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Abstract: Orthogonal minimally aliased response surface (OMARS) designs con-

stitute a new family of three-level experimental designs for studying quantitative

factors. Many experiments, however, also involve one or more two-level categorical

factors. In this work, we derive necessary conditions for the existence of mixed-

level OMARS designs, and present three construction methods based on integer

programming. Like the original three-level OMARS designs, the new mixed-level

designs are orthogonal main-effect plans in which the main effects are also orthog-

onal to the second-order effects. These properties distinguish the new designs from

definitive screening designs with additional two-level categorical factors and other

mixed-level designs recently presented in the literature. To demonstrate the flexi-

bility of our construction methods, we provide 587 mixed-level OMARS designs in

the online Supplementary Material.

Key words and phrases: Definitive screening design, foldover design, mixed integer

programming, OMARS design, orthogonal array.

1. Introduction

The dominant experimental designs in process optimization and response

surface modeling, where all experimental factors are quantitative, have long been

central composite designs (Box and Wilson (1951)), small central composite de-

signs (Hartley (1959)), and Box–Behnken designs (Box and Behnken (1960)).

With the introduction of exchange algorithms in the last few decades of the pre-

vious century, response surface experiments using optimal experimental designs

(Goos and Jones (2011)) gained substantial popularity as well. More recently,

many experimenters have switched to definitive screening designs (DSDs, see

Jones and Nachtsheim (2011); Xiao, Lin and Bai (2012)), because these designs

allow the study of many quantitative factors using a limited number of experi-

mental runs. However, these response surface designs all possess certain weak-
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nesses. First, central composite designs, small central composite designs, and

Box–Behnken designs are often too large to be of practical use. Second, DSDs

have a low power to detect any quadratic effect, and may exhibit substantial alias-

ing among the second-order effects (Vazquez, Goos and Schoen (2020)). Finally,

in optimal designs, the main effects are, in general, partially aliased with each

other and with the second-order effects. Recently, Núñez Ares and Goos (2020)

introduced the family of orthogonal minimally aliased response surface (OMARS)

designs. These designs exist for many different run sizes. Some involve fewer runs

than DSDs, while others have the same or a larger run size. Compared with DSDs,

many OMARS designs involve less aliasing among the second-order effects, allow

more interactions to be estimated simultaneously, have a higher power to de-

tect any quadratic effect, and have better projection properties. Just like DSDs,

OMARS designs have three levels for each factor, are orthogonal for the main

effects, and involve no aliasing between the main effects and the second-order

effects (i.e., the two-factor interaction effects and the quadratic effects). For all

of these reasons, many OMARS designs appear to be attractive alternatives to

traditional response surface designs, optimal designs, and DSDs.

It should be clear that the literature on response surface designs for quan-

titative experimental factors is extensive. At the same time, many studies have

examined designs for experiments involving only categorical factors. For these

experiments, it is common to base the designs on orthogonal arrays (OAs; e.g., see

Hedayat, Sloane and Stufken (1999)). In recent years, much work has been done

on the enumeration and evaluation of various kinds of OAs. Schoen, Eendebak

and Nguyen (2010) presented an enumeration algorithm and a large catalog of

OAs. Schoen, Vo-Thanh and Goos (2017), Schoen and Mee (2012), and Vazquez,

Goos and Schoen (2019), among others, performed detailed studies on two-level

OAs. Sartono, Goos and Schoen (2012) investigated a large collection of three-

level OAs, assuming all factors are categorical.

The literature on designs for both quantitative and categorical factors is

scarce. Atkinson and Donev (1989) were the first to propose a method for con-

structing designs for experiments involving both quantitative and categorical fac-

tors. In Chapter 14 of Atkinson, Donev and Tobias (2007), the authors present

mixed-level designs and provide some additional examples. In Chapter 4 of Goos

and Jones (2011), the authors present a case study involving a response surface

design with an extra categorical factor.

In recent years, several research teams have proposed methods for creating

mixed-level designs for three-level quantitative and two-level categorical factors.

First, Jones and Nachtsheim (2013) presented two heuristic methods to extend
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DSDs, which originally only included three-level quantitative factors, to also in-

clude two-level categorical factors. Their first method is called DSD-based col-

umn augmentation, and the resulting designs are called DSD-A designs. Their

second method is called orthogonal column augmentation and the resulting de-

signs are referred to as ORTH-A designs. DSD-A designs are foldover designs

in which there is no aliasing between the main effects and the second-order ef-

fects. However, unlike the original DSDs, they are not orthogonal main-effect

plans. ORTH-A designs are orthogonal for the main effects, but the main effects

are aliased to some extent with interaction effects involving one or two categor-

ical factors. As a result, none of the DSDs with two-level categorical factors in

Jones and Nachtsheim (2013) simultaneously possess the properties that they are

orthogonal for the main effects and that the main effects and the second-order

effects are not aliased. In a follow-up article, Nachtsheim, Shen and Lin (2017)

presented compromise designs that balance the pros and cons of the DSD-A and

ORTH-A designs in Jones and Nachtsheim (2013). However, these compromise

designs also do not possess the attractive orthogonality and minimal aliasing

properties of DSDs and OMARS designs for quantitative factors. A commonal-

ity of the work of Jones and Nachtsheim (2013) and that of Nachtsheim, Shen

and Lin (2017) is that the majority of the factors in their mixed-level designs are

quantitative and have three levels.

Nguyen, Pham and Mai (2020) also proposed a method to generate mixed-

level designs for experiments involving three-level quantitative and two-level cat-

egorical factors simultaneously. More specifically, they presented a heuristic

foldover algorithm based on two-level orthogonal matrices that converts some

of the two-level columns into three-level ones. The goal of Nguyen, Pham and

Mai (2020) was to obtain designs with the same kind of correlation structure

as DSD-A designs, while minimizing the aliasing between the quadratic effects.

They named their newly constructed designs mixed-level foldover designs (MLFO

designs). In these designs, most of the factors are two-level categorical ones. Like

the DSD-A, ORTH-A, and compromise designs discussed above, MLFO designs

do not possess the attractive orthogonality and minimal aliasing properties of the

DSDs or the OMARS designs for quantitative factors.

The rest of this article is structured as follows. In Section 2, we formally

define the properties of mixed-level OMARS designs and study the necessary

conditions for their existence. In Section 3, we present the system of binary linear

equations we used to generate mixed-level OMARS designs, and discuss three

complementary solution approaches. In Section 4, we present three examples of

mixed-level OMARS designs, obtained using the different solution approaches.
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Next, to demonstrate the versatility of our construction methods, in Section 5,

we report on a computational search for mixed-level OMARS designs with up

to 48 runs and 14 factors, resulting in 587 mixed-level OMARS designs. To the

best of our knowledge, these designs are new to the literature. Finally, Section 6

contains our conclusions and directions for future research.

2. Existence of Mixed-Level OMARS Designs

2.1. Properties

A mixed-level OMARS design possesses the following three properties:

Property 1. There are three equidistant levels for the quantitative factors.

Without loss of generality, we code the levels of the quantitative factors as −1,

0, and 1, and those of the two-level categorical factors as −1 and 1.

Property 2. All odd design moments up to order three are equal to zero.

The concept of an odd design moment is defined in Section 7.4.2 of Myers, Mont-

gomery and Anderson-Cook (2016). Property 2 is equivalent to the following:

(2.1) The average level of all quantitative factors is zero, and the two levels of

each categorical factor are balanced.

(2.2) Any two main-effect columns of the model matrix are orthogonal.

(2.3) Any main-effect column in the model matrix is orthogonal to any two-factor

interaction column and to any quadratic-effect column of the model matrix.

Property 3. The number of zero entries in the main-effect columns of the model

matrix is the same for all quantitative factors.

Property 4. The number of zero entries in the interaction-effect columns cor-

responding to two quantitative factors is the same in all such columns.

We denote the number of zero entries in each main-effect column for a quantitative

factor by nME
0 , and the number of zero entries in each interaction-effect column

corresponding to two quantitative factors by nIE0 . As pointed out by Núñez Ares

and Goos (2020), the nME
0 and nIE0 values give rise to different sets of OMARS

designs. For DSDs, for instance, (nME
0 , nIE0 ) = (2, 4) if we ignore the center

run(s).
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2.2. Necessary conditions for the existence of mixed-level OMARS de-

signs

In this section, we derive necessary conditions for mixed-level OMARS de-

signs involving one, two, and three or more two-level categorical factors to exist.

First, Property 2 implies that the levels are balanced for each two-level factor.

Therefore, the number of runs in any mixed-level OMARS design must be even.

For designs with two or more two-level categorical factors, we can be even

more specific. In the event that there are two two-level factors, the two-level part

of a mixed-level OMARS design necessarily has to be a replicated 22 factorial

design, because this is the only two-factor two-level orthogonal design that is

balanced and involves no aliasing between the main effects and the two-factor in-

teraction. As a result, mixed-level OMARS designs with two two-level categorical

factors only exist for run sizes that are multiples of four.

In the event that there are three or more two-level categorical factors, the

two-level part of a mixed-level OMARS design necessarily has to be a strength-

3 OA, because this is the only family of two-level orthogonal designs that are

balanced and involve no aliasing between the main effects and the two-factor

interactions. Because strength-3 OAs only exist when the number of runs is

a multiple of eight, mixed-level OMARS designs with three or more two-level

categorical factors only exist for run sizes that are multiples of eight.

This line of reasoning is summarized by the following three conditions for the

existence of mixed-level OMARS designs:

Lemma 1. A necessary condition for the existence of a mixed-level OMARS

design with one two-level factor is that the number of runs n is even.

Lemma 2. A necessary condition for the existence of a mixed-level OMARS

design with two two-level factors is that the number of runs n is a multiple of

four.

Lemma 3. A necessary condition for the existence of a mixed-level OMARS

design with three or more two-level factors is that the number of runs n is a

multiple of eight.

To connect the existence of mixed-level OMARS designs to the number of

zeros in the main-effect columns of the quantitative factors, nME
0 , and in the

interaction-effect columns involving these factors, nIE0 , we need the following

proposition of Núñez Ares and Goos (2020):
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Proposition 1. A necessary condition for the existence of a three-level OMARS

design with n runs and nIE0 zero entries in the interaction-effect columns of the

model matrix is that n− nIE0 ≡ 0 (mod 4).

According to Lemma 1, the number of runs n has to be even for one two-level

factor. Thus, Proposition 1 implies that nIE0 must also be even for the case of

one two-level factor. More specifically, either n and nIE0 should both be multiples

of four or they should both be odd multiples of two:

Corollary 1. Necessary conditions for the existence of a mixed-level OMARS

design with one two-level factor, n runs, and nIE0 zero entries in the quantitative

factors’ interaction-effect columns of the model matrix are that n and nIE0 should

be even and that n− nIE0 ≡ 0 (mod 4).

According to Lemmas 2 and 3, the number of runs n has to be a multiple of

four or eight for two or more two-level factors. Thus, Proposition 1 implies that

nIE0 should be a multiple of four if there are two or more two-level factors:

Corollary 2. A necessary condition for the existence of a mixed-level OMARS

design with two or more two-level factors, n runs, and nIE0 zero entries in the

quantitative factors’ interaction-effect columns of the model matrix is that nIE0

should be a multiple of four.

The following proposition connects the run size n with the number of zeros

in the main-effect columns of the quantitative factors:

Proposition 2. A necessary condition for the existence of a mixed-level OMARS

design with one or more two-level factors is that n− nME
0 ≡ 0 (mod 4).

Proof. Let a be a three-level column and x be a two-level column of the model

matrix of a mixed-level OMARS design. Both a and x have size n, which is the

number of runs. Denote by ai and xi the ith entries of a and x, respectively.

Finally, consider the partition A−1, A0, and A1 of N = {1, . . . , n}, where A−1,

A0, and A1 represent the sets of indices i for which ai is equal to −1, 0, or 1,

respectively.

Then, from Property (2.2) of any mixed-level OMARS design, we know that

n∑
i=1

aixi =
∑
i∈A1

xi −
∑

i∈A−1

xi = 0,

so that ∑
i∈A1

xi =
∑

i∈A−1

xi.
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From Property (2.3), we also know that

n∑
i=1

a2
ixi =

∑
i∈A1

xi +
∑

i∈A−1

xi = 0,

so that ∑
i∈A1

xi = −
∑

i∈A−1

xi.

As a result, ∑
i∈A1

xi =
∑

i∈A−1

xi = 0. (2.1)

Now, from Property (2.1),

n∑
i=1

xi =
∑

i∈A−1

xi +
∑
i∈A0

xi +
∑
i∈A1

xi = 0,

so that ∑
i∈A0

xi = 0. (2.2)

Equations (2.1) and (2.2) imply that the entries of x are balanced within each

of the sets A−1, A1, and A0. Consequently, the cardinalities |A−1|, |A1|, and |A0|
and n = |A−1|+ |A1|+ |A0| are even numbers. In addition, from Property (2.1),

the entries of vector a sum to zero, which implies that |A−1| = |A1|, and that

|A−1|+ |A1| = n− |A0| = n− nME
0 is a multiple of four.

Combining Corollary 1 and Proposition 2, we obtain our final corollary:

Corollary 3. A necessary condition for the existence of a mixed-level OMARS

design with one or more two-level factors is that nIE0 − nME
0 ≡ 0 (mod 4).

An immediate consequence of Corollary 3 is that some sets of three-level

OMARS designs, as characterized by the pair (nME
0 , nIE0 ), cannot be extended

to mixed-level OMARS designs by adding one or more two-level factors. For

instance, it is impossible to convert DSDs into mixed-level OMARS designs by

adding several two-level factors. This is because, for DSDs involving k center

runs, (nME
0 , nIE0 ) = (2 + k, 4 + k), and therefore nIE0 − nME

0 is not a multiple of

four. Corollary 3 thus explains why Jones and Nachtsheim (2013) were unable

to add multiple two-level factors to DSDs to obtain a design that is orthogonal

for the main effects and involves no aliasing between the main effects and the

second-order effects.
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3. Construction Methods

After discussing a few preliminaries, we describe three alternative construc-

tion methods for mixed-level OMARS designs. The first constructs designs from

scratch, ignoring any available knowledge on three-level OMARS designs or two-

level OAs. Our second construction starts from a known strength-3 two-level OA,

and our third construction starts from a known three-level OMARS design.

3.1. Preliminaries

We are interested in constructing n-run mixed-level OMARS designs, with

m1 quantitative factors with levels −1, 0, and 1, m2 two-level categorical fac-

tors, nME
0 occurrences of the zero level for each quantitative factor, and nIE0

zeros in the columns of the model matrix that correspond to interactions of two

quantitative factors. Therefore, every mixed-level OMARS design we construct

is characterized by a tuple of five integers, (m1,m2, n, n
ME
0 , nIE0 ).

Núñez Ares and Goos (2020) created their catalog of OMARS designs for

three-level quantitative factors in two steps. First, they created basic OMARS

designs that did not contain any center runs (i.e., runs at which all factor levels

are zero). Next, they added up to six center points to each basic OMARS design.

As a result, each basic design they generated gave rise to seven different OMARS

designs. When creating the basic OMARS designs, Núñez Ares and Goos (2020)

could ignore the center runs initially, because these neither affect the orthogo-

nality of the main-effect columns of the model matrix nor do they impact the

aliasing between the main effects and the second-order effects. In the presence

of two-level categorical factors, the concept of a center run no longer exists, be-

cause there is no such thing as a middle value for a two-level categorical factor.

Moreover, adding runs with all quantitative factors set at their middle level now

potentially does affect the orthogonality of the main-effect columns in the model

matrix, the aliasing between the main effects of the categorical factors and their

interactions, and the aliasing between the main effects of the categorical factors

and the second-order effects of the quantitative factors. Therefore, unlike Núñez

Ares and Goos (2020), we do allow all quantitative factors to act at their middle

level simultaneously.

3.2. Construction from scratch

Let Ωm1
be the set of all 3m1 possible row vectors of size m1 with entries

equal to −1, 0, or 1, and let Ωm2
be the set of all 2m2 possible vectors of size

m2 with entries equal to −1 or 1. The set Ω = Ωm1
× Ωm2

= {(x1 ‖ x2) | x1 ∈
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Ωm1
, x2 ∈ Ωm2

}, where × indicates the Cartesian product, and x1 ‖ x2 denotes

the vector of size m1 + m2 produced by concatenating x1 and x2. Clearly, Ω

has 3m12m2 elements and contains all possible factor-level combinations that can

be used in a mixed-level OMARS design with m1 three-level quantitative factors

and m2 two-level categorical factors.

Let p ∈ Ω be one of these possible factor-level combinations, and denote by

αp
i the ith entry of p. By construction, αp

i ∈ {−1, 0, 1}, for i = 1, . . . ,m1, and

αp
i ∈ {−1, 1}, for i = m1 + 1, . . . ,m1 + m2. Based on the elements αp

i , we can

define two kinds of subsets of Ω that are needed in our construction. The first is

defined as Ω0i := {p ∈ Ω : αp
i = 0}, for i = 1, . . . ,m1. The second is defined as

Ω0ij := {p ∈ Ω : αp
iα

p
j = 0}, for 1 ≤ i < j ≤ m1. Finally, we use a binary variable

yp for each p ∈ Ω. That variable takes the value one if vector p is selected in the

mixed-level OMARS design, and zero otherwise.

A solution to the following system of binary linear equations is a mixed-level

OMARS design of the type (m1, m2, n, n
ME
0 , nIE0 ):∑

p∈Ω

yp = n, (3.1)

∑
p∈Ω0i

yp = nME
0 , 1 ≤ i ≤ m1, (3.2)

∑
p∈Ω0ij

yp = nIE0 , 1 ≤ i < j ≤ m1, (3.3)

∑
p∈Ω

αp
iα

p
jy

p = 0, 1 ≤ i < j ≤ m1 +m2, (3.4)

∑
p∈Ω

αp
iα

p
jα

p
ky

p = 0, 1 ≤ i < j < k ≤ m1 +m2, (3.5)

∑
p∈Ω

αp
iα

p
iα

p
jy

p = 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ m1 +m2, (3.6)

∑
p∈Ω

αp
i y

p = 0, m1 + 1 ≤ i ≤ m1 +m2, (3.7)

yp ∈ {0, 1} , p ∈ Ω. (3.8)

Equation (3.1) ensures that exactly n of the binary decision variables yp take

the value one, so that an n-run design is obtained. Equations (3.2) ensure that

every main-effect column of the model matrix corresponding to a quantitative

factor has nME
0 zeros, and Equations (3.3) ensure that every interaction-effect

column corresponding to two quantitative factors involves nIE0 zeros. Thus, to-

gether, Equations (3.2) and (3.3) make sure that the created design created pos-
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sesses Property 3 and Property 4. Equations (3.4)–(3.7) translate Property 2 into

mathematical notation. More specifically, Equations (3.4) force the main effects

of all factors to be orthogonal to each other, irrespective of whether the factors

are quantitative or categorical. Equations (3.5) guarantee that there is no alias-

ing between a main effect of any factor and the interaction of two other factors.

Equations (3.6) have two functions. First, they ensure that, for each quantita-

tive factor, the sum of all entries in a main-effect column of the model matrix is

zero, so that the main effects can be estimated independently from the intercept.

Second, it ensures that all main-effect columns of the model matrix are orthogo-

nal to the columns corresponding to the quadratic effects. Equations (3.7) force

the two-level factors of the design to be level balanced. Finally, Equations (3.8)

define the binary nature of the decision variables yp. The binary nature of the de-

cision variables yp and the construction of Ω imply that, just like the DSDs with

categorical factors from Jones and Nachtsheim (2013), the mixed-level OMARS

designs produced by our first construction do not involve replicated runs.

3.3. Construction starting from a given OA

In the event that many two-level experimental factors are included in an

experiment, the experimenter may desire to include a known high-quality n-run

strength-3 OA. In that case, the two-level part of the design is fixed, and only

the three-level part has to be determined.

This approach, which exploits existing knowledge about two-level designs,

requires a few modifications to the approach described in Section 3.2. The first

modification is that Ωm2
should no longer be the set of all 2m2 possible vectors

of size m2 with entries equal to −1 or 1. Instead, Ωm2
should be the set of n

rows of −1s or 1s of the selected strength-3 OA. In that event, Ω involves 3m1×n
instead of 3m12m2 elements. When starting from a given strength-3 OA, the

constraints in Equation (3.7) are redundant, and the indices in the constraints in

Equations (3.4) and (3.5) need to be adjusted.

When starting the construction from a strength-3 OA without replicates, the

mixed-level OMARS designs produced by our second construction do not involve

replicates either. If, however, our second construction starts from an OA that

does involve replicates, then it is possible that it produces a design with replicates.

3.4. Construction starting from a given OMARS design

It is also possible to construct a mixed-level OMARS design starting from a

known high-quality n-run OMARS design involving m1 quantitative factors by

adding m2 two-level factors. This approach also necessitates a few modifications



MIXED-LEVEL OMARS DESIGNS 117

Table 1. Key features of the three example designs.

Feature Design 1 Design 2 Design 3
n 24 48 40
m1 4 5 6
m2 4 14 4
nME
0 4 24 16
nIE0 8 36 24

to the approach described in Section 3.2. The first is that Ωm1
should no longer

be the set of all 3m1 possible vectors of size m1 with entries equal to −1, 0, or

1. Instead, Ωm1
should be the set of n rows of −1s, 0s, or 1s of the selected

three-level OMARS design. In that event, Ω involves n× 2m2 instead of 3m12m2

elements. Obviously, all constraints involving solely three-level factors can then

be removed from the above system of linear equations.

As is the case with the previous construction method, we can obtain a design

with replicates if the initial OMARS design involves replicates.

4. Design Examples

In this section, we present three examples obtained using each of the solution

approaches presented in Section 3. Table 1 contains the set of values (n,m1,m2,

nME
0 , nIE0 ) characterizing each design example. All designs have four or more

two-level categorical factors. From Lemma 3, the number of runs n is therefore a

multiple of eight in each case. We can also verify that Propositions 1 and 2 and

Corollary 3 are satisfied for all designs.

4.1. Example 1: a 24-run eight-factor design

Design 1 shows a 24-run design involving four three-level quantitative factors

and four two-level categorical factors, constructed from scratch (see Section 3.2).

Because it is a mixed-level OMARS design, Design 1 is orthogonal for the main

effects of all factors, and all main-effect columns of its model matrix are orthog-

onal to the columns for the second-order effects. None of the designs available in

the literature share both of these properties.

A close inspection of Design 1 reveals that its three-level part is composed of

two 12-run four-factor DSDs (without center runs). Runs 1–12 form one DSD, and

runs 13–24 form the other. A three-quarter fraction of the 24 factorial design is

appended to each of the two DSDs to accommodate the four two-level categorical

factors. The full design is a foldover design. This result suggests that one method

for constructing large designs, with or without two-level categorical factors, might
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Design 1. 24-run mixed-level OMARS design involving four three-level quantitative fac-
tors and four two-level categorical factors.

run run
1 0 - + + + + + - 13 0 - + - - - - +
2 0 + - - - - - + 14 0 + - + + + + -
3 - 0 + + + - - - 15 - 0 - + - + + +
4 + 0 - - - + + + 16 + 0 + - + - - -
5 - - 0 - + - + + 17 - + 0 - - + - -
6 + + 0 + - + - - 18 + - 0 + + - + +
7 - - - 0 - - + - 19 - + + 0 - - + -
8 + + + 0 + + - + 20 + - - 0 + + - +
9 - + - + + - - + 21 - - - - + + - -

10 + - + - - + + - 22 + + + + - - + +
11 - + + - + + + + 23 - - + + - + - +
12 + - - + - - - - 24 + + - - + - + -

be to concatenate two DSDs or, more generally, two OMARS designs. Such

constructions have been proven to be successful for large two-level OAs (Li and

Lin (2016); Vazquez, Goos and Schoen (2019)). Design 1 allows the estimation of

any full second-order model in any three quantitative factors and one categorical

factor. In addition, the maximum absolute correlation between the model matrix

columns corresponding to the quadratic effects is 0.2, and the average absolute

correlation between the columns corresponding to all second-order effects is 0.15.

The construction from scratch presented in Section 3.2 is suitable for prob-

lems where the researcher does not have an OA or OMARS design to start from.

However, when the total number of factors is greater than 10, this approach is

computationally expensive, owing to the large number of variables in the system

of linear equalities.

4.2. Example 2: a 48-run 19-factor design

The solution approach of Section 3.3, which starts from a given OA, is con-

venient for designs requiring many two-level factors. As an example, Design 2 is

a 48-run mixed-level OMARS design obtained from the OA-based construction.

We started from a 14-factor 48-run strength-3 OA recommended by Schoen and

Mee (2012), and added five three-level factors. Thus, unlike Design 1, most of the

factors in Design 2 are two-level categorical ones. The large number of two-level

factors implies that the design can be considered a traditional two-level screening

design, augmented with five three-level quantitative factors, for which quadratic

effects are anticipated. As a matter of fact, the design offers a large power for
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Design 2. 48-run mixed-level OMARS design involving five three-level quantitative fac-
tors and 14 two-level categorical factors.

run run

1 0 - + 0 0 - - - - - - - - - - - - - - 25 0 0 0 0 - + - - - + + + - + + + - + +

2 0 + 0 0 0 - - - - - - - - - + + + + + 26 + 0 0 - 0 + - - - + + + + - - + - - -

3 0 0 0 + 0 - - - - - - + + + - - - + + 27 + - - + 0 + - - + - - + + - + + + + -

4 0 0 - + + - - - - + + - - + - + + - - 28 - - 0 - + + - - + - + + - + - - + + +

5 0 0 - - - - - - + - + - + - + - - - + 29 0 0 + 0 0 + - - + + - - - + + + - - +

6 0 + 0 - + - - - + + - + + + + - + - - 30 - + + + - + - - + + + - + - - - + + -

7 - - + 0 - - - + - - + + + + + + + - - 31 - + - - 0 + - + - - - - + + - + - + -

8 + 0 0 0 0 - - + - + + - + + + - + + + 32 + + 0 0 0 + - + - - + + - - - - + - +

9 0 + + 0 + - - + + - + + - - + + - + - 33 0 - 0 - 0 + - + - + - - - - + - + + -

10 - 0 - 0 - - - + + + - + - - - + + - + 34 - 0 0 + + + - + - + - + + - + - - - +

11 + 0 0 0 - - - + + + - + - + - - - + - 35 + 0 + 0 0 + - + + - - - + + - + + - +

12 0 - 0 0 + - - + + + + - + - - + - + + 36 0 0 - + 0 + - + + - + - - + + - - - -

13 0 0 + - 0 - + - - + - + + - - + + + + 37 0 + 0 0 - + + - - - - + - + + - + - -

14 - 0 - 0 0 - + - - + + + - - + - - + - 38 - 0 0 0 + + + - - - + - + - + + + - +

15 + 0 0 - - - + - + - + - - + - + + + - 39 + 0 + 0 + + + - - - + - + + + - - + -

16 0 + 0 + 0 - + - + - + + + + - + - - + 40 0 - - 0 - + + - - + - - + + - - + - +

17 - - 0 0 0 - + - + + - - + + + + - + - 41 - 0 0 0 0 + + - + - - + - - - + - - -

18 + - + + 0 - + - + + + + - - + - + - + 42 + + - 0 + + + - + + - - - - - - - + +

19 + - - - + - + + - - - + - + + + - - + 43 0 - 0 + - + + + - - + - - - - + - + +

20 0 0 - 0 0 - + + - - + + + - - - + + - 44 0 0 + + + + + + - + - + - + - + + + -

21 + + 0 + - - + + - + - - + - + + - - - 45 0 0 + - - + + + + - - + + - + - - + +

22 - + + - 0 - + + - + + - - + - - - - + 46 0 0 0 - 0 + + + + + + - - - + + + - -

23 - 0 0 + 0 - + + + - - - - + + - + + + 47 0 - 0 0 0 + + + + + + + + + - - - - -

24 0 0 0 0 + - + + + - - - + - - - + - - 48 0 + - 0 0 + + + + + + + + + + + + + +

detecting any existing quadratic effect of the quantitative factors. This is because

nME
0 = 24 in the design, indicating that, for each quantitative factor, the zero

level is used 24 times. This is very different in a DSD of this run size, for which

nME
0 = 2, if we ignore the center run. Like Design 1, Design 2 is a foldover design.

The average correlation between the second-order effects’ columns in the model

matrix is 0.138, and the maximum correlation is 0.5. Finally, Design 2 allows the

estimation of a full second-order model in any subset of four quantitative factors

and two categorical factors, in any subset of five quantitative factors and any one

categorical factor, and in any subset of three categorical factors and two quantita-

tive factors. For subsets of higher cardinality, the proportion of estimable models

is very high. For example, Design 2 allows the estimation of a full second-order

model for 99% of the subsets containing two quantitative factors and four cate-

gorical factors, and for 97% of all subsets containing one quantitative factor and

five categorical ones.
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Design 3. 40-run mixed-level OMARS design involving six three-level quantitative factors
and four two-level categorical factors.

run run run

1 - - - - - - - - - - 15 0 - 0 - - + + + - + 29 + 0 - + 0 + - - - -

2 - - - + - - - + + + 16 0 - + + 0 + - + - - 30 + 0 0 - + - - + - +

3 - - 0 - + 0 + - + - 17 0 0 - - + + - - + + 31 + + - 0 0 - + + + -

4 - - + 0 0 + - - - + 18 0 0 + + - - + + - - 32 + + 0 + - 0 - + - +

5 - 0 0 + - + + - + - 19 0 + - - 0 - + - + + 33 + + + - + + + - - -

6 - 0 + - 0 - + + + + 20 0 + 0 + + - - - + - 34 + + + + + + + + + +

7 - 0 + 0 + - + + - - 21 0 + + - - 0 - - + - 35 0 0 0 0 0 0 - + + -

8 - 0 + + + 0 - - + + 22 0 + + 0 - - - - - + 36 0 0 0 0 0 0 - + + -

9 - + - 0 + 0 - + - + 23 + - 0 0 + - - - - - 37 0 0 0 0 0 0 - + + -

10 - + - + 0 0 + - - - 24 + - 0 + 0 - + - + + 38 0 0 0 0 0 0 + - - +

11 - + 0 - 0 + - + - - 25 + - + - 0 0 - + + + 39 0 0 0 0 0 0 + - - +

12 - + 0 0 - + + + + + 26 + - + 0 - 0 + - + - 40 0 0 0 0 0 0 + - - +

13 0 - - 0 + + + + + - 27 + 0 - - - 0 + + - -

14 0 - - + + 0 + + - + 28 + 0 - 0 - + - - + +

4.3. Example 3: a 40-run 10-factor design

Design 3 was constructed from a 34-run three-level OMARS design in the

catalog of Núñez Ares and Goos (2020), involving six three-level quantitative

factors and augmented with six center runs. Therefore, we used the construction

from Section 3.4 to obtain the design. The design, which in total involves six

quantitative and four categorical factors and turns out to be a foldover design,

possesses attractive projection properties. It can fit a full second-order model for

any five quantitative factors, any subset of four quantitative factors and one cat-

egorical factor, and any subset of three quantitative and two categorical factors.

It is also able to fit an interaction-effect model for all six quantitative factors and

any subset of five quantitative factors and one categorical factor.

A remarkable characteristic of Design 3 is that it involves two triplicated

factor-level combinations. This allows a model-independent estimation of the

error variance. The triplicates are possible because of the six center runs in the

OMARS design used to start the construction.

We recommend using the solution approach from Section 3.4 when the re-

quirements concerning the quantitative factors are demanding, such as high pro-

jection capabilities, low fourth-order correlations, high powers to detect quadratic

effects, or the presence of replicates. In these situations, it pays off to start from

an OMARS design that fulfills these requirements.
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5. A Computational Search for Mixed-Level OMARS Designs

Using the three construction methods outlined in Section 3, we explored the

existence of mixed-level OMARS designs with up to 32 runs (the 48-run Design 2

and the 40-run Design 3 were obtained by a dedicated search for a few large

designs). We focused on run sizes up to 32 because these are the ones typically

used for screening experiments and for response surface experiments. Our explo-

ration resulted in 587 different designs, which demonstrates the usefulness of the

construction methods.

For our exploration, we first determined tuples (n,m1,m2, n
ME
0 , nIE0 ) that

satisfy the necessary conditions for mixed-level designs to exist from Section 2.

For each tuple, we investigated which of the three construction methods were

applicable, and then built the appropriate system of binary linear equations.

Finally, we solved the system of equations using CPLEX 12.71. We performed

the required computations on the Tier-1 and Tier-2 infrastructure at the Flemish

Supercomputer Centrum, and set a computing time limit of one hour. For each

system of linear equations, there were three possible outcomes: (i) a solution was

found by CPLEX within the computing time limit; (ii) CPLEX indicates that

the system of equations has no solution; or (iii) CPLEX neither finds a solution

within the computing time limit, nor does it indicate that no solutions exist.

Table 2 provides an overview of the results we obtained for the three con-

struction methods outlined in Section 3. The second column of Table 2 shows

the number of instances considered for each of the three construction methods,

which indicates the number of attempts we made to find a mixed-level OMARS

design. For the construction from scratch, an instance is simply defined by a

tuple of the form (n,m1,m2, n
ME
0 , nIE0 ). For the construction from a given OA,

an instance is defined by the input OA, the number of three-level quantitative

factors added (m1), and the number of zeros in the model matrix’s main-effect

and interaction-effect columns for the quantitative factors (nME
0 and nIE0 ). Fi-

nally, for the construction from a given three-level OMARS design (with given

m1, nME
0 , and nIE0 values), an instance is defined by the input OMARS design

and the number of two-level categorical factors added (m2). The third column of

Table 2 shows the number of instances for which CPLEX reported a solution, and

thus produced a mixed-level OMARS design, within the computing time limit.

The fourth column shows the number of instances for which CPLEX reported

that no solution exists. The fifth column reports the number of instances for

which one hour of computing did not suffice to produce a solution or to prove the

infeasibility of the system of linear equations. The final column reports the total
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Table 2. Summary of the computation results and total computing time (expressed in
days) for the three construction methods for designs with up to 32 runs.

Construction Instances Solutions Infeasible Unresolved Time
From Scratch 1,314 245 488 581 30.4

From OA 1,173 123 894 156 18.4
From OMARS 973 219 572 182 13.5

computing time for each construction method, expressed in days.

As shown in the second column of Table 2, we set up 3,460 systems of linear

equations, and solved them using CPLEX. These systems were partitioned as

follows: 1,314 systems corresponded to a construction from scratch, 1,173 cor-

responded to a construction starting from a given OA, and 973 corresponded

to a construction starting from a given three-level OMARS design. For the

construction method from scratch, the instances are determined by the tuple

(n,m1,m2, n
ME
0 , nIE0 ). We selected all tuples with an even number of runs rang-

ing from 14 to 32, all combinations of two- and three-level factors such that there

were two to seven three-level factors and the total number of factors did not

exceed half of the number of runs and, finally, all feasible values for (nME
0 , nIE0 )

given the run size. As input to the construction from a given OA, we used 57

strength-3 OAs, all of which are optimal in terms of the generalized word length

pattern. More specifically, we used two OAs with 16 runs, six with 24 runs, and

49 with 32 runs. As input to the construction from a given three-level OMARS

design, we used 223 six- and seven-factor OMARS designs, selected from Núñez

Ares and Goos (2020).

CPLEX was able to construct 245 mixed-level OMARS designs from scratch

within one hour of computing, 123 designs starting from an OA, and 219 designs

starting from a three-level OMARS design. CPLEX also found 488, 894, and 572

systems of linear equations to be infeasible for the constructions from scratch,

from a given OA, and from a given three-level OMARS design, respectively. For

a given run size n, the probability that a system of equations is infeasible and no

mixed-level OMARS design exists increases with the number of factors involved.

The probability that CPLEX does not finish its computation within one hour

increases with the run size n.

Figure 1 provides a graphical summary of our results for run sizes up to 32.

Figure 1a uses three symbols to show the combinations of the total number of

factors (m1 +m2) and the number of runs n for which we obtained a mixed-level

OMARS design using at least one of the three construction methods. Figure 1b

shows the combinations of the number of three-level quantitative factors m1 and
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Figure 1. OMARS designs found using the three construction methods, where the sym-
bols−, | , and© indicate designs obtained using the construction methods from scratch,
an existing OA, and an existing OMARS, respectively.

the number of two-level categorical factors m2 for which we found a mixed-level

OMARS design using at least one construction method. The figures clearly show

that we obtained multiple designs with 10 or more factors, and that each of the

three methods allows us to construct designs with that many factors. Our com-

putational results thus provide evidence that small mixed-level OMARS designs

exist for large numbers of factors.

Figure 1 shows that we obtained mixed-level OMARS designs for all even

run sizes from 14 to 32. For even run sizes that are not multiples of four, the

mixed-level designs found involve one two-level categorical factor only. We also

obtained mixed-level OMARS designs with 20 and 28 runs. Because these run

sizes are odd multiples of four, these mixed-level designs involve at most two

two-level categorical factors. All mixed-level OMARS designs with three or more

two-level categorical factors have run sizes that are multiples of eight. Most of the

designs obtained are foldover designs. However, 15 of the mixed-level OMARS

designs are not foldover designs.

The mixed-level OMARS designs we obtained are available at https://

github.com/jnares/mixed-omars-designs-article.git.

6. Discussion

The original OMARS designs were intended for experiments with quantita-

tive factors only, and they involve three levels per factor. The family of OMARS

designs generalizes the family of DSDs for quantitative factors, as well as the

families of Box–Behnken and central composite designs. Here, we have studied

https://github.com/jnares/mixed-omars-designs-article.git
https://github.com/jnares/mixed-omars-designs-article.git
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mixed-level OMARS designs involving three-level quantitative factors and two-

level categorical factors. We have derived several necessary conditions for the

existence of these designs, and presented three alternative construction methods.

One of our construction methods for mixed-level OMARS designs exploits existing

catalogs of three-level OMARS designs, while another exploits existing catalogs

of strength-3 two-level OAs. Using the three construction methods, we were able

to generate designs with various numbers of quantitative and categorical factors

and numbers of runs used in practice.

Our construction methods constitute a breakthrough in the experimental de-

sign literature, because several studies have attempted and failed to find orthogo-

nal designs for three-level quantitative and two-level categorical factors possessing

the minimal aliasing property. In general, of course, the categorical part of the

designs presented here can also be used for quantitative factors whose quadratic

effects are of no interest.

We view our work as a proof of concept. In future research, we will investigate

algorithms for a complete enumeration of non-isomorphic mixed-level OMARS

designs. If successful, such a complete enumeration would allow us to either

confirm that the designs identified here are the best ones, or identify even more

attractive ones. Similar enumerations have been performed for OAs (Schoen,

Eendebak and Nguyen (2010)) and for OMARS designs (Núñez Ares and Goos

(2020)).

Acknowledgments

The computational resources and services used in this study were provided by

the VSC (Flemish SuperComputer Center), funded by the Research Foundation

Flanders (FWO) and the Flemish Government Department EWI. The research of

the first author was funded by a VLAIO Innovation Mandate and the C32/18/009

project of the KU Leuven, while that of the second author was funded by the

FWO. We thank the referee and associate editor for their constructive comments.

References

Atkinson, A., Donev, A. and Tobias, R. (2007). Optimum Experimental Designs, With SAS.

Oxford Statistical Science Series. Oxford University Press, Oxford.

Atkinson, A. C. and Donev, A. N. (1989). The construction of exact D-optimum experimental

designs with application to blocking response surface designs. Biometrika 76, 515–526.

Box, G. E. P. and Behnken, D. W. (1960). Some new three level designs for the study of

quantitative variables. Technometrics 2, 455–475.

Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum conditions.



MIXED-LEVEL OMARS DESIGNS 125

Journal of the Royal Statistical Society: Series B (Methodological) 13, 1–45.

Goos, P. and Jones, B. (2011). Optimal Design of Experiments: A Case Study Approach. John

Wiley & Sons, Hoboken.

Hartley, H. O. (1959). Smallest composite designs for quadratic response surfaces. Biomet-

rics 15, 611–624.

Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Appli-

cations. Springer Science & Business Media, New York.

Jones, B. and Nachtsheim, C. J. (2011). A class of three-level designs for definitive screening in

the presence of second-order effects. Journal of Quality Technology 43, 1–15.

Jones, B. and Nachtsheim, C. J. (2013). Definitive screening designs with added two-level cate-

gorical factors. Journal of Quality Technology 45, 121–129.

Li, W. and Lin, D. K. J. (2016). A note on foldover of 2k−p designs with column permutations.

Technometrics 58, 508–512.

Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. (2016). Response Surface Method-

ology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons,

Hoboken.

Nachtsheim, A. C., Shen, W. and Lin, D. K. J. (2017). Two-level augmented definitive screening

designs. Journal of Quality Technology 49, 93–107.

Nguyen, N.-K., Pham, T.-D. and Mai, P. V. (2020). Constructing D-efficient mixed-level foldover

designs using Hadamard matrices. Technometrics 62, 48–56.

Núñez Ares, J. and Goos, P. (2020). Enumeration and multicriteria selection of orthogonal

minimally aliased response surface designs. Technometrics 62, 21–36.

Sartono, B., Goos, P. and Schoen, E. D. (2012). Classification of three-level strength-3 arrays.

Journal of Statistical Planning and Inference 142, 794–809.

Schoen, E. D., Eendebak, P. T. and Nguyen, M. V. M. (2010). Complete enumeration of pure-

level and mixed-level orthogonal arrays. Journal of Combinatorial Designs 18, 123–140.

Schoen, E. D. and Mee, R. W. (2012). Two-level designs of strength 3 and up to 48 runs. Journal

of the Royal Statistical Society: Series C (Applied Statistics) 61, 163–174.

Schoen, E. D., Vo-Thanh, N. and Goos, P. (2017). Two-level orthogonal screening designs with

24, 28, 32, and 36 runs. Journal of the American Statistical Association 112, 1354–1369.

Vazquez, A. R., Goos, P. and Schoen, E. D. (2019). Constructing two-level designs by concate-

nation of strength-3 orthogonal arrays. Technometrics 61, 219–232.

Vazquez, A. R., Goos, P. and Schoen, E. D. (2020). Projections of definitive screening designs

by dropping columns: Selection and evaluation. Technometrics 62, 37–47.

Xiao, L., Lin, D. K. and Bai, F. (2012). Constructing definitive screening designs using conference

matrices. Journal of Quality Technology 44, 2–8.
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126 NÚÑEZ ARES, SCHOEN AND GOOS

Peter Goos

Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.

Department of Engineering Management, University of Antwerp, 2000 Antwerp, Belgium.

E-mail: peter.goos@kuleuven.be

(Received August 2020; accepted April 2021)

mailto:peter.goos@kuleuven.be

	Introduction
	Existence of Mixed-Level OMARS Designs
	Properties
	Necessary conditions for the existence of mixed-level OMARS designs

	Construction Methods
	Preliminaries
	Construction from scratch
	Construction starting from a given OA
	Construction starting from a given OMARS design

	Design Examples
	Example 1: a 24-run eight-factor design
	Example 2: a 48-run 19-factor design
	Example 3: a 40-run 10-factor design

	A Computational Search for Mixed-Level OMARS Designs
	Discussion

