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Abstract: In modern scientific research, data heterogeneity is commonly observed

owing to the abundance of complex data. We propose a factor regression model for

data with heterogeneous subpopulations. The proposed model can be represented

as a decomposition of heterogeneous and homogeneous terms. The heterogeneous

term is driven by latent factors in different subpopulations. The homogeneous

term captures common variation in the covariates and shares common regression

coefficients across subpopulations. Our proposed model attains a good balance

between a global model and a group-specific model. The global model ignores the

data heterogeneity, while the group-specific model fits each subgroup separately. We

prove the estimation and prediction consistency for our proposed estimators, and

show that it has better convergence rates than those of the group-specific and global

models. We show that the extra cost of estimating latent factors is asymptotically

negligible and the minimax rate is still attainable. We further demonstrate the

robustness of our proposed method by studying its prediction error under a mis-

specified group-specific model. Finally, we conduct simulation studies and analyze

a data set from the Alzheimer’s Disease Neuroimaging Initiative and an aggregated

microarray data set to further demonstrate the competitiveness and interpretability

of our proposed factor regression model.

Key words and phrases: Factor models, heterogeneity, penalized regression, predic-

tion.

1. Introduction

Data heterogeneity is an important issue in modern complex data analy-

sis. In practice, data heterogeneity may come from variables or samples. More

specifically, multi-modality/source data have heterogeneity among the variables,

because they may correspond to different types of measurements. For example,

in biomedical imaging, people may acquire both MRI and PET images (Zhang

et al. (2011)). In genomics studies, measurements are collected from different

sources, such as mRNA and miRNA (Muniategui et al. (2013)). In addition to
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variable heterogeneity, data heterogeneity can also arise from samples. For ex-

ample, there can be subpopulations, batch and clustering effects, or outliers in

the data (Bühlmann (2016)), potentially violating the standard independent and

identically distributed (i.i.d.) assumption. Ignoring such heterogeneity can lead

to poor estimation and prediction. Hence, it is important to take data hetero-

geneity into account during the modeling process.

In this study, we are interested in data heterogeneity that comes from sub-

group populations. For example, in the Alzheimer’s Disease (AD) study, sub-

jects can have five subtypes: Normal Control (NC), Significant Memory Concern

(SMC), Early Mild Cognitive Impairment (eMCI), Late Mild Cognitive Impair-

ment (lMCI), and AD, where these subtypes are ordered by disease severity. Ow-

ing to data heterogeneity, it can be difficult to build accurate and interpretable

predictive models on such data using traditional statistical techniques. A global

model that fits a single regression model to all the data may be restrictive be-

cause it ignores the group label information, whereas fitting distinct regression

models in each group may not be optimal because this does not capture shared

information across groups. Hence, a statistical regression model that can recover

interpretable globally shared and group-specific signals in the data is required

to handle such heterogeneous data. In the literature, varying coefficient mod-

els (Hastie and Tibshirani (1993)) and mixed-effects models (Pinheiro and Bates

(2000)) are useful in addressing data heterogeneity. However, these models can

be computationally expensive to use in practice, especially when the dimension

is too high. More recently, Vicari and Vichi (2013) proposed a general regression

model to account for both between-cluster and within-cluster variation. Mein-

shausen and Bühlmann (2015) proposed a maxmin-effects approach under the

mixture model. Zhao, Cheng and Liu (2016) proposed a partially linear regres-

sion framework to model massive heterogeneous data. Tang and Song (2016)

and Ma and Huang (2017) proposed fused penalties to estimate regression coeffi-

cients in order to identify subpopulations. Wang, Liu and Shen (2018) proposed

a locally weighted penalized model by incorporating a progression score in the

local kernels. However, these models are not designed to characterize the globally

shared and group-specific structures. Thus, it is desirable to build a model that

can identify such structures, quantify prediction errors, and draw interpretable

and generalizable scientific conclusions.

There is a large body of literature on data heterogeneity for unsupervised

learning. Principal component analysis (PCA) (Wold, Esbensen and Geladi

(1987)) techniques are popular, owing to their computational simplicity and the-

oretical soundness. The joint and individual variations explained (JIVE) method
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(Lock et al. (2013)) decomposes joint and individual low-rank signals across mul-

tiple sources of data. More recent extensions of JIVE can be found in Feng et al.

(2018); Gaynanova and Li (2019); Park and Lock (2020). These methods can be

extended easily to decompose data from multiple subgroups. Zhou et al. (2015)

proposed a matrix factorization framework for common and individual feature

extraction for multi-block data.

Closely related to PCA, another popular technique for handling data het-

erogeneity is factor models. Factor models are useful unsupervised learning tools

that model the dependence between multiple variables. The relationship between

PCA and factor models is well studied in the literature (Joliffe and Morgan (1992);

Stock and Watson (2002); Bai and Ng (2002)). Factor models assume that the

variations among the variables are driven by latent factors residing in a low-

dimensional space. More recently, Fan et al. (2018) proposed a factor model

framework to model the heterogeneity from different subgroups. They used the

factor model in the context of Gaussian graphical models to estimate common

and individual graphs from different groups. Their structural assumption on the

data matrices can be generalizable to predictive modeling.

Here, we focus on supervised learning, and propose a novel factor regression

model for heterogeneous data with jointly shared and group-specific structures.

We assume that the leading factors in each group drive the majority of varia-

tion, which contributes to the heterogeneity effects. After the majority of the

variation has been removed, the residual signals are assumed to be homogeneous

across subgroups; that is, they have the same covariance matrix. Under this

framework, the predictors in the proposed model can be decomposed into het-

erogeneous factors and homogeneous signals. Correspondingly, in our proposed

model, the regression coefficients associated with the factors are group specific,

whereas the regression coefficients associated with the homogeneous signals are

shared across groups. We use PCA to estimate the factors and homogeneous

signals. Because the estimated factors and homogeneous signals are orthogonal,

their coefficients can be estimated separately. The low-dimensional heterogeneous

regression coefficients can be estimated directly using the ordinary least squares

(OLS) method. After projecting the responses on the estimated factors in each

group, their residuals can be aggregated together to perform a global regression.

When the dimension is high, the homogeneous signals’ coefficients are difficult

to estimate. Following given penalization methods (Hoerl and Kennard (2000);

Tibshirani (1996); Zou and Hastie (2005)), we propose a flexible penalized least

squares method to solve for the high-dimensional coefficients. In the least squares

problem, we use the adaptive thresholding estimator (Cai and Liu (2011)) to es-
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timate the covariance of the homogeneous signals. For prediction, we propose

a data-driven trace maximization step to estimate the factors and homogeneous

signals in the test set before applying our model for prediction.

We establish the estimation consistency for our proposed estimators using

either an `2 or `1 penalty. In terms of the prediction accuracy, we study the

prediction error of our method in both theoretical and simulation studies, and

demonstrate that the proposed model attains a good balance between a global

model and a group-specific model. Furthermore, we show that our method is ro-

bust when the underlying model is group specific, and has comparable prediction

performance with respect to the group-specific model. We apply our method to

an Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set and an aggre-

gated microarray data set to show the competitiveness of our model in terms of

model prediction and interpretability.

The rest of paper is organized as follows. In Section 2, we introduce the factor

decomposition of heterogeneous and homogeneous signals and a corresponding

regression model. In Section 3, we introduce the model estimation and a data-

driven approach to estimate the factors in the testing data for prediction. In

Section 4, we study the estimation and prediction consistency of our proposed

method, and compare it with those of group-specific and global models under

different scenarios. In Section 5, we conduct simulated experiments to evaluate

the performance of our model under different settings, and compare them with

that of the global and group-specific models. In Section 6, we apply our model

to the ADNI data to predict the clinical score. We conclude the paper with a

discussion in Section 7.

2. Motivation and Model Framework

Factor models are useful for modeling the dependence between multiple vari-

ables, if these variables are driven by some latent factors. For heterogeneous

data, the subgroup heterogeneity can be captured by the group-specific latent

factors. After removing such latent factors, different subgroups can be viewed

as homogeneous samples for a joint analysis. In this section, we first motivate

our proposed model by introducing two simple models in Section 2.1. Then, we

briefly review the factor decomposition for heterogeneous data and propose our

new factor regression model in Section 2.2.
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2.1. Motivation

We first introduce some notation. Assume that the data come from G groups.

There are ng samples in the gth group, each having the same set of p explanatory

variables. Let {Xg,Yg}Gg=1 be the observations from G groups, where Xg ∈ Rng×p

is the data matrix and Yg ∈ Rng is the response vector.

There are two commonly used approaches in the regression setup for hetero-

geneous subpopulations. On the one hand, ignoring the group information, one

can use a global model:

Y = µ∗ + Xβ∗ + ε, (2.1)

where Y = (Y ′1 , . . . ,Y
′
G)′ and X = (X′1, . . . ,X

′
G)′. In this model, all the sub-

groups share the same intercept and regression coefficients. The global model

ignores the heterogeneity from subgroups and may be too restrictive. On the

other hand, by modeling each group separately, one may consider a group-specific

model:

Yg = µ∗g + Xgβ
∗
g + εg. (2.2)

However, this model may not be efficient because it ignores the shared informa-

tion across subgroups. These global and group-specific models motivate us to

consider a model in between, under which the group-specific heterogeneity and

homogeneity across subgroups can both be accounted for. This can be achieved

by using a factor model that decomposes covariates into the heterogeneous and

homogeneous components.

2.2. Factor model framework

To model the heterogeneous effect introduced by groups, assume that the

data matrix Xg can be decomposed as

Xg = FgΛg + Ug, (2.3)

where Fg ∈ Rng×Kg is the factor matrix, Λg ∈ RKg×p is the loading matrix,

and Ug ∈ Rng×p denotes the homogeneous signals, also known as idiosyncratic

errors in the factor model literature (Bai and Ng (2008)). The number of random

factors Kg can vary among groups.

Denote the ith row of Xg, Fg, and Ug by xg,i, fg,i, and ug,i respectively.

By (2.3), we have xg,i = Λ′gfg,i + ug,i. We assume fg,i and ug,i are uncorrelated

and satisfy E(fg,i) = 0, cov(fg,i) = IKg×Kg
, E(ug,i) = 0, and cov(ug,i) = Σu.

Hence, for each sample in group g, we have cov(xg,i) = Λ′gΛg + Σu, which is

the sum of the group-specific low-rank matrix Λ′gΛg capturing the group-specific
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heterogeneity, and the matrix Σu that is homogeneous across different groups.

We adopt the approximate factor model (Stock and Watson (2002)) by as-

suming that Σu is sparse. Its sparsity can be characterized by mp, defined as

mp = max
i≤p

p∑
j=1

I(σu,ij 6= 0),

which is the maximum number of nonzero entries in the row of Σu.

Under the decomposition (2.3), we have the following regression model for

the gth group:

Yg = µ∗g + Fgγ
∗
g + Ugβ

∗ + εg. (2.4)

Here, µ∗g is the true group mean vector, γ∗g ∈ RKg denotes the true group-specific

coefficients for Fg, β
∗ ∈ Rp denotes the common coefficients shared across G

groups for Ug, and εg is the noise term and has variance σ2. In (2.4), γ∗g vary

across G groups, and they characterize the heterogeneity induced by the factors

in the regression model. Moreover, the group mean term µ∗g contributes to the

heterogeneity in the regression model (2.4). When the heterogeneous effect is

removed from (2.4), we have the same coefficients β∗ for Ug across G groups.

From (2.4), we can see that the heterogeneity is modeled by µ∗g + Fgγ
∗
g .

After adjusting this heterogeneous term, the remainder term Ugβ
∗ is homoge-

neous. Model (2.4) implies that, for the response yg,i of the ith subject in group

g, we have var(yg,i) = γ∗g
′γ∗g + β∗′Σuβ

∗ + σ2. This decomposition shows that

the variance can be decomposed as the sum of a group-specific part γ∗g
′γ∗g , a

homogeneous part β∗′Σuβ
∗, and the background noise σ2. This decomposition

allows us to account for the heterogeneity among subgroups, while also borrowing

information across subgroups to model homogeneous effects.

One special case of our proposed model (2.4) is when there is no group-specific

factor; that is, Fg = 0. Then, it reduces to a mean-specific model:

Yg = µ∗g + Xgβ
∗ + εg. (2.5)

This model lies between the global model (2.1) and the group-specific model (2.2).

It is different from (2.1) because it adjusts the group mean. It is different from

(2.2) because different groups share the common regression coefficients. We refer

to (2.5) as the “Factor-0” model.
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3. Model Estimation and Prediction

In this section, we introduce the model estimation procedure and a data-

driven way to estimate the factors in the testing data for prediction. The overall

training procedure consists of two steps. First, we estimate the factors and ho-

mogeneous signals from the training data. Second, we estimate the regression

coefficients using the estimated factors and homogeneous signals. In Section 3.1,

we introduce how the factors can be estimated using a PCA. In Section 3.2, we

introduce our procedure for estimating the model parameters. After the model

is trained, in Section 3.3, we propose a data-driven procedure to estimate the

factors in the testing data in order to make predictions.

3.1. Factor model estimation

For group g, the estimation of Fg and Λg can be formulated into the following

optimization problem:

min
Fg,Λg

‖Xg − FgΛg‖F ,

s.t. F′gFg = ngI, ΛgΛ
′
g is diagonal,

(3.1)

where ‖ · ‖F denotes the matrix Frobenius norm. The solution to (3.1) can be

obtained by performing the eigendecomposition of the matrix XgX
′
g. Following

the standard PCA procedure, we estimate Fg by F̂g, where the kth column of F̂g

is
√
ng times the eigenvector corresponding to the kth largest eigenvalue of XgX

′
g.

Then, the loading matrix Λg can be estimated by regressing Xg on F̂g to obtain

Λ̂g = F̂T
g Xg/ng. The homogeneous signal matrix Ug can hence be estimated by

the residual matrix Ûg = Xg − F̂gΛ̂g.

We now consider estimating the number of factors Kg. In the literature,

several estimators have been proposed to solve this problem (Bai and Ng (2002);

Lam and Yao (2012); Ahn and Horenstein (2013)). We consider the following

estimator:

K̂g = argmax
k≤Kmax

λk(XgX
′
g)

λk+1(XgX′g)
, (3.2)

where λk(·) denotes the kth largest eigenvalue (Lam and Yao (2012)). Here, Kmax

is a pre-determined upper bound for the number of factors. This estimator has

been shown to be a consistent estimator (Ahn and Horenstein (2013)) for the

true Kg, and is simple to implement in practice.
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3.2. Estimation of regression coefficients

Given F̂g and Ûg, as discussed in Section 3.1, we can estimate the model

parameters µ∗g, γ
∗
g , and β∗. The factor decomposition (2.3) projects the original

signals onto the low-dimensional space spanned by Fg and the space spanned by

Ug, which is orthogonal to Fg. Owing to the properties of an eigendecomposi-

tion, we have F̂g and Ûg orthogonal to each other. Hence, we can estimate the

regression coefficients γ∗g and β∗ in (2.4) separately. Given F̂g, µ
∗
g and γ∗g can be

estimated by the following OLS estimators:

µ̂g = Ȳg, γ̂g =
F̂T
g Yg

ng
, (3.3)

where Ȳg denotes the sample mean of the response in group g.

Note that the factor matrix Fg and the coefficients γ∗g are not separately

identifiable, because for any orthogonal matrix Hg, we have Fgγ
∗
g = FgH

′
gHgγ

∗
g .

Hence, (Fg,γ
∗
g ) cannot be identified from (FgH

′
g,Hgγ

∗
g ). In practice, it does not

matter which one is used, because the linear space spanned by the columns of

FgH
′
g is the same as that spanned by those of Fg.

For homogeneous regression coefficients β∗, because they are shared across

groups, we can aggregate the residuals from the response and the factor projection

to perform a global regression to estimate β∗. Denote the aggregated residual

vectors from the response as Ỹ = (Ỹ ′1 , . . . , Ỹ
′
G)′, where Ỹg = Yg− µ̂g− F̂gγ̂g. Let

U = (U′1, . . . ,U
′
G)′ and Û = (Û′1, . . . , Û

′
G)′. We solve the following penalized

quadratic minimization problem to estimate β∗:

min
β

1

2

(
β′Σ̂uβ −

2

n
Ỹ ′Ûβ

)
+ λP (β), (3.4)

where P (β) is a penalty function and λ is a tuning parameter, the optimal

value of which is chosen using cross-validation. In particular, we consider an

`1 penalty that P (β) =
∑p

j=1 |βj | and an `2 penalty that P (β) =
∑p

j=1 β
2
j ,

and denote the corresponding solutions of (3.4) as β̂lassoλ and β̂ridgeλ , respec-

tively. In (3.4), Σ̂u is an estimator of Σu. To obtain such an estimator, we use

the adaptive thresholding method (Cai and Liu (2011)). More specifically, let

σ̂ij = (1/n)
∑G

g=1

∑ng

t=1 ûg,tiûg,tj and θ̂ij = (1/n)
∑G

g=1

∑ng

t=1(ûg,tiûg,tj − σ̂ij)
2,

where ûg,ti is the (t, i)th element of Ûg. We have

Σ̂u = (σ̂Tij )p×p, σ̂Tij =

{
σ̂ii, i = j,

sij(σ̂ij), i 6= j,
(3.5)
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where sij(·) is any thresholding function that satisfies that for all z ∈ R,

sij(z) = 0 when |z| < τij , and |sij(z)− z| ≤ τij when |z| ≥ τij . (3.6)

Here, τij = Dωn

√
θ̂ij is an adaptive threshold, where ωn = 1/

√
p+

√
log p/n.

The purpose of using such a thresholding estimator is to ensure Σu can be con-

sistently estimated when p > n. In Section S3.1 of the Supplementary Material,

we perform a sensitivity study on the choice of D, and find that the prediction

performance of our method is not sensitive to D. Thus, we recommend choosing

D to be a fixed number, rather than tuning it. When p < n, Σu does not have

to be sparse. In this case, we find it is safe to choose D = 0; see Section S3.1 of

the Supplementary Material.

We summarize the overall training procedure as follows:

1. For g = 1, . . . , G:

(a) Estimate Kg from (3.2).

(b) Perform a PCA on XgX
′
g to obtain F̂g. Estimate µ∗g and γ∗g from (3.3).

(c) Compute the projection matrix Pg = F̂gF̂
′
g/ng.

2. Let H = diag{I−P1, . . . , I−PG} be the block diagonal matrix. Compute

the aggregated signals Û = HX, Ỹ = H(Y − µ̂), where µ̂ = (µ̂′1, . . . , µ̂
′
G)′.

Estimate Σ̂u from Û using (3.5). Solve the optimization problem (3.4) to

estimate β∗.

In practice, it can be desirable to have an automatic way to choose between

the proposed factor regression model (2.4) and the group-specific model (2.2). We

provide an effective rule of thumb in Section S2 in the Supplementary Material.

3.3. Prediction

After training the model, in order to make predictions on the testing data,

we need to estimate the factors and homogeneous signals in the testing data.

In practice, they are not observable. We provide a data-driven procedure to

estimate them based on the estimated loading matrix. Let Xg,∗ ∈ Rng,∗×p denote

the testing data matrix from group g. We aim to estimate the factor matrix

Fg,∗ ∈ Rng,∗×Kg and the homogeneous signal matrix Ug,∗ ∈ Rng,∗×p. Note that

the number of columns in Fg,∗ is the same as that in Fg.

Motivated by (3.1), we assume that the training and testing data from the

same group have the same factor decomposition with the same loading matrix Λg.



36 WANG ET AL.

Hence, given Λ̂g from the training data, we propose estimating Fg,∗ by solving

min
Fg,∗
‖Xg,∗ − Fg,∗Λ̂g‖F ,

s.t. F′g,∗Fg,∗ = ng,∗I.
(3.7)

Note that (3.7) can be formulated as a trace maximization problem, the solution

of which is given by F̂g,∗ =
√
ng,∗ṼgŨ

′
g, where Ṽg and Ũg come from a singular

value decomposition with Λ̂gX
′
g,∗ = ŨgSgṼ

′
g.

4. Theoretical Properties

We study the statistical properties of the proposed estimator. Without loss

of generality, we assume that µ∗g = 0 for any g ∈ {1, . . . , G}, so that (2.4) reduces

to

Yg = Fgγ
∗
g + Ugβ

∗ + εg. (4.1)

We establish the following theoretical results. First, we prove in Theorem 1 that

the proposed estimators are consistent up to a rotation of the true parameters.

As a corollary, we give an upper bound of the prediction error for the proposed

method. Second, we show in Theorems 2 and 3 that if (4.1) is true, the group-

specific model and the global model yield worse predictions than those of our

proposed method. On the other hand, we show in Theorem 4 that even if one as-

sumes each group has a distinct model, our method can have the same prediction

error as the group-specific model when p is sufficiently large. Thus, our method

is robust to model mis-specification.

First, we introduce some notation. For a matrix A ∈ Rp×p, let λmin(A)

and λmax(A) denote its minimum and maximum eigenvalues, respectively. Let

‖A‖F =
√

tr(A′A), ‖A‖ = λmax(A′A), ‖A‖1 = maxj≤p
∑p

i=1 |aij |, and ‖A‖max

= maxi,j≤p |aij | denote its Frobenius, `2, `1, and elementwise maximum norms,

respectively. For a vector b ∈ Rp, let ‖b‖ =
√∑p

j=1 b
2
j , ‖b‖1 =

∑p
j=1 |bj |, and

‖b‖∞ = maxj≤p |bj | denote its `2, `1, and maximum norms, respectively, and

define its support as {j : bj 6= 0}. Furthermore, we let nmax = maxg≤G ng,

n =
∑G

g=1 ng, and [m] = {1, . . . ,m} for a general positive integer m. In addition,

we introduce the following definitions.

Definition 1. A vector β ∈ Rp is called s-sparse if and only if its support’s

cardinality is at most s.

Definition 2 (RE Condition). A matrix Σ is said to satisfy the restricted eigen-

value (RE) condition if and only if there exists a positive constant κ, such that
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β′Σβ ≥ κ‖β‖2 for any β ∈ C(S) = {β ∈ Rp : ‖βSc‖1 ≤ 3‖βS‖1}, where S ⊂ [p]

and Sc denotes its complement.

4.1. Consistency of the factor regression method

To establish the consistency of our proposed method, we need to impose the

following conditions.

Assumption 1 (Pervasiveness). There exist positive constants Cmin and Cmax >

0 such that, for any g ∈ [G],

Cmin < λmin(p−1ΛgΛ
′
g) < λmax(p−1ΛgΛ

′
g) < Cmax.

Assumption 2. For any g ∈ [G], assume that {fg,i}i≤ng
and {ug,i}i≤ng

are

i.i.d. sub-Gaussian random variables with zero means and covariances IKg×Kg

and Σu, respectively. More explicitly, assume for any α ∈ RKg , γ ∈ Rp, and

s > 0, there exists C > 0 such that P(|α′fg,i| > s) ≤ exp(−Cs2/‖α‖2) and

P(|γ ′ug,i| > s) ≤ exp(−Cs2/‖γ‖2). Morever, assume {fg,i}i≤ng
are uncorrelated

with {ug,i}i≤ng
.

Assumption 3. There exist positive constants c1 and c2 such that λmin(Σu) > c1

and ‖Σu‖1 < c2.

Assumption 4. For any g ∈ [G], j ∈ [p], and i1, i2, i ∈ [ng], there exists a

positive constant M such that

(a) ‖λg,j‖∞ < M , where λg,j denotes the jth column of Λg;

(b) E[p−1/2{u′g,i1ug,i2 − E(u′g,i1ug,i2)}]
4 < M ;

(c) E‖p−1/2
∑p

j=1 λg,jug,ij‖4 < M .

Assumption 1 is a typical pervasiveness assumption to ensure that the latent

factors can be well estimated by the PCA method (Bai and Ng (2013); Fan,

Liao and Mincheva (2013)). Such an assumption assumes that the latent factors

affect a large proportion of variables, and is commonly used in the factor analysis

literature. Assumption 2 is a typical sub-Gaussian assumption on the latent

factors and the idiosyncratic components. Assumption 3 is a regularity condition

on Σu. Assumption 4 is a collection of technical conditions needed to establish

the factor estimation consistency. Such conditions are commonly used in the

factor analysis literature (Bai (2003); Bai and Ng (2008); Fan, Liao and Mincheva

(2013)). Given these conditions, we show that under model (4.1), the proposed

estimators are consistent.
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Theorem 1. Suppose Assumptions 1–3 hold, log p = o(n2/39), n = o(p2), and

mpωn = o(1). Then, it follows that

(a) ‖γ̂g −Hgγ
∗
g‖ = OP (1/

√
ng + 1/

√
p), where γ̂g is as defined in (3.3), Hg =

D̂−1
g F̂′gFgΛgΛ

′
g, and D̂g is a K̂g × K̂g diagonal matrix consisting of the K̂g

largest eigenvalues of XgX
′
g.

(b) In (3.4), if we choose an `2 penalty and λ = C max{n3/4
max/n,

√
nmaxp/n},

for some large enough constant C, we have

‖β̂ridgeλ − β∗‖ = OP

(
n

3/4
max

n
+

√
nmaxp

n
+mpωn

nmax

n

)
. (4.2)

(c) Assuming that β∗ is s-sparse, Σu satisfies the RE condition, and sωn = o(1),

if we choose an `1 penalty in (3.4) and λ = Cωn
(
mp+

√
nmax/n

)
, for some

large enough constant C, then we have

‖β̂lassoλ − β∗‖ = OP

(√
s

(
mpωn +

√
nmax

n
ωn

))
. (4.3)

Statement (a) shows that γ̂g is consistent to γ∗g up to a rotation given by

Hg. When the latent factors are known, the oracle convergence rate of γ̂g is

OP (1/
√
ng). Compared with this oracle rate, the extra term of OP (1/

√
p) is

essentially due to the estimation error of the latent factors; see Lemma 1 (a).

When p � n, such a term is ignorable and the oracle rate can be attained.

This is because, in that situation, many variables can be used to estimate the

latent factors. The error in estimating the latent factors is so small that it does

not affect the convergence rate of γ̂g. This is essentially due to the blessing of

dimensionality property of a factor analysis, which has been studied in Li et al.

(2018). Statements (b) and (c) show that the proposed penalized estimator in

(3.4) is consistent to β∗, regardless of whether an `1 or `2 penalty is imposed.

To simplify the discussion, assume that n1 = · · · = nG, mp, and G are bounded.

Then, the convergence rates in (4.2) and (4.3) reduce to

‖β̂ridgeλ − β∗‖ = OP

(
1

n1/4
+

√
p

n

)
, ‖β̂lassoλ − β∗‖ = OP

(√
s

p
+

√
s log p

n

)
.

(4.4)

Hsu, Kakade and Zhang (2014) show that the minimax rate of a Ridge estimator

in a linear regression model is OP (
√
p/n) if no sparsity assumption is assumed.

Compared with this minimax rate, our method has an extra term of OP (1/n1/4),

which is again due to the error when estimating the latent factors; see Lemma
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4. However, when p� n, such a term is ignorable and the minimax rate can be

obtained. A similar conclusion can be drawn for the Lasso estimator. In (4.4),

the term of OP (
√
s log p/n) agrees with the minimax rate of the standard Lasso

problem (Raskutti, Wainwright and Yu (2011)). The extra term of OP (
√
s/p)

comes from the estimation error Σ̂u; see Fan, Liao and Mincheva (2013). This

term is ignorable when p� n, in which case the minimax rate is attained.

Let Ŷ ridge
g,λ = F̂gγ̂g + Ûgβ̂

ridge
λ and Ŷ lasso

g,λ = F̂gγ̂g + Ûgβ̂
lasso
λ denote the

predicted values of Yg, where γ̂g is given in (3.3), β̂ridgeλ and β̂lassoλ are the Ridge

and Lasso estimators, respectively, solved from (3.4), and F̂g and Ûg are as

described in Section 3.1. The following corollary gives the upper bounds of the

corresponding in-sample prediction errors.

Corollary 1. Under the assumptions of Theorem 1, we have∥∥∥∥ 1

ng

{
Ŷ ridge
g,λ − E(Yg|Fg,Ug)

}∥∥∥∥ =

OP

(
n

3/4
max

n
√
ng

+
1

n

√
nmaxp

ng
+mpωn

nmax

n
√
ng

)
+OP

(√
log ng log p

ng
+

1

n
1/4
g
√
p

)
,

(4.5)∥∥∥∥ 1

ng

{
Ŷ lasso
g,λ − E(Yg|Fg,Ug)

}∥∥∥∥ =

OP

(√
s

ng
(mpωn +

√
nmax

n
ωn)

)
+OP

(√
log ng log p

ng
+

1

n
1/4
g
√
p

)
. (4.6)

Again, if we assume n1 = · · · = nG, mp, and G are bounded, these results

reduce to ∥∥∥∥ 1

ng

{
Ŷ ridge
g,λ − E(Yg|Fg,Ug)

}∥∥∥∥ = OP

(
1

n1/4√p
+

√
p

n

)
, (4.7)∥∥∥∥ 1

ng

{
Ŷ lasso
g,λ − E(Yg|Fg,Ug)

}∥∥∥∥ (4.8)

= OP

(
1

n1/4√p
+

√
s

np
+

√
log n log p

n
+

√
s log p

n

)
.

In (4.7), the term of OP (
√
p/n) agrees with the minimax rate of the prediction

error given by the Ridge estimator in a standard linear regression problem (Dicker

(2016); Dobriban and Wager (2018)). In (4.8), the term of OP (
√
s log p/n) agrees

with the prediction error given by the Lasso estimator in the standard setting

(Bickel, Ritov and Tsybakov (2009)). All other terms are ignorable when p� n.
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In conclusion, these results show that our proposed estimators can have the

same convergence rates as the Ridge and Lasso estimators have under the stan-

dard homogeneous linear regression model, which is simpler than the heteroge-

neous model we have considered.

4.2. Consistency of group-specific and global models

We study the statistical properties of the group-specific and global models

when the underlying model follows (4.1). We show that, in this case, our proposed

method has an advantage over these two models in terms of the prediction error.

We rewrite (4.1) as

Yg = X̃gβ
∗ + Fgδg + dpUgβ

∗ + εg, (4.9)

where X̃g = p−1/2Xg, δg = γ∗g − p−1/2Λgβ
∗, and dp = 1− p−1/2. Here, we stan-

dardize Xg by dividing it by p1/2. This is because the pervasiveness assumption

means that ‖Xg‖ is unbounded, which is different from the typical linear regres-

sion model. Therefore, we rescale it to be X̃g. Then, the group-specific model

seeks to solve

β̂g,λ = argmin
β

1

2ng
‖Yg − X̃gβ‖2 + λP (β), (4.10)

whereas the global model seeks to solve

β̂λ,global = argmin
β

1

2n
‖Y − X̃β‖2 + λP (β), (4.11)

where X̃ = (X̃′1, . . . , X̃
′
G)′, λ is a tuning parameter and P (β) is a general penalty

function. Similar to (3.4), we choose either an `1 or an `2 penalty, and denote

the corresponding solutions as β̂lassog,λ , β̂lassoλ,global and β̂ridgeg,λ , β̂ridgeλ,global respectively.

Next, we give the convergence rates of the estimators in the group-specific and

global models in Theorems 2 and 3, respectively.

Theorem 2. Suppose Assumptions 1–3 hold and log p = o(n). Then, it follows

that

(a) If we use an `2 penalty in (4.10) and choose λ = C/
√
p, for some large

enough constant C, we have

‖β̂ridgeg,λ − β∗‖ = OP

(
√
p‖δg‖+ dp

(
1 +

√
p

ng

)
+

√
p

ng

)
. (4.12)

(b) Assuming that β∗ is s-sparse, Λ′gΛg/
√
p satisfies the RE condition, and

s
√

log p/(ngp) = o(1), if we use an `1 penalty in (4.10) and choose λ =
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C{(1 +
√

log p/ng)(dp + ‖δg‖) +
√

log p/ng}/
√
p, for some large enough

constant C, we have

‖β̂lassog,λ − β∗‖ = OP

(√
s

{(
1 +

√
log p

ng

)
(dp + ‖δg‖) +

√
log p

ng

})
. (4.13)

Let Ŷ ridge
g,λ = X̃gβ̂

ridge
g,λ and Ŷ lasso

g,λ = X̃gβ̂
lasso
g,λ be the predicted values of Yg,

where β̂ridgeg,λ and β̂lassog,λ are the Ridge and Lasso solutions, respectively, to (4.10).

We have the following upper bounds of their in-sample prediction errors.

Corollary 2. Under the assumptions of Theorem 2, we have

‖ 1

ng

{
Ŷ ridge
g,λ − E(Yg|Fg,Ug)

}
‖

= OP

(√
p

ng
‖δg‖+ dp

(
1
√
ng

+

√
p

ng

)
+

√
p

ng

)
, (4.14)

‖ 1

ng

{
Ŷ lasso
g,λ − E(Yg|Fg,Ug)

}
‖

= OP

(√
s

ng

{
(1 +

√
log p

ng
)(dp + ‖δg‖) +

√
log p

ng

})
. (4.15)

Theorem 3. Suppose Assumptions 1–3 hold and log p = o(n). Then, it follows

that

(a) If we use an `2 penalty in (4.11) and choose λ = C/
√
p, for some large

enough constant C, we have

‖β̂ridgeλ,global−β
∗‖ = OP

(
nmax

√
p

n

G∑
g=1

‖δg‖+dp
(
nmax

n
+

√
nmaxp

n

)
+

√
nmaxp

n

)
.

(4.16)

(b) Assuming that β∗ is s-sparse, Λ′gΛg/
√
p satisfies the RE condition, and

s
√

log p/(ngp) = o(1) for any g ∈ [G], if we use an `1 penalty in (4.11)

and choose λ = C
[
{nmax/(n

√
p) + (1/n)

√
nmax log p/p}

(
dp +

∑G
g=1 ‖δg‖

)
+

(1/n)
√
nmax log p/p

]
, for some large enough constant C, we have

‖β̂lassoλ,global − β∗‖ (4.17)

= OP

(
√
s

{(
nmax

n
+

√
nmax log p

n

)(
dp +

G∑
g=1

‖δg‖

)
+

√
nmax log p

n

})
.
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Let Ŷ ridge
g,λ = X̃gβ̂

ridge
λ,global and Ŷ lasso

g,λ = X̃gβ̂
lasso
λ,global be the predicted values of

Yg, where β̂ridgeλ,global and β̂lassoλ,global are the Ridge and Lasso solutions, respectively,

(4.11). We have the following upper bounds for their in-sample prediction errors.

Corollary 3. Under the assumptions of Theorem 3, we have∥∥∥∥ 1

ng

{
Ŷ ridge
g,λ − E(Yg|Fg,Ug)

}∥∥∥∥ (4.18)

= OP

(
nmax

n

√
p

ng

G∑
g′=1

‖δg′‖+
1

n

√
nmaxp

ng
+ dp

(
nmax

n
√
ng

+
1

n

√
nmaxp

ng

))
,∥∥∥∥ 1

ng

{
Ŷ lasso
g,λ − E(Yg|Fg,Ug)

}∥∥∥∥ (4.19)

= OP

(√
s

ng

{√
nmax log p

n
+

(
nmax

n
+

√
nmax log p

n

)(
dp +

G∑
g′=1

‖δg′‖
)})

.

Under (4.1), ‖δg‖ ≤ ‖γ∗g‖ + p−1/2‖Λg‖‖β∗‖ = O(1), for all g ∈ [G] and

dp = O(1). Thus, if we assume that n1 = · · · = nG and G is bounded, then (4.14)

and (4.18) further reduce to ‖(1/ng)
{
Ŷ ridge
g,λ − E(Yg|Fg,Ug)

}
‖ = OP (

√
p/n) for

the Ridge estimator. Compared with the predictor error of our Ridge estimator,

which is OP (
√
p/n), these two methods are worse by a factor of

√
n, owing to the

mis-specified model (4.1). Similarly for the Lasso estimator, when n1 = · · · = nG
and G is bounded, (4.15) and (4.19) reduce to ‖(1/ng)

{
Ŷ lasso
g,λ −E(Yg|Fg,Ug)

}
‖ =

OP (
√
s/n+

√
s log p/n). Compared with our Lasso estimator, they have an extra

term of
√
s/n, which also comes from the model mis-specification and is non-

ignorable.

4.3. Robustness

In this section, we assume each group follows a distinct model

Yg = X̃gβ
∗
g + εg, (4.20)

and examine how well our method performs under this model assumption. In

other words, we study how robust our method is under model mis-specification.

Here, we still use the rescaled X̃g as the design matrix. We rewrite (4.20) as Yg =

p−1/2FgΛgβ
∗
g + p−1/2Ugβ

∗
g + εg. Compared with (4.1), we see that p−1/2Λgβ

∗
g

and p−1/2β∗g can be viewed as γ∗g and β∗, respectively, in our model. Under the

model assumption in (4.20), we have the following results.

Theorem 4. Suppose Assumptions 1–3 hold, log p = o(n2/39), n = o(p2), and
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mpωn = o(1). Then, for any g ∈ [G], it follows that

(a) ‖γ̂g − p−1/2HgΛgβ
∗
g‖ = OP (1/

√
ng + 1/

√
p), where Hg is as defined in

Theorem 1.

(b) If an `2 penalty in (3.4) is used and λ = O(max{n3/4
max
√
p/n,

√
nmaxp/n}),

then∥∥∥∥β̂ridgeλ − 1
√
p
β∗g

∥∥∥∥ = OP

(√
nmaxp

n
+
n

3/4
max

n

)
+

G∑
g′=1

OP

(
ng′

n
√
p
‖β∗g′ − β∗g‖

)
.

(c) Assuming that β∗g is s-sparse and Σu satisfies the RE condition, if we use an

`1 penalty in (3.4) and choose λ = C{ωn
√
nmax/n+nmax/(n

√
p)
∑G

g′=1 ‖β∗g−
β∗g′‖}, for some large enough constant C, we have

∥∥∥∥β̂lassoλ − 1
√
p
β∗g

∥∥∥∥ = OP

(
√
s

(√
nmax

n
ωn +

nmax

n
√
p

G∑
g′=1

‖β∗g − β∗g′‖

))
.

Let Ŷ ridge
g,λ and Ŷ lasso

g,λ be the same as in Corollary 1. Using Theorem 4, we

give the upper bounds of the in-sample prediction errors given by our proposed

method, when the underlying model follows (4.20).

Corollary 4. Under the assumptions of Theorem 4, for each g ∈ [G], we have∥∥∥∥ 1

ng
{Ŷ ridge

g,λ − E(Yg|X̃g)}
∥∥∥∥

= OP

(
1

ng

)
+OP

(
1
√
ngp

)
+OP

(
1
√
ng
‖β̂ridgeλ − 1

√
p
β∗g‖

)
, (4.21)∥∥∥∥ 1

ng
{Ŷ lasso

g,λ − E(Yg|X̃g)}
∥∥∥∥

= OP

(
1

ng

)
+OP

(
1
√
ngp

)
+OP

(
1
√
ng
‖β̂lassoλ − 1

√
p
β∗g‖

)
. (4.22)

When n1 = · · · = nG and G is bounded, (4.21) and (4.22) further reduces to∥∥∥∥ 1

ng
{Ŷ ridge

g,λ − E(Yg|X̃g)}
∥∥∥∥

= OP

(
G∑

g′=1

1
√
np
‖β∗g − β∗g′‖

)
+OP

(√
p

n

)
= OP

(√
p

n

)
, (4.23)∥∥∥∥ 1

ng
{Ŷ lasso

g,λ − E(Yg|X̃g)}
∥∥∥∥
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= OP

(
G∑

g′=1

√
s

np
‖β∗g − β∗g′‖

)
+OP

(√
s

np
+

√
s log p

n

)
. (4.24)

We compare these convergence rates with those given by the group-specific

model. Because the true model (4.20) is a special case of (4.9), by treating

dp = 0 and δg = 0, it follows from Theorem 2 that the prediction errors of the

group-specific model are OP (
√
p/ng) and OP (

√
s log p/ng), when using a Ridge

or a Lasso estimator, respectively. Comparing then with (4.23) and (4.24), we

find that the Ridge estimator of our model has the same rate as the group-

specific Ridge estimators; see (4.23). For the Lasso estimator, when p is small,

our model converges at a rate of
√
s/(np), which is slower than that of the

group-specific model by a factor of
√
n/(p log p). The reason is that our model

estimates G−1
∑G

g′=1 β
∗
g′ , instead of β∗g , and needs to estimate Σu, which intro-

duces an extra error of OP (
√
s/(np)). However, when p� n, all these terms are

negligible, and our model has the same convergence as the group-specific model.

In conclusion, we have shown that even if the true model is group-specific, our

method still provides comparable prediction to that of the group-specific model,

especially when the dimension p is high.

5. Simulation Studies

In this section, we perform two simulation studies to compare our proposed

model with the global, group-specific, and Factor-0 models. In both studies,

we choose G = 3, p = 200,Kg = 3, and ng = 100, for any g ∈ [G], generate

600 training samples to train all four models, and evaluate their mean squared

error (MSE) in an independent test set of 600 samples. Additional simulation

studies on other choices of Kg can be found in Section S3.4 in the Supplementary

Material. We repeat the simulations 50 times. In setting 1, we generate data

from our proposed model. In setting 2, we generate different models for different

groups.

5.1. Setting 1: under proposed model

We first generate data from the proposed model in (2.4). For any g ∈ [G],

we generate {fg,i}i≤ng
as i.i.d. samples from N (0, IKg×Kg

). We set

Λg =

[
Λ1
g
′Λ1

g Λ1
g
′Λ2

g

Λ2
g
′Λ1

g Λ2
g
′Λ2

g

]
.
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Figure 1. The MSE curves given by the four models. The left panel represents the results
for a sparse β∗, and the right panel represents the results for a dense β∗.

To ensure Λg satisfies the pervasiveness assumption (Assumption 1), we first

choose a positive-definite matrix R ∗ sgs
′
g , where R = (rij) with rij = 0.1|i−j|,

sg = (
√
λg,1, . . . ,

√
λg,Kg

)′, (λ1,1, λ1,2, λ1,3) = (7.0, 3.5, 1.2), (λ2,1, λ2,2, λ2,3) =

(10, 3.9, 1.2), (λ3,1, λ3,2, λ3,3) = (13, 3.9, 1.1), and ∗ denotes elementwise matrix

multiplication. Additional simulation studies on other choices of λg,1, . . . , λg,Kg

can be found in Section S3.2 in the Supplementary Material. Then, we perform an

eigendecomposition on it to obtain R∗sgs′g = VgDgV
′
g, where Dg is the diagonal

matrix consisting of its eigenvalues. Next, we set Λ1
g = QgD

1/2
g V′g, where Qg is a

random orthonormal matrix, and Λ2
g = QgTg, where Tg is aKg × (p−Kg) matrix

with elements randomly generated from Unif(−1/20, 1/20). This construction

of Λg ensures that it has spiked eigenvalues, as required by the pervasiveness

assumption, and its rank is Kg. We further generate {ug,i}i≤ng
as i.i.d. samples

from N (0,Σu), where Σu is a diagonal matrix with diagonal elements all equal

to 0.03. For the coefficients in (2.4), we choose µ∗g = g for g = 1, 2, 3. We set

γ∗1 = (h, h, 2h)′, γ∗2 = (h, 2h, h)′, and γ∗3 = (2h, h, h)′, where we let h change so

that, as it increases, the between-group heterogeneity increases accordingly. We

consider two settings of β∗. For a sparse β∗, we set β∗ = (210,090,−210,090)′,

where mL denotes an L-dimensional vector with elements all equal to m; for a

dense β∗, we set β∗ = (180,020,−180,020)′. Finally, we generate the error term

ε as i.i.d samples from N (0, 4).

Under this model generation scheme, Figure 1 shows how the MSEs of these

four methods change as h varies. When β∗ is sparse, all methods use an `1
penalty; when β∗ is dense, all methods use an `2 penalty. The shaded areas

represent the standard errors of the MSEs in the 50 simulations. The optimal
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tuning parameters in these methods are chosen using 10-fold cross-validation. It

is clearly seen that for most h, our model performs best. Owing to the model

mis-specification, the group-specific model loses some efficiency in estimating

the homogeneous part of (4.9) separately, and the global model entirely ignores

the heterogeneity. The Factor-0 model adjusts for group means; therefore, it is

better than the global model. However, it is still worse than the proposed full

model, indicating that some additional heterogeneity has not been fully taken

into account in the Factor-0 model. When h increases, the true model (2.4)

becomes more group-specific, and less homogeneity can be used to estimate the

common β∗. In this case, the group-specific model gradually outperforms our

method. They both become much better than the global and the Factor-0 models.

The estimation errors on γ∗g and β∗ are reported in Tables S2 and S3 in the

Supplementary Material.

5.2. Setting 2: under group-specific model

We generate different models for different groups and inspect how robust

our model is under such a scenario. We generate fg,i as we did in the first

study and ug,i as i.i.d samples from N (0,Σu), where Σu = (σu,ij), with σu,ij =

0.1|i−j|0.03 if |i − j| ≤ 2, and σu,ij = 0 otherwise. Additional simulation studies

on {fg,i}i≤ng
and {ug,i}i≤ng

generated from more general sub-Gaussian distri-

butions for both settings can be found in Section S3.3 in the Supplementary

Material. For Λg, we set Λg = Q̃g ∗ sg, where sg is as in the first study,

and Q̃g is a random Kg × p orthonormal matrix. Then, we use these elements

to generate Xg according to (2.3) and normalize it to obtain the design ma-

trix X̃g. Given X̃g, for any g ∈ [G], we generate Yg from (4.20) by setting

µg = g for g ∈ [G], generating ε as i.i.d. samples from N(0, 4), and choosing two

kinds of β∗g . For sparse β∗g , we set β∗1 = (10h, 10h,−10h,105,0187,105), β∗2 =

(10h,−10h, 10h,105,0187,105), and β∗3 = (−10h, 10h, 10h,105,0187,105). For

dense β∗g , we set β∗1 = (10h, 10h,−10h,180,037,180), β∗2 = (10h,−10h, 10h,180,

037,180), and β∗3 = (−10h, 10h, 10h,180,037,180).

Under this model generation scheme, Figure 2 shows the MSE curves of the

four methods, which are computed the same way as in the first study. For sparse

β∗g , when h is small, the differences between the group-specific, the Factor-0, and

our method are marginal, which agrees with what we proved in Corollary 4. When

h gets larger, the group difference dominates. In this case, the group-specific

model gives the best prediction, although our model is not far off. Compared with

these two models, the global and the Factor-0 models are much worse because

they fail to recognize the group difference. For a dense β∗, when h is small,
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Figure 2. The MSE curves given by the four models. The left panel represents the results
for sparse β∗

g , and the right panel represents the results for dense β∗
g .

all other models have similar performance, except for the global model. As h

gets larger, our model becomes slightly worse than the group-specific model for

the same reason discussed in the sparse case. However, the performance of the

Factor-0 model deteriorates much faster. In conclusion, this study shows that

our method’s performance is still acceptable, even when the underlying models

in the various groups are different. The estimation errors on β∗g are reported in

Table S4 in the Supplementary Material.

6. Application to ADNI Data Analysis

AD is an irreversible neurodegenerative disease that results in a loss of men-

tal functions caused by a deterioration of the brain. It is the most common cause

of dementia among people over the age of 65, affecting an estimated 5.5 million

Americans, yet no prevention methods or cures have been discovered. The ADNI

was started in 2004 with the goal of tracking the progression of the disease using

biomarkers, and using clinical measures to assess the brain’s function over the

course of the disease states. In this section, we apply our method to the ADNI

data. We are interested in predicting the ADAS-Cog scores using structural

magnetic resonance imaging (MRI) scans. All subjects in our analysis are from

the ADNI2 phase of the study. In total, there are 697 subjects in our analysis

and five groups: NC, SMC, eMCI, lMCI, and AD, ordered by disease severity.

The MRI images were preprocessed using anterior commissure-posterior commis-

sure correction, intensity inhomogeneity correction, skull stripping, cerebellum

removal based on registration with atlas, spatial segmentation, and registration.

After registration, we obtain MRI data with 93 regions of interest (ROIs). For
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Table 1. Overall MSEs for the four models.

Penalty Global Group-specific Factor-0 Proposed

Ridge 27.52 (0.33) 15.70 (0.19) 15.17 (0.18) 15.04 (0.18)

EN 28.23 (0.33) 16.26 (0.21) 15.47 (0.18) 15.40 (0.18)

Lasso 28.27 (0.34) 16.39 (0.23) 15.49 (0.19) 15.45 (0.18)

each of the 93 ROIs, we compute the volume of gray matter as a feature. As a

result, for each subject, we finally obtain 93 MRI features. Our goal is to pre-

dict the ADAS-Cog scores using the 93 MRI features, together with the group

information.

We randomly partition the whole data set into two parts: 75% for training

the model, and the rest for testing the performance. We repeat the random

split 100 times. The testing MSEs and the corresponding standard errors are

reported in Table 1 (overall performance) and Table 2 (groupwise performance).

We compare four models: the global model (2.1), the group-specific model (2.2),

the Factor-0 model (2.5), and our proposed model, as shown in (2.4). For each

model, we use three penalty functions, the `2 penalty (Ridge), the `1 penalty

(Lasso), and the Elastic Net (EN) penalty with the bridging parameter 0.5.

As shown in Tables 1 and 2, our proposed models achieve promising perfor-

mance in most cases. The global model performs worst, because it does not use

the label information at all. The group-specific model does not perform as well

as our proposed models, because it does not borrow information across differ-

ent groups. Note that the Factor-0 model achieves great improvement over the

global model, which demonstrates that the difference on group means is the main

source of the heterogeneous effect on the clinical scores across the five groups.

It is seen in Table 2 that our model achieves the greatest improvement on the

AD patients over the other models, which indicates that the effects of the het-

erogeneous factors identified in the AD group are much stronger than those in

other groups. This appears to be reasonable, because the brain structure of AD

patients is significantly more impaired.

Our model has good interpretations. In this real data set, we can interpret

variations due to identified factors as disease-specific variations, and the variation

due to the homogeneous signals as the disease-shared variation among all groups.

Figure 3 gives heatmaps of Σ̂x,g = (1/ng)X
′
gXg (the top row), where Σx,g =

cov(xg,i), and Σ̂u,g (the bottom row), which is obtained by applying an adaptive

soft threshold to Σ̂x,g − Λ̂′gΛ̂g. The left, middle, and right columns of Figure

3 are for the NC, eMCI, and AD groups, respectively. From Figure 3, we can
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Table 2. Groupwise MSEs for the four models.

Group Global Group-specific Factor-0 Proposed

Penalty = Ridge

NC 16.66 (0.38) 6.24 (0.09) 6.50 (0.10) 6.19 (0.10)

SMC 14.52 (0.31) 6.68 (0.15) 6.43 (0.15) 6.54 (0.15)

eMCI 18.37 (0.41) 10.26 (0.19) 9.84 (0.19) 9.82 (0.19)

lMCI 19.17 (0.38) 16.75 (0.32) 15.61 (0.30) 15.92 (0.32)

AD 73.55 (0.38) 41.25 (0.32) 40.00 (0.30) 39.28 (0.32)

Penalty = Elastic Net

NC 16.79 (0.38) 6.45 (0.09) 6.40 (0.11) 6.37 (0.09)

SMC 15.46 (0.38) 7.12 (0.09) 6.78 (0.11) 6.96 (0.09)

eMCI 18.65 (0.38) 10.59 (0.09) 10.13 (0.11) 10.22 (0.09)

lMCI 20.26 (0.38) 18.32 (0.09) 16.14 (0.11) 16.43 (0.09)

AD 75.00 (0.38) 41.49 (0.09) 40.54 (0.11) 39.64 ( 0.09)

Penalty = Lasso

NC 16.69 (0.38) 6.49 (0.09) 6.41 (0.11) 6.37 (0.09)

SMC 15.57 (0.38) 7.16 (0.09) 6.84 (0.11) 7.05 (0.09)

eMCI 18.44 (0.38) 10.73 (0.09) 10.17 (0.11) 10.26 (0.09)

lMCI 20.36 (0.38) 18.53 (0.09) 16.21 (0.11) 16.50 (0.09)

AD 75.40 (0.38) 41.73 (0.09) 40.47 (0.11) 39.68 (0.09)
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Figure 3. Heatmaps of Σ̂x,g and Σ̂u,g in NC, eMCI and AD groups.
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see that the bottom row looks more homogeneous than the top row. We further

represent brain connections using precision matrices estimated from Gaussian

graphical models (Cai, Liu and Luo (2011)). See Section S4 in the Supplementary

Material.

7. Conclusion

We have proposed a factor regression model for heterogeneous data with sub-

populations. Our proposed model decomposes the predictors into heterogeneous

components driven by latent factors and homogeneous components. We assume

the group-specific latent factors explain the main heterogeneous variations and,

consequently, their associated coefficients can differ by groups. The homogeneous

components share the same covariance matrix and, as a result, they share the

same regression coefficients. Because the factors are unobserved, we first estimate

them using a standard PCA procedure. We use an OLS to directly estimate the

group-specific coefficients. For the homogeneous regression coefficients, we pro-

pose a flexible penalized least squares solution. For model prediction, we also

propose a data-driven procedure to estimate the factors for the testing data.

Theoretical studies on the estimation and prediction consistency under `2 and

`1 penalties are established. We show that our proposed model is robust under

the group-specific model. Extensive simulation studies further demonstrate the

competitive performance of our proposed model over the global model and the

group-specific model, and our proposed model achieves a good balance between

the two. Finally, we apply the proposed method to an ADNI data set for clini-

cal score prediction, and demonstrate that our model has good prediction power

and meaningful interpretation. One interesting future direction is to extend the

method to include other outcomes, such as categorical or count data.

Supplementary Material

Section S1 gives proofs of Theorems 1–4, Corollaries 1.1–4.1, and the support-

ing lemmas. Section S2 provides a rule of thumb to choose between our proposed

model and the group-specific model in practice. Section S3 presents additional

simulation results. Section S4 contains additional results from the ADNI data

analysis. Section S5 shows the analysis results when we apply our method to a

combined microarray data set.
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