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Abstract: The goal of nonparametric regression is to recover an underlying regression

function from noisy observations, under the assumption that the regression function

belongs to a prespecified infinite-dimensional function space. In the online setting,

in which the observations come in a stream, it is generally computationally infeasible

to refit the whole model repeatedly. As yet, there are no methods that are both

computationally efficient and statistically rate optimal. In this paper, we propose

an estimator for online nonparametric regression. Notably, our estimator is an

empirical risk minimizer in a deterministic linear space, which is quite different from

existing methods that use random features and a functional stochastic gradient. Our

theoretical analysis shows that this estimator obtains a rate-optimal generalization

error when the regression function is known to live in a reproducing kernel Hilbert

space. We also show, theoretically and empirically, that the computational cost of

our estimator is much lower than that of other rate-optimal estimators proposed

for this online setting.

Key words and phrases: Mercer expansion, nonparametric regression, online learn-

ing, reproducing kernel Hilbert space.

1. Introduction

It is often of interest to estimate an underlying regression function, linking

features to an outcome, from noisy observations. When the structure of this

function is not known (e.g., when we do not want to assume a simple linear form),

some form of nonparametric regression is employed. More formally, suppose we

observe (Xi, Yi)
i.i.d.∼ ρ(X,Y ), for i = 1, 2, . . . , n, generated from the following

statistical model:

Yi = fρ(Xi) + εi, (1.1)

where, for each i, Xi
i.i.d.∼ ρX (which take values in Rd) are our features, Yi ∈ R

is our outcome, εi are independent and identically distributed (i.i.d.) mean zero
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noise variables. One can think of fρ as being implicitly defined by the joint

distribution ρ(X,Y ). It is often of interest to estimate fρ, the regression function

(e.g., in predictive modeling or inferential applications). Under mild conditions,

the regression function fρ can also be characterized as the minimizer of

min
f∈F

E(Y − f(X))2 (1.2)

when F = L2
ρX , which is the best measurable function for predicting Y given X

under a least squares loss.

1.1. Nonparametric regression in RKHS

In nonparametric regression, we often assume that fρ belongs to a specified

infinite-dimensional function space F . This is known as the Hypothesis Space.

Commonly used F in statistics and computer science communities include the

Holder ball, Sobolev space (Wahba (1990)), general reproducing kernel Hilbert

space (RKHS) (Christmann and Steinwart (2008)), and Besov space (Härdle et al.

(2012)). Here, we focus on estimation when F is an RKHS. Briefly, an RKHS

over X is a Hilbert space (F , 〈·, ·〉F ) with the following reproducing property: for

any f ∈ F and x ∈ X ,

f(x) = 〈f,Kx〉F , (1.3)

where Kx is the so-called kernel function associated with F evaluated at x. This

is discussed in more detail in Section 2.

In the classical nonstreaming setting of nonparametric regression, estimation

in an RKHS F is a well-studied problem. In this case, the kernel ridge regression

(KRR) estimator is the gold standard; see, for example (Wainwright (2019)). It

is defined by

f̂KRRn := argmin
f∈F

1

n

n∑
i=1

(Yi − f (Xi))
2 + λKRRn ‖f‖2F , (1.4)

where λKRRn is a hyperparameter that balances the mean squared error and the

complexity of the estimate. Owing to the reproducing property (1.3), f̂KRRn

can be written as a finite linear combination of the kernel function evaluated at

(Xi)
n
i=1 (Schölkopf, Herbrich and Smola (2001)).

In general, (1.4) requires solving an n × n linear system, and thus has a

computational cost in the order of n3. In an online setting, this is exacerbated

by the need to refit for each new observation, resulting in n4 computation being

required to fit a sequence of n estimators. Although this penalized estimator has
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good statistical properties (rate optimal convergence and strong empirical per-

formance), its high computational cost restricts its application in online settings.

Substantial effort has been made to reduce the computational cost of KRR using,

for example, “scalable kernel machines” based on a random Fourier feature (RFF)

(Liu et al. (2021)) or a Nyström projection (Gittens and Mahoney (2016)). This

is discussed further in Section 2.1.

1.2. Parametric and nonparametric online learning

Online learning has been studied thoroughly in the parametric setting: there,

we assume fρ takes a parametric form, indexed by a finite-dimensional parameter

β ∈ Rp (e.g., fρ(X) = β>X for a linear model).

In this parametric online setting, it is useful to frame the regression function

as a population minimizer,

min
β∈Rp

E[(Y − fβ(X))2]. (1.5)

From here, it is popular to directly apply a stochastic gradient descent (SGD)

to (1.5), using each sample in our ”stream” to calculate one unbiased estimate

of the gradient. Updating such an estimator with a new observation has a con-

stant computational cost of O(p). In addition, these estimators achieve an opti-

mal parametric convergence rate of O(1/n) under mild conditions (Kushner and

Yin (2003); Bach and Moulines (2013); Frostig et al. (2015); Babichev and Bach

(2018)).

However, comparatively less attention has been given to online nonparamet-

ric regression. A few rate-optimal functional SGD algorithms have been proposed

(Tarres and Yao (2014); Dieuleveut and Bach (2016)), where the hypothesis func-

tion space F is assumed to be an RKHS. The RKHS structure makes it possible

to take the gradient of the evaluation functional Lx(f) := f(x). Although such

estimators have been shown to be statistically rate optimal, updating them with

a new observation (Xn+1, Yn+1) usually involves evaluating n kernel functions at

Xn+1, with a computational cost of O(n). This is in contrast to the constant

update cost of O(p) in a parametric SGD. Thus, the computational cost of a

nonparametric SGD will accumulate at order O(n2), which is not ideal for meth-

ods that are nominally designed to deal with large data sets. Although there

has been some effort devoted to transfer RFF- or Nystrom-based methods to on-

line settings (See Section 2.1), the theoretical guarantees are usually not close to

optimal, with strong restrictions on the noise variables.
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Our contribution. We propose a method for constructing online estimators in

an RKHS by considering the Mercer expansion (eigendecomposition) of a ker-

nel function. Existing methods usually take an iterative form, which can be

interpreted as projecting a random function onto a random space with growing

dimension (Koppel et al. (2019, Equation (15))). However, our estimator is the

first one that can be treated as an empirical risk minimizer (ERM, or M-estimator

of negative loss) in a deterministic linear space with growing dimension.

We analyze both the statistical and the computational properties of the esti-

mator to show that i) it has an asymptotically optimal (up to a logarithm term)

generalization error, ii) it has a significantly lower computational cost than those

of other proposed rate-optimal nonparametric SGD estimators, and iii) it is ro-

bust against heavy-tailed noise. Interestingly, it only requires the (1+∆) moment

of the noise to be finite for any ∆ > 0 to achieve consistency.

Note that in the theoretical analysis of our estimator, we do not require the

covariate X to be equally spaced or uniformly distributed, as in standard refer-

ences (Tsybakov (2008)) (though such assumptions would significantly simplify

the proof). In addition, we do not require it to be known for rate optimal con-

vergence. We show that our estimator obtains rate optimal convergence if ρX
is absolutely continuous with respect to the measure used to conduct the eigen-

decomposition of the kernel function (usually, the latter is taken as a uniform

measure or a Gaussian distribution).

Notation: we use an = Θ(bn) to indicate that two sequences increase/decrease

at the same rate as n→∞. Formally,

0 < lim inf
n→∞

∣∣∣∣anbn
∣∣∣∣ ≤ lim sup

n→∞

∣∣∣∣anbn
∣∣∣∣ <∞. (1.6)

For a ∈ R, bac is the largest integer that is smaller than or equal to a. The

‖ · ‖2-norm of a function is its L2
ρX -norm, that is ‖f‖22 =

∫
X f

2(z)dρX(z). In this

paper, when we say two functions f and g are orthogonal with respect to the

measure P , we mean
∫
f(x)g(x)dP (x) = 0.

2. Preliminaries on RKHS

In this section, we provide background information on RKHS and existing

methods, before introducing our estimation procedure.

First, we formally introduce the concept of a Mercer kernel and its corre-

sponding RKHS. A symmetric bivariate function K : X × X → R is positive

semi-definite (PSD) if, for any n ≥ 1 and (xi)
n
i=1 ⊂ X , the n×n kernel matrix K
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with elements Kij := K(xi, xj) is always a PSD matrix. A continuous, bounded,

PSD kernel function K is called a Mercer kernel. We have the following duality

between a Mercer kernel and a Hilbert space.

Proposition 1. For any Mercer Kernel K : X × X → R, let Kx denote the

function Kx(·) := K(x, ·). There exists a unique Hilbert Space (H, 〈·, ·〉H) of

functions on X satisfying the following conditions:

1. For all x ∈ X , Kx ∈ H.

2. The linear span of {Kx | x ∈ X} is dense (w.r.t ‖ · ‖H) in H.

3. (reproducing property) For all f ∈ H, x ∈ X ,

f(x) = 〈f,Kx〉H. (2.1)

We call this Hilbert space the RKHS associated with kernel K, or the native

space of K. For a more comprehensive discussion of the RKHS, see Cucker and

Smale (2002), Wainwright (2019), and Fasshauer and McCourt (2015).

There is an equivalent definition of the RKHS, which we focus on here.

Given any Mercer kernel K and any Borel measure ν, there exists a set of L2
ν-

orthonormal basis (φj)
∞
j=1 of H̄ (closure of H with respect to ‖ · ‖L2

ν
). Addi-

tionally, each of the functions has a paired positive real number µj , sorted s.t.

µj ≥ µj+1 > 0. We call the functions φj eigenfunctions and µj their correspond-

ing eigenvalues. We state the following equivalent definition of the native space

of K.

Proposition 2. Define a Hilbert space

H =

f ∈ L2
ν | f =

∞∑
k=1

θjφj with

∞∑
j=1

(
θj√
µj

)2

<∞

 (2.2)

equipped with inner product:

〈f, g〉H =

∞∑
j=1

ajbj
µj

, (2.3)

for f =
∑∞

j=1 ajφj and g =
∑∞

j=1 bjφj.

Then, (H, 〈·, ·〉H) is the reproducing Hilbert space of kernel K.

For a discussion of this definition and its relation to Proposition 1, see Cucker

and Smale (2002). For many kernels, the analytical form of (µj , φj) are available
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for some specific choice of measure ν. This can be useful for our method. We

require the eigen-system of the kernel with respect to some (relatively arbitrary)

measure. This measure does not need to be the measure ρX , it merely needs to be

absolutely continuous with respect to ρX . We assume such a convenient measure,

denoted by ρ̄X , exists (for which the kernel has an accessible eigen-system and

ρ̄X � ρX). We call it a working measure, and use the notation (λj , ψj) instead

of the generic (µj , φj) to denote such an eigen-system with respect to L2
ρ̄X . As an

example, the kernel K(x, z) = min{x, z} is the reproducing kernel of the Sobolev

space

W 0
1 ([0, 1]) =

{
f : [0, 1]→ R | f(0) = 0 and

∫ 1

0

(
f ′(x)

)2
dx <∞

}
, (2.4)

and its eigenfunctions and eigenvalues are (w.r.t. ρ̄X = Unif([0, 1]))

ψj(x) =
√

2 sin

(
(2j − 1)πx

2

)
λj =

4

(2j − 1)2π2
. (2.5)

It is also possible to write the kernel as a Mercer expansion w.r.t (ψj , λj):

K(x, z) =

∞∑
j=1

λjψj(x)ψj(z). (2.6)

The functions {
√
λjψj(x), j = 1, 2, . . .} are also called the feature maps of the

kernel K. Note too that, by definition, ψj are orthogonal w.r.t. 〈·, ·〉H. Twenty

commonly used kernels’ Mercer expansions are provided in (Fasshauer and Mc-

Court (2015, Appendix A)).

If a function f =
∑∞

j=1 θjψj has a finite ‖ · ‖H RKHS-norm, its general

Fourier coefficients (θj)j∈N need to be at least o(λjj
−1/2) so that the norm series∑∞

j=1(θj/
√
λj)

2 converges. This suggests that, for sufficiently large N , the trun-

cation fN =
∑N

j=1 θjψj should be a good approximation to f . This basic idea

motivates our work. By analyzing the spectrum of the kernel, we can identify

what N should be.

2.1. Existing online nonparametric methods

In an RKHS, it is possible to take the functional gradient of the evaluation

operator Lx, for any x ∈ X . This allows methods using a functional SGD to

solve the regression problem (1.2). Usually, functional SGD estimators after n

steps, f̂SGDn of fρ, take the form of a weighted sum of n kernel functions KXi ,
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for i = 1, 2, . . . , n, (Tarres and Yao (2014); Dieuleveut and Bach (2016)):

f̂SGDn =

n∑
i=1

aiKXi . (2.7)

To update f̂SGDn with (Xn+1, Yn+1), it is necessary to evaluate all n kernel basis

functions {KXi , i = 1, 2, . . . , n} at Xn+1. Thus, the computational cost of the

update is O(n). Several works have attempted to improve this computational

cost. In Si, Kumar and Li (2018), Lu et al. (2016), and Koppel et al. (2019),

the authors choose a subset of features (KXi)
n
i=1 with cardinality smaller than

n. In Dai et al. (2014) and Lu et al. (2016), kernel-agnostic random Fourier

features are used: typically, O(
√
n) basis functions are required in this setting;

see Rudi and Rosasco (2017). Although computationally more efficient than a

vanilla functional SGD (2.7), the theoretical aspects of these scalable methods

are not fully satisfying: 1) noise variables are required to have extremely light

tails to provably guarantee convergence; 2) verified convergence rates are not

minimax-optimal; and 3) the target parameter is, in general, not even fρ but,

instead, a penalized population risk-minimizer.

Compared with the linear space spanned by random features or kernel func-

tions, the space spanned by eigenfunctions has a minimal approximation er-

ror in the sense of minimizing the Kolmogorov N-width (Santin and Schaback

(2016, Sec. 3)). This inspired us to use them as basis functions to construct

our estimator. Briefly, this means that projecting onto the N-dimensional lin-

ear space spanned by the eigenfunctions has the minimal residual among all the

N-dimension linear sub-spaces of L2
ρ̄X . More technically,

sup
‖f‖H=1

∥∥∥f −ΠL2
ρ̄X
, FNf

∥∥∥
L2
ρ̄X

= inf
VN⊂L2

ρ̄X

sup
‖f‖H=1

∥∥∥f −ΠL2
ρ̄X
, VNf

∥∥∥
L2
ρ̄X

=
√
λN+1,

(2.8)

where FN is the linear space spanned by the first N eigenfunctions (ψj)
N
j=1, ΠA,B

is the projection operator onto space B using the inner product of A, and VN
is a generic N -dimensional linear space in L2

ρ̄X . This is important for statistical

estimation, because there is a bias/variance tradeoff in this estimation problem

(more basis functions decreases the bias, but increases the variance). By using

a basis that can more compactly represent our function, we can find a more

favorable tradeoff and asymptotically decrease our estimation error.

We propose a method with favorable statistical guarantees (minimax rate-

optimality) and a lower computational cost. The basis functions used should be

kernel-sensitive, and the convergence rate should be sensitive to the decay rate
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of the eigenvalues λj . In addition, we give provable theoretical guarantees in a

heavy-tail noise setting.

3. A Computationally Efficient Online Estimator

In this section, we present the proposed online regression estimator. We first

discuss the well-known projection estimator in the batch learning setting, then

shift to the online setting, where we naively refit the model with each observation.

Lastly, we give our proposed modification to make this process computationally

efficient. In what follows, we use N to denote the number of basis functions used

to construct each projection estimator, though it should more formally be written

as N(n), because it is a nondecreasing function of n.

3.1. Projection estimator in batch learning

Suppose we have n samples (Xi, Yi)
n
i=1, and let FN = span(ψ1, . . . , ψN ) be

the N -dimensional linear space spanned by the N eigenfunctions with the largest

eigenvalues. The function f̂n,N that minimizes the empirical mean squared error

over FN is a very attractive candidate for estimating fρ ∈ H, which we use for

the online setting.

Formally, define θθθ = (θ1, . . . , θN )> and ψψψN (Xi) = (ψ1(Xi), . . . , ψN (Xi))
>.

Consider the following least squares problem (in the Euclidean space):

min
θθθ∈RN

n∑
i=1

(Yi − θθθ>ψψψN (Xi))
2. (3.1)

The solution can be written in matrix form as

θ̂̂θ̂θ := (θ̂1, . . . , θ̂N )> = (Ψ>nΨn)−1Ψ>nYYY n, (3.2)

if Ψ>nΨn is invertible. Here, YYY n = (Y1, . . . , Yn)> is the observed response, and

Ψn is the design matrix with elements Ψij = ψj(xi). Then, the estimator

f̂n,N =

N∑
j=1

θ̂jψj (3.3)

is the empirical risk minimizer (ERM) in FN . Estimators that take this form

are called nonparametric projection estimators (of fρ, with level N) (Tsybakov

(2008)).

The optimal number of basis functions to use depends on both the sample

size n and how fast the eigenvalues λj in (2.6) decay. As stated formally in
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Theorem 1, the optimal choice is N = Θ(nd/(2α+d)) when λj = Θ(j−2α/d), with

α > d/2. Note that the condition α > d/2 ensures that the considered RKHS can

be embedded into the space of continuous functions (as a result of the Sobolev

inequality, cf. Theorem 12.55 (Leoni (2017))). With this choice for N , the

convergence of f̂n,N achieves the minimax rate over functions with a bounded

RKHS norm. Similar results for projection estimators have been shown when

(ψj)
∞
j=1 is the trigonometric basis, and xi are deterministic and evenly spaced

(Tsybakov (2008)) or ρX is the uniform distribution (Belloni, Chernozhukov and

Wang (2014)). Our analysis shows that the optimality of the projection estimator

holds for general ψj , and does not require them to be orthonormal with respect

to the empirical measure or ρX .

3.2. Naive online projection estimator

The most direct way of extending the projection estimator (3.3) to the online

setting is simply to refit the whole model whenever a new pair of data (Xi, Yi)

comes in. In Algorithm 1, we provide this naive updating rule for our reader to

better understand the proposed method. Our modified proposal in Section 3.4

greatly improves upon this in terms of computational cost, while giving the same

estimates f̂n,N .

In this algorithm, YYY n = (Y1, . . . , Yn)> is the vector of outcomes, Ψn is the

n × N design matrix at step n, and Φn denotes the N × N matrix (Ψ>nΨn)−1

(inversion of Gram matrix).

Whenever new data come in, the algorithm augments the design matrix by

adding one new row to Ψn−1 based on the new observation Xn. The new row

[ψ1(Xn), ψ2(Xn), . . . , ψN (Xn)] can be understood as the embedding of Xn into

the feature space spanned by (ψj)
N
j=1.

When n = b(N + 1)(2α+d)/dc, this algorithm additionally adds a new column

to the design matrix Ψn (increasing the dimension of the basis function we project

upon by one). This new column is just the evaluation of ψN+1 at (Xi)
n
i=1. Recall

that ψN+1 is the (N + 1)th eigenfunction in the Mercer expansion (2.6). It is

straightforward to show that this criterion of adding new basis functions ensures

N = Θ(nd/(2α+d)).

The computational cost of each update using Algorithm 1 is∼ n(2α+3d)/(2α+d).

In particular, calculating Ψ>nΨn takes ∼ nN2 ∼ n(2α+3d)/(2α+d) computations.

Although this algorithm gives a statistically rate-optimal estimator and is straight-

forward to implement, it is rather computationally expensive. In particular, the

functional SGD algorithm has a comparatively smaller computational cost of ∼ n
per update.
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Algorithm 1 Naive rule for updating θ̂θθ with a new observation (Xn, Yn).

Input: (Xi)
n
i=1,YYY n,Φn−1,Ψn−1, α,N

function UpdateCurrent(Xn, N,Φn,Ψn)

ψψψn ← [ψ1(Xn), ψ2(Xn), . . . , ψN (Xn)]>,

Ψn ←
[
Ψn

ψψψ>n

]
, Φn ←

(
Ψ>nΨn

)−1
return (Φn,Ψn)
function AddBasis ((Xi)

n
i=1, N,Φn,Ψn)

ψψψN+1 ← [ψN+1(X1), . . . , ψN+1(Xn)]>,

Ψn ←
[
Ψn ψψψ

N+1
]
, Φn ←

(
Ψ>nΨn

)−1
return (Φn,Ψn)
If n = Floor((N + 1)2α+1) then

(Φn,Ψn)← UpdateCurrent(Xn, N,Φn−1,Ψn−1),

(Φn,Ψn)← AddBasis((Xi)
n
i=1, N,Φn,Ψn),

N ← N + 1

else
(Φn,Ψn)← UpdateCurrent(Xn, N,Φn−1,Ψn−1)

end if
θ̂θθ ← ΦnΨ>nYYY n

3.3. Efficient online projection estimator

In this section, we explicitly give our proposed method (the details of which

are given in Algorithm 2). By using some common block/rank-one updating

tools from linear algebra, we are able to substantially improve Algorithm 1. In

particular, it is expensive to repeatedly calculate (Ψ>nΨn)−1 directly. However,

the matrix Ψn has only one more row and (sometimes) one more column than

Ψn−1. It is possible to calculate (Ψ>nΨn)−1 by updating (Ψ>n−1Ψn−1)−1. The

latter will already have been calculated when observing (Xn−1, Yn−1).

When Ψn has one more row than Ψn−1,

Ψn =

[
Ψn−1

ψψψ>n

]
, (3.4)
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where ψψψn = [ψ1 (Xn) , ψ2 (Xn) , . . . , ψN (Xn)]>. We can write Ψ>nΨn in the form

Ψ>nΨn = Ψ>n−1Ψn−1 +ψψψnψψψ
>
n . (3.5)

Thus,
(
Ψ>nΨn

)−1
can be calculated from

(
Ψ>n−1Ψn−1

)−1
and ψψψn using the Sher-

man–Morrison formula (Sherman and Morrison (1950)).

When Ψn has one more column than Ψn−1,

Ψn =
[
Ψn−1 ψψψ

N+1
]
. (3.6)

We can write Ψ>nΨn in the form

Ψ>nΨn =

[
Ψ>n−1Ψn−1 Ψ>n−1ψψψ

N+1(
ψψψN+1

)>
Ψn−1

(
ψψψN+1

)>
ψψψN+1

]
. (3.7)

Therefore,
(
Ψ>nΨn

)−1
is related to

(
Ψ>n−1Ψn−1

)−1
by the block matrix inversion

formula (Petersen and Petersen (2008)).

The detailed updating rule of the proposed method is given explicitly in Algo-

rithm 2. The basic structure of this algorithm is identical to that of Algorithm 1.

However, the updating rules discussed above are used to avoid recalculating some

quantities from scratch. We also establish a recursive relationship between θ̂θθn+1

and θ̂θθn. Curiously, the recursive formula has a form very similar to that of the

pre-conditioned SGD estimator (with the inverse of the Gram matrix as the pre-

conditioner). When n 6= b(N + 1)(2α+d)/dc, the recursion is

θ̂θθn = θ̂θθn−1 + Φnψψψn

[
Yn − f̂n−1,N (Xn)

]
. (3.8)

Note that for the SGD, the updating rule replaces Φn by I, the identity matrix,

thus omitting the correlation of ψj w.r.t. the empirical measure. When features

are added, there is still a geometrical interpretation; see the Supplementary Ma-

terial, S3.

3.4. Computational cost of Algorithm 2

We now show that the computational cost of the updating rule in Algorithm 2

is, on average, O(n2d/(2α+d)).

When n 6= b(N + 1)(2α+d)/dc, we do not add a new feature ψN+1, but only

update the Φn−1 matrix with the current N features. The most expensive step

is the inner product of Φn−1 and ψnψnψn, which is an N ×N matrix multiplied by an

N × 1 vector. Because the N = Θ(nd/(2α+d)) at step n, the update is of order
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Algorithm 2 Rule for updating θ̂θθ with a new observation (Xn, Yn) efficiently. At step
(∗), the value of Ψ>n−1YYY n−1 stored in memory needs to be used to avoid repeating cal-
culation.

Input: (Xi)
n
i=1,YYY n, N,Φn−1,Ψn−1, a,Ψ

>
n−1YYY n−1

function UpdateCurrent (Xn, N,Φn−1,Ψn−1) output (Φn,Ψn)

ψψψn ← [ψ1(Xn), ψ2(Xn), . . . , ψN (Xn)]>,

Ψn ← [Ψ>n−1 ψψψn]>, Φn ← Φn−1 −
Φn−1 ψnψnψn ψnψnψn

T Φn−1
1 + ψnψnψnT Φn−1 ψnψnψn

function AddBasis ((Xi)
n
i=1, N,Φn,Ψn) output (Φn,Ψn)

ψψψN+1 ← [ψN+1(X1), ψN+1(X2), . . . , ψN+1(Xn)]>,

c←
(
ψψψN+1

)>
ψψψN+1, bbb← Ψ>nψψψ

N+1, k ← c− bbb>Φn bbb,

Ψn ←
[
Ψn ψψψ

N+1
]
, Φn ←

[
Φn + 1

kΦn bbbbbb
T Φn − 1

kΦn bbb
− 1
kbbb
T Φn

1
k

]
(Φn,Ψn) ← UpdateCurrent(Xn, N,Φn−1,Ψn−1)

If n = Floor((N + 1)2a+1) then

(Φn,Ψn)← AddBasis((Xi)
n
i=1, N,Φn,Ψn),

N ← N + 1

end if
(∗) θ̂θθ ← ΦnΨ>nYYY n

n2d/(2α+d).

When n = b(N + 1)(2α+d)/dc, we add both a column and a row to the design

matrix Ψn−1. The most expensive step is calculating the vector bbb, which gives the

pair-wise inner product between ψN+1 and (ψj)
N
j=1 with respect to the empirical

measure. In this step, an N×(n−1) matrix is multiplied by an (n−1)×1 vector,

which requires a computation of order n(2α+2d)/(2α+d). However, the algorithm

adds new features less frequently as n increases. Thus, in calculating the average

computational cost, we amortize this expense over all updates after including new

basis functions.

Let

n = (N)(2α+d)/d

n+ = (N + 1)(2α+d)/d.

That is, n is the first step when there are more than N features included, and

n+ is the first step when there are more than N + 1 features. Then, the length
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of the interval between the two ”basis adding” steps is

n+ − n = (N + 1)(2α+d)/d − (N)(2α+d)/d

= Θ(N2α/d) = Θ(n2α/(2α+d)).

Thus, an O(n(2α+2d)/(2α+d)) computation is performed per n2α/(2α+d) steps, which

is, on average, O(n2d/(2α+d)) per step. Thus, the average computational cost of

a single update using Algorithm 2 is of order n2d/(2α+d).

4. Theoretical Analysis of the Online Projection Estimator

In this section, we formally show that the proposed online estimator achieves

the optimal statistical convergence rate when the true regression function belongs

to the hypothesized RKHS. In previous theoretical analyses of (batch) projection

estimators (Tsybakov (2008)), the proof is shown when ψj are orthogonal to each

other w.r.t. the empirical measure of the covariates. This event has probability

zero if X has a continuous density. In this section, we show it is possible to

get a rate-optimal bound on the generalization error of f̂n,N , even if ψj (the

eigenfunctions of the kernel w.r.t. our “convenient” working distribution) are

quite correlated w.r.t. the empirical measure of X.

Recall that FN = span(ψ1, . . . , ψN ) is the linear space spanned by the first

N eigenfunctions. Define the population minimizer fN over FN as

fN := argmin
f∈FN

E[(f(X)− fρ(X))2]. (4.1)

Here, recall that f̂n,N ∈ FN is the estimator, fN is the population risk minimizer

over FN , and fρ ∈ H is the target function to be estimated. To establish the result

that ‖f̂n,N − fρ‖2 → 0 as n→∞, we first bound the rate at which ‖f̂n,N − fN‖2
goes to zero as N grows (sufficiently slowly); then, we bound the rate at which

‖fN − fρ‖2 → 0 as N → ∞. With the correct choice of N = Θ(nd/(2α+d)), we

can balance the rate of the above two terms converging to zero. Before we state

the result, we give assumptions necessary for the proof.

(A1) The joint distribution of i.i.d. (Xi, Yi) has support X × R ⊂ Rd × R
and X is compact. The i.i.d. zero-mean noise random variables εi = Yi − fρ(Xi)

satisfy the following:

‖εi‖m,1 :=

∫ ∞
0

P(|εi| > t)1/mdt <∞, for some m > 1. (4.2)

Note. If for some δ > 0 and m > 1, we have that the m + δ moment of εi
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exists, then (A1) is satisfied for that value of m. This is slightly stronger than

the existence of the mth moment; see Ledoux and Talagrand (2013, Chap. 10).

Our noise assumption is substantially weaker than the typical sub-Gaussian

noise assumptions (sub-Gaussian random variables have all moments bounded).

In the light-tail noise setting, the level of the noise only influences the convergence

speed by at most a constant. However, as shown in Theorem 1, if the eigenvalues

decrease too fast (the RKHS is too small) and the noise has too few moments, the

convergence rate will depend on the noise level. Our analysis characterizes the

interplay between the size of the RKHS space and the noise level using a sharp

multiplier inequality (Han and Wellner (2019, Thm. 1)). There are currently no

other methodologies, to the best of our knowledge, that are both computationally

tractable and have provable convergence guarantees with heavy-tailed noise in the

online nonparametric regression setting.

(A2) The true regression function fρ belongs to the known RKHS H; that is, the

RKHS-norm ‖fρ‖H is finite.

(A3) The kernel function has Mercer expansion K(x, z) =
∑∞

j=1 λjψj(x)ψj(z),

where (ψj)
∞
j=1 are orthonormal with respect to some specified working dis-

tribution ρ̄X , and λj = Θ(j−2α/d) with α > d/2.

(A4) The distribution of X, ρX , is absolutely continuous w.r.t. ρ̄X . Let pX =

dρX/dρ̄X denote its Radon–Nikodym derivative. We assume, for some D <

∞,

pX(x) ≤ D for all x ∈ X .

Note. In the (very common) case that both of these have densities with respect

to the Lebesgue measure, this is equivalent to the ratio of their densities being

bounded.

Theorem 1 (Optimal convergence rate). Assume (A1–A4), let f̂n,N be the pro-

jection estimator (3.3). Assume that ‖f̂n,N‖∞ ≤M , for some M <∞. Choosing

N = Θ(nd/(2α+d)), we have

‖f̂n,N − fρ‖2 = OP

(
n−α/(2α+d)

√
log n ∨ n−1/2+1/2m

√
log n

)
. (4.3)

If m ≥ 2 in (A1), the above bound holds in expectation:

E[‖f̂n,N − fρ‖2] = O
(
n−α/2α+d

√
log n ∨ n−1/2+1/2m

√
log n

)
. (4.4)

Note that as long as all the moments of εi exist (e.g., when εi are sub-
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exponential), the convergence rate depends only on the size of the RKHS. One

merit of our method is that even if the noise does not have a finite variance, that

is, m < 2 in (A1), our method still has convergence guarantees. To the best of

our knowledge, existing works on nonparametric SGD do not give convergence

guarantees with such heavy-tailed noise.

As we compare the two components on the RHS of the bound presented in

(4.4), we can see that when m > 2α/d + 1, that is, when we have a relatively

light-tailed noise, our bound is dominated by the size of the RKHS. However,

when m < 2α/d+1, it is the noise that dominates our bound. Furthermore, note

that as d increases, fewer moments on ε are required for our bound to match the

classical nonparametric minimax rate in our RKHS.

The following lower bound demonstrates that this rate of convergence is

indeed optimal (up to a logarithm term) among all estimators. For λj = Θ(j−2ζ)

(to compare with Theorem 1, take ζ = α/d), let BR = {f ∈ H | ‖f‖H ≤ R} be

the R-ball in the RKHS H. Then, we have the minimax bound

lim inf
n→∞

inf
f̂

sup
fρ∈BR

E
[
nζ/(2ζ+1)‖f̂ − fρ‖2

]
≥ C, (4.5)

where the infimum ranges over all possible functions f̂ that are measurable of the

data. For a derivation of the lower bound, see Wainwright (2019, Chap. 15).

Upper bounds similar to our results in Theorem 1 have been shown in Tarres

and Yao (2014) and Dieuleveut and Bach (2016) for SGD-type nonparametric

online methods. However, the proposed estimators there use n basis functions,

and therefore have an unacceptable Θ(n2) total computational cost. There are

methods that aim to improve the computational aspect by using random features

or other acceleration methods (see Section 2.1). However, the theoretical guar-

antees on the statistical convergence rates in those works are, in general, quite

weak (generally giving upper bounds of n−1/4 in the RMSE, which is far from

the minimax rate) and insensitive to the decay rate of the eigenvalues.

Many existing online nonparametric estimators aim to find a function f ∈ F
that minimizes an expected convex loss E[l(f(X), Y )], which is a more general

setting than this study. However, the majority of previous works on this topic

assume that the loss function l(·, ·) is Lipschitz w.r.t. the first argument; see Dai

et al. (2014), Si, Kumar and Li (2018), Koppel et al. (2019), and Lu et al. (2016).

Specializing to the regression problem (with squared-error-loss), this is essentially

assuming that the outcomes Yi (therefore the noise εi) are uniformly bounded,

because l(f(x), y)− l(f(z), y) = (f(x)− y)2− (f(z)− y)2 = (f(x)− f(z))(f(x) +

f(z)−2y). If we require l(·, ·) to be Lipschitz, we basically require f(x), f(z), y to
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be uniformly bounded. Although we still only consider bounded f in this work,

we relax the constraint on the noise variables: we require only finite moments of

εi, and show the (in)sensitivity of our bound.

5. Multivariate Regression Problems

In most applications, the covariates Xi take values in Rds where d > 1. If the

kernel function K : Rd × Rd → R has a known Mercer expansion (2.6), then the

proposed method can be applied directly. If the kernel function takes a tensor

product form (e.g. the Gaussian kernel), or is constructed from a one-dimensional

kernel using a tensor product (e.g., K(x, z) =
∏d
k=1 min{x(k), z(k)}, where x(k) is

the kth entry of x ∈ Rd), the eigenvalues and eigenfunctions are just the tensor

product of the one-dimensional kernels (Michel (2012, Sec. 3.5)), (Xiu (2010,

Sec. 5.2)). However, as presented in Section 4, the minimax rate of estimating

in a d-dimensional α-order Sobolev space is Θ(n−α/(2α+d)), which becomes quite

slow when d is large (unless, at the same time, a large α is assumed).

A popular low-dimensional structure is the nonparametric additive model

(Hastie, Tibshirani and Friedman (2009); Yuan and Zhou (2016)), which is thought

to effectively balance model flexibility and interpretability. For x ∈ Rd, we might

consider imposing an additive structure on our model (1.1):

fρ(x) =

d∑
k=1

fρ,k

(
x(k)

)
, (5.1)

where the component functions fρ,k belong to an RKHS H (in general, they

can belong to different spaces). For a fixed d, the minimax rate for estimating an

additive model is identical (up to a multiplicative constant d) to the minimax rate

in the analogous one-dimensional nonparametric regression problem that works

with the same hypothesis space H (Raskutti, Yu and Wainwright (2009)). The

proposed online method can be directly generalized to this setting. For further

discussion and the empirical performance, see the Supplementary Material, S4.

6. Simulation Study

In this section, we illustrate the computational and statistical efficiency of

the online projection estimator in both one-dimensional regression and additive

model settings.
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Table 1. Settings of simulation studies. ∗B4(x) = x4 − 2x3 + x2 − 1/30 is the fourth
Bernoulli polynomial, and {x} means taking the fractional part of x.

Example 1 Example 2

Kernel K(s, t) (−1/24)B4({s− t})∗ min{s, t}
Eigenvalue λj 2/(2πj)4 = O(j−4) 4/((2j − 1)2π2) = O(j−2)

Basis function ψj(x) sin(2πjx), cos(2πjx)
√

2 sin((2j − 1)πx/2)

pX(x) 1[0,1](x) (x+ 0.5)1[0,1](x)

Noise ε Unif([-0.02,0.02]) Normal(0,5)

True regression function fρ B4(x) + cos2(12x− 6) (6x− 3) sin(12x− 6)

6.1. Generalization error of the online projection estimator is rate op-

timal

In this section, we use simulated data to illustrate that the generalization

error of our estimator reaches the minimix-optimal rate. For each sample, Xi

is generated from ρX , which has density function is pX(x); Yi is generated by

Yi = fρ(Xi) + εi. The details of the parameters are listed in Table 1. In exam-

ple 1, we purposely select ρX such that
∫ 1

0 ψi(x)ψj(x)pX(x)dx = δij , together

with bounded noise. In example 2, the basis functions are no longer orthogonal

w.r.t. ρX , and a low signal-noise ratio is applied. In both simple and more re-

alistic scenarios, the online projection estimator achieves rate-optimal statistical

convergence.

The fρ in example 1 is taken from Dieuleveut and Bach (2016), where they

used it to illustrate the performance of the functional SGD estimator; the re-

gression function in example 2 is also used in a study of wavelet neural networks

(Alexandridis and Zapranis (2013)).

In example 1, the hypothesis space is the second-order spline on the circle

W 0
2 (per) =

{
f ∈ L2([0, 1]) |

∫ 1

0
f(u)du = 0

f(0) = f(1), f ′(0) = f ′(1),

∫ 1

0

(
f ′′(u)

)2
du <∞

}
.

In example 2, we use the Sobolev space W 0
1 ([0, 1]) defined in (2.4). Because

the eigenvalues decrease faster in example 1, we observe a convergence rate of

∼ n−4/5, which is faster than that in example 2, ∼ n−2/3.
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Figure 1. log10 ‖f̂n,N − fρ‖22 against log10 n. (A) Example 1, the thin black line has a
slope = −4/5; (B) Example 2, slope = −2/3. Each curve is calculated as the average of
15 repetitions. Owing to different computational costs, we chose a different maximum n
for different methods.

We use ‖f̂n,N−fρ‖22 as a measure of goodness of fit (Figure 1). The proposed

method is compared with an online nonparametric SGD estimator (Dieuleveut

and Bach (2016)) and the KRR estimator (1.4). Although the KRR might have

a better generalization capacity (the rates should be the same, but there might

be an improvement in the constant), it is computationally prohibitive to apply

it in an online learning setting; thus, we include this method as a reference only.

The hyperparameters for each method are chosen to optimize performance (oracle

hyperparameters). For our method, this is the constant in front of the timing of

adding new basis functions. In Figure 2, we present several typical realizations

of f̂n,N for both examples, together with data points.

6.2. CPU time

Figure 3 shows the CPU time used to calculate the online estimators for up

to n samples when solving example 2 for the online projection estimator and the

nonparametric SGD estimator. Experiments were run on a computer with one

Intel Core M3 processor, 1.2 GHz, with 8 GB of RAM. For the projection esti-

mator, new basis functions are added when n = bN2α+1c, for N = 1, 2, . . .. First,

for all α ∈ {1, 2, 3}, the online projection estimators are all significantly faster to

compute than is the nonparametric SGD estimator after n > 104, because the

latter requires evaluating n basis functions for the (n + 1)st update, which will

accumulate very fast. In addition, for larger α, the total computational cost for
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Figure 2. Realizations of f̂n,N . (A) Example 1; (B) Example 2.
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Figure 3. CPU time against sample size (10 runs each curve).

the online projection estimator becomes nearly linear in n. There are also some

“jumps” in the CPU time for the online projection estimator. These correspond

to steps in which new basis functions are added. Both phenomena match our

analysis in Section 3.4. Although it seems beneficial, both computationally and

statistically, to use a larger α, it is important to remember that too large a value

may result in a poor generalization error. This occurs if the RKHS associated

with α becomes so small that it no longer includes fρ (see the discussion in Simon

and Shojaie (2021)).
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7. Discussion

In this paper, we have proposed a framework for constructing online non-

parametric regression estimators when the hypothesis space is an RKHS. We

showed that (i) the error of the proposed estimator is near-optimal, and (ii) the

computational cost of calculating such estimators is much lower than when using

other contemporary estimators with similar statistical guarantees. In addition,

our estimator is actually precisely an empirical risk minimizer (in a linear space

of slowly growing dimension), which allows us to give theoretical guarantees when

the noise is heavy tailed (as compared to the previously required assumptions of

boundedness).

In this work, we leveraged properties of the least-squares loss to efficiently

update the empirical risk minimizer f̂n,N in an online manner. However, for a

general convex loss function (e.g., logistic regression), the construction of an on-

line nonparametric estimator that has both guaranteed optimal generalization

capacity and is computationally feasible for larger problems remains an open

question. Although there are functional SGD-type estimators designed for this

purpose (see Section 2.1), it would be interesting to design estimators that are

both computationally efficient to update and (approximate) ERM in a determin-

istic space.

Supplementary Material

In the online Supplementary Material, we provide a proof for Theorem 1.

We also describe the settings for the simulations from the main text, and pro-

vide additional examples. Furthermore, we include an additional discussion on

applications of our estimator.
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