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COPULA-BASED FUNCTIONAL BAYES

CLASSIFICATION WITH PRINCIPAL COMPONENTS

AND PARTIAL LEAST SQUARES

Wentian Huang and David Ruppert

Cornell University

Abstract: We present a new functional Bayes classifier that uses principal component

(PC) or partial least squares (PLS) scores from the common (i.e. pooled) covari-

ance function, that is, the covariance function marginalized over groups. When

the groups have different covariance functions, the PC or PLS scores need not be

independent or even uncorrelated. We use copulas to model the dependence. Our

method is semiparametric; the marginal densities are estimated nonparametrically

using kernel smoothing, and the copula is modeled parametrically. We focus on

Gaussian and t-copulas, but other copulas can be used. The strong performance

of our methodology is demonstrated through simulation, real-data examples, and

asymptotic properties.

Key words and phrases: Asymptotic theory, Bayes classifier, functional data, perfect

classification, rank correlation, semiparametric model.

1. Introduction

Functional classification, where the features are continuous functions on a

compact interval, is receiving increasing interest in fields such as chemometrics,

medicine, economics, and environmental science. James and Hastie (2001) ex-

tended the linear discriminant analysis (LDA) to functional data (FLDA), in-

cluding the case where the curves are partially observed. James (2002) proposed

a functional version of the generalized linear model (FGLM), including functional

logistic regression. Thereafter, the FGLM was further researched by, among oth-

ers, Müller and Stadtmüller (2005), Li, Wang and Carroll (2010), Zhu, Vannucci

and Cox (2010), McLean et al. (2014), and Shang and Cheng (2015). Aside from

the FGLM, other classifiers have also been studied. Rossi and Villa (2006) applied

support vector machines (SVM) to classify infinite-dimensional data. Cuevas,

Febrero and Fraiman (2007) explored the classification of functional data based

on data depth. Li and Yu (2008) suggested a functional segmented discriminant
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Figure 1. Panel (a) shows profiles of FA, five each of cases and controls, and panels (b)
and (c) show the group means and standard deviations. Compared to the controls, the
MS group has a lower mean and a higher standard deviation.

analysis combining an LDA and an SVM, and Cholaquidis et al. (2016) proposed

a nonlinear aggregation classifier.

However, certain issues remain. Current methods, such as the FLDA, SVM,

and functional centroid classifier (Delaigle and Hall (2012)), distinguish groups

by the differences between their functional means. They achieve satisfactory re-

sults when the location difference is the dominant feature distinguishing classes,

but functional data provide more information than just group means. For ex-

ample, Fig. 1 from the example in Section 4.1 compares the mean and standard

deviation functions of raw and smoothed fractional anisotropy (FA) measured

along the corpus callosum (cca) of 141 subjects, 99 with multiple sclerosis (MS)

and 42 without. The disparity between the group standard deviations in panel

(c) provides additional information that can identify MS patients. As shown in

Section 4.1, the LDA and centroid classifiers fail to capture this information, and

have higher misclassification rates than the classifiers we propose.

Both parametric and nonparametric methods have drawbacks in classifying

functional data. Parametric models, such as linear and quadratic discriminant

analysis, are popular in functional classification, especially because nonparamet-

ric methods are likely to encounter the curse of dimensionality. However, para-

metric methods can cast rigid assumptions on the class boundaries (Li and Yu

(2008)). Our interest is in methods that avoid stringent assumptions on the data.

Dai, Müller and Yao (2017) proposed a nonparametric Bayes classifier, assuming

that the subgroups share the same sets of eigenfunctions, and that the scores

projected on them are independent. With these assumptions and the definition

of the density of random functions proposed by Delaigle and Hall (2010), the

joint densities of the truncated functional data can be estimated using a uni-
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variate kernel density estimation (KDE). The Bayes rules estimated this way

avoid the curse of dimensionality, but require that the groups have equal sets of

eigenfunctions and independent scores.

We propose new semiparametric Bayes classifiers. We project the functions

onto the eigenfunctions of the pooled covariance function, that is, the covari-

ance function marginalized over groups. These eigenfunctions can be estimated

by applying a functional principal components analysis (fPCA) to the combined

groups. The projections will not be independent or even uncorrelated, unless

these common eigenfunctions are also the eigenfunctions of the group-specific

covariance functions, an assumption not likely to hold in many situations. For

instance, in Section 4 we discuss two real-data examples, and include a compari-

son of their group eigenfunctions in the Supplementary Material (Fig. S4 and Fig.

S8). Both cases appear to violate the equal eigenfunction assumption. We esti-

mate the marginal density of the projected scores using a univariate KDE, as in

Dai, Müller and Yao (2017), and model the association between the scores using a

parametric copula. Our semiparametric methodology avoids the restricted range

of applications imposed by the assumption of equal group-specific eigenfunctions.

It also avoids the curse of dimensionality that a multivariate nonparametric den-

sity estimation would entail.

In addition to the principal components (PC) basis, we also consider a partial

least squares (PLS) projection basis. PLS has attracted recent attention owing to

its effectiveness in prediction and classification problems with high-dimensional

and functional data. Preda, Saporta and Lévéder (2007) discuss a functional LDA

combined with PLS. Delaigle and Hall (2012) mention the potential advantage

of PLS scores in their functional centroid classifier, when the difference between

the group means does not lie primarily in the space spanned by the first few

eigenfunctions. We find that PLS scores can be more efficient than PC scores in

capturing group mean differences.

This study contributes to the literature in two ways. In our numerical re-

sults, the new method shows improved prediction accuracy and strength in di-

mension reduction, and extends the functional Bayes classification to multiclass

classification. In the theoretical analysis, several new conditions are added for

the functional data to achieve asymptotic optimality. These conditions are re-

quired because of the unequal group-specific eigenfunctions. Moreover, we pro-

pose asymptotic sparsity assumptions on the inverse of the copula correlations in

our new method, following the design of Yuan (2010) and Liu et al. (2012) for

high-dimensional data. We also build a new theorem that uses the special copula

structure to achieve asymptotic perfect classification.
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In Section 2, we introduce our model and the copula-based functional Bayes

classifiers. Section 3 contains a comprehensive simulation study comparing our

methods with existing classifiers on both binary and multiclass problems. Section

4 uses two real-data examples to show the strength of our classifiers in terms of

accuracy and dimension reduction with respect to data size. In Section 5, we dis-

cuss the asymptotic properties of our classifiers. We also establish conditions for

our classifiers to achieve perfect classification on data generated by Gaussian and

non-Gaussian processes. Finally, in Section 6, we discuss future work, including

extending the classification to the case where there are multiple functional pre-

dictors. Additional results and detailed proofs are provided in the Supplementary

Material.

2. Model Setup & Functional Bayes Classifiers with Copulas

2.1. Methodology

Suppose (Xi··, Yi), i = 1, . . . , n are independent and identically distributed

(i.i.d.) from the joint distribution of (X,Y ), where X is a square integrable

function over some compact interval T , that is, X ∈ L2(T ). Here Y = 0, 1

is an indicator of groups Π0 and Π1, respectively, and πk = P (Y = k). In

addition, Xi·k, for i = 1, . . . , nk and k = 0, 1, denotes the ith sample curve of

X··k = (X|Y = k), and n =
∑

k=0,1 nk. Our goal is to classify a new observation,

x.

Note that throughout the paper, we order the index of X by observation

counts (i), joint basis (j), and group labels (k): for curves, Xi·· denotes the ith

observation of the random function X, and X··k is the random function X|Y = k.

Therefore, Xi·k is the ith sample curve of X··k. Furthermore, X·j· and X·jk are

random variables from projecting X and X··k, respectively, onto the jth joint

basis function ψj , with Xijk the ith observation of X·jk.

Dai, Müller and Yao (2017) extended the Bayes classification from multivari-

ate to functional data: a new curve x is classified into Π1 if

Q(x) =
P (Y = 1|X = x)

P (Y = 0|X = x)
=
f1(x)π1

f0(x)π0
≈ f1(x1, . . . , xJ)π1
f0(x1, . . . , xJ)π0

> 1, (2.1)

where fk is the density of X··k and fk is the joint density of the scores X·jk on

the basis ψj , for 1 ≤ j ≤ J .

A key feature of the Bayes classification on functional data is that the clas-

sifiers vary with the choice of basis functions ψj and with the estimation of

f0, f1. Dai, Müller and Yao (2017) built the original functional Bayes clas-
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sifier (BC), upon two important assumptions. First, the sets of the first J

eigenfunctions, {φ1, . . . , φJ}, of the covariance operators G1 and G0 of the two

groups are equal. Here, Gk(φj)(t) =
∫
T Gk(s, t)φj(s)ds = λjkφj(t), Gk(s, t) =

cov{X··k(s), X··k(t)} =
∑∞

j=1 λjkφj(s)φj(t), and λjk is the jth eigenvalue in group

k. Second, letting ψj = φj , for 1 ≤ j ≤ J , the J projected scores X·jk = 〈X··k, φj〉
are independent. Then, with fjk as the marginal density of X·jk, the log ratio of

Q(x) in Eq.(2.1) becomes

logQ(x) ≈ logQJ(x) = log

(
π1
π0

)
+

J∑
j=1

log

{
fj1(xj)

fj0(xj)

}
. (2.2)

A classifier that uses Eq.(2.2) avoids the curse of dimensionality and only

needs to estimate the marginal densities, fjk. However, as later simulations and

examples show, its performance can degrade if the two aforementioned assump-

tions are not met. We propose new semiparametric Bayes classifiers based on

copulas that do not require these two assumptions, and yet are free from the

curse of dimensionality. The theoretical work in Section 5 proves that these clas-

sifiers maintain the advantages of BC over a wider range of data distributions,

and are capable of perfect classification when n→∞ and J →∞.

2.2. Copula-based Bayes classifier with PC

Allowing for possibly unequal group eigenfunctions, the covariance function

of group k is

Gk(s, t) = cov (X··k(s), X··k(t)) =

∞∑
j=1

λjkφjk(s)φjk(t), k = 0, 1,

with φ1k, . . . , φJk as the eigenfunctions. For simplicity, we assume the group

means are E(X|Y = 0) = 0 and E(X|Y = 1) = µd. The joint covariance

operator G then has the kernel G(s, t) = π1G1(s, t)+π0G0(s, t)+π1π0µd(s)µd(t).

As later examples suggest, the unequal group eigenfunction case is common.

To accommodate this case, we can project data from both groups onto the same

basis functions. Therefore, we use the eigenfunctions φ1, . . . , φJ of G as the basis

ψ1, . . . , ψJ .

The joint density fk,for k = 0, 1, in Eq.(2.1) allows for potential score cor-

relation and tail dependency, which we use copulas to model. A copula is a

multivariate cumulative distribution function (CDF) with univariate marginal

distributions that are all uniform, and it characterizes only the dependency be-

tween the components; see, for example, Ruppert and Matteson (2015). Here,
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we extend its use to truncated scores of functional data.

Let xj = 〈x, φj〉 =
∫
T x(t)φj(t)dt be the jth projected score of x. The copula

function Ck describes the distribution of the first J scores in Πk by

Fk (x1, . . . , xJ) = Ck {F1k(x1), . . . , FJk(xJ)} , (2.3)

fk (x1, . . . , xJ) = ck {F1k(x1), . . . , FJk(xJ)} f1k(x1) · · · fJk(xJ). (2.4)

Fk in Eq.(2.3) is the joint CDF of X·1k, . . . , X·Jk, and Ck is the CDF of the

uniformly distributed variables F1k(X·1k), . . . , FJk(X·Jk), where Fjk is the uni-

variate CDF of X·jk. In Eq.(2.4), the joint density fk is decomposed into score

marginal densities fjk and the copula density ck for the dependency between the

projected scores. Our revised classifier is 1 {logQ∗J(x) > 0}; that is, the new

curve x belongs to Π1 if

logQ∗J (x) = log

(
π1
π0

)
+

J∑
j=1

log

{
fj1(xj)

fj0(xj)

}
+log

{
c1{F11(x1), . . . , FJ1(xJ)}
c0{F10(x1), . . . , FJ0(xJ)}

}
> 0.

(2.5)

We also consider situations in which Y has more than two classes. A more

general procedure for multiclass classification is described in the Supplementary

Material Section S2.

2.3. Choice of copula and correlation estimator

There are a number of approaches to copula estimation. Genest, Ghoudi and

Rivest (1995) studied the asymptotic properties of semiparametric estimation in

copula models. Chen and Fan (2006) discussed semiparametric copula estima-

tion to characterize the temporal dependence in time series data. Kauermann,

Schellhase and Ruppert (2013) estimated the copula density nonparametrically

using penalized splines, and Gijbels, Omelka and Veraverbeke (2012) applied

multivariate kernel density estimation to copulas.

To address the high dimensionality of functional data, we model the copula

densities c1 and c0 parametrically, and use a kernel estimation for the univariate

densities f1k, . . . , fJk, for k = 0, 1. We study the properties of Bayes classification

using both Gaussian copulas and t-copulas, denoted by BCG and BCt, respec-

tively. When ck is modeled by a Gaussian copula in Eq.(2.4), ck(·) = cG,k(·|ΩG,k),

where cG,k is the Gaussian copula density with J × J correlation matrix ΩG,k.

When there is tail dependency between the scores, a t-copula is used: ck(·) =

ct,k(·|Ωt,k, νk), with ct,k the t-copula density, Ωt,k the correlation matrix, and νk
the tail index.
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There are several ways to estimate the correlation matrices ΩG,k or Ωt,k. We

use rank correlations, and specifically, Kendall’s τ . Kendall’s τ between the pro-

jected scores of X··k on the jth and j′th basis is ρτ (X·jk, X·j′k) = E[sign{(X(1)
·jk −

X
(2)
·jk )(X

(1)
·j′k −X

(2)
·j′k)}], sign(x) = 1 {x > 0} − 1 {x < 0}, and X

(1)
··k , X

(2)
··k are i.i.d.

samples of X··k. The robustness of the rank correlation and its optimal asymp-

totic error rate are studied by Liu et al. (2012).

A relationship exists between the (j, j′)th entry of the copula correlation Ωk

and Kendall’s τ : Ωjj′

k = sin ((π/2)ρτ (X·jk, X·j′k)) for both Gaussian copulas and

t-copulas (Kendall (1948); Kruskal (1958); Ruppert and Matteson (2015)). Then,

Ωjj′

k is estimated by Kendall’s τ as Ω̂jj′

k = sin((π/2)ρ̂jj
′

τ,k), where

ρ̂jj
′

τ,k =
2

nk (nk − 1)

∑
1≤i≤i′≤nk

sign
{
〈Xi·k −Xi′·k, φ̂j〉〈Xi·k −Xi′·k, φ̂j′〉

}
.

It is possible that Ω̂k is not positive definite, but this problem is easily remedied

(Ruppert and Matteson (2015)). Another rank correlation, Spearman’s ρ, is

similar and is omitted here. In the Supplementary Material S5.4, we show that for

Gaussian copulas, the difference between the log determinant of Ω̂k, as estimated,

and that of Ωk is Op(J
√

(log J)/n).

Additionally for t-copulas with Ω̂t,k, we apply a pseudo-maximum likelihood

to estimate the tail parameter νk > 0 by maximizing the log copula density∑nk

i=1 log[ct,k{F̂1k(Xi1k), . . . , F̂Jk(XiJk)|Ω̂t,k, νk}], with F̂jk(x) =
∑nk

i=1 1{Xijk ≤
x}/(nk + 1). Mashal and Zeevi (2002) discuss the maximum pseudo-likelihood

estimation of t-copulas, and apply it to model extreme co-movements of financial

assets.

2.4. Marginal density fjk estimation

We estimate the marginal density fjk of the projected scores X·jk using a

kernel density estimation: f̂jk(x̂j) = (1/nkhjk)
∑nk

i=1K(〈x−Xi·k, φ̂j〉/hjk), with

K the standard Gaussian kernel, φ̂j the estimated jth joint eigenfunction, hjk =

σ̂jkh the bandwidth for scores projected on φ̂j in group k, σ̂jk as the estimated

standard deviation of σjk =
√

Var (X·jk), and x̂j = 〈x, φ̂j〉. Then, logQ∗J (x) in

Eq.(2.5) is estimated by

log Q̂∗J (x) = log

(
π̂1
π̂0

)
+

J∑
j=1

log

{
f̂j1(x̂j)

f̂j0(x̂j)

}
+ log

{
ĉ1{F̂11(x̂1), . . . , F̂J1(x̂J)}
ĉ0{F̂10(x̂1), . . . , F̂J0(x̂J)}

}
,
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where ĉk is the Gaussian copula or t-copula density with the estimated parame-

ters, and π̂k = nk/n. Proposition 1 in Section 5 shows that with an additional

mild assumption, when the group eigenfunctions are unequal, |f̂jk(x̂j)− fjk(xj)|
is asymptotically bounded at the same rate as when the eigenfunctions are equal.

Detailed proofs are included in Supplementary Material.

2.5. Copula-based Bayes classifier with partial least squares

An interesting alternative to using PCs is to use functional partial least

squares (FPLS). FPLS finds directions that maximize the covariance between

the projected X and Y scores, rather than focusing on the variation in X alone,

as with PCA. As the algorithm in the Supplementary Material S1 describes,

FPLS iteratively generates a weight function wj at each step j, for 1 ≤ j ≤
J , which solves maxwj∈L2(T ) cov2

{
Y j−1, 〈Xj−1, wj〉

}
, such that ‖wj‖ = 1 and

〈wj , G(w′j)〉 = 0, for all 1 ≤ j′ ≤ j − 1. Recall that G is the joint covariance

operator of the random function X. Here, Y j−1 and Xj−1 are the updated

function X and the indicator Y at step j − 1 (see S1), respectively, and their

corresponding sample values are denoted as Y j−1
i and Xj−1

i·· , for i = 1, . . . , n.

The algorithm gives the decomposition Xi··(t) =
∑J

j=1 sijPj(t) + Ei(t), for

t ∈ T , where si = (si1, . . . , siJ)T is the length J score vector, Pj ∈ L2(T ),

for 1 ≤ j ≤ J , are loading functions, and Ei is the residual. Preda, Saporta

and Lévéder (2007) investigated PLS in linear discriminant analysis (LDA), and

defined score vectors Sj as eigenvectors of the product of the Escoufier’s operators

of X and Y (Escoufier (1970)). For our case, the classifiers BCG and BCt now

act on the PLS scores si = (si1, . . . , siJ)T of each observation Xi··. We refer to

these classifiers as BCG-PLS and BCt-PLS, respectively.

The dominant PCA directions might only have large within-group variances

and small between-group differences in means. Such directions will have little

power to discriminate between groups. This problem can be fixed by FPLS. The

advantages of FPLS have been discussed, for example, by Preda, Saporta and

Lévéder (2007) and Delaigle and Hall (2012). The latter found that when the

difference between the group means projected on the jth PC direction is large

only for large j, their functional centroid classifier with PLS scores has lower

misclassification rates than when using PCA scores. As later examples show,

FPLS is especially effective in such situations.
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3. Comparison of Classifiers using Simulated Data

3.1. Data design

To set up the simulation, for simplicity, we use π1 = π0 = 0.5. By Karhunen–

Loève expansions, the functions Xi·k, for i = 1, . . . , nk, of group k = 0, 1 can be

decomposed as Xi·k = µk +
∑J

j=1

√
λjkξijkφjk, where µk is the group mean, λjk

is the jth eigenvalue in group k corresponding to eigenfunction φjk, and λ1k >

· · · > λJk. The variables ξijk are distributed with E(ξijk) = 0, var(ξijk) = 1, and

cov(ξijk, ξij′k) = 0, for ∀j 6= j′. The compact interval T is [0, 1], and the functions

Xi·k are observed at the equally spaced grid t1 = 0, t2 = 1/50, . . . , t51 = 1, with

i.i.d. Gaussian noise εik(t) centered at zero and with standard deviation 0.5.

The classifiers are implemented both with and without pre-smoothing the data.

Because they have similar performance, we report only the results using pre-

smoothing. The total sample size is n = 250, with 100 training and 150 test cases.

The number of eigenfunctions for curve generation is J = 201, double the size of

the training data set, to imitate the infinite dimensions of the functional data.

For each j, the bandwidth hjk for KDE is selected by the direct plug-in method

(Sheather and Jones (1991)). Simulations are repeated N = 1,000 times. The

Supplementary Material S3.1 includes additional results with increased training

size.

The distribution of (X,Y ) is determined by four factors: the eigenfunctions

(whether common or group-specific), difference between group means, eigenval-

ues, and score distributions. The factors are varied according to a 2× 2× 2× 3

full factorial design, described below. We adopt a four-letter system to label the

24 factor-level combinations, which we call “scenarios.”

Factor 1: Eigenfunctions φ1k, . . . , φJk of group k: The first factor speci-

fies the eigenfunctions of the covariance operators G1 and G0. When the two

sets φ1k, . . . , φJk, for k = 0, 1, are the same, let the common eigenfunctions

be the Fourier basis on T = [0, 1], where φ1k(t) = 1, φjk(t) =
√

2 cos(jπt) or√
2 sin ((j − 1)πt), for 1 < j ≤ 201 even or odd.

When the two groups have unequal eigenfunctions, the group k = 0 uses

the Fourier basis φ10, . . . , φJ0 as above, but the group k = 1 has a Fourier basis

rotated by iterative updating:

i) let the starting value of φ11, . . . , φJ1 be the original Fourier basis functions,

as above;

ii) at step (j, j′), where 1 ≤ j ≤ J − 1, j′ = j + 1, . . . , J , the pair of functions

(φ∗j1, φ
∗
j′1) is generated by a Givens rotation of angle θjj′ of the current pair
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(φj1, φj′1) such that φ∗j1(t) = cos (θjj′)φj1(t) − sin (θjj′)φj′1(t), φ
∗
j′1(t) =

sin (θjj′)φj1(t) + cos (θjj′)φj′1(t).

iii) the rotation angle for each pair of (j, j′) is θjj′ = (π/3) (λj0 + λj′0), with

λj0, λj′0 the jth and j′th eigenvalues, respectively, of group k = 0. Hence, the

major eigenfunctions receive greater rotations, with the angles proportional

to their eigenvalues;

iv) then, we update φj1, φj′1 with the new φ∗j1, φ
∗
j′1 and continue the rotations

until each pair of (j, j′), with 1 ≤ j ≤ J − 1, j′ = j + 1, . . . , J , is rotated.

The rotated Fourier basis of group k = 1 guarantees that both groups Π1

and Π0 span the same eigenspace and satisfy the null hypothesis of the test

of equal eigenspaces developed by Benko, Härdle and Kneip (2009). This test

was used by Dai, Müller and Yao (2017) to check whether the two groups have

the same eigenfunctions. However, having equal eigenspaces is a necessary, but

not sufficient condition for having equal sets of eigenfunctions, as proved by the

rotated basis. Because of the unequal eigenfunctions of the operators G1 and G0,

the scores Xijk are correlated, which can be modeled by the new copula-based

classifiers.

We also tested other choices of the second set of eigenfunctions, including

the Haar wavelet system on L2([0, 1]). However, the results are similar, and so

are omitted. We denote the scenario where Π1 and Π0 have equal eigenfunctions

as S (same), and otherwise as R (rotated).

Factor 2: Difference, µd, Between the Group Means: The second factor,

which is at two levels, S (same) and D (different), is the difference between the

group means, µd = µ1 − µ0. For simplicity, we let µ0 = 0, µ1 = µd. Here,

µd(t) = t.

Factor 3: Eigenvalues λ1k, . . . , λJk of Group k: The third factor, at two

levels labeled S and D, is whether the eigenvalues λ1k, . . . , λJk depend on k. We

label the level where λj1 = λj0 = 1/j2 as S, and that when λj1 = 1/j3 and

λj0 = 1/j2 as D, for 1 ≤ j ≤ J .

Factor 4: Distribution of the standardized scores ξijk: The fourth factor,

at three levels N (normal), T (tail dependence and skewness), and V (varied), is

the distribution of ξijk.

N : ξi1k, . . . , ξiJk have a Gaussian distribution N (0, 1) for both k = 0 and 1.
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Table 1. Simulation scenarios. The labels are ordered: eigenfunctions (R/S), group mean
(S, D), eigenvalues (S, D), and ξijk distributions (N, T, V). Note that in SSSN and SSST,
functions from both groups have the same distribution. We simply include them to have
a full factorial design.

ξijk ∼ N ξijk ∼ T ξijk ∼ V
µd = 0, λj1 = λj0 (R/S)SSN (R/S)SST (R/S)SSV
µd = 0, λj1 6= λj0 (R/S)SDN (R/S)SDT (R/S)SDV
µd 6= 0, λj1 = λj0 (R/S)DSN (R/S)DST (R/S)DSV
µd 6= 0, λj1 6= λj0 (R/S)DDN (R/S)DDT (R/S)DDV

T : This level includes tail dependency by setting ξijk = (δijk − b) /ηik, where

δijk ∼ Exp(λ∗), λ∗ = 5
√

3/3, b = 1/λ∗, and ηik ∼ χ2(5)/5, for all j =

1, . . . , J . All δijk and ηik are mutually independent, whereas the scores ξijk
on each basis j are uncorrelated, but dependent, because they share the

same denominator, ηik. The scores are skewed in both groups.

V : In this level, the scores in the two groups have different types of distri-

butions, with ξij1 ∼ N (0, 1), and ξij0 ∼ Exp(1) − 1. Simulation results of

a different choice of the varied distributions of ξij1 and ξij0 are included in

Supplementary Material Section S3.1 Table S1.

Table 1 lists all 24 scenarios used in the simulations.

3.2. Functional classifiers

The classifiers used in this study are listed below. Five of them are Bayes

classifiers, and the last three are non-Bayes. The methods proposed in this paper

are described in (ii) - (iii).

(i) BC: the original Bayes classifier of Dai, Müller and Yao (2017), with the log

density ratio given by Eq.(2.2). The scores are by projection onto PCs;

(ii) BCG, BCG-PLS: Bayes classifiers with a Gaussian copula to model corre-

lation, using PC and PLS scores, respectively. The rank correlation used is

Kendall’s τ . Both the Gaussian copula and the t-copula densities can be

implemented using the R package copula (Hofert et al. (2018));

(iii) BCt, BCt-PLS: Bayes classifiers similar to (ii), but using a t-copula instead;

(iv) CEN: functional centroid classifier in Delaigle and Hall (2012), where ob-

servation x is classified to group k = 1 if T (x) = (〈x, ψ〉 − 〈µ1, ψ〉)2 −
(〈x, ψ〉 − 〈µ0, ψ〉)2 ≤ 0, with µ1 and µ0 the group means. Here, ψ =
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j=1 λ
−1
j µjφj is a function of the first J∗ joint eigenfunctions φj , the cor-

responding eigenvalues λj , and µj = 〈µ1 − µ0, φj〉;

(v) PLSDA (PLS discriminant analysis): binary classifier using Fisher’s lin-

ear discriminant rule, with FPLS as a dimension-reduction method. It is

implemented in the R package pls (Mevik, Wehrens and Liland (2011));

(vi) Logistic regression: logistic regression on functional PCs, implemented by

the R function glm. It is one of the functional generalized regressions dis-

cussed in Müller and Stadtmüller (2005).

In each simulation, J∗ is selected using 10-fold cross validation on the training

data. The candidate J values range from 1 to 30 (2 to 30 for classifiers using

copulas). The estimation of the joint eigenfunctions φj follows the discretization

approach of the fPCA, as described in Chapter 8.4 of Ramsay and Silverman

(2005). A similar discretization strategy is used for the PLS basis.

3.3. Classifier performance

Table 2 contains the average misclassification rates over 1,000 simulations by

each method on each scenario. In addition, for each simulation, we use 10-fold

cross-validation to select the classifier with the best performance on the training

data among the eight classifiers in Section 3.2. The average misclassification rates

of the CV-selected classifier are listed in the CV column. The column Ratio(CV)

contains the percentage difference between the CV-selected (CV) and the best

(opt) classifier: Ratio(CV) = {err(CV)− err(opt)} /err(opt) × 100%. For each

scenario, the lowest error rates of the eight classifiers are in bold. We label those

within the optimal case’s margin of error (MOE) for each data scenario γ in

italics: MOEγ = 1.96 × σ∗γ/
√

1,000, where σ∗γ is the sample standard deviation

of the best classifier’s (at scenario γ) error rates from 1,000 simulations. The

simulations enable a comprehensive understanding of the classifiers’ behaviors,

which we now discuss.

– Equal versus Unequal Eigenfunctions. A comparison between the top and

bottom half of Table 2 demonstrates the strength of our copula-based classi-

fiers, especially on unequal eigenfunctions (bottom half). By its nature, BC

has strong performance when the two groups have the same set of eigenfunc-

tions and the scores ξijk are mutually independent, for example, in SSDN

and SSDV. However, when the data have a more complicated structure,

such as score tail dependency and location difference, CEN and logistic

obtain better results (SDST, SDDT). Note that in every case with equal
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Table 2. Misclassification rates of eight classifiers on 24 scenarios, each an average from
1,000 simulations. Lowest rates of each data case are in bold, and cases within margin of
error (see text) of the lowest are in italics. The column labeled CV contains error rates
of the classifier selected by cross-validation. Ratio(CV) is the percent difference from
the best of the eight classifiers for that scenario. CV error rates are not included in the
rankings that determine coloring. SSSN and SSST are in gray because there is actually
no difference between groups in these scenarios, and, because π0 = π1 = 1/2, the true
misclassification rate is 0.5.

BC BCG BCGPLS BCt BCtPLS CEN PLSDA logistic CV Ratio (CV)

SSSN 0.502 0.502 0.500 0.500 0.501 0.502 0.501 0.500 0.501 0.23%

SSDN 0.227 0.244 0.345 0.258 0.443 0.464 0.495 0.466 0.232 2.43%

SDSN 0.347 0.351 0.361 0.351 0.363 0.275 0.304 0.279 0.291 5.88%

SDDN 0.169 0.173 0.303 0.175 0.327 0.231 0.262 0.234 0.173 2.64%

SSST 0.507 0.502 0.500 0.505 0.499 0.499 0.499 0.499 0.502 0.69%

SSDT 0.438 0.441 0.454 0.456 0.471 0.488 0.497 0.490 0.452 3.19%

SDST 0.188 0.183 0.270 0.184 0.311 0.167 0.234 0.169 0.170 1.96%

SDDT 0.166 0.161 0.237 0.160 0.296 0.148 0.233 0.150 0.152 2.59%

SSSV 0.355 0.361 0.484 0.363 0.493 0.476 0.481 0.489 0.363 2.20%

SSDV 0.253 0.270 0.373 0.276 0.430 0.455 0.477 0.462 0.257 1.78%

SDSV 0.264 0.275 0.401 0.276 0.408 0.279 0.315 0.283 0.273 3.27%

SDDV 0.202 0.209 0.309 0.207 0.313 0.236 0.280 0.238 0.210 3.95%

RSSN 0.327 0.147 0.183 0.147 0.180 0.494 0.497 0.485 0.151 2.67%

RSDN 0.252 0.090 0.140 0.093 0.164 0.489 0.500 0.482 0.093 2.93%

RDSN 0.287 0.128 0.154 0.128 0.152 0.327 0.333 0.329 0.131 2.71%

RDDN 0.208 0.077 0.112 0.079 0.128 0.287 0.300 0.288 0.080 3.44%

RSST 0.435 0.354 0.373 0.357 0.372 0.486 0.490 0.489 0.361 1.95%

RSDT 0.400 0.326 0.348 0.336 0.365 0.486 0.491 0.485 0.339 3.87%

RDST 0.178 0.148 0.248 0.154 0.261 0.174 0.252 0.175 0.156 5.80%

RDDT 0.166 0.137 0.217 0.142 0.255 0.159 0.249 0.158 0.147 7.68%

RSSV 0.266 0.147 0.202 0.149 0.204 0.472 0.481 0.475 0.150 1.71%

RSDV 0.233 0.100 0.143 0.105 0.157 0.465 0.475 0.469 0.104 3.85%

RDSV 0.241 0.145 0.183 0.146 0.191 0.332 0.349 0.337 0.148 2.28%

RDDV 0.238 0.116 0.157 0.120 0.167 0.299 0.325 0.300 0.121 3.97%

eigenfunctions, BCG/BCt are always the ones with rates closest to those of

BC.

On the other hand, when the group eigenfunctions are different, BC and

the three non-Bayes classifiers fail to outperform BCG/BCt in any scenario,

even though the group eigenspaces remain equal. BCG maintains its robust

performance of lowest error rates throughout all cases. BCt is not far behind,

and falls into BCG’s MOE 50% of the time as labeled.

Fig. 2 compares the misclassification rates and the corresponding J∗ selected

in each of the 1,000 simulations at two scenarios, SDDN and RDDN. These

two scenarios differ only in their eigenfunction setting. In Plot (a), where the
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Figure 2. Part (a) and (b) are box plots of the error rates by the eight classifiers in
scenarios SDDN and RDDN. The bottom two plots (c) and (d) are box plots of cross-
validated J∗ in each simulation.

groups have equal eigenfunctions, BC, BCG, and BCt show similar behaviors

in classification. In Plot (b), where the group eigenfunctions differ, BCG

and BCt have the lowest error rates and variation, followed by BCG-PLS

and BCt-PLS. In Plots (c) and (d), we find that BCG and BCt are the only

classifiers that have a stable choice of optimal J∗: both methods choose

J∗ < 10 more than 75% of the time with few outliers, regardless of whether

the group eigenfunctions are equal or not.

– Difference between the group means. Under the equal eigenfunction setting,

non-Bayes classifiers such as CEN and the logistic regression are naturally

sensitive to a location difference, especially when other factors are kept

the same; see for example, SDSN, SDST. However, in the bottom half of

Table 2, where the group eigenfunctions differ, BCG shows the strongest
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performance in all cases, with BCt a close second.

In this table, the PC-based methods BCG and BCt show an advantage

over their PLS counterparts in scenarios with a location difference. That is

because µd is effectively captured by PCs. In Section 3.4, when the new µd
has nonzero projections only on the last several bases, PLS-based classifiers

can do a better job than other methods in distinguishing such a difference, as

mentioned in Delaigle and Hall (2012). This phenomenon is also discussed

in Section 4.

– Difference in group eigenvalues and score distributions. In general, we find

that the marginal densities of the scores and their eigenvalues have similar

effects on the classifiers’ performance. They contribute to the difference

of the functional distributions in each group, which the three non-Bayes

methods (CEN, PLSDA, logistic) fail to detect. For all scenarios in Table 2

without a location difference, CEN, PLSDA, and the logistic regression all

show very poor performance, with error rates close to 50%.

The two right-most columns in Table 2 show that the CV-selected method

achieves comparable performance to the optimal result of each scenario. This

demonstrates the stability and strength of our copula-based Bayes classifiers,

especially under the unequal eigenfunction setting. Sections S3.2 and S3.3 in the

Supplementary Material report the correlations between the first 10 scores in the

scenarios RSDN and RSDT, respectively. These high correlations are consistent

with the strong performance of the copula-based classifiers in the scenarios where

the two groups have different eigenfunctions.

3.4. Multiclass classification performance

We also investigate the performance of the aforementioned methods in terms

of classifying data into more than two labels, because the group eigenfunctions

from multiple different classes are more likely to be unequal, making it increas-

ingly necessary to consider the dependency of the scores on the joint basis.

We now denote the group labels as Y = k, for k = 0, 1, 2, and set up the

multiclass scenarios following the design in Section 3.1. The first column in

Table 3 lists the 12 scenarios considered. The first letter M labels unequal group

eigenfunctions: when Y = 0 and 1, the group eigenfunctions are the Fourier basis

and its rotated counterpart, respectively, as described in type R of Factor 1 for

binary data; when Y = 2, the group basis is again the rotated Fourier functions

on T = [0, 1], but the rotation angle factor used in iii) of Factor 1 in Section 3.1

is now π/4 instead of π/3. We omit cases of equal group eigenfunctions, because
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similar results can be found in the binary setup, and the likelihood of an unequal

basis increases as the levels of Y increase.

The second letter S or D again denotes equal group means or not, respectively.

When the group means µk are unequal (labeled D), we set µ0 = 0, µ1 is the

identity function used previously, and µ2 =
∑201

j=192 φj0. The function µ2 follows

a similar design to that of Delaigle and Hall (2012), where the group mean only

has nonzero weights on the last three of 40 eigenfunctions. We assign the nonzero

weights to the last 10 of the 201 bases.

Similarly, S or D in the third position represents the same or different group

eigenvalues, respectively. When the group eigenvalues are equal, λjk = 10/j2

for all k; otherwise, λjk = 10/j2, 10/j3, 10/j, respectively, for k = 0, 1, 2, for

j ≥ 1. Finally, the last letter inherits the design from Factor 4 of Section 3.1

to describe the standardized score distribution patterns: similarly to the binary

case, N and T denote the Gaussian and skewed distributions, respectively, for all

three levels, while for V, we define the scores εijk to follow a standard Gaussian,

centered exponential with rate one, or skewed distribution in T, for k = 0, 1, 2

respectively.

The other setup details of the noise, data pre-smoothing, and bandwidth

selection are all similar to Section 3.1 for binary data. For each simulation, we

have 100 training and 150 test cases. The optimal cut-off J∗ is selected using

cross-validation from J ≤ 10. Table 3 presents the misclassification rates from

1,000 Monte Carlo repetitions by seven of the eight classifiers in Section 3.2. Note

that functional centroid classifier is not applicable to multiclass data, and thus

is excluded here. As in the binary case, the Supplementary Material Table S2

includes additional results with an increased training size and a different set of

score distributions (V).

Table 3 indicates that for data of multiple labels, the behaviors of the seven

classifiers follow a similar pattern to that of the binary case when the group

eigenfunctions are unequal. In particular, BCt shows strength under increased

data complexity, followed closely by BCG. BCG-PLS/BCt-PLS also prove their

advantage in detecting location differences on minor basis functions in MDSN.

Although they fail to outperform their PC-based counterparts under more com-

plicated scenarios such as MDST and MDSV, we believe this is because the group

means are not the only dominant difference in these two data cases.

Tables 2 and 3 give us clear guidelines that deciding whether or not to use

copulas in a classification makes a more significant impact on the outcome than

the type of copulas, because both BCG and BCt present competitive performance.

The tables also reveal the strength of copula-based methods in dimension reduc-
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Table 3. Misclassification rates averaged over 1,000 simulations of the seven classifiers
on 12 multiclass data scenarios. Best case in each scenario is in bold, and cases within
margin of error of the lowest are in italic. P (Y = k) = 1/3, for k = 0, 1, 2, so the true
misclassification rate of any method is approximately 0.667.

BC BCG BCGPLS BCt BCtPLS PLSDA logistic CV Ratio(CV)

MSSN 0.520 0.325 0.392 0.327 0.392 0.641 0.637 0.328 0.89%

MDSN 0.356 0.247 0.237 0.245 0.235 0.446 0.427 0.226 -3.88%

MSDN 0.213 0.169 0.281 0.168 0.310 0.636 0.618 0.173 3.00%

MDDN 0.194 0.156 0.272 0.156 0.295 0.540 0.509 0.157 1.11%

MSST 0.560 0.450 0.503 0.450 0.492 0.635 0.638 0.456 1.25%

MDST 0.343 0.286 0.303 0.286 0.333 0.424 0.364 0.284 -0.72%

MSDT 0.449 0.399 0.444 0.397 0.467 0.624 0.616 0.401 0.95%

MDDT 0.342 0.297 0.355 0.287 0.403 0.483 0.401 0.293 2.38%

MSSV 0.325 0.259 0.394 0.261 0.475 0.633 0.615 0.264 2.23%

MDSV 0.288 0.237 0.356 0.234 0.433 0.436 0.399 0.241 2.93%

MSDV 0.385 0.314 0.427 0.302 0.435 0.631 0.627 0.311 3.00%

MDDV 0.272 0.223 0.322 0.219 0.340 0.475 0.434 0.224 2.18%

tion. Classifiers using copulas are able to achieve high accuracy with small cut-off

J∗, which indicates their advantage in small samples. In addition, in general, PCs

are preferable to PLS, owing to their robustness and simplicity of implementation.

BCG-PLS and BCt-PLS should be considered when the group mean difference is

significant and located at minor eigenfunctions, which we discuss further in the

real-data examples.

4. Real-Data Examples

In this section, we use two real-data examples to illustrate the strength of

our new method in terms of classification and dimension reduction with respect

to the data size n.

4.1. Classification of multiple sclerosis patients

Our first example explores the classification of multiple sclerosis (MS) cases

based on FA profiles of the cca tract. FA is the degree of anisotropy of water

diffusion along a tract, and is measured by diffusion tensor imaging (DTI). Out-

side the brain, water diffusion is isotropic ( Goldsmith et al. (2012)). MS is an

autoimmune disease leading to lesions in white matter tracts such as the cca.

These lesions decrease FA.

The DTI data set in the R package refund (Goldsmith et al. (2018)) contains

FA profiles at 93 locations on the cca of 142 subjects. The data were collected at
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Table 4. Average misclassification rates of eight functional classifiers by 1,000 repetitions
of 10-fold CV. BCt has the best performance. The best case is in bold.

Method BC BCG BCGPLS BCt BCtPLS CEN PLSDA logistic
Error Rate 0.228 0.199 0.211 0.192 0.211 0.264 0.219 0.216
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(a) error rates of MS classification
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Figure 3. Box plots of misclassification rates and optimal number of components J∗ in
the MS study over 1,000 repetitions of 10-fold cross-validation. BCt achieves the lowest
average error rate, while requiring a very small number of components (J∗ < 5) with
lowest variation.

Johns Hopkins University and the Kennedy–Krieger Institute. The numbers of

visits per subject range from one to eight, but we used the 142 FA curves from

the first visits only. One subject with partially missing FA data was removed.

Among the 141 subjects, 42 are healthy (k = 0) and 99 were diagnosed with MS

(k = 1). We use local linear regression for data pre-smoothing. To determine the

optimal number of dimensions J∗ for each method, we use cross-validation with

maximal J = 30. The misclassification rates from using 10-fold cross-validation

were recorded for 1,000 repetitions.

As discussed in Section 1, Panel (a) in Fig. 1 plots 5 FA profiles from each

group, and panels (b) and (c) display the group means and standard deviations

of the cases and controls, using raw and pre-smoothed data. Compared with the

controls, MS patients have lower mean FA values and greater variability. We see

that smoothing removes some noise.

As shown in Table 4 and Part (a) of Fig. 3, BCt achieves the lowest error

rate at 0.192, with a margin of error 0.0007. The rates of the other methods

fail to fall into this range, and are all significantly higher than that of BCt. In

fact, the third quartile for BCt is below the first quartile of all other methods,
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except BCG. Part (b) is a box plot of cross-validated J∗ during each simulation

for all classifiers. Here, BCt and BCG achieve the lowest error rates, with a

minimal number of dimensions. In addition, compared with methods such as

CEN, PLSDA, or logistic regression, their choice of optimal J∗ is very stable, with

the smallest variation and few outliers. In contrast, BC is prone to employing

a large number of components in classification. This tendency can be found in

other examples too.

In the Supplementary Material, we compare the loadings (S3), score dis-

tributions (S5, and group eigenfunctions (S4) between using PC and PLS. The

difference explains why PC is a better choice for this example. Note that it is not

our intent to develop DTI as a technique for diagnosing MS. DTI is too expensive

and time-consuming for that purpose. Instead, we are looking for differences in

FA between cases and controls, because these could inform researchers about the

nature of the disease. We have found clear differences between cases and controls

in the mean and variance of FA. The strong positive correlation between the sec-

ond and the third PC scores in the healthy cases (Spearman’s ρ at 0.525 and an

adjusted p-value 2×10−2) is diminished in the MS group. BCt and BCG are best

able to use a compact model to capture subtle differences, such as correlations.

4.2. Particulate matter (PM) emission of heavy-duty trucks

As a second example, we investigate the relationship between the movement

patterns of heavy-duty trucks and particulate matter (PM) emissions. We use

the data in McLean, Hooker and Ruppert (2015), originally extracted from the

Coordinating Research Council E55/59 emissions inventory program documen-

tary (Clark et al. (2007)). The data set contains 108 records of truck speed in

miles/hour over 90-second intervals, and the logarithms of their PM emission in

grams (log PM), captured by 70 mm filters.

We dichotomize log PM. The 41 of 108 cases with log PM above average are

called high emission (k = 1), and the other cases are low emission (k = 0). We

classify log PM level using the 90-second velocity profiles. The misclassification

rates are estimated using 10-fold cross-validation, repeated 1,000 times.

As Fig. 4 shows, during the first 20 seconds, vehicles in the high PM group,

on average, decelerate to a minimum speed, whereas the low PM group tends to

speed up. The high PM group also has much lower variation than the low PM

group.

From Fig. 5 and Table 5, BCG-PLS and BCt-PLS have the lowest misclassifi-

cation rates. The third quartiles of their error rates are below the first quartiles of

the other classifiers, except for the logistic regression. In addition, both methods
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Figure 4. Plots of five sample paths in each PM group, as well as group mean and
standard deviation of truck velocity data. On average, trucks in high PM group have
lowest speed at 22 seconds, marked with a dashed line on each plot.

Table 5. Average misclassification rates of eight functional classifiers by 1,000 repetitions
of 10-fold cross-validation. BCt-PLS and BCG-PLS have the best performance. The best
cases are in bold.

BC BCG BCGPLS BCt BCtPLS CEN PLSDA logistic
Error rate 0.285 0.280 0.207 0.280 0.207 0.278 0.256 0.228
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(a) error rates of truck classification
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Figure 5. Box plots of misclassification rates and optimal number of components J∗ in
the truck emission case over 1,000 repetitions of 10-fold cross-validation. BCt-PLS and
BCG-PLS achieve the lowest average error rate with J∗ concentrated around 7.

keep the classification model compact by requiring small J∗ with low variation.

BC and the three methods on the right of plot (b) of Fig. 5 again demand more

components with bigger variation in classification. In Section S4 of the Sup-

plementary Material, we include additional results for both data examples to

validate their different choices of PC- and PLS-based classifiers.



COPULA-BASED FUNCTIONAL BAYES CLASSIFICATION 75

5. Theoretical asymptotic properties

An interesting feature of functional classifiers is asymptotic perfect clas-

sification. That is, under certain conditions, the error rate goes to zero as

J → ∞, owing to the infinite-dimensional nature of functional data (Delaigle

and Hall (2012)). Dai, Müller and Yao (2017) discussed the perfect classification

by BC under equal group eigenfunctions. In this section, we prove that when

the group eigenfunctions differ, perfect classification is retained by our classifier

1{logQ∗J(X) > 0} for both Gaussian and non-Gaussian processes. The scores

X·jk, for 1 ≤ j ≤ J , in this section are all projected onto joint eigenfunctions

φ1, . . . , φJ .

We first show that logQ∗J (X) and the estimated log Q̂∗J (X) are asymptoti-

cally equivalent under mild conditions. Then, the behavior of the Bayes classifier

1{logQ∗J(X) > 0} is studied in two settings: first, when the random function

X··k is a Gaussian process for both k = 0, 1; and second, the more general case,

when X is non-Gaussian, but its projected scores are meta-Gaussian distributed

in each group. For simplicity, we assume here that π1 = π0.

5.1. Asymptotic equivalence of log Q̂∗
J (X) and log Q∗

J (X)

We first list several assumptions, which help establish the asymptotic equiva-

lence of both the marginal and the copula density components of log Q̂∗J (X) and

logQ∗J (X).

Assumption 1. For all C > 0 and some δ > 0: supt∈T E{|X(t)|C} <∞,

sups,t∈T :s 6=tE[{|s− t|−δ|X(s)−X(t)|}C ] <∞.

Assumption 2. For integers r ≥ 1, λ−rj E[
∫
T {X − E(X)}φj ]2r is bounded uni-

formly in j.

Assumption 3. There are no ties among the eigenvalues {λj}∞j=1.

Assumption 4. The density gj of the jth standardized score 〈X−E(X), φj〉/
√
λj

is bounded and has a bounded derivative; for some δ > 0, h = h(n) = O(n−δ)

and n1−δh3 is bounded away from zero as n → ∞. The ratio fj1(X·j·)/fj0(X·j·)

is atomless for all j ≥ 1.

For all c > 0, let S(c) = {x ∈ L2(T ) : ‖x‖ ≤ c}. Assumptions 1–4 are

from Delaigle and Hall (2010), adapted here to bound the difference Djk (xj) =

ĝjk (x̂j) − ḡjk (xj) s.t. supx∈S(c) |Djk (xj) | = op{(nh)−1/2}. We let ĝjk (x̂j) =

1/ (nkh)
∑nk

i=1K{〈Xi·k−x, φ̂j〉/(σ̂jkh)} be the estimated density of the standard-

ized scores of group k on basis φ̂j , with ḡjk (xj) using φj and σjk. In addition,

the following assumption is added for Djk (xj), for both k = 0, 1:
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Assumption 5. supx∈S(c) | π̂kDjk(xj) / (π̂0Dj0(xj) + π̂1Dj1(xj)) | = Op(1 +√
log n/nh3).

We use Assumptions 5 to give a mild bound simply to avoid the case where

the magnitudes of both Djk (xj), for k = 0, 1, are too large and close, but with

opposite signs. Assumptions 5 guarantees that the difference between the esti-

mated marginal density f̂jk (x̂j) and fjk (xj) is able to be bounded by the same

rate as when the group eigenfunctions are equal. However, this is not a necessary

condition for the asymptotic equivalence of log Q̂∗J(X) and logQ∗J(X), and we

can certainly relax its bound for Theorem 1 below.

Then, f̂jk (x̂j) = (1/σ̂jk) ĝjk (x̂j), and we have Proposition 1 (see the Supple-

mentary Material for the proof):

Proposition 1. Under Assumptions 1–5, when the group eigenfunctions are

unequal, the estimated marginal density f̂jk using scores 〈Xi·k, φ̂j〉 achieves an

asymptotic error bound: supx∈S(c) |f̂jk(x̂j)−fjk(xj)| = Op{h+
√

log n/nh}, where

the rate is the same as in Dai, Müller and Yao (2017), where the group eigen-

functions are equal.

Assumption 6. The CDFs Fjk of scores X·jk are continuous and strictly in-

creasing, with correspondent marginal densities fjk continuous and bounded. In

addition, fjk are bounded away from zero on any compact interval within their

supports.

Assumptions 6 ensures that the scores X·jk and their monotonic transforma-

tions are atomless; this also follows Condition 5 in Dai, Müller and Yao (2017).

Then, in addition to the marginal densities, we establish the equivalence

of Ω−1k and Ω̂−1k in logQ∗J (X) and log Q̂∗J (X), respectively, as n → ∞. As

mentioned in Section 2.3, we calculate Ω̂k using rank correlations. In addition,

when J is large, the inverse of Ω̂k can be estimated using the graphical Dantzig

selector (Yuan (2010)), which solves the matrix inverse by connecting the entries

of the inverse correlation matrix to a multivariate linear regression, and exploits

the sparsity of the inverse matrices (Yuan (2010)). Liu et al. (2012) provided a

q-norm Op bound of the difference between the inverse Gaussian copula matrix

and its estimation by the Dantzig estimator for high-dimensional problems, and

is extended here for the difference between Ω−1k and Ω̂−1k .

Our sparsity assumptions on the inverse correlation matrices follow the de-

sign of Yuan (2010) and Liu et al. (2012): let Ωk belong to the class of matrices

C (κ, τ,M, J) := {ΩJ×J : Ω � 0, diag(Ω) = 1, ‖Ω−1‖1 ≤ κ, (1/τ) ≤ λmin(Ω) ≤
λmax(Ω) ≤ τ,deg(Ω−1) ≤M}, where κ, τ ≥ 1 are constants determining the tun-

ing parameter in the graphical Dantzig selector, and the parameter M bounding
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deg(Ω−1) = max1≤j≤J
∑J

j′=1 I(Ω−1jj′ 6= 0) is dependent on J . Assuming these

sparsity conditions, we have the following theorem.

Theorem 1. Under Assumptions 1–6, ∀ε > 0, as n→∞, there exists a sequence

J (n, ε,M)→∞, and a set S dependent on J (n, ε,M), P (S) ≥ 1− ε, such that

P
(
S ∩

{
1
{

log Q̂∗J (X) ≥ 0
}
6= 1 {logQ∗J (X) ≥ 0}

})
→ 0,

provided that MJ
√

log J = o (
√
n).

Theorem 1 proves that under unequal group eigenfunctions, log Q̂∗J (X) using

copulas retains the property in Theorem A1 of Dai, Müller and Yao (2017) for

the estimated Bayes classifiers with equal group eigenfunctions and independent

scores: as n → ∞, log Q̂∗J (X) gets arbitrarily close to the true Bayes classifier

logQ∗J (X), which enables us to discuss the performance of our method using the

properties of the true Bayes classifier.

5.2. Perfect classification when X is a Gaussian process in both groups

Let X··k be a centered Gaussian process such that X··k =
∑∞

q=1

√
λqkξqkφqk,

with ξqk ∼ N(0, 1), for k = 0, 1. We denote the J ×J covariance matrix of scores

X·jk, for 1 ≤ j ≤ J , as Rk, where its (j, j′)th entry is equal to cov (X·jk, X·j′k) =∑∞
q=1 λqk〈φqk, φj〉〈φqk, φj′〉, and its eigenvalues are d1k, . . . , dJk. Let ~µJ be a

length-J vector (µ1, . . . , µJ)T by projecting µd on first J bases, µj = 〈µd, φj〉. By

the law of total covariance and the result that the trace of a matrix is equal to

the sum of its eigenvalues, we derive the following relationship between the two

sets of eigenvalues (i.e. λj , λjk, and djk):
∑J

j=1 λj = π1
∑J

j=1 dj1+π0
∑J

j=1 dj0+

π1π0
∑J

j=1 µ
2
j , and

∑J
j=1 djk =

∑J
j=1

∑∞
q=1 λqk〈φqk, φj〉2. The following assump-

tion is standard in functional data for the distribution of X, and ensures that

djk > 0, for 1 ≤ j ≤ J , k = 0, 1:

Assumption 7. Both the group covariance operators, G1, G0, and the covariance

matrices R0, R1 are bounded and positive definite, and µd ∈ L2(T ).

When X is Gaussian in both groups, logQ∗J(X) is a quadratic form in XJ

(XJ is a length-J vector with jth entry 〈X,φj〉):

logQ∗J(X) = −1

2
(XJ − ~µJ)T R−11 (XJ − ~µJ)+

1

2
XT
JR−10 XJ+log

√
|R0|
|R1|

. (5.1)

With potentially unequal group eigenfunctions, entries in XJ at Y = k can be

correlated, which complicates the distribution of logQ∗J(X) in each group.
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Therefore, we implement a linear transformation of XJ in Steps i)–iii):

i) The eigendecomposition of the matrix product gives R
1/2
0 R−11 R

1/2
0 = PT∆P,

where ∆ = diag{∆1, . . . ,∆J}, ∆j as eigenvalues of R
1/2
0 R−11 R

1/2
0 . By the

equivalence of the determinants,
∏J
j=1 dj0/dj1 =

∏J
j=1 ∆j . In addition,

∆j > 0, for all j, under Assumptions 7;

ii) Let Z = R
−1/2
0 XJ , U = PZ;

iii) When k = 0, the jth entry Uj of the vector U has a standard Gaussian

distribution; at k = 1, Uj ∼ N(−bj , 1/∆j), with bj the jth entry of b =

−PR
−1/2
0 ~µJ .

Consequently, the entries of U are uncorrelated for both k = 0 and 1, Eq.(5.1)

becomes

logQ∗J(X) = −1

2

J∑
j=1

∆j (Uj + bj)
2 +

1

2

J∑
j=1

U2
j +

1

2

J∑
j=1

log ∆j ,

and the asymptotic behaviors of the Bayes classifier for Gaussian processes are

concluded.

Theorem 2. With Assumptions 7, when the random function X is a Gaussian

process at both Y = 0 and 1 and the group eigenfunctions of G0, G1 are unequal,

the functional Bayes classifier 1{logQ∗J(X) > 0} achieves perfect classification

when either ‖R−1/20 ~µJ‖2 →∞, or
∑J

j=1(∆j − 1)2 →∞, as J →∞. Otherwise,

its error rate err(1{logQ∗J(X) > 0}) 6→ 0.

Theorem 2 is a natural extension of Theorem 2 in Dai, Müller and Yao (2017).

It again reveals that the error rate of the Bayes classifier approaches zero asymp-

totically when Π1 and Π0 are sufficiently different in terms of either the group

means or the scores’ variances. In addition, recognizing the different correlation

patterns between group scores helps improve the classification accuracy. Instead

of adopting µj/
√
λj0 and λj0/λj1 to build conditions for perfect classification, as

in Dai, Müller and Yao (2017), we use the transformed R
−1/2
0 ~µJ and ∆j to accom-

modate the potentially unequal group eigenfunctions and the dependent scores.

For the special case when the eigenfunctions are actually equal, the covariance

matrices Rk = diag{λ1k, . . . , λJk} with ∆j = λj0/λj1, and consequently the two

conditions in Theorem 2 become the same as those proposed in Dai, Müller and

Yao (2017). The proof of Theorem 2 is in Section S6.2 of the Supplementary

Material.
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5.3. When X is a non-Gaussian process

For non-Gaussian processes, when the projected scores X·jk, for 1 ≤ j ≤ J ,

fit a Gaussian copula model, that is, they are meta-Gaussian distributed, we

derive sufficient conditions in terms of the marginal densities fjk and the score

correlations in order to achieve an asymptotically zero misclassification rate.

First, we let uk = (u1k, . . . , uJk)
T be a length-J random vector with ujk =

Φ−1 (Fjk (X·j·)), where Φ (·) is the CDF of N(0, 1). When Y = k, (ujk|Y = k) ∼
N(0, 1), and var(uk|Y = k) = Ωk, as denoted before. Let the eigendecomposition

be Ωk = VkDkV
T
k , with Dk the diagonal matrix with eigenvalues ωjk, for j =

1, . . . , J . On the other hand, ujk|Y = k′ follows a more complicated distribution

when k′ 6= k. We denote var(uk|Y = k′) = Mk with the eigendecomposition

Mk = UkD̃kU
T
k , and the eigenvalues of Mk are υjk, for j = 1, . . . , J .

Therefore, the log density ratio logQ∗J(X) in the Bayes classifier with a Gaus-

sian copula can be represented as

logQ∗J(X)

=

J∑
j=1

log
fj1 (X·j·)

fj0 (X·j·)
+

1

2
log
|Ω0|
|Ω1|

− 1

2
uT1
(
Ω−11 − I

)
u1 +

1

2
uT0
(
Ω−10 − I

)
u0

=

J∑
j=1

log
fj1 (X·j·)

fj0 (X·j·)

/√ωj1
√
ωj0
− 1

2
uT1
(
Ω−11 − I

)
u1 +

1

2
uT0
(
Ω−10 − I

)
u0. (5.2)

Similarly to Assumptions 7, we make an assumption on the covariances of uk,

conditional on Y :

Assumption 8. The matrices Ωk and Mk, for k = 0, 1, are bounded and positive

definite.

Next, we define a sequence of ratios gj , for j = 1, 2, . . . , by gj = (fj1 (X·j·)

/fj0 (X·j·))/(
√
ωj1/
√
ωj0), where gj compares the ratio of the marginal densities

to the ratio of the eigenvalues of the correlation matrices. In addition, let

sjk =
var (〈Vjk,uk〉|Y = k)

var (〈Vjk,uk〉|Y = k′)
=

VT
jkΩkVjk

VT
jkMkVjk

=
ωjk∑J

q=1C
2
(j,q)kυqk

,

where C(j,q)k = 〈Uqk,Vjk〉,
∑J

q=1C(j,q)k = 1, and Uqk and Vjk are the qth and

jth columns, respectively, of the eigenvector matrices Uk and Vk. As a result, sjk
compares the jth eigenvalue of Ωk against a convex combination of the eigenvalues

of Mk, the individual weights of which are determined by projecting Vjk onto
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the eigenvalues of Mk, Uqk.

In terms of the sequences gj and sjk, for j = 1, 2, . . . , we derive the fol-

lowing theorem for non-Gaussian processes; the proof is in Section S6.3 of the

Supplementary Material.

Theorem 3. With Assumptions 6, 7, and 8, when the projected scores X·jk, for

j = 1, . . . , J , are meta-Gaussian distributed at each group Πk, perfect classifi-

cation by the Bayes classifier 1{logQ∗J(X) > 0} is achieved asymptotically if a

subsequence g∗r = gjr of gj exists, with corresponding sjrk, such that one of the

following conditions is satisfied as r →∞:

a) gjr = op(1), and sjr0 → 0;

b) 1/gjr = op(1), and sjr1 → 0;

or when gjr has distinct behaviors in subgroups:

c) gjr = op(1) at Y = 1, 1/gjr = op(1) at Y = 0, with both sjr0 and sjr1 → 0;

d) 1/gjr = op(1) at Y = 1, and gjr = op(1) at Y = 0.

Based on the structure of the log density ratio described in Eq.(5.2), Theorem

3 discusses the occurrence of perfect classification in two aspects: gj , which mainly

depicts the relative magnitude of the score marginal densities at each k = 0, 1;

and sjk, which compares the correlation between the scores conditioned at each

group. Either part showing enough disparity between groups results in perfect

classification.

For example, in Theorem 3 a), when there exists a subsequence gjr → 0

in probability, indicating the dominance of the marginal densities by the group

Y = 0, the misclassification tends to occur at Y = 1. However, as sjr0 → 0, the

covariance of u0 conditioned at Y = 1 becomes much larger than at Y = 0. As

a result, the nonnegative uT0 Ω−10 uT0 in Eq.(5.2) with large variation when Y = 1

compensates to eventually avoid misclassifying X to group 0. When gjr behaves

perfectly, as in case d), where the corresponding group marginal densities are

dominant in each subgroup Y = k, we do not need to impose requirements on

the copula correlation to achieve perfect classification.

Remark 1. Theorem 3 provides sufficient, but not necessary conditions for the

Bayes classifier to achieve asymptotic perfect classification under unequal group

eigenfunctions. Owing to the optimality of the Bayes classifier in minimizing

the zero-one loss, various conditions from other functional classifiers to achieve

an asymptotically zero error also work here. For example, Delaigle and Hall
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(2012) proposed conditions in terms of group eigenvalues and the mean difference

for the functional centroid classifier to reach perfect classification. These also

work as sufficient conditions for 1{logQ∗J(X) > 0} in our case. With a copula

model, which is not found in previous work, Theorem 3 uses the relation between

the scores’ marginal densities and correlations to reduce the error rate to zero

asymptotically.

6. Discussion

6.1. Remarks

Our copula-based Bayes classifiers remove the assumptions of equal group

eigenfunctions and independent scores. As our two examples show, it is not un-

common to have unequal group eigenfunctions (see Fig. S4 and Fig. S8). The new

methods also prove to have stronger performance in terms of dimension reduction

than that of the original BC. Our simulation results prove the strength of our

method in distinguishing groups by the differences in their functional means and

their covariance functions. We examined the two choices of projection directions,

PC and PLS. PLS can detect location differences on eigenfunctions corresponding

to smaller eigenvalues. We discussed new conditions for the estimated classifier

to be asymptotically equivalent to the true Bayes classifier, and for perfect classi-

fication to occur. These differ from those of previous works, owing to the unequal

group eigenfunction setting. We also imposed sparsity conditions on the inverse

of the copula correlations.

6.2. Future Work

In future work, we would like to extend the copula-based classification to the

problem with multiple functional covariates. Some previous works discuss this

situation in the framework of functional generalized models: Crainiceanu, Staicu

and Di (2009) proposed a generalized multilevel regression model where there are

repeated curve measurements for each subject; Zhu, Vannucci and Cox (2010)

discussed an FGLM approach for the classification of multilevel functions with

Bayesian variable selection; and Li, Wang and Carroll (2010) present a gener-

alized functional linear model where there are both functional and multivariate

covariates, and use a semiparametric single-index function to model the inter-

action between them. We plan to approach the problem from a different angle,

using functional Bayes classification again, owing to its strong performance in the

single functional predictor case. Furthermore, because it is natural to assume that

the response depends on the covariates and their interactions, it becomes more
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important for our method to model the dependency between the projected scores.

Another aspect we would like to consider is how to choose a proper functional

basis for multiple functional predictors.

Supplementary Materials

The Supplementary Materials for this document contain additional results for

the simulations, for the fractional anisotropy (FA) example, and for the example

using truck emissions. They also contain proofs of Theorems 1, 2, and 3.
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Benko, M., Härdle, W. and Kneip, A. (2009). Common functional principal components. The

Annals of Statistics 37, 1–34.

Chen, X. and Fan, Y. (2006). Estimation of copula-based semiparametric time series models.

Journal of Econometrics 130, 307–335.

Cholaquidis, A., Fraiman, R., Kalemkerian, J. and Llop, P. (2016). A nonlinear aggregation

type classifier. Journal of Multivariate Analysis 146, 269–281.

Clark, N. N., Gautam, M., Wayne, W. S., Lyons, D. W., Thompson, G. and Zielinska, B. (2007).

Heavy-duty vehicle chassis dynamometer testing for emissions inventory, air quality mod-

eling, source apportionment and air toxics emissions inventory. Final Report. Coordinating

Research Council, Inc.

Crainiceanu, C. M., Staicu, A.-M. and Di, C.-Z. (2009). Generalized multilevel functional re-

gression. Journal of the American Statistical Association 104, 1550–1561.

Cuevas, A., Febrero, M. and Fraiman, R. (2007). Robust estimation and classification for func-

tional data via projection-based depth notions. Computational Statistics 22, 481–496.

Dai, X., Müller, H.-G. and Yao, F. (2017). Optimal Bayes classifiers for functional data and

density ratios. Biometrika 104, 545–560.

Delaigle, A. and Hall, P. (2010). Defining probability density for a distribution of random func-

tions. The Annals of Statistics 38, 1171–1193.

Delaigle, A. and Hall, P. (2012). Achieving near perfect classification for functional data. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 74, 267–286.

Escoufier, Y. (1970). Echantillonnage Dans Une Population de Cariables Aléatoires Réelles.

Department de math., Univ. des sciences et techniques du Languedoc, Montpellier, France.

Genest, C., Ghoudi, K. and Rivest, L.-P. (1995). A semiparametric estimation procedure of

dependence parameters in multivariate families of distributions. Biometrika 82, 543–552.

Gijbels, I., Omelka, M. and Veraverbeke, N. (2012). Multivariate and functional covariates and

conditional copulas. Electronic Journal of Statistics 6, 1273–1306.



COPULA-BASED FUNCTIONAL BAYES CLASSIFICATION 83

Goldsmith, J., Crainiceanu, C. M., Caffo, B. and Reich, D. (2012). Longitudinal penalized

functional regression for cognitive outcomes on neuronal tract measurements. Journal of

the Royal Statistical Society: Series C (Applied Statistics) 61, 453–469.

Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J. et al. (2018). refund:

Regression with Functional Data. R package version 0.1.

Hofert, M., Kojadinovic, I., Maechler, M. and Yan, J. (2018). copula: Multivariate Dependence

with Copulas. R package version 0.999-19.1.

James, G. M. (2002). Generalized linear models with functional predictors. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 64, 411–432.

James, G. M. and Hastie, T. J. (2001). Functional linear discriminant analysis for irregularly

sampled curves. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy) 63, 533–550.

Kauermann, G., Schellhase, C. and Ruppert, D. (2013). Flexible copula density estimation with

penalized hierarchical B-splines. Scandinavian Journal of Statistics 40, 685–705.

Kendall, M. G. (1948). Rank Correlation Methods. Charles Griffin and Co. Ltd, London.

Kruskal, W. H. (1958). Ordinal measures of association. Journal of the American Statistical

Association 53, 814–861.

Li, B. and Yu, Q. (2008). Classification of functional data: A segmentation approach. Compu-

tational Statistics & Data Analysis 52, 4790–4800.

Li, Y., Wang, N. and Carroll, R. J. (2010). Generalized functional linear models with semipara-

metric single-index interactions. Journal of the American Statistical Association 105, 621–

633.

Liu, H., Han, F., Yuan, M., Lafferty, J. and Wasserman, L. (2012). High-dimensional semipara-

metric Gaussian copula graphical models. The Annals of Statistics 40, 2293–2326.

Mashal, R. and Zeevi, A. (2002). Beyond correlation: Extreme co-movements between financial

assets. Research Paper. Columbia University.

McLean, M. W., Hooker, G. and Ruppert, D. (2015). Restricted likelihood ratio tests for linearity

in scalar-on-function regression. Statistics and Computing 25, 997–1008.

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F. and Ruppert, D. (2014). Functional

generalized additive models. Journal of Computational and Graphical Statistics 23, 249–

269.

Mevik, B.-H., Wehrens, R. and Liland, K. H. (2011). pls: Partial Least Squares and Principal

Component Regression. R package version 2.

Müller, H.-G. and Stadtmüller, U. (2005). Generalized functional linear models. Annals of Statis-

tics 33, 774–805.
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