings, Belloni and Cher-

nozhukov (2011) studied linear quantile regression with a Lasso penalty, Wang,

Wu and Li (2012) proved the selection consistency of linear quantile regression

with nonconvex penalty functions, and Sherwood and Wang (2016) derived the

asymptotic properties of partially linear additive quantile regression with a non-

convex penalty. In addition to these works on single quantile regression, Zou and

Yuan (2008a) introduced a composite quantile regression approach that considers

multiple quantiles simultaneously. They assumed that the slopes are the same

across quantiles, and used the adaptive Lasso penalty from Zou (2006). Their

method shares the oracle properties proposed in Fan and Li (2001). In another

paper, which focuses on computation and not on theoretical properties, Zou and

Yuan (2008b) propose a related approach for the heterogeneous scenario, that

is, when the covariates and errors are dependent so that the slopes vary across

quantiles. They consider multiple responses, but model just one single quantile

for each response. Their method is able to detect nonzero slopes simultaneously.

The two 2008 studies by Zou and Yuan examine settings with a fixed number of

parameters. Recently, the composite quantile approach of Zou and Yuan (2008a)

was extended to high-dimensional scenarios by Gu and Zou (2020). These au-

thors assume that the slopes are the same across quantiles, that is, homogeneity.

As such, their approach does not apply to the heterogeneous models investi-

gated by our research. Fan, Xue and Zou (2016) studied quantile regression with

multiple responses under a “transnormal” assumption, which requires that the

responses and predictors can be transformed into a multivariate normal variable

using marginal monotone functions. This is not required in our model. In Ta-

ble 3 of Section 4, we consider a simulation setting with some binary predictors,

which violates this assumption. While we are interested in identifying relevant

predictors, Fan, Xue and Zou (2016) focus on predicting responses and estimating

correlation matrices.
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Our goal is simultaneous variable selection with multiple quantiles across K

experiments. To take account of the unknown dependence structure between the

responses in the different experiments, we integrate the data by summing their

quantile loss functions. This is analogous to Gao and Carroll (2017), who pool

the likelihood functions. In addition, similarly to Sherwood and Wang (2016),

who also conduct variable selection with multiple quantiles, we apply a noncon-

vex penalty on the L1-norm of the coefficients related to each predictor. This

represents the overall strength of the predictor across multiple experiments and

quantiles. The penalty function takes the group structure into account, and

excludes covariates that have no impact on any of the responses at any of the

quantile levels. Moreover, the L1-norm is computationally convenient in quantile

regression settings, owing to the work of Peng and Wang (2015), who provide a

“Quick Iterative Coordinate Descent” algorithm for solving nonconvex penalized

quantile regression in high dimensions with no group structure. With modifica-

tions, their algorithm can be adapted to our approach; see Section 4.

Our work is largely motivated by the widespread existence of heterogeneity

in complex data sets (Yu, Lu and Stander (2003); Wang, Wu and Li (2012); Lee,

Noh and Park (2014)), such as the liver toxicity data set and the financial index

data analyzed in Section 5. Classical regression focuses on the conditional mean

or on one single conditional quantile of Yk given Xk (k = 1, . . . ,K). In contrast,

a major advantage of our approach is its ability to identify predictors in het-

erogeneous models that affect the responses at one or more quantile levels, but

not necessarily globally. When the random errors in the data-generating mecha-

nism have a heavy-tailed distribution, for example, a t-distribution with a small

number of degrees of freedom, quantile based methods have a better estimation

accuracy than that of competing approaches that use the quadratic loss function.

Despite these clear advantages, multiple quantile regression for dependent data

that originate from different sources has not, to the best of our knowledge, been

studied in the literature. We also cover the high-dimensional data scenario by

adding a nonconvex group penalty term. We establish the selection consistency

and asymptotic normality of our estimator in this quite general setting under mild

assumptions. Additionally we propose a multiple quantile Bayesian information

criterion (MQBIC) based on pooled check functions, which is an extension of the

Bayesian information criterion for linear quantile regression (Lee, Noh and Park

(2014)) to the multiple-experiment scenario. Similarly to the pseudolikelihood

information criterion in Gao and Carroll (2017), the MQBIC permits consistent

model selection (see Section 3) and choice of the tuning parameter for the penal-

ized estimator (see Section 4).
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The main contribution of this study is the introduction of quantile-based

methods to the high-dimensional scenario of DI. We propose a penalized esti-

mation process and an information criterion, which identify the covariates that

affect any of the responses at any of the quantile levels. Our method enjoys ro-

bustness, and can be applied to the complex scenario with heterogeneous data

and dependent responses.

The rest of this article is organized as follows. In Section 2, we introduce

our objective function, which involves a nonconvex group penalization term, and

present the oracle properties of the estimator. The MQBIC is presented in Section

3, and its model selection consistency is established. In Section 4, we compare our

method with other approaches using simulations. Our method is illustrated in

Section 5 by means of empirical data examples. Section 6 gives a brief discussion

of further questions. All proofs, as well as additional simulation results, are

provided in the Supplementary Material. For notational clarity, we assume in

the following that the sample sizes and the quantile levels are the same in every

experiment. The conclusions and methods are essentially the same if we drop

these assumptions.

2. Penalized Estimator

Throughout this article, we use the capital letter C to represent a generic

constant, including C1, C2 and so on. We write Im for the m×m identity matrix.

The symbols ‖ · ‖1 and ‖ · ‖ refer to the L1- and L2-norms of a vector, and ⊗
denotes the Kronecker product.

Our conditional quantile regression model is Qτm(Xk) = XT
k θ
∗
km, with or-

dered levels 0 < τ1 < τ2 < · · · < τM < 1. We can set the first column of Xk to

be (1, . . . , 1)T so that the model contains intercept terms. For notational conve-

nience, we assume the intercepts all equal zero. The number of predictors p = pn
tends to infinity as the sample size n increases.

For k=1, . . . ,K and i=1, . . . , n, we consider n independent copies {Yki, Xki},
with Xki = (Xki1, . . . , Xkipn)T of the base observation {Yk, Xk} from model (1.1).

Here, we use three subscripts to locate the predictors, that is, Xkij represents the

jth component of the ith observation in the kth experiment. We write Xk·j =

(Xk1j , . . . , Xknj)
T for the vector. The data are summarized in Table 1.

The regression parameters θ∗km (k = 1, . . . ,K, m = 1, . . . ,M) are assumed

to be sparse; that is, most of the components of θ∗km are zero. Write θ∗(j) for the

parameters related to the jth predictor (j = 1, . . . , pn) across the K experiments

and the M quantile levels, that is,
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Table 1. Data structure of multiple experiments.

Experiment 1 . . . Experiment K

τ1 θ∗11 = (θ∗111, . . . , θ
∗
11pn

)T . . . θ∗K1 = (θ∗K11, . . . , θ
∗
K1pn

)T

...
...

...

τM θ∗1M = (θ∗1M1, . . . , θ
∗
1Mpn

)T . . . θ∗KM = (θ∗KM1, . . . , θ
∗
KMpn

)T

i = 1 Y11, X11 = (X111, . . . , X11pn
)T . . . YK1, XK1 = (XK11, . . . , XK1pn

)T

...
...

...

i = n Y1n, X1n = (X1n1, . . . , X1npn
)T . . . YKn, XKn = (XKn1, . . . , XKnpn

)T

Parameters related to τ1, . . . , τM and observations i = 1 to n.

θ∗(j) = (θ∗11j , . . . , θ
∗
1Mj , . . . , θ

∗
K1j , . . . , θ

∗
KMj)

T.

We want to select the predictors that have an effect on any of the responses,

that is, we want to specify the set A = {j : 1 ≤ j ≤ pn, ‖θ∗(j)‖ > 0}. Without

loss of generality, let A = {1, 2, . . . , qn}, that is, only the first qn predictors have

nonzero parameters. We assume that qn tends to infinity as n and pn increase.

For convenience of notation, we use the letter a at the end of a subscript to

refer to subvectors or submatrices that consist of components with subscripts

in A. For example, Xkia = (Xki1, . . . , Xkiqn)T, Xk·a = (Xk1a, . . . , Xkna)
T, and

θ∗kma = (θ∗km1, . . . , θ
∗
kmqn

)T.

The dependence between the experiments is unspecified. To integrate the

data, we therefore sum the quantile loss functions across the K experiments and

the M quantiles,

`n(θ) = n−1
K∑
k=1

M∑
m=1

n∑
i=1

ρm(Yki −XT
kiθkm). (2.1)

In the above, ρm(x) = x{τm − I(x < 0)} is the check function and

θ = (θT
11, . . . , θ

T
1M , . . . , θ

T
K1, . . . , θ

T
KM )T

is a parameter vector. Loss functions analogous to (2.1) with K = 1 or M = 1

were used for low-dimensional linear models by Zou and Yuan (2008b). The main

difference between (2.1) and the composite quantile loss function considered in

Zou and Yuan (2008a) and Gu and Zou (2020) is that we allow θkm 6= θkm′

(1 ≤ m 6= m′ ≤M ; k = 1, . . . ,K), that is, different slopes.

To select the predictors that affect any of the responses, a nonconvex penalty

function Ωλn
(·) with a tuning parameter λn is imposed on the overall impact of
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each predictor. That impact is represented by the L1-norm of the vector θ(j),

which contains the parameters of the jth predictor in the K experiments. This

gives the overall objective function

Γλn
(θ) = `n(θ) +

∑pn
j=1Ωλn

(‖θ(j)‖1). (2.2)

Our estimator is obtained by minimizing Γλn
(θ). We use the SCAD penalty

function (Fan and Li (2001))

Ωλn
(x) =λnxI(0 ≤ x ≤ λn)

+
aλnx− (x2 + λ2

n)/2

a− 1
I(λn < x < aλn) +

(a+ 1)λ2
n

2
I(x ≥ aλn),

where a is a constant that is usually set to 3.7 (Fan and Li (2001)). Before stating

the asymptotic properties of our estimator, we make the following assumptions.

Assumption 1. There is a constant C > 0 such that |Xkij | ≤ C for every

k = 1, . . . ,K, i = 1, . . . , n, and j = 1, . . . , pn.

Assumption 2. For every k = 1, . . . ,K, there are positive constants C1 and C2

such that

C1 ≤ λmin(n−1XT
k·aXk·a) ≤ λmax(n−1XT

k·aXk·a) ≤ C2,

where λmin(·) and λmax(·) stand for the smallest and largest eigenvalues, respec-

tively. In addition Xk·a and (Yk1, . . . , Ykn)T are in “general positions,” which is

an identifiability condition that guarantees that a solution to the quantile regres-

sion problem exists (Koenker (2005, Sec. 2.2.2)).

Assumption 3. For every k = 1, . . . ,K and m = 1, . . . ,M , the conditional

probability density fkm(· | x) of εkm = Yk − XT
k θ
∗
km given Xk = x is uniformly

bounded and bounded away from zero in a neighborhood of zero, and has a deriva-

tive f ′km(· | x), which is uniformly bounded in a neighborhood of zero.

Assumption 4. The true model size satisfies qn = O(nc1), for some 0 ≤ c1 <

1/2.

Assumption 5. There are positive constants c2 and C such that 2c1 < c2 ≤ 1,

where c1 is the constant introduced in Assumption 4, and

n(1−c2)/2min1≤j≤qn‖θ∗(j)‖1 ≥ C.

Assumptions 1 and 2 guarantee the good behavior of the design matrices.

Assumption 1 can be relaxed by letting the covariate values increase to infinity
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at a certain slow rate. We work with it mainly for reasons of simplicity and clarity;

see, for example, the closely related articles by Wang, Wu and Li (2012), Lee,

Noh and Park (2014), and Sherwood and Wang (2016), who also limit themselves

to the case with bounded covariates. The conditions in Assumption 3 concern the

unknown distribution of the random errors. They are considerably weaker than

assuming a specific parametric model for the error distribution. Assumption 4

regulates the growth rate of the true model size. This is a standard assumption

used to establish the asymptotic properties of sparse estimators in linear models

with a diverging number of parameters; see, for example, Wang, Wu and Li (2012)

and Lee, Noh and Park (2014). In addition, it is weaker than the condition qn =

o(n1/5) required by Gao and Carroll (2017). Assumption 5 excludes situations

where the nonzero parameters decay too fast. Conditions similar to Assumptions

1–5 are required in Wang, Wu and Li (2012) for single experiments with a single

quantile.

The oracle estimator θ̂ is defined as the minimizer of `n(θ) that knows that

the first qn components of θ are nonzero and that the others are zero, that is,

‖θ̂(j)‖ = 0, for qn < j ≤ pn. The following theorem provides the model selection

consistency of our estimator. More precisely, we show that, with probability tend-

ing to one, the oracle estimator can be obtained using our approach of minimizing

the objective function Γλn
(θ).

Theorem 1. Let S(λn) denote the set of local minimizers of Γλn
(θ), and θ̂denote

the oracle estimator. Under Assumptions 1–5, pr{θ̂ ∈ S(λn)} → 1 as n→∞, if

λn = o{n−(1−c2)/2}, n−1/2qn = o(λn), and n−1log pn = o(λ2
n).

Before stating Theorem 2, we introduce some notation. We write

εkmi = Yki −XT
kiθ
∗
km, εkm = (εkm1, . . . , εkmn)T,

ε = (εT
11, . . . , ε

T
1M , . . . , ε

T
K1, . . . , ε

T
KM )T,

ψkmi(ε) = τm − I(εkmi < 0), ψnkm(ε) = {ψkm1(ε), . . . , ψkmn(ε)}T,

ψnk(ε) = {ψnk1(ε)T, . . . , ψnkM (ε)T}T, ψn(ε) = {ψn1(ε)T, . . . , ψnK(ε)T}T,

Hn = E{ψn(ε)ψn(ε)T | X} with X = {Xki : k = 1, . . . ,K, i = 1, . . . , n},

where k = 1, . . . ,K, m = 1 . . . ,M , and i = 1, . . . , n. Further, we set

Bnkm = diag{fkm(0 | Xk1), . . . , fkm(0 | Xkn)},

Bn = diag(Bn1, . . . , BnK) with Bnk = diag(Bnk1, . . . , BnkM ),

θ∗a = (θ∗T11a, . . . , θ
∗T
1Ma, . . . , θ

∗T
K1a, . . . , θ

∗T
KMa)

T,
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θ̂kma = (θ̂km1, . . . , θ̂kmqn)T, θ̂a = (θ̂T
11a, . . . , θ̂

T
1Ma, . . . , θ̂

T
K1a, . . . , θ̂

T
KMa)

T,

Xa = diag(IM ⊗X1·a, . . . , IM ⊗XK·a), Rn = n−1XT
a BnXa,

Sn = n−1XT
a HnXa, Σn = R−1

n SnR
−1
n .

The next theorem gives the asymptotic normality of low-dimensional projections

of the nonzero part θ̂a of the oracle estimator θ̂ from Theorem 1. An illustration

of the result with histogram plots (for two simulation scenarios from Section 4)

is provided in Section S3 of the Supplementary Material.

Theorem 2. Let q∗n = qn ×M ×K. Consider an s× q∗n matrix An with s fixed

and AnA
T
n → G, a positive-definite matrix. Then

n1/2AnΣ−1/2
n (θ̂a − θ∗a)→ N(0, G) (n→∞)

in distribution, provided Assumptions 1–4 are satisfied and λmin(Sn) is uniformly

bounded away from zero.

Theorems 1 and 2 establish the model selection consistency and asymptotic

normality of our estimator when experiments are correlated. This shows that it

is reasonable to aggregate information from multiple experiments, rather than

ignoring the correlation and analyzing each experiment separately.

3. Multiple Quantile Bayesian Information Criterion

To select the correct model, we use an information criterion that balances

the goodness-of-fit and the complexity of a model. By applying this information

criterion to a set of competing models, the true model can be identified with

probability approaching one. In the context of quantile regression, Lee, Noh and

Park (2014) develop a Bayesian information criterion with a diverging number of

predictors. Their method considers one single quantile and deals with data from

one single experiment. We use a generalized version of the criterion, now based

on multiple quantiles and on data from several experiments, which improves its

ability to select the correct model.

The multiple quantile Bayesian information criterion of a submodel D ⊂
{1, 2, . . . , pn} is

MQBIC(D) = log

{
K∑
k=1

M∑
m=1

n∑
i=1

ρm(Yki−XT
kiDθ̂kmD)

}
+(2n)−1|D|Tnlogn, (3.1)

where θ̂kmD = argminθ∈R|D|
∑n

i=1 ρm(Yki − XT
kiDθ), for k = 1, . . . ,K and m =
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1, . . . ,M , |D| is the cardinality of D, and Tn is a sequence of positive constants

diverging to infinity as n increases. The notation XkiD refers to the subvector of

Xki· that contain only components with subscripts in D. We set an upper bound

on the cardinality of competing models, say dn, and search for the best of the

submodels with a cardinality smaller or equal to dn. Define D∗ = {1, 2, . . . , qn}
as the subset of {1, . . . , pn} corresponding to the true model, and M = {D ⊂
{1, . . . , pn} : |D| ≤ dn} as the set of all competing models. The first part of the

MQBIC represents the goodness-of-fit, and the second term is a penalty on the

model complexity. To guarantee the model selection consistency of the MQBIC,

we need the following assumptions, in addition to some of the assumptions from

Section 2.

Assumption 6. For every k = 1, . . . ,K, there are constants 0 < C3 ≤ C4 such

that for any D ⊂ {1, . . . , pn}, the matrix Xk·D = (Xk1D, . . . , XknD)T satisfies

C3 ≤ min|D|≤2dnλmin(n−1XT
k·DXk·D) ≤ max|D|≤2dnλmax(n−1XT

k·DXk·D) ≤ C4.

Assumption 7. The full model size pn is of order pn = O(nc3), for some c3 > 0;

the true model size qn is fixed, qn = q, and satisfies q ≤ dn = O(nc4), for some

0 < c4 < 1/2.

Assumption 8. The sequence Tn in the definition (3.1) satisfies Tn → ∞ and

n−1Tnlogn→ 0.

Assumption 9. The average n−1
∑K

k=1

∑M
m=1

∑n
i=1 ρm(εkmi) of the check func-

tions is bounded away from zero with probability tending to one.

Assumption 6 extends Assumption 2 for the true model to all candidate

models. This is common for scenarios with more regression parameters than ob-

servations, that is, pn > n. In Assumption 7, the true model size is fixed because

of a technical difficulty in handling the maximum of |D\D∗|−1|n−1
∑n

i=1{ρm(Yki−
XT
kiDθ̂kmD)−ρm(Yki−XT

kiD∗ θ̂kmD∗)}| over the set of overfitted models {D ∈M :

D∗ ⊂ D, D 6= D∗} (Lee, Noh and Park (2014)). Assumption 8 regulates the

growth rate of the sequence Tn. Assumption 9 is made for convenience in the

proofs because n−1
∑K

k=1

∑M
m=1

∑n
i=1 ρm(εkmi) appears in denominators.

In the following theorem, we show that the true model has, with probability

tending to one, the smallest MQBIC value among all candidate models.

Theorem 3. If Assumptions 1, 3, and 6–9 hold, then with probability tending to

one, the true model can be selected by minimizing the MQBIC, that is,

lim
n→∞

pr{minD∈(M\{D∗})MQBIC(D) > MQBIC(D∗)} = 1.
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Theorem 3 establishes the model selection consistency of the MQBIC for data

from multiple dependent sources, which provides another approach to identify-

ing the true underlying model. In the MQBIC approach, estimation and model

selection are separate processes. This differs from minimizing the objective func-

tion in Section 2, which is a one-step procedure. The main advantage of the

MQBIC is that we can use it to select the tuning parameter λn for the penal-

ized estimation process in Section 2, which is computationally more efficient than

cross-validation. The details are given in Section 4.

4. Simulations

In this section, we study the numerical performance of our estimators. We

use the objective function (2.2) with M = 5 quantiles, τ1 = 1/6, τ2 = 2/6, . . . ,

and τ5 = 5/6, and study two different group structures, namely, complete and

incomplete grouping. Complete grouping means that parameters of the same

predictor can only be either all zero or all nonzero, while in the incomplete case,

a group may contain both zero and nonzero parameters.

In both cases, the number of experiments is K = 2, and the sample size

and the number of predictors are (n, p) = (100, 100), (100, 200), or (200, 1000).

The nonzero parameters are drawn independently from a uniform distribution

on [0.05, 1]. For K = 1, 2, we generate independent random vectors X ′ki, for

i = 1, . . . , n, from a p-dimensional multivariate normal distribution with mean

zero and a covariance matrix with (i, j)th component of 0.5|i−j|, for 1 ≤ i, j ≤ p.
The predictors Xki for the different scenarios described below are transformations

of X ′ki. For i = 1, . . . , n, the error terms (ξ1i, ξ2i)
T are drawn independently from

a bivariate normal distribution with mean zero, or from a bivariate t-distribution

with three degrees of freedom. The covariance matrix of (ξ1i, ξ2i) is Σ, with

entries Σ11 = Σ22 = 1 and Σ12 = Σ21 = 0.7.

To minimize the objective function (2.2) with a fixed λn = λ, we use an

algorithm developed by Peng and Wang (2015) for penalized quantile regression,

modified for our scenario with multiple quantiles and experiments. We first apply

the “Majorize-Minimization” algorithm with an initial value θ̂(0) = 0. Let θ̂(r−1)

denote the result from the (r − 1)th iteration. According to Section 3.1 of Peng

and Wang (2015), the objective function (2.2) is majorized by

`n(θ) +
∑p

j=1Ω′λ(‖θ̂(j)(r − 1)‖1+)‖θ(j)‖1 =

K∑
k=1

M∑
m=1

Q
(k,m)

θ̂(r−1)
(θkm) (4.1)

at the rth iteration. Here, Ω′λ(·) is the derivative of Ωλ(·) with Ω′λ(x0+) =
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limx↓x0
Ω′λ(x), and

Q
(k,m)

θ̂(r−1)
(θkm) = n−1

n∑
i=1

ρm(Yki −XT
kiθkm) +

p∑
j=1

Ω′λ(‖θ̂(j)(r − 1)‖1+)|θkmj |.

The minimization of the majorizing function (4.1) can therefore be done by min-

imizing Q
(k,m)

θ̂(r−1)
(θkm) (k = 1, . . . ,K;m = 1, . . . ,M) separately for each (k,m)

using the “coordinate descent” algorithm, which involves calculating weighted

medians using the “quicksort” algorithm. A detailed description can be found in

Section 3.2 of Peng and Wang (2015). We update θ̂(r − 1) by

θ̂(r) = argmin
θ

K∑
k=1

M∑
m=1

Q
(k,m)

θ̂(r−1)
(θkm),

and repeat this process until convergence. This yields the minimizer θ̂λ,km =

(θ̂λ,km1, . . . , θ̂λ,kmp)
T (k = 1, . . . ,K;m = 1, . . . ,M) of (2.2), with λn = λ. The

tuning parameter is chosen from a grid Λ. For λ ∈ Λ, let Dλ = {j : 1 ≤ j ≤
p,
∑K

k=1

∑M
m=1 |θ̂λ,kmj | > 0}. For the final estimator, we use

λ̂ = argmin
λ∈Λ

[
log

{
K∑
k=1

M∑
m=1

n∑
i=1

ρm(Yki −XT
kiθ̂λ,km)

}
+ (2n)−1|Dλ|(logn)T

]
,

(4.2)

which minimizes the MQBIC. This approach adapts criterion (2.10) in Lee, Noh

and Park (2014) to multiple quantile levels and experiments. They recommends

T = C log p and their simulation results show that this type of information cri-

terion tends to underfit models slightly. As such, we consider T = (log p)/3 or

(log p)/6, and examine how this affects the performance of the method.

In each scenario, we record the following three indices:

1. Positive selection rate (PSR): the proportion of selected predictors that

affect any quantile of any response. Then, formally, PSR = |Â ∩ A|/|A|
with A = {j : 1 ≤ j ≤ p, ‖θ∗(j)‖ > 0} and Â = {j : 1 ≤ j ≤ p, ‖θ̂(j)‖ > 0}.

2. False discovery rate (FDR): the proportion of selected predictors that affect

no response, that is, |Â ∩ Ac|/|Ac|.

3. Absolute error (AE): the absolute estimation error (KM)−1‖θ̂ − θ∗‖1.

Our DI approach is compared with the following three methods:

(a) Combined analysis based on the τth quantile (CA-τ). This method considers
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only one quantile τ . The data from the K experiments are analyzed sepa-

rately, then the K sets of selected predictors are merged. We find that in

most cases, the CA-τ method selects more unimportant predictors than does

our DI approach. Hence, the FDRs will rise even further when the results

from different quantile levels are combined.

(b) Sparse canonical correlation analysis (SCCA) by Witten and Tibshirani (2009).

To adapt this method for DI problems, we determine the sparse vectors

{ŵ1, ŵ2} = argmax
{w1,w2}

n∑
i=1

wT
1 X̃iỸ

T
i w2

that satisfy

‖w1‖ ≤ 1, ‖w2‖ ≤ 1, ‖w1‖1 ≤ c1, ‖w2‖ ≤ c2,

where c1 and c2 are some approriate tuning parameters and

X̃i = (XT
1i, X

T
2i, . . . , X

T
Ki)

T, Ỹi = (Y1i, Y2i, . . . , YKi)
T (i = 1, . . . , n).

Then, we view the predictors corresponding to the nonzero components of ŵ1

as the selected ones. Details of the implementation can be found in Witten

and Tibshirani (2009). This approach does not generate estimators for the

regression parameters, which explains why we have no values for the absolute

errors (AE) in the tables below.

(c) The DI method based on the least squares regression and the SCAD penalty

(DI-LS), proposed by Gao and Carroll (2017), which we explained in the

introduction. This method minimizes an objective function similar to (2.2),

but with M = 1 and `n(·) replaced by the quadratic loss function, and the

SCAD penalty is applied to ‖θ(j)‖ (j = 1, . . . , pn). When calculating absolute

errors, the target parameter is the vector θ̃k that satisfies E(Yk | Xk) = XT
k θ̃k

(k = 1, . . . ,K).

The value of T only plays a role in minimizing the MQBIC. Hence, it only affects

our DI and the CA-τ methods in the following tables. The tuning parameters in

SCCA and DI-LS are selected using 10-fold cross-validation.

Tables 2 and 3 show the simulation results for a scenario with normal errors

and a complete group structure. The nonzero parameters are α∗11, α∗16, α∗1(12),

α∗1(15), α
∗
1(20) and α∗21, α∗26, α∗2(12), α

∗
2(15), α

∗
2(20). Let Φ(·) be the distribution

function of a standard normal variable. For k = 1, 2 and i = 1, . . . , n, the
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Table 2. Positive selection rates, false discovery rates, and absolute errors of our data-
integration method and the competing approaches for models with normal errors and
a complete group structure. Here, DI denotes the data-integration method based on
multiple quantiles, CA-τ the combined analysis with one quantile τ = 2/6 or 3/6, SCCA
the sparse canonical correlation analysis, DI-LS the data-integration method based on
the least squares regression; PSR is the positive selection rate, FDR the false discovery
rate, and AE the absolute error (KM)−1‖θ̂ − θ∗‖1. The parameter T in criterion (4.2)
equals (log p)/3 or (log p)/6. The sample and model sizes are (a) (n, p) = (100, 100),
(b) (100, 200) or, (c) (200, 1000).

T = (log p)/3 T = (log p)/6

(a) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 98.3 (5.0) 1.1 (1.5) 0.3 (0.1) 99.0 (4.0) 1.9 (2.4) 0.2 (0.1)

CA-(2/6) 83.3 (7.5) 2.4 (2.2) 0.6 (0.1) 92.3 (8.7) 19.2 (16.2) 0.8 (0.3)

CA-(3/6) 81.7 (5.0) 1.4 (1.4) 0.3 (0.1) 83.3 (4.1) 6.9 (8.7) 0.3 (0.2)

SCCA 53.5 (15.0) 4.4 (3.7) –

DI-LS 85.0 (6.5) 5.9 (5.0) 0.3 (0.1)

(b) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 98.2 (5.2) 0.7 (0.7) 0.3 (0.1) 98.3 (5.0) 1.1 (1.3) 0.3 (0.1)

CA-(2/6) 78.0 (8.2) 0.8 (0.7) 0.7 (0.1) 89.3 (8.7) 28.1 (18.2) 1.5 (0.7)

CA-(3/6) 79.2 (7.3) 0.7 (0.7) 0.3 (0.1) 88.7 (7.1) 12.2 (15.4) 0.6 (0.5)

SCCA 56.3 (10.3) 2.3 (1.2) –

DI-LS 83.3 (5.8) 4.8 (3.9) 0.3 (0.1)

(c) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 99.7 (2.3) 0.1 (0.1) 0.1 (0.1) 99.8 (1.7) 0.4 (0.8) 0.1 (0.1)

CA-(2/6) 82.3 (6.2) 0.7 (1.1) 0.5 (0.1) 84.5 (4.9) 3.0 (3.3) 0.5 (0.1)

CA-(3/6) 82.3 (4.0) 0.4 (0.7) 0.2 (0.1) 82.8 (2.9) 1.7 (1.6) 0.2 (0.1)

SCCA 80.0 (14.2) 6.6 (0.7) –

DI-LS 83.5 (2.9) 1.3 (1.4) 0.2 (0.1)

predictors in Table 2 are Xki3 = Φ(X ′ki3) and Xkij = X ′kij (j 6= 3), while those

in Table 3 are Xki3 = Φ(X ′ki3) and Xkij = I(X ′kij > 0) (j = 20, . . . , 25), and

Xkij = X ′kij otherwise. The binary predictors in Table 3 violate the transnormal

assumption in Fan, Xue and Zou (2016). The responses are Yki = XT
kiα
∗
k +

0.7ξkiXki3. Our DI method achieves the highest PSRs and the lowest FDRs. It

also has the smallest AEs. Apparently, the CA-(3/6) and the DI-LS methods are

fairly likely to miss predictors that are relevant at some quantile levels: for the

first approach, only the conditional median is modeled, and for the second one,

only the conditional mean. Our DI method, however, works well since it takes the

heterogeneity into account and works with multiple quantile levels simultaneously.

Another interesting observation in Table 3 is that T = (log p)/3 tends to underfit

models compared to T = (log p)/6.
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Table 3. We consider the same scenario as Table 2, but now the predictors Xkij =
I(X ′kij > 0) (k = 1, 2; i = 1, . . . , n; j = 20, . . . , 25).

T = (log p)/3 T = (log p)/6

(a) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 93.0 (7.4) 1.8 (1.6) 0.3 (0.2) 98.0 (5.9) 2.5 (2.4) 0.3 (0.2)

CA-(2/6) 82.0 (5.7) 5.0 (3.4) 0.8 (0.2) 84.7 (5.6) 18.2 (13.9) 0.9 (0.3)

CA-(3/6) 81.2 (5.7) 2.4 (1.5) 0.4 (0.1) 83.0 (3.3) 6.1 (7.5) 0.3 (0.2)

SCCA 51.8 (19.2) 4.2 (4.9) –

DI-LS 84.3 (6.2) 6.2 (5.5) 0.3 (0.1)

(b) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 87.8 (13.9) 0.9 (1.3) 0.4 (0.3) 94.5 (6.9) 1.9 (2.0) 0.4 (0.2)

CA-(2/6) 78.7 (9.2) 2.7 (1.7) 0.9 (0.3) 82.7 (4.7) 27.6 (16.1) 1.6 (0.7)

CA-(3/6) 80.2 (6.6) 1.1 (1.0) 0.4 (0.1) 83.0 (5.8) 11.2 (15.7) 0.6 (0.6)

SCCA 59.5 (13.2) 3.0 (2.1) –

DI-LS 83.0 (5.8) 4.2 (3.4) 0.4 (0.1)

(c) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 97.5 (6.9) 0.2 (0.2) 0.2 (0.2) 98.8 (4.3) 0.4 (0.5) 0.2 (0.1)

CA-(2/6) 81.8 (4.8) 2.8 (2.4) 0.7 (0.1) 82.3 (4.0) 4.2 (3.7) 0.7 (0.1)

CA-(3/6) 82.0 (4.5) 0.9 (1.5) 0.2 (0.1) 83.0 (2.3) 1.5 (1.4) 0.2 (0.1)

SCCA 86.0 (12.9) 6.8 (0.7) –

DI-LS 83.5 (1.7) 1.3 (1.5) 0.3 (0.1)

In Tables 4 and 5, we present the simulation results for the same scenario

as in Table 2, but now the predictors have an incomplete group structure. The

error variables in the two tables have a normal distribution (Table 4) and a t-

distribution with three degrees of freedom (Table 5). The nonzero parameters

are α∗14, α∗16, α∗19, α∗1(12), α
∗
1(15), α

∗
1(20) and α∗21, α∗26, α∗2(12), α

∗
2(15), α

∗
2(20), α

∗
2(25).

For i = 1, . . . , n, the predictors in the first experiment are X1i1 = Φ(X ′1i1) and

X1ij = X ′1ij , for j 6= 1. The predictors in the second experiment are X2i3 =

Φ(X ′2i3) and X2ij = X ′2ij , for j 6= 3. The responses are Y1i = XT
1iα
∗
1 + 0.7ξ1iX1i1

and Y2i = XT
2iα
∗
2 + 0.7ξ2iX2i3. Inspecting the quantities in the two tables, we

see that our DI method again has higher PSRs and lower FDRs. Furthermore,

it produces similar or smaller AEs to those of its competitors. We still observe

that, in both tables, criterion (4.2) using T = (log p)/6 selects larger models than

those selected using T = (log p)/3. In Table 5 with t-distributed error variables,

the absolute errors of the DI-LS approach based on a least squares regression

are significantly larger than those of our DI method, which corroborates the

robustness of the quantile regression when the distribution of the errors is heavy

tailed.
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Table 4. We consider the same scenario as Table 2, but now the predictors have an
incomplete group structure.

T = (log p)/3 T = (log p)/6

(a) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 97.2 (5.6) 1.8 (1.7) 0.4 (0.1) 98.0 (4.3) 2.4 (2.1) 0.3 (0.2)

CA-(2/6) 86.0 (6.8) 3.4 (3.0) 0.7 (0.1) 92.2 (7.3) 23.7 (16.5) 0.9 (0.3)

CA-(3/6) 84.6 (5.4) 2.2 (1.9) 0.4 (0.1) 87.2 (4.8) 7.6 (8.6) 0.4 (0.2)

SCCA 45.0 (12.5) 5.6 (4.4) –

DI-LS 88.6 (5.3) 7.1 (5.4) 0.4 (0.1)

(b) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 91.3 (9.7) 0.8 (0.9) 0.4 (0.1) 96.6 (6.5) 2.0 (2.0) 0.4 (0.1)

CA-(2/6) 82.9 (6.0) 1.4 (1.2) 0.8 (0.1) 92.0 (7.1) 32.6 (18.3) 1.7 (0.7)

CA-(3/6) 83.8 (6.2) 1.1 (1.0) 0.4 (0.1) 87.1 (7.3) 13.7 (16.5) 0.8 (0.6)

SCCA 45.7 (12.1) 2.7 (2.6) –

DI-LS 87.4 (4.9) 5.0 (3.3) 0.4 (0.1)

(c) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 98.2 (4.1) 0.2 (0.4) 0.2 (0.1) 98.2 (4.1) 0.4 (0.6) 0.2 (0.1)

CA-(2/6) 85.2 (5.3) 1.1 (1.5) 0.6 (0.1) 87.1 (5.2) 3.6 (4.1) 0.6 (0.1)

CA-(3/6) 85.8 (5.0) 0.9 (1.1) 0.3 (0.1) 87.7 (3.5) 2.4 (1.9) 0.2 (0.1)

SCCA 67.1 (10.2) 6.3 (0.8) –

DI-LS 87.9 (3.6) 1.2 (1.4) 0.3 (0.1)

5. Examples

5.1. Multiple experiments

In this section, we apply our method to data from a liver toxicity study

(Bushel, Wolfinger and Gibson (2007)), which are available in the R package

mixOmics (Rohart et al. (2017)). In the study, two groups of 32 male rats were

exposed to non-toxic (50 or 150 mg/kg) and toxic (1,500 or 2,000 mg/kg) doses

of acetaminophen (paracetamol), respectively. There is a data set for each group,

which contains the rats’ expression profiles of 3,116 genes and levels of choles-

terol. Owing to the different experimental environments, the two data sets have

different measurements. We want to identify the genes that significantly affect

the response, namely, the level of cholesterol on a logarithmic scale, based on ag-

gregating the two data sets. To preprocess the data, the genes are sorted by the

absolute values of their correlation coefficients with the response in each set. The

top 200 genes in each set are included in the analysis as covariates. We observe

that the absolute values of their realizations are all below 2.05, which indicates

that Assumption 1 is satisfied.
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Table 5. We consider the scenario from Table 4 with an incomplete group structure, but
now the random errors follow a bivariate t-distribution with three degrees of freedom.

T = (log p)/3 T = (log p)/6

(a) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 93.7 (6.9) 1.4 (1.4) 0.5 (0.1) 94.9 (6.0) 2.0 (2.2) 0.4 (0.1)

CA-(2/6) 83.0 (6.8) 2.6 (2.6) 0.8 (0.1) 88.7 (8.0) 12.9 (13.0) 0.8 (0.3)

CA-(3/6) 81.2 (5.8) 1.7 (1.8) 0.5 (0.1) 84.8 (5.6) 5.4 (5.6) 0.4 (0.2)

SCCA 44.0 (13.9) 5.8 (6.3) –

DI-LS 83.3 (7.2) 9.9 (4.9) 0.7 (0.3)

(b) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 89.7 (9.9) 0.7 (0.8) 0.5 (0.2) 94.1 (7.3) 1.7 (1.7) 0.5 (0.1)

CA-(2/6) 80.7 (6.6) 1.4 (1.5) 0.9 (0.2) 85.0 (8.4) 12.7 (15.7) 1.3 (0.8)

CA-(3/6) 81.3 (6.5) 0.9 (0.8) 0.5 (0.1) 83.7 (6.4) 4.8 (9.7) 0.6 (0.5)

SCCA 43.2 (10.5) 2.7 (3.3) –

DI-LS 83.6 (7.7) 7.7 (4.0) 0.9 (0.4)

(c) PSR(%) FDR(%) AE PSR(%) FDR(%) AE

DI 96.2 (5.3) 0.1 (0.3) 0.3 (0.1) 96.3 (5.3) 0.3 (0.4) 0.3 (0.1)

CA-(2/6) 83.0 (6.0) 1.0 (1.5) 0.7 (0.1) 85.9 (6.3) 3.1 (3.4) 0.6 (0.1)

CA-(3/6) 83.4 (5.6) 0.6 (0.8) 0.3 (0.1) 85.4 (5.2) 1.6 (1.4) 0.3 (0.1)

SCCA 64.2 (9.3) 6.1 (0.8) –

DI-LS 84.7 (5.9) 2.6 (1.6) 0.7 (0.3)

To fit sparse models, we minimize the objective function (2.2) using all data.

We consider quantiles τm = m/10 for m = 1, . . . , 9, and use two different penal-

ties, the SCAD penalty and the minimax concave penalty (MCP). The tuning

parameters of the penalties are chosen using formula (4.2), that is, as minimizers

of the MQBIC, with T = log p/6. In addition, we take an approach based on

random partitions: we divide each data set randomly into two parts, a training

set of size 24, and a validation set of size 8. This is repeated 50 times. The

training set is used to select the parameters and obtain the parameter estimates,

as before, by minimizing (2.2), with λ chosen using (4.2). The prediction errors

K∑
k=1

M∑
m=1

n∑
i=1

ρm(Yki −XT
kiθ̂km − b̂km) (5.1)

defined by the loss function are calculated based on the estimates from the train-

ing sets and the data X,Y from the validation sets. Here, b̂km is the estimated

intercept in the conditional quantile Qτm(Xk).

For comparison, we also consider a combined analysis (CA), the SCCA

method, and the DI-LS method described in Section 4. The CA method in
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Table 6. Analysis of the liver toxicity data. The sizes of the selected subset models
(column 2) are based on all data, the average sizes and prediction errors (column 3
and 4) are based on the data using random partitions. The standard deviations are in
parentheses. DI denotes the data-integration method based on multiple quantiles, CA
the combined analysis, SCCA the sparse canonical correlation analysis, DI-LS the data-
integration method based on the least squares regression, SCAD the smoothly clipped
absolute deviation, and MCP the minimax concave penalty.

All Data Random Partition
Model Size Model Size Prediction error

DI with SCAD 2 3.30 (1.54) 1.19 (1.06)
DI with MCP 2 2.60 (1.09) 1.24 (1.33)
CA with SCAD 13 13.92 (3.84) 1.54 (1.26)
CA with MCP 11 14.86 (3.88) 1.40 (0.98)
SCCA 15 13.58 (1.75) 4.10 (1.37)
DI-LS 8 8.28 (3.77) 3.07 (1.59)

this section now considers nine quantiles τ1 = 1/10, . . . , τ9 = 9/10 instead of

one single quantile, as in Section 4. The data sets and the quantiles are treated

separately, after which the results are combined. The prediction errors for the

SCCA and DI-LS are calculated using

K∑
k=1

n∑
i=1

M |Yki −XT
kiθ̂
′
k − b̂′k|

2
. (5.2)

Recall that the scale factor M is the number of quantiles used by both the DI

and the CA. Here, it is used to make the prediction errors comparable with

those of the DI and CA in (5.1), which sum K ×M × n quantile loss functions.

For the SCCA method, θ̂′k and b̂′k represent the slope vector and the intercept,

respectively, obtained from the unpenalized least absolute deviations regression

of Yk on the selected subvector of Xk (k = 1, . . . ,K). For the DI-LS method the

estimates are generated directly from the penalized least squares regression. We

record the sizes of the models that are fitted using the full data sets, as well as

the simulated means and standard deviations of the model sizes and prediction

errors otained from the 50 replications.

Table 6 shows the results of analyzing the liver toxicity data. When using

the full data sets, our DI method with the SCAD penalty and the MCP penalty

selects the same two covariates, which are also chosen by the combined analysis

with either of the two penalties. Interestingly, the models fitted by SCCA or DI-

LS do not include these two covariates. This difference suggests heterogeneity in

the data, because both the SCCA and the DI-LS method tend to ignore covariates
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Table 7. Analysis of the financial market indices. The figures are the prediction errors
and the sizes of the selected submodels. The full model size is p = 46. DI denotes the
data-integration method based on multiple quantiles, CA the combined analysis, UR
is unpenalized regression, SCCA the sparse canonical correlation analysis, DI-LS the
data-integration method based on the least squares regression, SCAD denotes smoothly
clipped absolute deviation, and MCP minimax concave penalty.

Model Size Prediction errors
VIX Dow Jones S&P 500

DI with SCAD 4 10052.8 523.4 307.2
DI with MCP 4 10020.6 522.4 309.2
CA with SCAD 20 10150.4 637.3 400.1
CA with MCP 20 10125.1 637.9 396.1
UR 46 13408.5 644.0 663.4
SCCA 6 12998.1 658.1 513.4
DI-LS 13 13996.3 720.5 499.5

that affect responses only at certain quantile levels, but not globally. Using the

random partition approach, our DI method generates models that are, on average,

more sparse than those obtained from the competitors, with lower prediction

errors.

5.2. Multiple responses

As a second application, now with a multivariate response vector, we analyze

data sets of financial market indices from the R package FusionLearn (Gao, Zhong

and Carroll (2019)). These data contain three correlated indices: the VIX index,

the S&P 500 index, and the Dow Jones index. The VIX and the S&P 500

are negatively correlated, and the S&P 500 and the Dow Jones are positively

correlated (Gao and Carroll (2017)). The covariates are 46 major international

equity indices, North American bond indices, and major commodity indices. In

the analysis, the transformation log(Vt /Vy)×100 of each index is used, where Vt
and Vy denote the current and previous days’ values, respectively. The training

data set consists of 232 records of three years’ market performances, with three-

day spacing between the values. As shown in Gao and Carroll (2017), the values

are not autocorrelated at a 5% significance level.

As before, we minimize the objective function (2.2) to select the covari-

ates and estimate the parameters. The quantiles in (2.2) are τm = m/20, for

m = 1, 2, . . . , 19. We again use the SCAD penalty and the MCP, and deter-

mine their tuning parameters using criterion (4.2). The SCAD penalty selects

four covariates, which are the same as those selected by the MCP penalty. The

competing methods are the combined analysis with the two penalties and the
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unpenalized regression. The latter includes all 46 covariates in the model and

generates estimators by minimizing the loss function (2.1) without a penalty

term. We use the five fitted models for predictions based on a (different) valida-

tion data set with 464 records. The prediction errors for the three indices, that

is,
∑M

m=1

∑n
i=1 ρm(Yki −XT

kiθ̂km − b̂km), for k = 1, 2, 3, and the model sizes are

recorded in Table 7. There, we also list the results for the SCCA and the DI-LS

approach. The prediction errors for these two methods are
∑n

i=1M |Yki−XT
kiθ̂
′
k−

b̂′k|/2, with θ̂′k and b̂′k (k = 1, 2, 3), as in (5.2).

Our DI method with the SCAD penalty and the MCP outperforms the other

five approaches, whereas the DI with the SCAD penalty and the DI with the

MCP yield similar prediction errors. Apart from that, our DI method selects

models that are considerably smaller than those from the competitors, that is,

it achieves more sparsity. As in Section 5.1, the two DI approaches and the two

CA methods choose the same four predictors, whereas the SCCA selects only

one, and the DI-LS selects none of them. This again indicates heterogeity in the

data, that is, some predictors affect the responses only locally. The two empirical

data examples in Sections 5.1 and 5.2 clearly demonstrate the advantages of our

method, especially its ability to handle complex data.

6. Conclusion

To the best of our knowledge, this is the first time that a quantile regression

approach has been applied to a DI scenario with high-dimensional data. By

considering multiple quantiles simultaneously, we obtain a global picture of the

relationship between the predictors and the responses. A penalized estimator and

an information criterion, which aggregate information from multiple experiments,

have been developed to select variables and to estimate the model parameters.

Our method copes with heterogeneity in the data. It successfully exploits the

group structure in the parameter set across quantiles and experiments so that

influential predictors can be identified.

In practice, the quality and relevance of data may vary from one source to

another. Therefore, a weighted version of the loss function (2.1),

`(w)
n (θ) = n−1

K∑
k=1

wk

M∑
m=1

n∑
i=1

ρm(Yki −XT
kiθkm),

with weight vector w = (w1, . . . , wK)T, may improve our estimator, which uses

uniform weights. It would be worthwhile specifying and constructing such weights

for data from different experiments.
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The nonconvex penalty function associated with the L1-norm has different

properties to those of the penalty function associated with the L2-norm employed

by Gao and Carroll (2017), which forces parameters in the same group to be all

zero or all nonzero. When the least squares approach is used, Jiang and Huang

(2015) show that the penalty associated with the L1-norm can be applied if the

group structure is incomplete, that is, both zero and nonzero parameters exist

in the same group. This capacity is called a “bi-level selection” property. Here,

we focus on groups of parameters to identify predictors that have an impact on

one or more responses at some quantile levels. In the simulations of Section 4,

we saw that the SCAD penalty with the L1-norm actually performs well at the

group level, even if the group structure is incomplete. The theoretical properties

of the L1-norm in the quantile regression setting still need to be investigated in

greater detail.

Supplementary Material

• The proofs of the theoretical results and additional simulation results are

provided in the online Supplementary Material.

• All the programs of Section 4 and 5 are available at https://github.com/

guorongdai/data_integration.

• The data in Section 5.1 are from the R package mixOmics, and the data in

Section 5.2 are from the R package FusionLearn.
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