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This supplementary material contains some additional technical tools and the proofs of

Theorem 1, Theorem 2, Theorem 3, Theorem 4 and Theorem 5 of the main paper. Throughout

this supplementary material, || · || denotes the Euclidean norm for vectors, the spectral norm

for matrices and the supremum norm for functions, respectively. C+ and C− are referred as the

upper and lower half complex plane (real axis excluded). K is used to denote some constant

that can vary from place to place.

A Technical tools

Lemma 1. [El Karoui (2010)] Consider the n × n kernel random matrix
M with entries

Mi,j = f

(
‖xi − xj‖22

p

)
.

Let us call ψ the vector with i-th entry ψi = ‖xi‖22/p − τ/2, where τ =
2tr(Σp)/p. We assume that:
(a) n � p, that is, n/p and p/n remain bounded as p→∞.
(b) Σp is a positive semi-definite p×p matrix, and ‖Σp‖ = σ1(Σp) remains
bounded in p, that is, there exists K > 0, such that σ1(Σp) ≤ K, for all p.
(c) There exists ` ∈ R such that limp→∞ tr(Σp)/p = `.

(d) X = (x1, . . . ,xn) and xi = Σ1/2
p wi for i = 1, . . . , n.

(e) The entries of wi, a p-dimensional random vector, are i.i.d. Also, de-
noting by wik the kth entry of wi, we assume that E(wik) = 0, Var(wik) = 1
and E(|wik|5+ε) <∞ for some ε > 0.
(f) f is C3 in a neighborhood of τ .
Then M can be approximated consistently in operator norm (and in proba-
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bility) by the matrix M̃, defined by

M̃ = f(τ)11′ + f ′(τ)

[
1ψ′ +ψ1′ − 2

X′X

p

]
+
f ′′(τ)

2

[
1(ψ ◦ψ)′ + (ψ ◦ψ)1′ + 2ψψ′ + 4

tr(Σ2
p)

p2
11′

]
+ vpIn,

vp = f(0) + τf ′(τ)− f(τ).

In other words,

||M− M̃|| → 0, in probability.

Lemma 2. [Bai and Silverstein (2010)] Let A and B be two n×n Hermitian
matrices. Then,

||FA−FB|| ≤ 1

n
rank(A−B) and L3(FA, FB) ≤ 1

n
tr[(A−B)(A−B)∗],

where L(F,G) stands for the Lévy distance between the distribution func-
tions F and G.

Lemma 3. Let f : Rn → R be any function of thrice differentiable in
each argument. Let also x = (x1, . . . , xn)′ and y = (y1, . . . , yn)′ be two
random vectors in Rn with i.i.d. elements, respectively, and set U = f(x)
and V = f(y). If

γ = max{E|xi|3,E|yi|3, 1 ≤ i ≤ n} <∞,

then for any thrice differentiable g : R→ R and any K > 0,

|Eg(U)− Eg(V )| ≤ 2C2(g)γnλ3(f),

where λ3(f) = sup
{
|∂ki f(z)|3/k : z = (z`), z` ∈ {x`, y`}, 1 ≤ i ≤ n, 1 ≤ k ≤ 3

}
and C2(g) = 1

6
‖g′‖∞ + 1

2
‖g′′‖∞ + 1

6
‖g′′′‖∞.

This lemma follows directly from Corollary 1.2 in Chatterjee (2008) and
its proof.
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B Proofs

At the beginning of this section, we first recall some notations for easy
reading.

Vx =

(
‖xk − x`‖√

p

)
, Vy =

(
‖yk − y`‖√

q

)
, Pn = In −

1

n
1n1

′
n,

γx =
1

p
trΣx, γy =

1

q
trΣy, κx =

1

pn

n∑
i=1

||xi||2, κy =
1

qn

n∑
i=1

||yi||2,

An =
1

p
X′X + γxIn, Cn =

1

q
Y′Y + γyIn, Bn = A

1
2
nCnA

1
2
n ,

Dx =
1

p
X′X + κxIn, Dy =

1

q
Y′Y + κyIn, Dz =

1

q
Z′Z + κzIn,

Sxy = PnDxPnDyPn, Sxz = PnDxPnDzPn.

B.1 Proof of Theorem 1

The squared sample distance covariance V2
n(x,y) in (1.2) can be expressed

as an inner product between the two matrices PnVxPn and PnVyPn, that
is,

V2
n(x,y) =

√
pq

n2
trPnVxPnVyPn.

Notice that the matrices Vx and Vy are exactly the Euclidean distance
kernel matrices discussed in El Karoui (2010) with kernel function f(x) =√
x. Applying their main theorem (see Lemma 1), the matrix

PnVxPnVyPn (B.1)

can be approximated by a simplified random matrix Vn such that as (n, p, q)
tend to infinity,

‖Vn −PnVxPnVyPn‖ → 0 (B.2)

in probability, where

Vn ,
1

2
√
γxγy

Pn

(
An +

1

8γx
ψxψ

′
x

)
Pn

(
Cn +

1

8γy
ψyψ

′
y

)
Pn, (B.3)

in which

ψx =
1

p

 ‖x1‖2 − trΣx
...

‖xn‖2 − trΣx

 and ψy =
1

q

 ‖y1‖2 − trΣy
...

‖yn‖2 − trΣy

 .
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B.2 Proof of Theorem 2

Then we replace the two traces γx and γy in An and Cn with their
unbiased sample counterparts κx and κy, respectively, which does not affect
the convergence in (B.2). Finally in (B.3), by removing the two rank-
one matrices (8γx)−1ψxψ

T
x and (8γy)

−1ψyψ
T
y (which have bounded spectral

norm, almost surely), we get the conclusion of the theorem. The proof is
thus complete.

B.2 Proof of Theorem 2

Recall the approximation from Theorem 1,

V2
n(x,y) =

1

2n2

√
pq

γxγy
trSxy + op(1)

and notice that

1

n
tr(Sxy) =

1

npq
tr(PnX

′XPnY
′YPn) +

κy
np

tr(PnX
′X) +

κx
nq

tr(PnY
′Y)

+
n− 1

n
κxκy

=
1

npq
tr(X′XY′Y) + 3γxγy + oa.s(1).

Moreover, from Equation (21) in Li and Yao (2018) and the independence
between X and Y,

1

npq
tr(X′XY′Y) =

1

p
tr(Σx)

1

q
tr(Σy) + oa.s(1).

Collecting the above results yields

V2
n(x,y) = 2

√
cn1cn2γxγy + op(1).

On the other hand, applying Lemma 1, we have

1

n
S2,n =

1

2n

√
pq

γxγy

(
1

n2
1′Dx1− 2γx

)(
1

n2
1′Dy1− 2γy

)
+ op (1)

=2
√
cn1cn2γxγy + op(1).

Therefore, the statistic Tn = nV2
n(x,y)/S2,n converges to 1 in probability.

The proof is complete.
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B.3 Proof of Theorem 3

B.3 Proof of Theorem 3

The strategy of the proof is as follows. First, we prove the theorem under
Gaussian assumption. By virtue of rotation invariance property of Gaussian
vectors, we may treat the two population covariance matrices Σx and Σy as
diagonal ones, which can simplify the proof dramatically. Second, applying
Lindeberg’s replacement trick provided in Chatterjee (2008), we will remove
the Gaussian assumption and show that the theorem still holds true for
general distributions if the atoms (wij) have finite fourth moment, as stated
in our Assumption (b).

Gaussian case: First, we have

|κx − γx|
a.s.−−→ 0 and |κy − γy|

a.s.−−→ 0, (B.4)

as (n, p, q) tend to ∞. ¿From Lemma 2 and (B.4), we get

L3(FSxy , FBn)
a.s.−−→ 0.

Hence, the matrices Sxy and Bn share the same limiting spectral distribu-
tion and thus we only focus on the convergence of FBn . We first derive its
limit conditioning on the sequence (An). Then the result holds uncondi-
tionally if the limit is independent of (An). Following standard strategies
from random matrix theory, letting sBn(z) be the Stieltjes transform of
FBn , the convergence of FBn can be established through three steps:

Step 1: For any fixed z ∈ C+, sBn(z)− EsBn(z)→ 0, almost surely.

Step 2: For any fixed z ∈ C+, EsBn(z) → s(z) with s(z) satisfies the
equations in (3).

Step 3: The uniqueness of the solution s(z) to (3.1) on the set (3.2).

Step 1. Almost sure convergence of sBn(z)− EsBn(z).

We assume Σy is diagonal, having the form

Σy = Diag(τ1, . . . , τq).

By this and notations

rk =
1
√
q
A1/2

n (wp+k,1, . . . , wp+k,n)′, k = 1, . . . , q,
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B.3 Proof of Theorem 3

the matrix Bn can be expressed as

Bn = γyAn +

q∑
k=1

τkrkr
′
k. (B.5)

It’s “leave-one-out” version is denoted by Bk,n = Bn− τkrkr′k, k = 1, . . . , q.
Let E0(·) be expectation and Ek(·) be conditional expectation given r1, . . . , rk.
From the martingale decomposition and the identity

r′k(Bn − zIn)−1 =
r′k(Bk,n − zIn)−1

1 + τkr′k(Bk,n − zIn)−1rk
, (B.6)

we have

sBn(z)− EsBn(z) =
1

n

q∑
k=1

(Ek − Ek−1)
[
tr(Bn − zIn)−1 − tr(Bk,n − zIn)−1

]
=− 1

n

q∑
k=1

(Ek − Ek−1)
τkr
′
k(Bk,n − zIn)−2rk

1 + τkr′k(Bk,n − zIn)−1rk
. (B.7)

Similar to the arguments on pages 435-436 of Bai and Zhou (2008), the
summands in (B.7) form a bounded martingale difference sequence, and
hence sBn(z)− EsBn(z)→ 0, almost surely.

Step 2. Convergence of EsBn(z).

Let sAn(z) be the Stieltjes transform of FAn . From Silverstein (1995),
sAn(z) converges almost surely to sA(z), which satisfies

z = − 1

sA(z)
+

∫
t+

t

1 + tc−11 sA(z)
dHx(t). (B.8)

Define two functions wn(z) and mn(z) as

wn(z) =
1

n
Etr(Bn − zIn)−1An and mn(z) = γy +

1

q

q∑
k=1

τk

1 + τkc
−1
n2wn(z)

.

(B.9)

We first show that

m−1n (z)sAn

[
zm−1n (z)

]
− EsBn(z)→ 0, n→∞. (B.10)
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B.3 Proof of Theorem 3

In fact, applying the identity (B.6), we have

1

n
tr [mn(z)An − zIn]−1 − 1

n
tr(Bn − zIn)−1

=
1

n
tr [mn(z)An − zIn]−1

(
q∑

k=1

τkrkr
′
k − (mn(z)− γy)An

)
(Bn − zIn)−1

=
1

n

q∑
k=1

τkr
′
k(Bk,n − zIn)−1 [(mn(z)An − zIn]−1 rk

1 + τkr′k(Bk,n − zIn)−1rk

− mn(z)− γy
n

tr [mn(z)An − zIn]−1 An(Bn − zIn)−1

=
1

n

q∑
k=1

τkdk

1 + τkc
−1
n2wn(z)

,

where

dk =
1 + τkc

−1
n2wn(z)

1 + τkr′k(Bk,n − zIn)−1rk
r′k(Bk,n − zIn)−1 [mn(z)An − zIn]−1 rk

− 1

q
tr [mn(z)An − zIn]−1 An(Bn − zIn)−1.

Following similar arguments on pages 85-87 of Bai and Silverstein (2010),
one may obtain

max
k

E(dk)→ 0.

This result together with the fact

inf
n
|1 + τkc

−1
n2wn(z)| ≥ inf

n
τkc
−1
n2 |=(wn(z))| > 0

imply the convergence in (B.10).

We next find another link between EsBn(z) and wn(z) by proving

1 + zEsBn(z)− γywn(z)− 1

n

q∑
k=1

τkwn(z)

cn2 + τkwn(z)
→ 0. (B.11)
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B.3 Proof of Theorem 3

¿From the expression of Bn in (B.5) and the identity in (B.6), we have

In + z(Bn − zI)−1 =Bn(Bn − zIn)−1

=γyAn(Bn − zI)−1 +

q∑
k=1

τkrkr
′
k(Bn − zIn)−1

=γyAn(Bn − zI)−1 +

q∑
k=1

τkrkr
′
k(Bk,n − zIn)−1

1 + τkr′k(Bk,n − zIn)−1rk
.

(B.12)

Taking the trace on both sides of (B.12) and dividing by n, we get

1 + z
1

n
tr(Bn − zIn)−1 =γy

1

n
tr(Bn − zIn)−1An +

1

n

q∑
k=1

τkr
′
k(Bk,n − zIn)−1rk

1 + τkr′k(Bk,n − zIn)−1rk

=γy
1

n
tr(Bn − zIn)−1An +

1

n

q∑
k=1

τkc
−1
n2wn(z)

1 + τkc
−1
n2wn(z)

+ εn,

where

εn =
1

n

q∑
k=1

τk[c−1n2wn(z)− r′k(Bk,n − zIn)−1rk]

[1 + τkr′k(Bk,n − zIn)−1rk][1 + τkc
−1
n2wn(z)]

.

¿From the proof of (2.3) in Silverstein (1995), almost surely,

inf
n

∣∣[1 + τkr
′
k(Bk,n − zIn)−1rk][1 + τkc

−1
n2wn(z)]

∣∣ > 0.

Moreover, following similar arguments on page 87 of Bai and Silverstein
(2010), one may get

1

n

q∑
k=1

E
1
2 |c−1n2wn(z)− r′k(Bk,n − zIn)−1rk|2 → 0.

Therefore E(εn)→ 0 and hence the convergence in (B.11) holds.

By considering a subsequence {nk} such that wnk
(z) → w(z), from

(B.8), (B.10) and (B.11), we have

mnk
(z)→

∫
t+

t

1 + tc−1n2w(z)
dHy(t) , m(z),

snk
(z)→ 1

m(z)
sA

(
z

m(z)

)
,

zsnk
(z)→ −1 + w(z)

∫
t+

t

1 + tc−12 w(z)
dHy(t),
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B.3 Proof of Theorem 3

as k → ∞. These results demonstrate that snk
(z) has a limit, say s(z),

which together with (w(z),m(z), sA(z)) satisfy the following system of
equations: 

s(z) =
1

m(z)
sA

(
z

m(z)

)
,

zs(z) = −1 + w(z)

∫
t+

t

1 + tc−12 w(z)
dHy(t),

z = − 1

sA(z)
+

∫
t+

t

1 + tc−11 sA(z)
dHx(t),

m(z) =

∫
t+

t

1 + tc−12 w(z)
dHy(t).

Cancelling the function sA(z) from the above system yields an equivalent
but simpler system of equations as shown in (3). Hence, the convergence
of sn(z) is established if the system has a unique solution on the set (3.2).

Step 3. Uniqueness of the solution to (3).

The system of equations in (3) is equivalent to
1 + zs = wm,

m =

∫
t+

t

1 + tc−12 w
dHy(t),

w = s

∫
t+

t

1 + tc−11 (1 + zs)w−1s
dHx(t).

(B.13)

Bringing s = [wm− 1]/z into the third equation in (B.13), we have

w =

∫
t

z

(
wm− 1

)
+

t
(
wm− 1

)
z + c−11 tm

(
wm− 1

)dHx(t). (B.14)

Now suppose the LSD F 6= δ0 and we have two solutions (s, w,m) and
(s̃, w̃, m̃) to the system on the set (3.2) for a common z ∈ C+. Then, from
(B.13) and (B.14), we can obtain

w − w̃ = (wm− w̃m̃)

×
∫ [

t

z
+

tz(
z + c−11 tm(wm− 1)

)(
z + c−11 tm̃(w̃m̃− 1)

)] dHx(t)

+ (m̃−m)

∫
t2c−11 (wm− 1)(w̃m̃− 1)

(z + c−11 tm(wm− 1))(z + c−11 tm̃(w̃m̃− 1))
dHx(t),

(B.15)
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B.3 Proof of Theorem 3

m̃−m = (w − w̃)

∫
t2c−12(

1 + tc−12 w
)(

1 + tc−12 w̃
)dHy(t), (B.16)

wm− w̃m̃ = (w − w̃)

∫ (
t+

t(
1 + tc−12 w

)(
1 + tc−12 w̃

)) dHy(t). (B.17)

Combining (B.15)-(B.17), if w 6= w̃, we have

B1B2 + C1C2 = 1, (B.18)

where

B1 =

∫
t

z
+

tz(
z + c−11 tm(wm− 1)

)(
z + c−11 tm̃(w̃m̃− 1)

)dHx(t),

B2 =

∫
t+

t(
1 + tc−12 w

)(
1 + tc−12 w̃

)dHy(t),

C1 =

∫
t2c−11 (wm− 1)(w̃m̃− 1)

(z + c−11 tm(wm− 1))(z + c−11 tm̃(w̃m̃− 1))
dHx(t),

C2 =

∫
t2c−12(

1 + tc−12 w
)(

1 + tc−12 w̃
)dHy(t).

By the Cauchy-Schwarz inequality, we have

|B1B2|2 ≤
∫ ∣∣∣ t

z

∣∣∣+
|tz|

|z + c−11 tm(wm− 1)|2
dHx(t)

×
∫ ∣∣∣ t

z

∣∣∣+
|tz|

|z + c−11 tm̃(w̃m̃− 1)|2
dHx(t)

×
∫
t+

t

|1 + tc−12 w|2
dHy(t)

∫
t+

t

|1 + tc−12 w̃|2
dHy(t)

=

∫ ∣∣∣ t
z

∣∣∣+
|tz|

|z + c−11 tm(wm− 1)|2
dHx(t)

∫
t+

t

|1 + tc−12 w|2
dHy(t)

×
∫ ∣∣∣ t

z

∣∣∣+
|tz|

|z + c−11 tm̃(w̃m̃− 1)|2
dHx(t)

∫
t+

t

|1 + tc−12 w̃|2
dHy(t)

:=(B̃1B̃2)
2,

|C1C2|2 ≤
∫

t2c−11 |wm− 1|2

|z + c−11 tm(wm− 1)|2
dHx(t)

∫
t2c−11 |w̃m̃− 1|2

|z + c−11 tm̃(w̃m̃− 1)|2
dHx(t)

×
∫

t2c−12

|1 + tc−12 w|2
dHy(t)

t2c−12

|1 + tc−12 w̃|2
dHy(t)
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B.3 Proof of Theorem 3

=

∫
t2c−11 |wm− 1|2

|z + c−11 tm(wm− 1)|2
dHx(t)

∫
t2c−12

|1 + tc−12 w|2
dHy(t)

×
∫

t2c−11 |w̃m̃− 1|2

|z + c−11 tm̃(w̃m̃− 1)|2
dHx(t)

∫
t2c−12

|1 + tc−12 w̃|2
dHy(t)

:=(C̃1C̃2)
2.

Then (B.18) implies

1 = |B1B2 + C1C2|

≤
√

(B̃2
1 + C̃2

1)(B̃2
2 + C̃2

2)

=

{∫ ∣∣∣ t
z

∣∣∣+
|tz|

|z + c−11 tm(wm− 1)|2
dHx(t)

∫
t+

t

|1 + tc−12 w|2
dHy(t)

+

∫
t2c−11 |wm− 1|2

|z + c−11 tm(wm− 1)|2
dHx(t)

∫
t2c−12

|1 + tc−12 w|2
dHy(t)

}1/2

×
{∫ ∣∣∣ t

z

∣∣∣+
|tz|

|z + c−11 tm̃(w̃m̃− 1)|2
dHx(t)

∫
t+

t

|1 + tc−12 w̃|2
dHy(t)

+

∫
t2c−11 |w̃m̃− 1|2

|z + c−11 tm̃(w̃m̃− 1)|2
dHx(t)

∫
t2c−12

|1 + tc−12 w̃|2
dHy(t)

}1/2

.

(B.19)

On the other hand, taking the imaginary part on both sides of the second
equation in (B.13) and (B.14), we obtain

=(m) =

∫
t2c−12 =(w)

|1 + tc−12 w|2
dHy(t), (B.20)

=(w) = =(wmz − z)

∫
t

|z|2
+

t

|z + c−11 tm
(
wm− 1

)
|2
dHx(t)

+ =(m)

∫
t2c−11 |wm− 1|2

|z + c−11 tm(wm− 1)|2
dHx(t). (B.21)

Further, if it holds

=(wmz − z) > |z|=(w)

∫
t+

t

|1 + tc−12 w|2
dHy(t), (B.22)

then for w ∈ C+, combining the above three equations (B.20), (B.21) and
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B.3 Proof of Theorem 3

(B.22) will lead to

1 >

∫
t

|z|
+

t|z|
|z + c−11 tm

(
wm− 1

)
|2
dHx(t)

∫
t+

t

|1 + tc−12 w|2
dHy(t)

+

∫
t2c−11 |wm− 1|2

|z + c−11 tm(wm− 1)|2
dHx(t)

∫
t2c−12

|1 + tc−12 w|2
dHy(t). (B.23)

Such inequality also holds true if we replace w and m by w̃ and m̃, that is,

1 >

∫
t

|z|
+

t|z|
|z + c−11 tm̃

(
w̃m̃− 1

)
|2
dHx(t)

∫
t+

t

|1 + tc−12 w̃|2
dHy(t)

+

∫
t2c−11 |w̃m̃− 1|2

|z + c−11 tm̃(w̃m̃− 1)|2
dHx(t)

∫
t2c−12

|1 + tc−12 w̃|2
dHy(t). (B.24)

Combining (B.23) and (B.24) will lead to a contradiction to (B.19), which
means that we could only have one solution (s, w,m) satisfying the system
of equations (3.1) on the set (3.2).

So it is sufficient to prove the assertion (B.22) on some open set of C+.
In fact, using the first and second equations in (B.13), we have

=(wmz − z) = |z|2=(s),

=(zs) = =(wm) =

∫
t+

t

|1 + tc−12 w|2
dHy(t)=(w).

Then assertion (B.22) is equivalent to

=(s) >
1

|z|
=(zs). (B.25)

Actually, for any subsequence {nk} such that

snk
(z) =

1

nk

Etr(Bnk
− zIn)−1

converges, the empirical distribution FBnk has a limit F (may depend on
{nk}), as k →∞, whose support is bounded upward by a constant, say K,
which dose not depend on {nk}. Moreover, the limit s(z) of snk

(z) is the
Stieltjes transform of F , i.e.

s(z) =

∫
1

x− z
dF (x).

12



B.3 Proof of Theorem 3

This implies

=(s(z)) =

∫
1

|x− z|2
dF (x)=(z),

=(zs(z)) =

∫
x

|x− z|2
dF (x)=(z).

Therefore, (B.25) is true whenever |z| > K, which completes our proof.

Non-Gaussian case: since the two sets of samples {xi} and {yi} are inde-
pendent, we first fix the sequence of matrices (An) and show that, without
the Gaussian assumption, the empirical spectral distribution FSxy will still
converge weakly to the same spectral distribution F under Assumptions
(a)-(c). Next, the same trick can be applied to {xi}, which will not be
detailed here. Our strategy to remove the Gaussian assumption is based
on Lemma 3, an extension of Lindeberg’s argument for general smooth
functions, see also Corollary 1.2 in Chatterjee (2008). As a special case,
letting g be the identity function and f be the Stieltjes transform, the the-
orem will ensure that the order of the difference in expectation between
the two Stieltjes transforms under the Gaussian distribution and a non-
Gaussian one is O(n−1/2) whenever the two distributions match the first
two moments and have finite fourth moment. Hence, such difference can
be negligible as n → ∞, by which and the “Step 1” for Gaussian case the
proof is done.

Recall that

Bn = A1/2
n

(1

q
Y′Y + γyI

)
A1/2

n = A1/2
n

(1

q
W′ΣyW + γyI

)
A1/2

n ,

where the table W consists i.i.d. standard Gaussian random variables and
we vectorize it as a qn-dimensional random vector, denoted as w = (wij).
Therefore, the Stieltjes transform sn(z) of FBn can be viewed as a function
of the random vector w, defined as

U := f(w) =
1

n
tr(Bn − zI)−1,

Similarly, we denote by

V := f(w̃)

the non-Gaussian counterpart of U , where w̃ = (w̃ij) have the same first two
moments as {wij} and finite fourth moment. Let w̄ = (w̄ij) be a mixture of

13



B.3 Proof of Theorem 3

w and w̃ by taking w̄ij ∈ {wij, w̃ij} for i = p+1, . . . , p+q and j = 1, . . . , n,
whose matrix form is denoted by W . Applying Lemma 3, one gets

|E(U)− E(V )| ≤ Kqnλ3(f), (B.26)

where

λ3(f) = sup

{∣∣∣∣∂kf(w̄)

∂w̄k
ij

∣∣∣∣3/k : p+ 1 ≤ i ≤ p+ q, 1 ≤ j ≤ n, 1 ≤ k ≤ 3, w̄ ∈ Rqn

}
.

Hence, the remaining work is to find a bound for λ3(f), which can be
achieved from bounding the first three derivatives of f with respect to w̄ij.
To this end, following the same truncation, centralization and rescaling
steps as in Bai and Silverstein (2010) (see Eq. (4.3.4)) and the “no eigenval-
ues” argument under finite fourth moment condition in Bai and Silverstein
(1998), without loss of generality, we assume that the atoms (w̄ij) satisfy
the following:

E(w̄ij) = 0, Var(w̄ij) = 1, |w̄ij| ≤
√
n, e′iWW′ei ≤ Kn,

for all i and j, where the vector ei is the ith canonical basis on Rq. For
convenience, we still use notations (wij,w,W) instead of (w̄ij, w̄,W) in
what follows.

Let G = (Bn − zI)−1, then the first three derivatives of f(w) with
respect to wij are the following:

∂f(w)

∂wij

=
1

n
trG′ = − 1

n
trB′nG

2,

∂2f(w)

∂w2
ij

= − 1

n
tr(B′′nG

2 + 2B′nGG′) = − 1

n
trB′′nG

2 +
2

n
trB′nG

2B′nG,

∂3f(w)

∂w3
ij

=
4

n
trB′′nG

2B′n −
6

n
trB′nG

2B′nGB′nG +
2

n
trB′nG

2B′′nG,

where

G′ = −GB′nG,

B′n =
1

q
A1/2

n (eje
′
iΣyW + W′Σyeie

′
j)A

1/2
n ,

B′′n =
2

q
A1/2

n eje
′
iΣyeie

′
jA

1/2
n .

and the vector ej is the jth canonical basis on Rn.

14



B.3 Proof of Theorem 3

For the first derivative of f , since Σy, A
1/2
n and G2 are all normal, we

have

sup

∣∣∣∣∂f(w)

∂wij

∣∣∣∣ ≤ sup

{
1

nq

∣∣trA1/2
n eje

′
iΣyWA1/2

n G2
∣∣+

1

nq

∣∣trA1/2
n W′Σyeie

′
jA

1/2
n G2

∣∣}
≤ sup

{
K

nq
‖ej‖‖e′iW‖+

K

nq
‖W′ei‖‖e′j‖

}
≤ Kn−3/2. (B.27)

For the second derivative, we have∣∣∣∣ 1ntrB′′nG
2

∣∣∣∣ =
2

nq

∣∣trA1/2
n eje

′
iΣyeie

′
jA

1/2
n G2

∣∣ ≤ K

nq
‖ej‖ · ‖e′ieie

′
j‖ ≤ Kn−2

and∣∣∣∣ 2ntrB′nG
2B′nG

∣∣∣∣
=

2

nq2
∣∣trA1/2

n (eje
′
iΣyW + W′Σyeie

′
j)A

1/2
n G2A1/2

n (eje
′
iΣyW + W′Σyeie

′
j)A

1/2
n G

∣∣
≤ K

nq2
(
‖ej‖‖e′iWeje

′
iW‖+ ‖ej‖‖e′iWW′eie

′
j‖+ ‖W′ei‖‖e′jeje

′
iW‖+ ‖W′ei‖‖e′jW′eie

′
j‖
)

≤ K

nq2
(
n+
√
n · |wij|

)
≤ Kn−2,

which leads to the conclusion that

sup

∣∣∣∣∂2f(w)

∂w2
ij

∣∣∣∣ ≤ Kn−2. (B.28)

Similarly, we could bound the third derivative as follows,

sup

∣∣∣∣∂3f(w)

∂w3
ij

∣∣∣∣ ≤ sup

{
K

nq3
(
‖e′iW‖|wij|2 + 2|wij||e′iWW′ei|+ ‖e′iW‖|e′iWW′ei|

)
+
K

nq2
(‖e′iW‖+ |wij|)

}
≤ Kn−5/2. (B.29)

Finally, combing (B.27), (B.28) and (B.29) gives

λ3(f) = sup

{∣∣∣∣ ∂f∂wij

∣∣∣∣3 , ∣∣∣∣ ∂2f∂w2
ij

∣∣∣∣ 32 , ∣∣∣∣ ∂3f∂w3
ij

∣∣∣∣
}

= Kn−5/2,
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which together with (B.26) imply

|E(U)− E(V )| ≤ Kn−1/2 → 0, as n→∞.

The proof is done.

B.4 Proof of Theorem 4

Under our model setting (4.1), the three data matrices X, Y and Z are
related as:

Z = ΓXS + Y,

where Γ =
∑m

k=1 θkukv
′
k and S = Diag(ε1, . . . , εn). So we have

1

q
Z′Z =

1

q
Y′Y +

1

q
SX′Γ′ΓXS +

1

q
SX′Γ′Y +

1

q
Y′ΓXS

,
1

q
Y′Y + H,

where

H =
1

q
SX′Γ′ΓXS +

1

q
SX′Γ′Y +

1

q
Y′ΓXS (B.30)

is a matrix of finite rank, at most 2m. Denote

S̃xz = A1/2
n

(
1

q
Z′Z + γzIn

)
A1/2

n and Ŝxz = A1/2
n

(
1

q
Y′Y + γzIn

)
A1/2

n ,

where

γz =
1

q
tr(Σz) = γy +

1

q

m∑
i=1

θ2i · γx = γy + o(1). (B.31)

Applying Lemma 2 to Bn, S̃xz and Ŝxz, we have

||F S̃xz − F Ŝxz || → 0 and L3(FBn , F Ŝxz)→ 0, (B.32)

almost surely, as (n, p, q) tend to infinty. Combining (B.32) and the fact

that S̃xz shares the same LSD as Sxz, we conclude that FSxz converges
weakly to the LSD F defined by (3). The proof is thus complete.
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B.5 Proof of Theorem 5

We first note that, from the convergence in (B.4) and (B.31), asymptotically,
the largest eigenvalues of Sxz are the same as those of

S̄xz := A1/2
n

(
1

q
Y′Y + H + γyIn

)
A1/2

n ,

where H is given in (B.30). So it’s equivalent to prove the theorem for S̄xz.

Next, from Bai and Silverstein (1998) and the inequality

||A1/2
n CnA

1/2
n || ≤ ||An|| · ||Cn||,

we know that the spectral norm ||A1/2
n CnA

1/2
n || is bounded in n, almost

surely. Define
λ+ = lim sup

n→∞
||A1/2

n CnA
1/2
n ||,

we consider the existence of spiked eigenvalues (λn,`) of S̄xz in the interval
(λ+,+∞). That is, for each ` ∈ {1, . . . , k}, λn,` is an eigenvalue of S̄xz but

not an eigenvalue of A
1/2
n CnA

1/2
n , i.e.∣∣λIn − S̄xz

∣∣ = 0 and
∣∣λIn −A1/2

n CnA
1/2
n

∣∣ 6= 0, (B.33)

for λ ∈ {λn,1, . . . , λn,k}.
In the following, we will show the limits of λ is defined in (4.4). Under

the assumptions in (B.33), we have∣∣∣In − (λIn −A1/2
n CnA

1/2
n

)−1
A1/2

n HA1/2
n

∣∣∣ = 0. (B.34)

Recall the definition of H in (B.30), then with a little bit calculation, this
matrix can be decomposed as

H =
1

q

(
a1 b1 · · · am bm

)


θ1λ11 0 · · · 0 0
0 θ1λ12 · · · 0 0
...

...
. . .

...
...

0 0 · · · θmλm1 0
0 0 · · · 0 θmλm2




a′1
b′1
...

a′m
b′m

 ,

(B.35)
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B.5 Proof of Theorem 5

where

ai = ui1SX′vi + wi1Y
′ui,

bi = ui2SX′vi + wi2Y
′ui,

λi1 = ‖SX′vi‖‖Y′ui‖

{√
4‖Y′ui‖2 + θ2i ‖SX′vi‖2 + θi‖SX′vi‖√
4‖Y′ui‖2 + θ2i ‖SX′vi‖2 − θi‖SX′vi‖

}1/2

,

λi2 = −‖SX′vi‖‖Y′ui‖

{√
4‖Y′ui‖2 + θ2i ‖SX′vi‖2 − θi‖SX′vi‖√
4‖Y′ui‖2 + θ2i ‖SX′vi‖2 + θi‖SX′vi‖

}1/2

,

with

ui1 =
1

‖SX′vi‖

{
1

2
+

θi‖SX′vi‖
2
√

4‖Y′ui‖2 + θ2i ‖SX′vi‖2

}1/2

,

ui2 =
1

‖SX′vi‖

{
1

2
− θi‖SX′vi‖

2
√

4‖Y′ui‖2 + θ21‖SX′vi‖2

}1/2

,

wi1 =
1

‖Y′ui‖

{
1

2
− θi‖SX′vi‖

2
√

4‖Y′ui‖2 + θ2i ‖SX′vi‖2

}1/2

,

wi2 = − 1

‖Y′ui‖

{
1

2
+

θi‖SX′vi‖
2
√

4‖Y′ui‖2 + θ2i ‖SX′vi‖2

}1/2

.

In addition, it’s straightforward to verify the following relations, λi1u
2
i1 + λi2u

2
i2 = θi,

λi1w
2
i1 + λi2w

2
i2 = 0,

λi1ui1wi1 + λi2ui2wi2 = 1.
(B.36)

Denote Dn = A
1/2
n

(
λIn −A

1/2
n CnA

1/2
n

)−1
A

1/2
n and

Mn =
1

q


a′1
b′1
...

a′m
b′m

Dn

(
a1 b1 · · · am bm

)


θ1λ11 0 · · · 0 0
0 θ1λ12 · · · 0 0
...

...
. . .

...
...

0 0 · · · θmλm1 0
0 0 · · · 0 θmλm2

 .

Then (B.34) and (B.35) imply

fn(λ) := |I2m −Mn| = 0.
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B.5 Proof of Theorem 5

We next find the limit of fn(λ). Let

αn =
1

n
trSDnS(An − γxIn) and βn =

1

n
trDn(Cn − γyIn),

one may get for any i ∈ {1, . . . ,m},

a′iDnai

q
=
u2i1
cn2

αn +
w2

i1

cn2
βn + oa.s.(1),

a′iDnbi

q
=
ui1ui2
cn2

αn +
wi1wi2

cn2
βn + oa.s.(1),

b′iDnbi

q
=
u2i2
cn2

αn +
w2

i2

cn2
βn + oa.s.(1) ,

and for any i 6= j ∈ {1, . . . ,m},

a′iDnaj

q
= oa.s.(1) ,

a′iDnbj

q
= oa.s.(1) .

¿From the above approximations and the identities in (B.36), we have

fn(λ) =
m∏
k=1

∣∣I2 −Mnk

∣∣+ oa.s(1)

where

Mnk =
θk
cn2

(
αn 0
0 βn

)(
θk 1
1 0

)
. (B.37)

Let ε = (ε1, . . . , εn)′, then

αn =
1

n
trSDnSAn −

γx
n

trSDnS =
1

n
ε′ (Dn ◦An) ε− γx

n
ε′Diag(Dn)ε,

(B.38)

where “◦” denotes the Hadamard product of two matrices. According to
Theorem 1 of Varberg (1968), we have

1

n
ε′ (Dn ◦An) ε− 1

n
E [ε′ (Dn ◦An) ε]

a.s.−−→ 0, (B.39)

1

n
ε′Diag(Dn)ε− 1

n
EtrDn

a.s.−−→ 0. (B.40)
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Further,

1

n
E [ε′ (Dn ◦An) ε] =

1

n
Etr
[
DnDiag(An)

]
=

1

n
Etr
[
Dn (Diag(An)− 2γxIn)

]
+

2γx
n

EtrDn

=
2γx
n

EtrDn + o(1), (B.41)

where the last equality is due to the following convergence,∣∣∣∣ 1ntr
[
Dn · (Diag(An)− 2γxIn)

]∣∣∣∣ ≤ 1

n
‖Dn‖ · tr

∣∣An − 2γxIn
∣∣ a.s.−−→ 0.

Collecting results in (B.38)-(B.41), we get

αn = −γxwn(λ) + oa.s.(1)
a.s.−−→ α , −w(λ)

∫
tdHx(t), (B.42)

where wn(z) is defined in (B.9), whose domain can be expanded to (λ+,+∞)
for all large n. For βn, we have

βn =
1

n
tr(DnCn)− γy

n
trDn

= −1 +
λ

n
tr
(
λIn −A1/2

n CnA
1/2
n

)−1 − γy
n

trDn

= − 1

n

q∑
k=1

τkwn(λ)

cn2 + τkwn(λ)
+ oa.s.(1)

a.s.−−→ β , −c2
∫
tw(λ)dHy(t)

c2 + tw(λ)
, (B.43)

where the third equality is from (B.11) with (τk) being the eigenvalues of
Σy. Collecting results in (B.37),(B.42) and (B.43), we get

fn(λ)
a.s.−−→ f(λ) ,

m∏
k=1

(
1− θ2kg(λ)

)
,

where the function g is given in (4.2). With the definition of the critical
value θ0 in (4.3), we find that for any k ∈ {1, . . . ,m} and θk > θ0, there
are k zeros λ1 > · · · > λk of f(λ) on (λ+,∞). By continuity arguments,
see Lemma 6.1 in Benaych-Georges and Nadakuditi (2011), we verify the
existence of the spikes λn,1, . . . , λn,k whose limits are λ1, . . . , λk, respectively.
The proof is then complete.
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