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S1. Algorithm of Functional Partial Least Squares

FPLS consists of these steps:

(i) Begin X0 = (X0
1··, . . . , X

0
n··)

T
, Y0 = (Y 0

1 , . . . , Y
0
n )

T
centered at their marginal means;

(ii) At step j, 1 ≤ j ≤ J , the j-th weight function wj solves

maxwj∈L2(T ) cov2 {Yj−1, 〈Xj−1, wj〉}, such that ‖wj‖ = 1 and 〈wj, G(wj′)〉 = 0 for all

1 ≤ j′ ≤ j − 1. Note that we use 〈Xj−1, wj〉 to represent an n-dimensional vector with

elements 〈Xj−1
i·· , wj〉, i = 1, . . . , n. Optimal weight function wj here has the closed form

wj =

∑
i Y

j−1
i Xj−1

i··

‖
∑

i Y
j−1
i Xj−1

i·· ‖
. It is a sample estimation of the theoretical weight function

used in algorithms like Aguilera et al. (2010);

(iii) The n-vector Sj = (s1j, . . . , snj)
T contains the j-th scores: Sj = 〈Xj−1, wj〉;

(iv) The loading function Pj ∈ L2(T ) is generated by ordinary linear regression of Xj−1 on

scores Sj: Pj(t) = STj Xj−1 (t) /‖Sj‖2, t ∈ T . Similarly, Dj = STj Yj−1/‖Sj‖2;

(v) Update Xj(t) = Xj−1(t)− Pj(t)Sj, t ∈ T and Yj = Yj−1 −DjSj;

(vi) Return to (ii) and iterate for a total of J steps.
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S2. A more general procedure for multiclass classification

We describe a detailed procedure of using the copula-based Bayes classification on data with

more than 2 classes, which is complementary to Section 2.2.

Assume the response Y has K potential classes (K > 2), and the group mean for each

subgroup k is E (X|Y = k)) = µk. P (Y = k) = πk for k = 0, . . . , K − 1. Then joint

covariance operator G has the kernel G (s, t) =
∑

k πkGk +
∑

k πkµk(s)µk(t) − µ(s)µ(t),

where µ = E (X) =
∑

k πkµk is the overall mean. Let the truncated joint eigenfunctions

again be φ1, . . . , φJ . The copula densities ck and score marginal densities fjk are built similar

to the binary case, for each class k = 0, . . . , K − 1. Then for a test curve x with xj = 〈x, φj〉

as the jth projected score on the joint basis, we predict x’s class to be k∗ where

k∗ = argmaxkfk (x1, . . . , xJ) πk = argmaxkπkck {F1k(x1), . . . , FJk(xJ)}ΠJ
j=1fjk(xj). (S2.1)

S3. Additional Details and Outputs of Numerical Study in Section 3

S3.1 Results with Different Score Distributions (V) and Increased Training Size

To check classification performance in the varied score (V) setup when distributions are non-

normal and non-tail-dependent, we include simulation results Table S1 here with a different

choice of V: when k = 1, scores are distributed as standardized χ2(1); when k = 0, it is

standardized gamma distribution with both rate and scale parameters to as 1.

Also, in Table S1 we increased the training size to 500 for classification performance

check. The major findings are consistent with Section 3.3.

Similar process is applied to the multiclass classification and the results are included in

Table S2. We again increased the training size for each data scenario to 500, and used a
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BC BCG BCGPLS BCt BCtPLS CEN PLSDA logistic CV Ratio (CV)
SSSN 0.495 0.500 0.503 0.492 0.504 0.502 0.500 0.500 0.505 2.49%
SSDN 0.200 0.208 0.304 0.214 0.400 0.474 0.495 0.473 0.202 1.10%
SDSN 0.276 0.272 0.274 0.273 0.275 0.237 0.279 0.240 0.239 0.96%
SDDN 0.142 0.137 0.270 0.137 0.272 0.202 0.245 0.206 0.138 0.88%
SSST 0.508 0.504 0.498 0.511 0.509 0.500 0.496 0.495 0.504 1.80%
SSDT 0.414 0.414 0.426 0.421 0.454 0.492 0.498 0.496 0.415 0.24%
SDST 0.161 0.158 0.183 0.153 0.205 0.155 0.221 0.153 0.150 -1.66%
SDDT 0.137 0.134 0.161 0.129 0.188 0.136 0.224 0.132 0.132 2.48%
SSSV 0.383 0.382 0.484 0.382 0.482 0.489 0.495 0.494 0.385 0.96%
SSDV 0.187 0.195 0.326 0.199 0.402 0.468 0.498 0.476 0.189 0.71%
SDSV 0.190 0.194 0.333 0.192 0.309 0.234 0.281 0.233 0.191 0.60%
SDDV 0.136 0.142 0.306 0.140 0.329 0.197 0.256 0.198 0.140 2.35%

RSSN 0.284 0.110 0.128 0.110 0.120 0.498 0.503 0.482 0.111 1.22%
RSDN 0.251 0.050 0.097 0.053 0.123 0.490 0.494 0.474 0.051 3.08%
RDSN 0.248 0.090 0.099 0.089 0.096 0.292 0.298 0.291 0.092 2.92%
RDDN 0.195 0.041 0.072 0.041 0.084 0.267 0.285 0.269 0.042 2.29%
RSST 0.401 0.295 0.314 0.289 0.302 0.497 0.495 0.486 0.290 0.58%
RSDT 0.358 0.260 0.296 0.271 0.291 0.490 0.487 0.477 0.265 1.95%
RDST 0.156 0.113 0.177 0.117 0.176 0.152 0.239 0.153 0.114 1.54%
RDDT 0.134 0.095 0.152 0.099 0.171 0.135 0.236 0.128 0.096 0.77%
RSSV 0.215 0.125 0.174 0.120 0.173 0.480 0.479 0.478 0.122 1.83%
RSDV 0.217 0.095 0.172 0.102 0.215 0.475 0.474 0.474 0.097 2.32%
RDSV 0.159 0.086 0.141 0.087 0.148 0.270 0.304 0.272 0.086 -0.39%
RDDV 0.181 0.084 0.188 0.081 0.221 0.231 0.289 0.231 0.081 0.50%

Table S1: Misclassification rates of eight classifiers on 24 scenarios, each an average from 100
simulations. Training size 500, test size 150.

different set of score distributions for the varied distribution setup (V): when k = 0, scores

distribution is standardized χ2(1); when k = 1, it is standardized gamma distribution with

both rate and scale parameters as 1; when k = 2, scores have log-normal distribution with

parameters µ = 0 and σ2 = 1.

S3.2 Correlation of Scores in RSDN
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BC BCG BCGPLS BCt BCtPLS PLSDA logistic CV.mean ratio.cv
MSSN 0.469 0.199 0.223 0.200 0.223 0.636 0.632 0.200 0.43%
MDSN 0.247 0.066 0.072 0.066 0.073 0.451 0.390 0.068 3.32%
MSDN 0.167 0.052 0.108 0.053 0.160 0.630 0.621 0.051 -3.05%
MDDN 0.147 0.047 0.097 0.047 0.127 0.506 0.475 0.047 0.27%
MSST 0.505 0.304 0.340 0.296 0.315 0.629 0.637 0.296 0.08%
MDST 0.278 0.128 0.143 0.126 0.148 0.421 0.344 0.122 -3.79%
MSDT 0.409 0.247 0.288 0.214 0.335 0.622 0.623 0.207 -2.91%
MDDT 0.296 0.164 0.202 0.130 0.263 0.468 0.382 0.131 0.40%
MSSV 0.303 0.187 0.275 0.197 0.285 0.625 0.618 0.185 -0.67%
MDSV 0.196 0.097 0.248 0.097 0.264 0.465 0.391 0.100 3.20%
MSDV 0.252 0.149 0.205 0.140 0.295 0.622 0.615 0.142 1.28%
MDDV 0.206 0.115 0.162 0.109 0.238 0.523 0.462 0.108 -0.79%

Table S2: Misclassification rates averaged over 100 simulations of the 7 classifiers on 12 multinomial
data scenarios. Training sizes are again increased to 500.

1 2 3 4 5 6 7 8 9 10
1 1.000
2 -0.283 1.000
3 0.102 -0.548 1.000
4 0.292 0.384 -0.253 1.000
5 -0.119 -0.346 0.210 -0.668 1.000
6 -0.362 -0.069 -0.023 -0.431 0.362 1.000
7 0.013 -0.014 0.189 0.201 -0.194 -0.225 1.000
8 0.245 0.134 -0.113 0.478 -0.311 -0.360 0.186 1.000
9 -0.159 -0.042 0.180 -0.085 0.045 0.204 -0.070 -0.039 1.000

10 -0.066 0.028 0.080 0.131 -0.178 -0.219 0.439 0.079 0.006 1.000

Table S3: Pearson correlations of scores on first 10 joint basis at group k = 1 in Scenario RSDN.
Correlations are estimated from 500 samples in total of both groups.

1 2 3 4 5 6 7 8 9 10
1
2 0.000
3 0.113 0.000
4 0.000 0.000 0.000
5 0.064 0.000 0.001 0.000
6 0.000 0.283 0.722 0.000 0.000
7 0.841 0.829 0.003 0.002 0.002 0.000
8 0.000 0.036 0.077 0.000 0.000 0.000 0.003
9 0.013 0.518 0.005 0.188 0.480 0.001 0.275 0.545

10 0.306 0.662 0.213 0.040 0.005 0.001 0.000 0.216 0.921

Table S4: P-values from significance test of correlations for scores in Group k = 1 in Scenario
RSDN. P < 0.05 is labeled green.
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1 2 3 4 5 6 7 8 9 10
1 1.000
2 0.015 1.000
3 -0.007 0.054 1.000
4 -0.082 -0.158 0.135 1.000
5 0.011 0.046 -0.036 0.460 1.000
6 0.029 0.009 0.005 0.269 -0.072 1.000
7 -0.001 0.001 -0.025 -0.105 0.033 0.035 1.000
8 -0.017 -0.012 0.017 -0.254 0.053 0.054 -0.023 1.000
9 0.008 0.003 -0.016 0.031 -0.005 -0.022 0.007 0.003 1.000

10 0.005 -0.005 -0.014 -0.072 0.031 0.037 -0.061 -0.009 -0.000 1.000

Table S5: Pearson correlations of scores on first 10 joint basis at group k = 0 in Scenario RSDN.
Correlations are estimated from 500 samples in total of both groups.

1 2 3 4 5 6 7 8 9 10
1
2 0.805
3 0.917 0.392
4 0.193 0.011 0.031
5 0.866 0.467 0.572 0.000
6 0.642 0.884 0.940 0.000 0.249
7 0.991 0.990 0.688 0.093 0.603 0.579
8 0.785 0.846 0.789 0.000 0.401 0.386 0.710
9 0.903 0.960 0.797 0.616 0.931 0.722 0.918 0.957

10 0.935 0.938 0.828 0.253 0.616 0.558 0.333 0.888 0.996

Table S6: P-values from significance test of correlations for scores in Group k = 0 in Scenario
RSDN. P < 0.05 is labeled green.

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10
1

2

3

4

5

6

7

8

9

10

Figure S1: Comparison of correlation plots of first 10 scores at both group of RSDN. Left: k = 1;
Right: k = 0.
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S3.3 Correlation of scores in RSDT

1 2 3 4 5 6 7 8 9 10
1 1.000
2 -0.361 1.000
3 0.110 0.258 1.000
4 -0.278 0.300 0.015 1.000
5 0.144 0.069 0.759 -0.295 1.000
6 0.015 -0.061 0.155 -0.257 0.262 1.000
7 -0.189 -0.077 -0.128 0.117 -0.138 0.276 1.000
8 0.094 -0.079 0.307 -0.099 0.367 0.036 -0.158 1.000
9 0.156 -0.058 0.291 -0.234 0.297 -0.114 -0.176 -0.074 1.000

10 -0.075 -0.077 -0.142 -0.046 0.002 0.103 -0.063 0.187 -0.399 1.000

Table S7: Pearson correlations of scores on first 10 joint basis at group k = 1 in Scenario RSDT.
Correlations are estimated from 500 samples in total of both groups.

1 2 3 4 5 6 7 8 9 10
1
2 0.000
3 0.102 0.000
4 0.000 0.000 0.820
5 0.032 0.302 0.000 0.000
6 0.820 0.360 0.020 0.000 0.000
7 0.005 0.252 0.056 0.079 0.039 0.000
8 0.160 0.236 0.000 0.140 0.000 0.591 0.018
9 0.020 0.387 0.000 0.000 0.000 0.088 0.008 0.271

10 0.263 0.253 0.034 0.495 0.976 0.124 0.345 0.005 0.000

Table S8: P-values from significance test of correlations for scores in Group k = 1 in Scenario
RSDT. P < 0.05 is labeled green.

1 2 3 4 5 6 7 8 9 10
1 1.000
2 0.022 1.000
3 -0.017 -0.065 1.000
4 0.033 -0.058 -0.007 1.000
5 -0.026 -0.019 -0.562 0.170 1.000
6 -0.001 0.009 -0.056 0.072 -0.113 1.000
7 0.018 0.012 0.050 -0.036 0.064 -0.063 1.000
8 -0.008 0.010 -0.103 0.026 -0.146 -0.007 0.033 1.000
9 -0.012 0.010 -0.091 0.057 -0.111 0.021 0.035 0.013 1.000

10 0.006 0.012 0.039 0.010 -0.002 -0.016 0.011 -0.027 0.053 1.000

Table S9: Pearson correlations of scores on first 10 joint basis at group k = 0 in Scenario RSDT.
Correlations are estimated from 500 samples in total of both groups.
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1 2 3 4 5 6 7 8 9 10
1
2 0.718
3 0.778 0.282
4 0.580 0.336 0.903
5 0.665 0.756 0.000 0.005
6 0.982 0.881 0.351 0.230 0.060
7 0.762 0.843 0.408 0.556 0.287 0.299
8 0.895 0.871 0.086 0.669 0.015 0.907 0.581
9 0.846 0.875 0.132 0.348 0.064 0.731 0.567 0.830

10 0.926 0.845 0.518 0.873 0.970 0.785 0.856 0.659 0.383

Table S10: P-values from significance test of correlations for scores in Group k = 0 in Scenario
RSDT. P < 0.05 is labeled green.
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Figure S2: Comparison of correlation plots of first 10 scores at both group of RSDT. Left: k = 1;
Right: k = 0.
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S4. Additional Results for Two Data Examples

S4.1 Fractional Anisotropy Example
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Figure S3: First four loading functions of PC (left) and PLS (right) of the smoothed FA profiles,
with percentage of total variation reported in the titles. Both loadings are scaled to unit length for
comparison. The first loading functions are red and are roughly horizontal for each method.
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Figure S4: First four group eigenfunctions of smoothed FA profiles in group MS or Healthy.

In Fig. S5, we compare the projected score distributions on PC and PLS, with densities

estimated by KDE. In distinguishing between cases and controls, the first and third PC

components are more important than the second one, which captures mostly within-group

variation. Overall, PLS does not improve over PC, consistent with the results in Table 4.
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Figure S5: Estimated densities of scores on first four PC and PLS components in MS (in red) and
healthy groups (in green). The proportion of total variation each component explains is included
in plot titles. Locations of group score average are labeled with dashed lines.

Score correlation tests on first four principal components reveal that, though no significant

correlation is found in MS cases, the 2nd and 3rd components of the control group are

positively correlated with Spearman’s ρ at 0.525 and an adjusted p-value 2 × 10−2. Scores

on the first four PLS components do not show significance correlations. Therefore, while PC

and PLS show almost equal ability in capturing variation with first several components in

DTI data, PC exhibits correlation between components in one of the two groups, which may

explain the superior performance of PC and of the copula-based classifiers, BCG and BC-t.

Figure S4 show the first four group-specific eigenfunctions. There are some differences, es-

pecially after the first eigenfunctions, which may also contribute to the superior performance

of the copula-based classifiers.

S4.2 Additional results of the PM/velocity example

The first four PC and PLS loading functions are plotted in Fig. S6, with 93.9% of total varia-

tion explained by the four PCs, and 88.7% by PLS components. The fractions SSB/SST (be-

tween to total sums of squares) of the first four PCs respectively are 2.12%, 0.37%, 0.17%, 6.27%,
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Figure S6: First 4 loading functions on PC (left) and PLS (right) for raw truck velocities, with
percentage of total variation reported by first four components in the titles. Both loadings are
scaled to unit length.

while for PLS they are noticeably larger, 5%, 13.3%, 4.71%, 4.13%. We compare the score

distributions in Fig. S7, with group means indicated by dashed lines. The second PLS

component with a SSB/SST ratio 13.3% appears strongest in distinguishing between PM

emission groups.

PLS components, especially the second one, are able to capture distinctions between the

movement patterns causing high and low PM emission. The projected velocity scores of the

high PM group on the second PLS component have a positive group mean and a smaller

standard deviation, compared to the negative mean and the larger standard deviation of

the low PM group. The second PLS loading function, as shown in Fig. S6, starts near 0,

and decreases for the first 20 seconds, then is positive for roughly the last 55 seconds. (The

loading functions are modeling deviations from average values, so a negative value indicates a

below-average velocity.) This pattern is consistent with our earlier finding that while the low

PM group has greater variation, the high PM cases have a constant pattern of decelerating
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Figure S7: Score densities of first four PC and PLS components in high PM (in red) and low
PM groups (in green). The proportion of total variation each component explains is included in
headlines. The SSB/SST ratios are 2.12%, 0.37%, 0.17%, 6.27% for PC, and 5%, 13.3%, 4.71%, 4.13%
for PLS. The densities are estimated by KDE with direct plug-in bandwidths. Group means are
lindicated by dashed lines.

over the first 20 seconds with much lower standard deviation, followed by acceleration with

increasing variation.
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Figure S8: First 4 eigenfunctions of raw truck velocity data in group High or Low.
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S4.3 Group Mean Difference Comparison

In Fig. S9, we compare the projected group mean difference of the two data examples, both

on the first 20 joint eigenfunctions. Apparently, in the first example of DTI data, principal

components are able to detect the location difference effectively at about first 5 basis. On the

other hand, in Panel (b), the particulate emission data present a more significant group mean

difference, which takes more than 12 eigenfunctions to fully capture. These two situations

validate their different choices of PC and PLS based classifiers.
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Figure S9: Comparison of projected group mean difference of DTI and PM data, both on the first
20 joint eigenfunctions. Level 0 is labeled with a dashed blue line in each plot.
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S5. Proof of Theorem 1

S5.1 Estimation error of KDE f̂jk on unequal group eigenfunctions

Let the class of functions S(c) = {x ∈ L2(T ) : ‖x‖ ≤ c}, ∀c > 0. We prove Proposition 1 in

Section 5.1 of the paper:

Proof. First let ĝjk(x̂j) be kernel density estimation (KDE) of standardized scores projected

on φ̂j at group k, and ĝj(x̂j) for standardized joint scores, where φ̂j and λ̂j are the estimated

j-th joint eigenfunction and eigenvalue pair from sample eigen-decomposition as illustrated

in Delaigle and Hall (2011),

ĝjk (x̂j) =
1

nkh

nk∑
i=1

K

(
〈Xik − x, φ̂j〉

σ̂jkh

)
, ĝj (x̂j) =

1

nh

n∑
i=1

K

〈Xi − x, φ̂j〉√
λ̂jh

 , (S5.1)

with σ̂jk as sample standard deviation of σjk =
√
V ar〈Xik, φj〉, and h is the unit bandwidth

for standardized scores. Thus, the estimated marginal density f̂jk(x̂j) and f̂j(x̂j) can be

correspondingly expressed as

f̂jk (x̂j) =
1

σ̂jk

1

nkh

nk∑
i=1

K

(
〈Xik − x, φ̂j〉

σ̂jkh

)
=

1

σ̂jk
ĝjk (x̂j) , (S5.2)

and

f̂j (x̂j) =
1√
λ̂j

1

nh

n∑
i=1

K

〈Xi − x, φ̂j〉√
λ̂jh

 =
1√
λ̂j

ĝj (x̂j) . (S5.3)
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In addition, when φj, λj and δjk are known, we use f̄jk and f̄j as below,

f̄jk (xj) =
1

σjk

1

nkh

nk∑
i=1

K

(
〈Xik − x, φj〉

σjkh

)
=

1

σjk
ḡjk (xj) , (S5.4)

and

f̄j (xj) =
1√
λj

1

nh

n∑
i=1

K

(
〈Xi − x, φj〉√

λjh

)
=

1√
λj
ḡj (xj) . (S5.5)

With Taylor expansion,

π̂1ĝj1 (x̂j) + π̂0ĝj0 (x̂j) =
1

nh

n1∑
i=1

K

〈Xi1 − x, φ̂j〉√
λ̂jh

 (S5.6)

+
1

nh

n1∑
i=1

 1

σ̂j1
− 1√

λ̂j

 1

h
〈Xi1 − x, φ̂j〉K ′ (γij1) (S5.7)

+
1

nh

n0∑
i=1

K

〈Xi0 − x, φ̂j〉√
λ̂jh

 (S5.8)

+
1

nh

n0∑
i=1

 1

σ̂j0
− 1√

λ̂j

 1

h
〈Xi0 − x, φ̂j〉K ′ (γij0) , (S5.9)

where γijk = cijk ·
〈Xik − x, φ̂j〉

h
, with cijk between

1√
λ̂j

and
1

σ̂jk
. Since Eq.(S5.6) + Eq.(S5.8)

is ĝj (x̂j), π̂1ĝj1 (x̂j) + π̂0ĝj0 (x̂j)− ĝj (x̂j) is sum of the two parts Eq.(S5.7) and Eq.(S5.9).

Then we discuss specifically the case when the kernel function K here is standard Gaus-

sian. We denote the partial term
1

h
〈Xik − x, φ̂j〉K ′ (γijk) in Eq.(S5.7) and Eq.(S5.9) as Aijk.
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Therefore,

Aijk =
1

h
〈Xik − x, φ̂j〉K ′ (γijk)

= −cijk
h2
〈Xik − x, φ̂j〉2 exp

(
−1

2

c2
ijk

h2
〈Xik − x, φ̂j〉2

)
· 1√

2π
(S5.10)

To show Aijk = op (h2), we let

(
−
√

2π
)
·Ak
/(

h2 1

〈Xik − x, φ̂j〉2
1

c3
ijk

)
=
(cijk
h
〈Xik − x, φ̂j〉

)4

exp

{
−1

2

(cijk
h
〈Xik − x, φ̂j〉

)2
}
.

(S5.11)

The term in Eq.(S5.11), |cijk
h
〈Xik − x, φ̂j〉|

p→∞ by the following steps:

i) |〈Xik − x, φ̂j〉| = |〈Xik − x, φj〉| + Op
(
n−1/2

)
: from Lemma 3.4 of Hall and Hosseini-

Nasab (2009), ‖φ̂j−φj‖ = Op
(
n−1/2

)
. Then |〈Xik−x, φ̂j−φj〉| ≤ ‖Xik−x‖‖φ̂j−φj‖ =

Op
(
n−1/2

)
, so |〈Xik − x, φ̂j〉| = |〈Xik − x, φj〉|+Op

(
n−1/2

)
= Op (1);

ii) cijk is between 1/
√
λj + Op

(
n−1/2

)
and 1/σjk + Op

(
n−1/2

)
: by Taylor expansion cijk

is somewhere between 1/
√
λ̂j and 1/σ̂jk, where λ̂j = λj + Op

(
n−1/2

)
(Delaigle and

Hall (2011)). The estimated σ̂2
jk =

∑nk

i=1〈Xik − X̄, φ̂j〉2/ (nk − 1), with X̄ the aver-

age function. Let σ̃2
jk =

∑nk

i=1〈Xik − X̄, φj〉2/ (nk − 1), which is well known to be root-n

consistent with σ2
jk. With ‖φ̂j−φj‖ = Op

(
n−1/2

)
again, 〈Xik−X̄, φ̂j〉2−〈Xik−X̄, φj〉2 =

Op
(
n−1/2

)
. So, σ̂2

jk−σ̃2
jk = (nk − 1)−1∑nk

i=1

(
〈Xik − X̄, φ̂j〉2 − 〈Xik − X̄, φj〉2

)
= Op

(
n−1/2

)
.

Thus σ̂2
jk is also root-n consistent with σ2

jk, and so is 1/σ̂jk with 1/σjk by delta method.

Thus cijk is between 1/
√
λj +Op

(
n−1/2

)
and 1/σjk +Op

(
n−1/2

)
, i.e. cijk = Op (1);
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iii) Then with above results, |cijk〈Xik − x, φ̂j〉|/h is between

∣∣∣∣ 1

σjk
〈Xik − x, φj〉

∣∣∣∣ /h+Op

(
1√
nh

)
, (S5.12)

and

∣∣∣∣∣ 1√
λj
〈Xik − x, φj〉

∣∣∣∣∣+Op

(
1√
nh

)
=

σjk√
λj

∣∣∣∣ 1

σjk
〈Xik − x, φj〉

∣∣∣∣+Op

(
1√
nh

)
, (S5.13)

where r.v.
1

σjk
〈Xik − x, φj〉 is standardized with finite mean.

So ∀M > 0, P

(
| 1

σjk
〈Xik − x, φj〉|/h > M

)
= P

(
| 1

σjk
〈Xik − x, φj〉| > Mh

)
→ 1 as

n→∞, and then | 1

σjk
〈Xik − x, φj〉|/h

p→∞.

Also, Op

(
1√
nh

)
= op(1), since nh2 = n1−δh3 · nδh−1, and n1−δh3 for δ > 0 is bounded

away from zero by assumption. So nh2 →∞, and
1√
nh
→ 0. Therefore, both Eq.(S5.12)

and Eq.(S5.13)
p→∞.

As a conclusion from i) - iii), |cijk〈Xik − x, φ̂j〉|/h
p→ ∞. Then by continuous mapping,

Eq.(S5.11) = op (1). Also,
1

〈Xik − x, φ̂j〉2
1

c3
ijk

is apparently Op (1) using above results, which

in the end shows that Aijk = op(h2).

It also shows that 1/σ̂jk − 1/
√
λ̂j = 1/σjk − 1/

√
λj + Op

(
n−1/2

)
. Therefore, from

Eq.(S5.6)-(S5.9), we get to the result that

π̂1ĝj1 (x̂j) + π̂0ĝj0 (x̂j)− ĝj (x̂j) = op (h) . (S5.14)
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With similar steps, it also shows that π̂1ḡj1 (xj)+π̂0gj0 (xj)−ḡj (xj) = op (h). So π̂1 {ĝj1 (x̂j)− ḡj1 (xj)}+

π̂0 {ĝj0 (x̂j)− ḡj0 (xj)} = ĝj (x̂j)−ḡj (xj)+op (h), and when combined with Theorem 3.1 from

Delaigle and Hall (2010), it proves

sup
x∈S(c)

|π̂1 {ĝj1 (x̂j)− ḡj1 (xj)}+ π̂0 {ĝj0 (x̂j)− ḡj0 (xj)}|

= sup
x∈S(c)

|ĝj (x̂j)− ḡj (xj)|+ op (h)

= op

(
1√
nh

)
+ op (h) = op (h) . (S5.15)

Then under Assumption A5, supx∈S(c) |ĝjk (x̂j)− ḡjk (xj)| = op

(
h+

√
log n

nh

)
, and

sup
x∈S(c)

|ĝjk (x̂j)− gjk (xj)|

≤ sup
x∈S(c)

|ĝjk (x̂j)− ḡjk (xj)|+ sup
x∈S(c)

|ḡjk (xj)− gjk (xj)|

= op

(
h+

√
log n

nh

)
+Op

(
h+

√
log n

nh

)
= Op

(
h+

√
log n

nh

)
, (S5.16)

where the second bound in Eq.(S5.16) is from established results of kernel density estimation

like in Stone (1983). Consequently,

sup
x∈S(c)

∣∣∣f̂jk (x̂j)− fjk (xj)
∣∣∣

= sup
x∈S(c)

∣∣∣∣ 1

σ̂jk
ĝjk (x̂j)−

1

σjk
gjk (xj)

∣∣∣∣
≤ sup

x∈S(c)

∣∣∣∣ 1

σ̂jk
{ĝjk (x̂j)− gjk (xj)}

∣∣∣∣+ sup
x∈S(c)

∣∣∣∣( 1

σ̂jk
− 1

σ̂jk

)
gjk (xj)

∣∣∣∣
= Op

(
h+

√
log n

nh

)
+Op

(
1√
n

)
= Op

(
h+

√
log n

nh

)
(S5.17)
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S5.2 Difference between ûjk and ujk

We need the following Lemma 1 for Theorem 1 proof:

Lemma 1. Under A1-A4, ∀X ∈ L2(T ), ûjk = Φ−1
{
F̂jk

(
〈X, φ̂j〉

)}
is root-n consistent of

ujk = Φ−1 {Fjk (〈X,φj〉)}

Proof. Let û∗jk = Φ−1
{
F̂jk (〈X,φj〉)

}
. Here F̂jk (〈X,φj〉) =

∑nk

i=1 I {〈Xik, φj〉 ≤ 〈X,φj〉}
nk + 1

,

which easily gives û∗jk − ujk = Op
(
n−1/2

)
by CLT and delta method. Then,

∣∣∣F̂jk (〈X, φ̂j〉)− F̂jk (〈X,φj〉)
∣∣∣

=

∣∣∣∑nk

i=1 I
{
〈Xik −X, φ̂j〉 ≤ 0

}
−
∑nk

i=1 I {〈Xik −X,φj〉 ≤ 0}
∣∣∣

nk + 1

≤

∑nk

i=1 I
{
I
{
〈Xik −X, φ̂j〉 ≤ 0

}
6= I {〈Xik −X,φj〉 ≤ 0}

}
nk + 1

. (S5.18)

From Eq.(S5.18),

E
∣∣∣F̂jk (〈X, φ̂j〉)− F̂jk (〈X,φj〉)

∣∣∣ ≤ 1

nk + 1

nk∑
i=1

P
(
I
{
〈Xik −X, φ̂j〉 ≤ 0

}
6= I {〈Xik −X,φj〉 ≤ 0}

)
,

(S5.19)

so for I
{
〈Xik −X, φ̂j〉 ≤ 0

}
6= I {〈Xik −X,φj〉 ≤ 0},

∣∣∣〈Xik −X, φ̂j〉 − 〈Xik −X,φj〉
∣∣∣ > εijk

for some εijk > 0. Then Eq.(S5.19) becomes

E
∣∣∣F̂jk (〈X, φ̂j〉)− F̂jk (〈X,φj〉)

∣∣∣ ≤ 1

nk + 1

nk∑
i=1

P
(∣∣∣〈Xik −X, φ̂j〉 − 〈Xik −X,φj〉

∣∣∣ > εijk

)
=

1

nk + 1

nk∑
i=1

P
(∣∣∣〈Xik −X, φ̂j − φj〉

∣∣∣ > εijk

)
(S5.20)
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By Lemma 3.3 and 3.4 of Hall and Hosseini-Nasab (2009), as n→∞,
√
nE
∣∣∣〈Xik −X, φ̂j − φj〉

∣∣∣ ≤√
E‖Xik −X‖2·

√
E‖
√
n
(
φ̂j − φj

)
‖2 <∞. Hence ∀ε > 0,

√
nP
(∣∣∣〈Xik −X, φ̂j − φj〉

∣∣∣ > ε
)
≤(√

nE
∣∣∣〈Xik −X, φ̂j − φj〉

∣∣∣) /ε <∞ by Markov inequality.

Continuing from Eq.(S5.20), as n→∞,

√
nE
∣∣∣F̂jk (〈X, φ̂j〉)− F̂jk (〈X,φj〉)

∣∣∣ ≤ nk
nk + 1

[√
nP
(∣∣∣〈Xik −X, φ̂j − φj〉

∣∣∣ > εijk

)]
<∞,

(S5.21)

which proves
√
n
∣∣∣F̂jk (〈X, φ̂j〉)− F̂jk (〈X,φj〉)

∣∣∣ = Op (1). Then with Taylor expansion it

easily shows ûjk − û∗jk = Φ−1
(
F̂jk

(
〈X, φ̂j〉

))
− Φ−1

(
F̂jk (〈X,φj〉)

)
= Op

(
n−1/2

)
, hence

ûjk − ujk = Op
(
n−1/2

)
too, concluding the lemma.

S5.3 Difference between Ω̌jj′

k and Ω̂jj′

k

Here Ω̌k is estimated correlation matrix at group k using sample rank correlation calculated

from scores 〈Xik, φj〉, while Ω̂k uses 〈Xik, φ̂j〉. For simplicity, we only demonstrate with

Kendall’s τ , but other rank correlations like Spearman’s ρ will have similar results:

Ω̂jj′

k = sin
(π

2
ρ̂jj
′

τ,k

)
: ρ̂jj

′

τ,k =
2

nk (nk − 1)

∑
1≤i≤i′≤nk

sign
{
〈Xik −Xi′k, φ̂j〉〈Xik −Xi′k, φ̂j′〉

}
(S5.22)

Ω̌jj′

k = sin
(π

2
ρ̌jj
′

τ,k

)
: ρ̌jj

′

τ,k =
2

nk (nk − 1)

∑
1≤i≤i′≤nk

sign {〈Xik −Xi′k, φj〉〈Xik −Xi′k, φj′〉} .

(S5.23)

We then propose the following lemma:

Lemma 2.
∣∣∣Ω̂jj′

k − Ω̌jj′

k

∣∣∣ = Op

(
1√
n

)
, ∀1 ≤ j, j′ ≤ J , j 6= j′.
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Proof.

∣∣∣ρ̂jj′τ,k − ρ̌jj′τ,k∣∣∣ ≤ 4

nk (nk − 1)

∑
1≤i<i′≤nk

I[sign
{
〈Xik −Xi′k, φ̂j〉〈Xik −Xi′k, φ̂j′〉

}
6= sign {〈Xik −Xi′k, φj〉〈Xik −Xi′k, φj′〉}].

(S5.24)

To have unequal signs between 〈Xik−Xi′k, φ̂j〉〈Xik−Xi′k, φ̂j′〉 and 〈Xik−Xi′k, φj〉〈Xik−

Xi′k, φj′〉, exactly either sign〈Xik−Xi′k, φ̂j〉 6= sign〈Xik−Xi′k, φj〉, or sign〈Xik−Xi′k, φ̂j′〉 6=

sign〈Xik −Xi′k, φj′〉. So Eq.(S5.24) has expectation

E
∣∣∣ρ̂jj′τ,k − ρ̌jj′τ,k∣∣∣ ≤ 4

nk (nk − 1)

∑
1≤i<i′≤nk

P
(

sign〈Xik −Xi′k, φ̂j〉 6= sign〈Xik −Xi′k, φj〉
)

+
4

nk (nk − 1)

∑
1≤i<i′≤nk

P
(

sign〈Xik −Xi′k, φ̂j′〉 6= sign〈Xik −Xi′k, φj′〉
)

≤ 4

nk (nk − 1)

∑
1≤i<i′≤nk

P
(∣∣∣〈Xik −Xi′k, φ̂j − φj〉

∣∣∣ > ε(i,i′)jk

)
+

4

nk (nk − 1)

∑
1≤i<i′≤nk

P
(∣∣∣〈Xik −Xi′k, φ̂j′ − φj′〉

∣∣∣ > ε(i,i′)j′k

)
, (S5.25)

for ε(i,i′)jk, ε(i,i′)j′k > 0, with the same reasoning as in Lemma 1.

With results from proof steps of Lemma 1, Eq.(S5.21), E
√
n
∣∣∣ρ̂jj′τ,k − ρ̌jj′τ,k∣∣∣ < ∞, ⇒

√
n
∣∣∣ρ̂jj′τ,k − ρ̌jj′τ,k∣∣∣ = Op (1), ⇒

∣∣∣ρ̂jj′τ,k − ρ̌jj′τ,k∣∣∣ = Op

(
1√
n

)
. Thus with Taylor expansion it

proves Lemma 2.
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S5.4 Asymptotic bound of
∣∣∣log Q̂∗J (X)− logQ∗J (X)

∣∣∣
Difference between the Bayes classifier and its estimated version is

∣∣∣log Q̂∗J (X)− logQ∗J (X)
∣∣∣ ≤ ∑

k=0,1

J∑
j=1

∣∣∣(log f̂jk

(
X̂j

)
− log fjk (Xj)

)∣∣∣ (S5.26)

+
1

2

∑
k=0,1

∣∣log |Ω̌k| − log |Ωk|
∣∣ (S5.27)

+
1

2

∑
k=0,1

∣∣ûTk (Ω̌−1
k − I

)
ûk − uTk

(
Ω−1
k − I

)
uk
∣∣ (S5.28)

+
1

2

∑
k=0,1

∣∣∣log |Ω̂k| − log |Ω̌k|
∣∣∣+

1

2

∑
k=0,1

∣∣∣ûTk (Ω̂−1
k − Ω̌−1

k

)
ûk

∣∣∣ ,
(S5.29)

Precision matrix is estimated using nonparanormal SKEPTIC with the graphical Dantzig

selector described in Yuan (2010) and Liu et al. (2012). Asymptotic behavior of Eq.(S5.26)

is previously discussed in Section S5.1, X̂j = 〈X, φ̂j〉.

S5.4.1 Bound of Eq.(S5.28)

To bound Eq.(S5.28), we denote ũk = ûk − uk, Mk = Ω̌−1
k − Ω−1

k , where ûk is a length J

vector with entries ûjk as defined above.

ûTk
(
Ω̌−1
k − I

)
ûk − uTk

(
Ω−1
k − I

)
uk = uTkMkuk + 2uTkΩ−1

k ũk + 2uTkMkũk

− 2uTk ũk + ũTkΩ−1
k ũk + ũTkMkũk − ũTk ũk (S5.30)

We discuss the asymptotic bound of each part in Eq.(S5.30) from a) to f). For convenience

of notation, ‖ · ‖ is for ‖ · ‖2
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a) uTkMkuk ≤ ‖uk‖2 · ‖Mk‖ = Op (J) · Op

(
M

√
log J

n

)
= Op

(
MJ

√
log J

n

)
, where the

bound on the norm of matrix difference comes from Theorem 4.4 in Liu et al. (2012), and

the fact that Ωk ∈ C (κ, τ,M, J);

b)

2uTkΩ−1
k ũk = 2uTkΩ−1

k Op

(
1√
n

)
1

= Op

(
1√
n

)
uTkΩ−1

k 1 ≤ Op

(
1√
n

)
‖uk‖‖Ω−1

k 1‖

= Op

(
1√
n

)
·Op

(√
J
)
·Op

(√
J
)

= Op

(
J√
n

)
, (S5.31)

where we have ũk = Op

(
1√
n

)
1 from Lemma 1, and ‖Ω−1

k ‖1 ≤ κ;

c)

2uTkMkũk ≤ 2‖uk‖‖Mk‖‖ũk‖

= Op
(√

J
)
·Op

(
M

√
log J

n

)
·Op

(√
J

n

)
= Op

(
JM

n

√
log J

)
(S5.32)

d)

−2uTk ũk − ũTk ũk = − (ûk + uk)
T (ûk − uk) = ‖uk‖2 − ‖ûk‖2 = Op

(
J√
n

)
(S5.33)

e)

ũTkΩ−1
k ũk = Op

(
1√
n

)
1TΩ−1

k Op

(
1√
n

)
1 = Op

(
J

n

)
(S5.34)
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f)

ũTkMkũk ≤ ‖ũk‖2‖Mk‖ = Op

(
MJ

n

√
log J

n

)
(S5.35)

In sum, Eq.(S5.28)= Op

(
MJ

√
log J

n

)

S5.4.2 Bound of Eq.(S5.27)

Log determinant difference in Eq.(S5.27) can be bounded using Lemma 12 in Singh and

Póczos (2017): ∣∣log |Ω̌k| − log |Ωk|
∣∣ ≤ 1

λ∗
‖Ω̌k −Ωk‖F , (S5.36)

where λ∗ is the minimum among all eigenvalues of Ω̌k and Ωk. Also, by Theorem 4.2

in Liu et al. (2012), supjj′
∣∣∣Ω̌jj′

k −Ωjj′

k

∣∣∣ = Op

(√
log J

n

)
. Thus,

∣∣log |Ω̌k| − log |Ωk|
∣∣ =

Op

(
J

√
log J

n

)
.

S5.4.3 Bound of Eq.(S5.29)

With similar steps in Section S5.4.2, the first part in Eq.(S5.29) is bounded as
∣∣∣log |Ω̂k| − log |Ω̌k|

∣∣∣ =

Op

(
J√
n

)
, due to Lemma 2. For the second part,

∣∣∣ûTk (Ω̂−1
k − Ω̌−1

k

)
ûk

∣∣∣ =
∣∣∣ûTk Ω̌−1

k

(
Ω̌k − Ω̂k

)
Ω̂−1
k ûk

∣∣∣
≤ ‖ûTk Ω̌−1

k ‖‖Ω̌k − Ω̂k‖‖Ω̂−1
k ûk‖ = Op

(
J2

√
n

)
. (S5.37)

Thus, Eq.(S5.27), Eq.(S5.28) and Eq.(S5.29) in sum are Op

(
MJ

√
log J

n

)
+Op

(
J2

√
n

)
.
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S5.5 Proof of Theorem 1

Proof. We here inherit the idea in Dai et al. (2017) to only consider the case when fj1 and

fj0 have common supports for simplicity. When fj1 and fj0 have unequal supports, we can

divide the scenario into two parts: first, consider when the score of the target data X fall

into the common support of both densities, which is similar to what we discuss here; second,

consider when the score only belongs to one support, which would be trivial to prove that

log Q̂∗J (X) and logQ∗J (X) always share the same sign. For detailed reasoning please refer

to the Supplementary Material of Dai et al. (2017).

For all ε > 0, when n is big enough, with parameters c, Cjk, CT1 , CT2 dependent on ε, we

build the following sets:

• S1 = {‖X‖ ≤ c} = {X ∈ S (c)} s.t. P (S1) ≥ 1− ε/4;

• By Proposition 1, let Sjk2 =

{
supx∈S(c) |f̂jk(x̂j)− fjk(xj)|/

(
h+

√
log n

nh

)
≤ Cjk

}
,

and P
(
Sjk2

)
≥ 1− 2−(j+3), for j ≥ 1, k = 0, 1;

• Let T1 = Eq.(S5.27) + Eq.(S5.28). T1 = Op

(
MJ

√
log J

n

)
by Section S5.4.1 and

S5.4.2. ST1 =

{
T1/

(
MJ

√
log J

n

)
≤ CT1

}
, P (ST1) ≥ 1− ε/4;

• Let T2 = Eq.(S5.29). T2 = Op

(
J2

√
n

)
by Section S5.4.3. ST2 =

{
T2/

(
J2

√
n

)
≤ CT2

}
,

P (ST2) ≥ 1− ε/4;

• Let Sjk3 = {〈X,φj〉 ∈ support (fjk)}. P
(
Sjk3

)
= 1.

Let S = S1

{⋂
j≥1,k=0,1 S

jk
2

}
∩ ST1 ∩ ST2

{⋂
j≥1,k=0,1 S

jk
3

}
, P (S) = 1 − P (Sc) ≥ 1 − ε.

Since

(
h+

√
log n

nh

)
→ 0, there exists an → ∞ an increasing sequence which satisfies
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an

(
h+

√
log n

nh

)
= o (1). With Ujk = {x : 〈x, φj〉 ∈ support (fjk)}, U =

⋂
j≥1,k=0,1 Ujk, and

djk = min
{

1, infx∈S(c)∩U fjk (xj)
}

, there is already a nondecreasing sequence J0 (n) built by

Dai et al. (2017), which we can directly apply here:

J0 (n) = sup

{
J ′ ≥ 1 :

∑
j≤J ′,k=0,1

Mjk

djk
≤ an

}
.

It guarantees that Eq.(S5.26):
∑

k=0,1

∑J
j=1

∣∣∣(log f̂jk

(
X̂j

)
− log fjk (Xj)

)∣∣∣ = o (1) on the

set S.

Also, T1 ≤ MJ
√

log J · CT1√
n

on S, subject to the condition in setup that MJ
√

log J =

o (
√
n). As

CT1√
n
→ 0, ∃bn →∞ and bn

CT1√
n
→ 0. We here define

J1 (n) = sup
{
J ′ ≥ 1 : M ′J ′

√
log J ′ ≤ bn

}
.

Then the nondecreasing J1 satisfies the constraint MJ
√

log J = o (
√
n) and also guarantees

T1 = o (1) on S.

For T2 ≤
CT2√
n
J2 on S, again ∃cn →∞ and cn

CT2√
n
→ 0. Let

J2 (n) = b
√
cnc.

Then the sequence J2 is nondecreasing and T2 = o (1) on S choosing J = J2.

In sum, let J∗ (n) = min {J0 (n) , J1 (n) , J2 (n)}, then
∣∣∣log Q̂∗J (X)− logQ∗J (X)

∣∣∣ → 0

at J = J∗ (n) on S. With Assumption 4, the ratios fj1(Xj)/fj0(Xj) are atomless, which
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therefore concludes

P
(
S ∩

{
1
{

log Q̂∗J (X) ≥ 0
}
6= 1 {logQ∗J (X) ≥ 0}

})
→ 0.

S6. Proofs of Theorem 2 & 3

S6.1 Optimality of functional Bayes classifier on truncated scores

The optimality of Bayes classification in multivariate case can be easily extended to the

functional setting with first J truncated scores: for a new case X ∈ L2(T ), the functional

Bayes classifier q∗J = 1{logQ∗J(X) > 0}, where

logQ∗J (X) = log

(
π1

π0

)
+

J∑
j=1

log

{
fj1(Xj)

fj0(Xj)

}
+ log

{
c1{F11(X1), . . . , FJ1(XJ)}
c0{F10(X1), . . . , FJ0(XJ)}

}
, (S6.1)

achieves lower misclassification rate than any other classifier using the first J scores Xj =

〈X,ψj〉, j = 1, . . . , J .

Proof. Let qJ(X) = k be any classifier assigning X to group k based on its first J scores.

Define Dk = {(X1, . . . , XJ) : qJ(X) = k}, 1Dk
= 1 {(X1, . . . , XJ) ∈ Dk}. Then the misclas-

sification rate of qJ(X), denoted err(qJ(X)), is

err {qJ (X)} = P (qJ (X) = 1, Y = 0) + P (qJ (X) = 0, Y = 1)

= E [P (qJ (X) = 1, Y = 0|X1, . . . , XJ) + P (qJ (X) = 0, Y = 1|X1, . . . , XJ)]

= E [1D1P (Y = 0|X1, . . . , XJ) + 1D0P (Y = 1|X1, . . . , XJ)] (S6.2)
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Thus, letting the corresponding functions D∗k and 1D∗k of Bayes classifier q∗J(X) being similar

to Dk and 1Dk
, the difference between the error rates of qJ(X) and q∗J(X) is

err {qJ (X)} − err {q∗J (X)} =E[
(
1D1 − 1D∗1

)
P (Y = 0|X1, . . . , XJ)

+
(
1D0 − 1D∗0

)
P (Y = 1|X1, . . . , XJ)] (S6.3)

When qJ(X) = 0, q∗J(X) = 1, P (Y = 1|X1, . . . , XJ) > P (Y = 0|X1, . . . , XJ) by the def-

inition of Bayes classification; and P (Y = 1|X1, . . . , XJ)] > P (Y = 0|X1, . . . , XJ) when

qJ(X) = 1, q∗J(X) = 0. Therefore Eq.(S6.3) is nonnegative, which proves the optimality of

Bayes classification on truncated functional scores.

S6.2 Theorem 2

Proof. When X is Gaussian process under both Y = 0 and 1, let XJ = (X1, . . . , XJ)T , then

the log ratio of Q∗J(X) is

logQ∗J(X) = −1

2
(XJ − ~µJ)T R−1

1 (XJ − ~µJ) +
1

2
XT
JR−1

0 XJ + log

√
|R0|
|R1|

(S6.4)

At k = 0, XT
JR−1

0 XJ has central chi-square distribution with J degrees of freedom, while

(XJ − ~µJ)TR−1
1 (XJ − ~µJ) is distributed generalized chi-squared.

Eigendecomposition gives R
1/2
0 R−1

1 R
1/2
0 = PT∆P, where ∆ is a diagonal matrix diag{∆1, . . . ,∆J}.

Also determinant of R
1/2
0 R−1

1 R
1/2
0 is

∏J
j=1

dj0
dj1

=
∏J

j=1 ∆j. We let Z = R
−1/2
0 XJ , U = PZ.

At k = 0, Uj, as the j-th entry of vector U, has standard Gaussian distribution; at k = 1,

Uj ∼ N(−bj, 1/∆j), with bj the j-th entry of b = −PR
−1/2
0 ~µJ . Uj and Uj′ are uncorrelated

∀1 ≤ j, j′ ≤ J , for both k = 0 and 1.
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Then Eq.(S6.4) is transformed into

logQ∗J(X) = −1

2
(U + b)T ∆ (U + b) +

1

2
UTU + log

√
|R0|
|R1|

= −1

2

J∑
j=1

∆j (Uj + bj)
2 +

1

2

J∑
j=1

U2
j +

1

2

J∑
j=1

log ∆j (S6.5)

Eq. (S6.5) thus fits into Lemma 3 in the Supplementary Material of Dai et al. (2017), with

which we conclude directly that perfect classification of 1{logQ∗J(X) > 0} is achieved when

either
∑∞

j=1 b
2
j =∞, or

∑∞
j=1(∆j − 1)2 =∞, as J →∞. Otherwise logQ∗J(X) converges al-

most surely to some random variable with finite mean and variance, thus err(1{logQ∗J(X) > 0}) 6→

0.

S6.3 Proof of Theorem 3

First, we provide a quick proof about the distribution of ujk|Y = k as mentioned in Section

5.3: P [ujk ≤ u|Y = k] = P [Φ−1 (Fjk (Xj)) ≤ u|Y = k] = P [Fjk (Xj) ≤ Φ (u) |Y = k]. Since

Fjk (Xj) is a uniformly distributed variable at Y = k (Ruppert and Matteson (2015)),

P [ujk ≤ u|Y = k] = Φ (u). Thus ujk|Y = k ∼ N(0, 1).

Second, we prove the claim that if a sequence of random variables an > 0 is op (1),

the conditional sequence an|Y = k, where Y is binary with k = 0, 1, is also convergent in

probability to 0:

Proof. To show an|Y = k = op (1), we need to show ∀ε, ξ > 0, ∃Nε,ξ such that, when

n ≥ Nε,ξ, P (an > ε|Y = k) < ξ.

Since an = op (1), and P (an > ε) = P (an > ε|Y = 1)π1 + P (an > ε|Y = 0)π0, there
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exists N ′ε,ξ such that for n ≥ N ′ε,ξ, P (an > ε) < πkξ, ⇒ P (an > ε|Y = k) πk < πkξ, ⇒

P (an > ε|Y = k) < ξ. Thus it is proved that ∀ε, ξ, such Nε,ξ exists, and Nε,ξ ≤ N ′ε,ξ, which

concludes an|Y
p→ 0.

Finally, to learn the asymptotic properties, we rely on the optimality of functional Bayes

classification on truncated scores as discussed above. Any classifier on the same set of

scores provides an upper bound of the error rate of the Bayes classifier 1{logQ∗J(X) > 0}.

Therefore, let ΓJ be the collection of all decision rules γJ using truncated scores X1, . . . , XJ ,

err(1{logQ∗J(X) > 0}) ≤ minγJ∈ΓJ
err (γJ). Then perfect classification exists as long as there

exists some classifier with asymptotic error rate converging to 0. In the proof below, we build

some decision rules with customized functions T aj (X), etc., developed from the summand of

logQ∗J(X):

Proof. a) For the first case, let T aj (X) be defined as

T aj (X) = log
fj1 (Xj)

fj0 (Xj)

/√ωj1
√
ωj0

+
1

ωj0

(
VT
j0u0

)2
= log gj +

(
VT
j0u0

)2
/ωj0, (S6.6)

where Vj0 as mentioned is j-th column of matrix V0 from the eigendecomposition Ω0 =

V0D0V
T
0 .

At Y = 0,
(
VT
j0u0

)2
/ωj0 follows χ2

1. Since there exists a subsequence g∗r = gjr of gj such

that gjr
p→ 0, the subsequence is also op (1) conditioned at Y = 0, as proved previously.
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Therefore,

P
(
T ajr (X) > 0|Y = 0

)
= P

(
log gjr +

(
VT
jr0u0

)2
/ωjr0 > 0|Y = 0

)
= P

(
log gjr +

(
VT
jr0u0

)2
/ωjr0 + Ca > Ca|Y = 0

)
,∀Ca ∈ R+

≤ P
(

log gjr + Ca > 0 ∪
(
VT
jr0u0

)2
/ωjr0 > Ca|Y = 0

)
≤ P (log gjr + Ca > 0|Y = 0) + P

((
VT
jr0u0

)2
/ωjr0 > Ca|Y = 0

)
= P (gjr > exp {−Ca} |Y = 0) + 1− Fχ2

1
(Ca)

→ 1− Fχ2
1

(Ca) , (S6.7)

where Fχ2
1

is CDF of Chi-square distribution with d.f. 1. As the inequality in Eq.(S6.7)

exists ∀Ca ∈ R+, P
(

log gjr +
(
VT
jr0u0

)2
/ωjr0 > 0|Y = 0

)
≤ limCa→∞ 1− Fχ2

1
(Ca) = 0.

At Y = 1,

P
(

log gjr +
(
VT
jr0u0

)2
/ωjr0 < 0|Y = 1

)
= P

(
sjr0 log gjr + sjr0 ·

(
VT
jr0u0

)2

ωjr0

< 0|Y = 1

)

≤ P (sjr0 log gjr + ε < 0|Y = 1) + P

(
sjr0 ·

(
VT
jr0u0

)2

ωjr0

< ε|Y = 1

)
,∀ε > 0

≤ P (|sjr0 log gjr | > ε|Y = 1) + P

(∣∣∣∣√ sjr0

ωjr0

VT
jr0u0

∣∣∣∣ < √ε|Y = 1

)
,∀ε > 0, (S6.8)

with sjr0 = 1/var
(
V T
jr0u0/

√
ωjr0|Y = 1

)
, as defined in Section 5.3. Thus

√
sjr0

ωjr0

V T
jr0u0 in

the second probability part in Eq.(S6.8) has unit variance. When sjr0 → 0, sjr0 log gjr
p→ 0

by continuous mapping and Slutsky’s Theorem, so both probabilities in Eq.(S6.8) go to 0

when ε→ 0. Consequently Eq.(S6.8) converges to 0, and the error rates of the sequence
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of decision rules 1{T ajr(X) > 0} are

err
(
1{T ajr(X) > 0}

)
= P

(
T ajr(X) > 0|Y = 0

)
π0+P

(
T ajr(X) < 0|Y = 1

)
π1 → 0. (S6.9)

Therefore, the misclassification rate of 1{logQ∗J(X) > 0} is asymptotically 0 in this case.

b) For the second case when the subsequence 1/gjr = op(1), the reasoning steps are similar.

The term T bj (X) is designed to build the decision rule here:

T bj (X) = log
fj1 (Xj)

fj0 (Xj)

/√ωj1
√
ωj0
− 1

ωj1

(
VT
j1u1

)2
= log gj −

(
VT
j1u1

)2
/ωj1. (S6.10)

Then at Y = 1,
(
VT
j1u1

)2
/ωj1 is χ2

1. Also, when 1/gjr = op(1),

P
(
T bjr (X) < 0|Y = 1

)
= P

(
log gjr −

(
VT
jr1u1

)2
/ωjr1 < 0|Y = 1

)
= P

(
log gjr −

(
VT
jr1u1

)2
/ωjr1 + Cb < Cb|Y = 1

)
,∀Cb ∈ R+

≤ P (log gjr < Cb|Y = 1) + P
((

VT
jr1u1

)2
/ωjr1 > Cb|Y = 1

)
= P (gjr < exp {Cb} |Y = 1) + 1− Fχ2

1
(Cb)

→ 1− Fχ2
1

(Cb) ,∀Cb ∈ R+, (S6.11)

since 1/gjr converges to 0 in probability, i.e., gjr
p→ ∞. The error rate at Y = 1 goes to

0 as the inequality in Eq.(S6.11) exists ∀Cb ∈ R+.



WENTIAN HUANG AND DAVID RUPPERT

At Y = 0, similarly to case a),

P
(

log gjr −
(
VT
jr1u1

)2
/ωjr1 > 0|Y = 0

)
= P

(
sjr1 log gjr − sjr1 ·

(
VT
jr1u1

)2

ωjr1

> 0|Y = 0

)

≤ P (sjr1 log gjr > ε|Y = 0) + P

(
ε− sjr1 ·

(
VT
jr1u1

)2

ωjr1

> 0|Y = 0

)
,∀ε > 0

≤ P (|sjr1 log gjr | > ε|Y = 0) + P

(∣∣∣∣√ sjr1

ωjr1

VT
jr1u1

∣∣∣∣ < √ε|Y = 0

)
, ∀ε > 0, (S6.12)

and sjr1 = 1/var
(
VT
jr1u1/

√
ωjr1|Y = 0

)
. Then again, when sjr1 → 0 and gjr

p→ ∞,

sjr1 log gjr is op(1). Eq.(S6.12) goes to 0 when ε → 0, and therefore asymptotic misclas-

sification rate of the Bayes classifier is bounded up by 0 in this case.

c) The third case uses T cj (X) which is a combination of T aj (X) and T bj (X):

T cj = log
fj1 (Xj)

fj0 (Xj)

/√ωj1
√
ωj0

+
1

ωj0

(
VT
j0u0

)2 − 1

ωj1

(
VT
j1u1

)2

= log gj +
(
VT
j0u0

)2
/ωj0 −

(
VT
j1u1

)2
/ωj1. (S6.13)

Then at Y = 0, since 1/gjr
p→ 0, and sjr1 → 0, the random variables sjr1 log gjr and
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sjr1

(
VT
jr0u0

)2
/ωjr0 are both op(1), therefore,

P
(
T cjr > 0|Y = 0

)
= P

(
log gjr +

(
VT
jr0u0

)2
/ωjr0 −

(
VT
jr1u1

)2
/ωjr1 > 0|Y = 0

)
= P

(
sjr1 log gjr + sjr1

(
VT
jr0u0

)2
/ωjr0 −

(√
sjr1

ωjr1

VT
jr1u1

)2

> 0|Y = 0

)

≤ P
(
sjr1 log gjr + sjr1

(
VT
jr0u0

)2
/ωjr0 > ε|Y = 0

)
+ P

((√
sjr1

ωjr1

VT
jr1u1

)2

< ε|Y = 0

)
,∀ε > 0

→ P

(∣∣∣∣√ sjr1

ωjr1

VT
jr1u1

∣∣∣∣ < ε|Y = 0

)
,∀ε > 0, (S6.14)

and similar to case (b),

√
sjr1

ωjr1

VT
jr1u1 has unit variance. Eq.(S6.14) goes to 0 when ε→ 0.

At Y = 1, following previous steps, it is easy to find that P
(
T cjr < 0|Y = 1

)
→ 0 when

gjr → 0 and sjr0 → 0 conditioned on Y = 1, and therefore the proof is omitted here. In

sum, the sufficiency of case (c) for perfect classification is verified.

d) The last case uses T dj = T cj , where

P
(
T djr > 0|Y = 0

)
= P

(
log gjr +

(
VT
jr0u0

)2
/ωjr0 −

(
VT
jr1u1

)2
/ωjr1 > 0|Y = 0

)
≤ P

(
log gjr +

(
VT
jr0u0

)2
/ωjr0 > 0|Y = 0

)
, (S6.15)

and

P
(
T djr < 0|Y = 1

)
= P

(
log gjr +

(
VT
jr0u0

)2
/ωjr0 −

(
VT
jr1u1

)2
/ωjr1 < 0|Y = 1

)
≤ P

(
log gjr −

(
VT
jr1u1

)2
/ωjr1 < 0|Y = 1

)
. (S6.16)
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Eq.(S6.15) with gjr
p→ 0 is already proved to go to 0 in case (a), and Eq.(S6.16) with

1/gjr
p→ 0 converges to 0 as shown in case (b), which complete the proof.
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