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Abstract: In this study, we prove the strong consistency of the least squares esti-

mator in a random sampled linear regression model with long-memory noise and

an independent set of random times given by renewal process sampling. Addition-

ally, we illustrate how to work with a random number of observations up to time

T = 1. A simulation study is provided to illustrate the behavior of the different

terms, as well as the performance of the estimator under various values of the Hurst

parameter H.
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1. Introduction

In many applications, data are observed at random times. This situation

arises from a variety of causes, such as machinery faults or the inability to ob-

serve data in certain periods. In the financial field, the process often cannot be

observed continuously (Duffie and Glynn (2004)). As a result, high-frequency

financial data (a very large amount of data) tend to be sampled discretely in

time, and the time separating successive observations is often random. For the

random modeling of observations, the renewal case represents progressive ran-

domness and distance from periodic sampling. Here Masry (1983) studied the

problem of estimating an unknown probability density function, based on n in-

dependent observations sampled at random times. Vilar (1995) and Vilar and

Vilar (2000), studied the nonparametric kernel estimator of the regression func-

tion under mixing dependence conditions, and the Ornstein–Uhlenbeck process

driven by Brownian motion, respectively.
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This study offers an alternative approach to constructing trend regression

models by taking into account long-memory behavior in the noise term. The

interest in the long-memory noise model lies in the behavior of its covariance

structure, which can cover a general class of noise. Trend analyses are important

in many time series applications. Parameter estimation problems in time series,

represented as a trend plus long-memory noise, are well studied; see Baillie and

Chung (2002), Brockwell (2007) and Lobato and Velasco (2002), among others.

In contrast, in time series models with long-memory, parameter estimation in

models sampled at random times is more rare.

The concept of long-memory is very well characterized in terms of the spectral

density function. However, the existence of this function is limited to stationary

processes. When jointly considering a model with trend and long-memory prop-

erties, there is no stationarity property essential to defining the spectral density

function in which the spectral estimate rests. In contrast, for spectral estima-

tions, wavelet methods have been proposed for irregularly sampled real-valued

data, including regression problems and long-memory estimation; see Bardet and

Bertrand (2010), Efromovich (2014) and Knight, Nunes and Nason (2012).

Different applications have been considered in the financial domain, where we

can detect trends by the existence of random, low, or high volatility periods. As

mentioned in Duffie and Glynn (2004), certain financial data, particularly intra-

day, are sampled at random times, and the trading frequency (or volume) is higher

during periods of faster information arrival. The authors modeled prices using a

time-homogeneous continuous-time Markov process, and proposed estimating the

parameters of the model by using the method of moments. Additionally, much

evidence exists that financial and economic data exhibit long-memory. For exam-

ple, in stock markets, further investments are often made based on the technical

analysis of past prices and volume information. Aı̈t-Sahalia and Mykland (2003)

use an exponential distribution to fit the time distribution between trades for

Nokia shares traded on the New York Stock Exchange.

In this study, we examine the least squares estimator (LSE) in a simple re-

gression model, nonstationary in trend, with long-memory noise and observation

measurements at random times. We also show how to deal with the number of

observations needed to reach a fixed time T assuming, without loss of generality

(w.l.o.g.), T = 1. To explain the long-memory or long-range dependence phe-

nomenon in a model, it is common to represent it using the Hurst exponent H,

which takes values in (0, 1). In particular, long-range dependence can be seen

when H ∈ (1/2, 1). Mandelbrot and Van Ness (1968) studied the effect of long-

range dependence. One of the most popular Gaussian stochastic processes with
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long-memory is fractional Brownian motion. We consider the following simple

regression model:

Yτi+1
= aτi + ∆BH

τi+1
, i = 0, . . . , N(1), (1.1)

where a ∈ R is the unknown drift parameter of the model. Long-memory is

represented by the noise, defined as ∆BH
τi+1

= BH
τi+1
− BH

τi . Here, τ := {τi, 0 ≤
i} is a random increasing sequence of positive random times depending on N .

However, this dependence is expressed through the distribution function, and the

initial value, τ0, is also a positive random variable; see the next section for a

detailed definition. Note that N(1) =
∑

j≥1 1{τj≤1} determines the number of

events in [0, 1]. From the definition of τ , N(1) is a discrete random variable,

and N represents the expected number of observations within [0, 1]. The process

Y := {Yτi+1
, 0 ≤ i}, defined in equation (1.1), is nonstationary. The long-memory

or long-range dependence refers to the type of noise used. However, note that

the long-memory property does not necessarily hold when working with random

times, as pointed out by Philippe, Robet and Vian (2020).

The LSE estimator for a, the drift parameter of the random sampled regres-

sion model with long-memory noise in (1.1), is determined by âN(1) =
∑N(1)

i=0 τiYτi+1

/
∑N(1)

i=0 τ2
i . Working with random times that are not upper bounded is a chal-

lenge, because both, the observation times and the number of observations within

the interval, are random. Our way of dealing with this task is to divide the prob-

lem into three stages. First, we study the almost sure convergence of N(1)/N to 1.

Second, we define an auxiliary least squares type estimator, âN =
∑N−1

i=0 τiYτi+1

/
∑N−1

i=0 τ2
i , considering a fixed number N ∈ N, corresponding to the sampling

frequency or sampling rate and, study the convergence of âN → a. Finally, we

ensure the convergence of |âN − âN(1)| to zero. This approach is used by Deo et

al. (2006) to examine whether N(1) being close to N allows us to ensure that

both, âN(1) and âN , are strongly consistent. In practice, our estimator is based

on N(1) observations, because if N(1) < N , then âN cannot be computed from

the data. Note that there is another type of random time, known as “jittered” or

“irregular observations” in which, unlike the random time reviewed in this work,

the random variables defining the jittered times are bounded. Model (1.1), with

jittered random times, has been studied by Araya et al. (2023).

The remainder of the paper proceeds as follows. In Section 2, we define the

random time used in the random sampled regression model with long-memory

noise, we then describe our notation and present the almost sure convergence of

τN → 1 and N(1)/N → 1. Section 3 is devoted to the main results. Here, we
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prove the almost sure convergence of âN and âN(1) to a. In Section 4, a simulation

study is presented to illustrate the performance of the estimator, considering

different values of H and random times under two different sampling schemes.

Finally, in Section 5, we present the proof of a technical lemma, established in

Section 3.

2. Preliminaries

In this section, we introduce the basic tools and the framework used in this

study. In particular, we present the random noise evaluated at random times

considered throughout this work.

2.1. Random time

Let τ = {τi; i ≥ 0} be a strictly increasing sequence of random points over

time, the distribution function of which depends on N (to avoid superscript, the

dependence on N is through the distribution function), where N represents the

sampling frequency or sampling rate, that is, the average number of samples

obtained in [0, 1].

The sequence τ , defined by the renewal process (RP), is given as follows:

τi =

i∑
j=0

tj i ≥ 0, (2.1)

where {tj , j ≥ 0} is a sequence of independent and identically distributed random

variables (i.i.d.), with a common distribution function GN (·), that depend on N

with support in [0,∞), and are absolutely continuous with density gN , such that

GN (0) = 0, satisfying the following hypothesis:

H1 E [ti] = 1/N for all i ≥ 0.

H2 E
[
t2i
]

= κ1/N
α, 0 < α ≤ 2.

H3 E
[
t4i
]

= κ2/N
β, 0 < β ≤ 2α.

Here κ1 and κ2 are constants not depending on N . Note that the conditions

α ≤ 2 and β ≤ 2α come from the Cauchy inequality.

Henceforth, GN,i denotes the probability distribution function associated

with τi and its density functions gN,i, and N(1) is the number of observations

needed to sample up to one. Examples of distributions satisfying H1 to H3 are:

the beta prime distribution, with parameters (1, N + 1), and the exponential dis-

tribution with parameter λ = N . This distribution is a limit case for α = 2.
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Araya et al. (2019) provides a study of this model.

Remark 1. Henceforth, we write E(tmi ) = E(tm0 ) for m ∈ N and i ≥ 0, because

it no longer depends on i. From hypotheses H1 and H2; we have

E [τi] =
i+ 1

N
, E

[
τ2
i

]
= (i+ 1)E

[
t20
]

+
(i+ 1)2 − (i+ 1)

N2
, i ≥ 0. (2.2)

Applying the Jensen inequality to any positive random variable X with all

its finite moments, we have for 0 < b < 1,

E
[
Xb
]
≤ (E [X])b . (2.3)

Remark 2. Henceforth, C denotes a generic constant that does not depend on

N , which may vary from line to line.

2.2. The noise

In this subsection we give the main properties of the process BH = {BH
t , t ≥

0} with zero mean, the increments of which are considered as the noise in model

(1.1).

N1 Covariance structure: RH(t, s) = E(BH
t B

H
s ) = (1/2)

(
t2H + s2H − |t− s|2H

)
.

N2 We consider a finite-variance process that is self-similar with stationary in-

crements.

For example, BH can represent the well-known fractional Brownian motion

(fBm). In the fBm framework, when H = 1/2, BH is the standard Brownian mo-

tion. Other types of long-memory processes, with the same covariance structure

as BH , are the Hermite and Rosenblatt processes. For more references on these

processes see Tudor (2013).

N3 The random time sequence τ , which depends on N , and the long-memory

noise BH are independent.

This latter condition is essential for the theoretical results presented in Section

3.

2.3. Almost sure convergence of τN → 1 and N(1)/N → 1

In this section, we show how to quantify the ratio N(1)/N , the number of

observations sampled up to time 1, and the sampling frequency or sampling rate.

We show, in Section 3 and Proposition 2 that, to prove there is strong consistency,

studying the behavior of N(1)/N is an important task.
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Remark 3. Throughout the paper, especially in Section 3, we use the following

argument to ensure the convergence in probability and almost sure convergence

of a given sequence of random variables.

Let (θN )N≥0 be a sequence of random variables. From Tshebyshev’s inequal-

ity, we have

P (|θN | > ε) ≤
E(θmN )

εm
, m > 0. (2.4)

If E(θmN ) ≤ C/Nγ , with γ > 0, then |θN | → 0 in probability. Note that if∑
N≥1 E(θmN ) converges to a finite value, using the Borel–Cantelli lemma, we get

P(|θN | > ε , infinitely often) = 0. This yields that |θN | → 0 a.s.

Let us consider τN−1 =
∑N−1

i=0 ti = 1/N
∑N−1

i=0 Nti. Now, E(τN−1) = 1, and

V ar(τN−1) = NV ar(t0) = κ1/N
α−1 − 1/N , from hypotheses H1 and H2, which

tends to zero as N → ∞ for α > 1. In addition, by Remark 3 and considering

the fourth central moment and hypotheses H1 to H3, we have

E
[
(τN−1 − 1)4

]
= E

N−1∑
j=0

(tj − E [tj ])

4
= E

N−1∑
j=0

(tj − E [tj ])
4

+ 6E

N−1∑
i 6=j

(ti − E [ti])
2 (tj − E [tj ])

2


=

N−1∑
j=0

E
[
t40
]
− 4

N−1∑
j=0

E
[
t30
]
E [t0] + 6

N−1∑
j=0

E
[
t20
]
E [t0]2 − 4

N−1∑
j=0

E [t0]E [t0]3

+N (E [t0])4 + 6
∑

0≤i 6=j≤N−1

(
E
[
(t0 − E [t0])2

])2

≤ κ2

Nβ−1
+

6κ1

Nα+1
+

1

N3
+

6κ2
1

N2α−2
≤ C

N (β−1)∧(α+1)∧3∧(2α−2)
=

C

N (β−1)∧(2α−2)
.

Then, by the Tshebyshev inequality, τN−1 converges to one in probability if

α > 1 and β > 1. Additionally, from the Borel–Cantelli lemma, τN−1 converges

to one, almost surely if α > 3/2 and β > 2.

Because we proved the a.s. convergence of τN to one, we can similarly get

the a.s. convergence of τN+Nε− τN to ε, for α > 3/2 and β > 2, as shown below.

Using this fact and recalling that the random variables τN and τN+Nε − τN are

independent, we have
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τN+Nε τN(1)τN 1

ε a.s.︷︸︸︷
Figure 1. Representation of τN , τN+Nε, and τN(1).

P
(
N(1)

N
− 1 > ε

)
= P (N(1) > N +Nε) = P (τN+Nε < 1)

= P (1− τN > τN+Nε − τN )

= P
(

(1− τN > τN+Nε − τN ) ∧
(
τN+Nε − τN <

ε

2

))
+P
(

(1− τN > τN+Nε − τN ) ∧
(
τN+Nε − τN >

ε

2

))
≤ P

(
τN+Nε − τN <

ε

2

)
+ P

(
1− τN >

ε

2

)
≤ P

(
τN+Nε − τN − ε < −

ε

2

)
+ P

(
1− τN >

ε

2

)
≤ 1

(ε/2)4

[
ε

Nβ−1
+

ε2

N2α−2

]
≤ C

N (β−1−3δ)∧(2α−2−2δ)
, (2.5)

with ε = 1/N δ, δ > 0. Analogously, using the a.s. convergence of τN−Nε − τN to

ε, we have

P
(
N(1)

N
− 1 < −ε

)
= P (N(1) < N −Nε) = P (τN−Nε > 1)

≤ C

N (β−1−3δ)∧(2α−2−2δ)
. (2.6)

Then, the convergence in probability is ensured if δ < ((β − 1)/3 ∧ (α− 1)); this

condition is true if α > 1 and β > 1. On the other hand, the a.s. convergence is

ensured, by applying the Borel–Cantelli lemma, if δ < ((β − 2)/3 ∧ (α− 3/2));

that is, if α > 3/2 and β > 2.

Several restrictions appear in the parameters α and β, which we use in our

main theorem.

3. Main Results

In this section, we provide our main result. We prove that the LSE is an un-

biased and strongly consistent estimator for a, the drift parameter of the random

sampled regression model with long-memory noise. To estimate the parameter of
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interest in the model (1.1), the LSE is computed and is determined by

âN(1) =

∑N(1)
i=0 τiYτi+1∑N(1)
i=0 τ2

i

. (3.1)

Recall that, from (1.1) and (3.1), we have

âN(1) − a =

∑N(1)
i=0 τi∆B

H
τi+1∑N(1)

i=0 τ2
i

. (3.2)

Theorem 1. Let τ be the random time defined in (2.1), and let the process

BH = {BH
t , t ≥ 0} with a zero mean, and with increments that are considered

as the noise. These satisfy hypotheses H1 to H3 and N1 to N3, respectively.

Then, for α > max{3/2, 1/H} and β > 2, the LS estimator âN(1) given in (3.1)

of the drift parameter a in model (1.1) is strongly consistent,

âN(1)
a.s.−−−−→

N→∞
a.

For α > 1 and β > 1, convergence in probability is ensured.

Proof. Let τ be given by (2.1), and let N be the sampling frequency or sampling

rate. Let âN be the LS estimator obtained by replacing N(1) with N−1 in (3.1);

that is,

âN =

∑N−1
i=0 τiYτi+1∑N−1
i=0 τ2

i

. (3.3)

We consider the following decomposition from (3.1) and (3.3):

âN(1) − a = âN(1) − âN + âN − a.

Then, the proof of the main Theorem 1 is given in two steps

• First, we prove in Proposition 1 that âN converges a.s. to a.

• Second, we control the difference âN(1) − âN a.s. in Proposition 2.

Proposition 1. Let τ be the random time defined in (2.1), and let the process

BH = {BH
t , t ≥ 0} with a zero mean, and with increments that are considered as

the noise. These satisfy hypotheses H1 to H3 and N1 to N3, respectively, for

α > max{3/2, 1/H} and β > 2. Then, the LS estimator âN given in (3.3) of the

drift parameter a in model (1.1) is strongly consistent,

âN
a.s.−−−−→

N→∞
a.
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For α > 1 and β > 1, the convergence in probability is ensured.

Proposition 2. Let τ be the random time defined in (2.1), and let the process

BH = {BH
t , t ≥ 0} with a zero mean, and with increments that are considered

as the noise. These satisfy hypotheses H1 to H3 and N1 to N3, respectively,

for α > max{3/2, 1/H} and β > 2. Consider the LS estimators âN and âN(1) of

the drift parameter a given in (3.3) and (3.1), respectively, for the model (1.1).

Then,

|âN(1) − âN |
a.s.−−−−→

N→∞
0. (3.4)

For α > 1 and β > 1, the convergence in probability is ensured.

Proof of Proposition 1

Recall that from (1.1) and (3.3), we have

|âN − a| =

1

N

∑N−1
i=0 τi∆B

H
τi+1

1

N

∑N−1
i=0 τ2

i

:=
AN
DN

. (3.5)

To prove Proposition 1, we need an auxiliary lemma related to the conver-

gence of the denominator DN given in (3.5).

Lemma 1. Let DN be defined in (3.5). If τ = {τi; 0 ≤ i ≤ N − 1} are the

sampling random times defined in (2.1) satisfying hypotheses H1 to H3, then for

3/2 < α < 2 and β > 2,

DN
a.s.−−−−→

N→∞

1

3
.

For α > 1 and β > 1, the convergence in probability is ensured.

The proof of this lemma is given in Appendix 5.

Hence, by Lemma 1, the asymptotic behavior of AN as N → ∞ remains to

be studied.

From the definition of AN and hypothesis N3, by conditioning on τ , it is

straightforward to see that E [AN ] = 0. With this in mind and working with the

second and fourth moments, we have the selected choices of α and β to ensure

the convergence in probability and/or the a.s. convergence of the numerator

AN . Lemma 1 gives us a.s. convergence and/or convergence in probability of the

denominator DN . Finally, an application of the Slutsky theorem ensures the a.s.

convergence of |âN − a| → 0 (in probability) for the selected choices of α and β.

Because P (|AN | > ε) ≤ E(A2
N )/ε2, following Remark 3, it is enough to con-
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trol the expression E
[
A2
N

]
in (3.5). Then,

E
[
A2
N

]
= E

[
1

N2

N−1∑
i=0

τ2
i

(
BH
τi+1
−BH

τi

)2]

+ E

 1

N2

∑
0≤i,j≤N−2;|i−j|=1

τiτj
(
BH
τi+1
−BH

τi

) (
BH
τj+1
−BH

τj

)
+ E

 1

N2

∑
0≤i,j≤N−1;|i−j|≥2

τiτj
(
BH
τi+1
−BH

τi

) (
BH
τj+1
−BH

τj

)
:= E

[
A

(1)
N

]
+ E

[
A

(2)
N

]
+ E

[
A

(3)
N

]
, (3.6)

where we split the sum into three terms associated with the distance of the

indeces. First, we study the first term in (3.6). From hypotheses N1 to N3:

Step 1.

E
[
A

(1)
N

]
=

1

N2
E

[
N−1∑
i=0

τ2
i

(
BH
τi+1
−BH

τi

)2]

=
1

N2

N−1∑
i=0

∫ ∞
0

∫ ∞
0

E
(
z2
i

(
BH
zi+a −B

H
zi

)2 |τi = zi, ti+1 = a
)
gN,i(zi)gN (a)dzida

=
1

N2

N−1∑
i=0

∫ ∞
0

∫ ∞
0
z2
i a

2HgN,i(zi)gN (a)dzida =
1

N2

N−1∑
i=0

E
[
τ2
i

]
E
[
t2Hi+1

]
.

By (2.3), hypothesis H2, and the independence of the r.v.’s τi and ti+1,

E
[
A

(1)
N

]
≤ C

N2

N−1∑
i=0

[
(i+ 1)E

[
t20
]

+
i(i+ 1)

N2

] (
E
[
t20
])H

≤ C

Nα(H+1)∧(αH+1)
=

C

NαH+1
. (3.7)

Step 2. By symmetry, w.l.o.g, we consider j = i+ 1. From hypothesis N3,

E
[
A

(2)
N

]
=

2

N2

N−2∑
i=1

E
[
E
[
(τi−1 + ti) (τi−1 + ti + ti+1)

(
BH
τi−1+ti −B

H
τi−1

)
·
(
BH
τi−1+ti+ti+1

−BH
τi−1+ti

)∣∣ τi−1 = zi−1, ti = a, ti+1 = b
]]

=
2

N2

N−2∑
i=1

∫ ∞
0

∫ ∞
0

∫ ∞
0

(zi−1 + a) (zi−1 + a+ b) (3.8)
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·E
[(
BH
zi−1+a+b −BH

zi−1+a

) (
BH
zi−1+a −BH

zi−1

)]
gN,i−1(zi−1)gN (a)gN (b)dzi−1dadb.

Hypothesis N1 implies

E
[(
BH
zi−1+a+b −BH

zi−1+a

) (
BH
zi−1+a −BH

zi−1

)]
=

1

2

[
(a+ b)2H − a2H − b2H

]
.

Then,

E
[
A

(2)
N

]
=

1

N2

N−2∑
i=1

∫ ∞
0

∫ ∞
0

∫ ∞
0

(zi−1 + a+ b) (zi−1 + a)
[
(a+ b)2H− a2H− b2H

]
· gN,i−1(zi−1)gN (a)gN (b)dzi−1dadb. (3.9)

We consider σ(y) = y2H . Using a Taylor-type expansion, we linearise the

increment of σ between the two points a+ b and a, as follows:

σ(a+ b)− σ(a) =

∫ 1

0
σ′ [(1− λ)a+ λ(a+ b)] bdλ

=

∫ 1

0
σ′ [a+ λb] bdλ = 2H

∫ 1

0
[a+ λb]2H−1 bdλ (3.10)

From equality (3.10) and the fact that σ′ is increasing and λ ∈ (0, 1) we

have

1

2

[
(a+ b)2H − (a)2H

]
≤ H [a+ b]2H−1 b. (3.11)

Then, by (3.9) and (3.11), we get

E
[
A

(2)
N

]
≤ C

N2

N−2∑
i=1

∫ ∞
0

∫ ∞
0

∫ ∞
0

(zi−1 + a+ b) (zi−1 + a) [a+ b]2H−1 b

·gN,i−1(zi−1)gN (a)gN (b)dzi−1dadb.

≤ C

N2

N−2∑
i=1

∫ ∞
0

∫ ∞
0

∫ ∞
0

(
zi−1(zi−1 + a) [a+ b]2H−1 b+ (zi−1 + a)

[a+ b]2H b
)
· gN,i−1(zi−1)gN (a)gN (b)dzi−1dadb.

Now, for 1 ≤ 2H ≤ 2, f(x) = x2H is a convex function, and for 2H − 1 < 1,

g(x) = x2H−1 is a subadditive function. Thus we have
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E
[
A

(2)
N

]
≤ C

N2

N−2∑
i=1

∫ ∞
0

∫ ∞
0

∫ ∞
0

(
zi−1(zi−1 + a)

[
a2H−1 + b2H−1

]
b

+ (zi−1 + a)
[
a2H + b2H

]
b
)
· gN,i−1(zi−1)gN (a)gN (b)dzi−1dadb.

≤ C

N2

N−2∑
i=1

∫ ∞
0

∫ ∞
0

∫ ∞
0

(z2
i−1a

2H−1b+ z2
i−1b

2H + zi−1a
2Hb

+zi−1ab
2H + zi−1a

2Hb+ zi−1b
2H+1 + a2H+1b+ ab2H+1)

·gN,i−1(zi−1)gN (a)gN (b)dzi−1dadb.

From the independence of ti and after some algebraic manipulations,

E
[
A

(2)
N

]
≤ C

N2

N−2∑
i=1

{
E(τ2

i−1)E(t2H−1
i )E(ti+1) + E(τ2

i−1)E(t2Hi+1)

+E(τi−1)E(t2Hi )E(ti+1) + E(τi−1)E(ti)E(t2Hi+1) + E(τi−1)E(t2Hi )E(ti+1)

+ E(τi−1)E(t2H+1
i+1 ) + E(t2H+1

i )E(ti+1) + E(ti)E(t2H+1
i+1 )

}
.

By equalities (2.2) and (2.3) and hypotheses H1 to H3, we can derive the

following inequality for E
[
A

(2)
N

]
:

E
[
A

(2)
N

]
≤ C

N2

N−2∑
i=1

{(
i

Nα
+

i2

N2

)
1

N2H−1

1

N
+

(
i

Nα
+

i2

N2

)
1

NαH

+
i

N

1

NαH

1

N
+

i

N

1

N

1

NαH
+

i

N

1

N

1

NαH

+
i

N

1

Nβ((2H+1)/4)
+

1

N

1

Nβ((2H+1)/4)
+

1

N

1

Nβ((2H+1)/4)

}
(3.12)

≤ C
{

1

Nα+2H
+

1

N1+2H
+

1

Nα+αH
+

1

N1+αH
+

3

N2+αH

+
1

Nβ((2H+1)/4)+1
+

2

Nβ((2H+1)/4)+2

}
.

Finally,

E
[
A

(2)
N

]
≤ C

N (1+αH)∧(β((2H+1)/4)+1)
. (3.13)
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Step 3. W.l.o.g., we assume that i < j. By symmetry, we have

E
[
A

(3)
N

]
=

2

N2
E

 ∑
0≤i,j≤N−1;j−i≥2

τiτj
(
BH
τi+1
−BH

τi

) (
BH
τj+1
−BH

τj

) .
We denote Xj−i−1 = Xj−(i+1) = τj−τi+1 =

∑j
l=i+2 tl, which is independent

of τi+1 and tj+1. By the independence of ti, the r.v.’s Xj−i−1 are distributed

as GN,j−i−1. Then, by hypothesis N3,

E
[
A

(3)
N

]
=

2

N2

∑
0≤i,j≤N−1;j−i≥2

E
[
E
[
τi (τi + ti+1 +Xj−i−1) (BH

τi+ti+1
−BH

τi )

(BH
τi+ti+1+Xj−i−1+tj+1

−BH
τi+ti+1+Xj−i−1

)|τi = zi, ti+1 = a,

Xj−i−1 = x, tj+1 = b]]

=
2

N2

∑
0≤i,j≤N−1;j−i≥2

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

zi (zi + a+ x)

E
[(
BH
zi+a −B

H
zi

) (
BH
zi+a+x+b −BH

zi+a+x

)]
gN,i(zi)gN,j−i−1(x)gN (a)gN (b)dzi dx da db.

From hypothesis N1,

E
[(
BH
zi+a −B

H
zi

) (
BH
zi+a+x+b −BH

zi+a+x

)]
=

1

2

[
(a+ x+ b)2H + x2H − (x+ b)2H − (a+ x)2H

]
≤ 1

2

[
(a+ x+ b)2H − (a+ x)2H

]
. (3.14)

Again, consider σ(y) = y2H . Using a Taylor-type expansion, one can lin-

earise the increment of σ between the two points a+ x+ b and a+ x as

σ(a+ x+ b)− σ(a+ x) =

∫ 1

0
σ′ [(1− λ)(a+ x) + λ(a+ x+ b)] bdλ

=

∫ 1

0
σ′ [a+ x+ λb] bdλ = 2H

∫ 1

0
[a+ x+ λb]2H−1 bdλ.

Now, because f(x) = x2H−1 is an increasing function in x and λ ∈ (0, 1),

equality (3.15) yields

σ(a+ x+ b)− σ(a+ x) ≤ 2H [a+ x+ b]2H−1 b.
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Then, from the definiton of σ, we have

1

2

[
(a+ x+ b)2H − (a+ x)2H

]
≤ H [a+ x+ b]2H−1 b. (3.15)

Using the fact that 2H − 1 < 1, we can use the subadditive property of the

function f(x) = x2H−1:

E
[
A

(3)
N

]
≤ C

N2

∑
0≤i,j≤N−1;j−i≥2

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0
zi (zi + a+ x) (a+ x+ b)2H−1 b

gN,i(zi) gN,j−i−1(x) gN (a) gN (b) dzi dx da db

≤ C

N2

∑
0≤i,j≤N−1;j−i≥2

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0
zi (zi + a+ x)

(
(a+ x)2H−1b+ b2H

)
gN,i(zi) gN,j−i−1(x) gN (a) gN (b) dzi dx da db

=
C

N2

∑
0≤i,j≤N−1;j−i≥2

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

[z2
i (a+ x)2H−1b+ z2

i b
2H

+zi(a+ x)2Hb+zi(a+ x)b2H ]gN,i(zi) gN,j−i−1(x) gN (a) gN (b) dzi dx da db.

By the independence of the r.v.’s ti and after some algebraic manipulations,

we can obtain the following inequality:

E
[
A

(3)
N

]
≤ C

N2

{ ∑
0≤i,j≤N−1;j−i≥2

E
[
τ2
i

]
E [t0]E

[
X2H−1
j−i−1

]
+ E

[
τ2
i

]
E
[
t2H0
]

+ E [τi]E [t0]E
[
X2H
j−i−1

]
+ E [τi]E [Xj−i−1]E

[
t2H0
]}

.

In addition,

E
[
X2H
j−i−1

]
= E

[
(ti+2 + · · ·+ tj)

2H
]

≤ (j − i− 1)2H−1E
[(
t2Hi+2 + · · ·+ t2Hj

)]
= (j − i− 1)2HE

[
t2H0
]
,

and E
[
X2H−1
j−i−1

]
≤ (j − i− 1)2H−1E

[
t2H−1
0

]
.

From (2.2), (2.3), and hypotheses H1 and H2, we obtain



ESTIMATION IN MODELS SAMPLED AT RANDOM TIMES 15

E
[
A

(3)
N

]
≤ C

N2

{ ∑
0≤i,j≤N−1;j−i≥2

(
i+ 1

Nα
+
i(i+ 1)

N2

)
1

N

(j − i− 1)2H−1

N2H−1

+

(
i+ 1

Nα
+
i(i+ 1)

N2

)
1

NαH
+

(i+ 1)

N

1

N

(j − i− 1)2H

NαH

+
(i+ 1)

N

1

NαH

(j − i− 1)

N

}

By collecting the pieces, we have the following expression:

E
[
A

(3)
N

]
≤C
{

1

N1+α
+

(
1

NαH
+

1

Nα+αH−1

)
+

1

NαH+2−2H
+

1

N1+αH

+
1

Nα+2H−1
+

1

N2H
+

2

N1+αH

}
≤ C

N (αH)∧(α+2H−1)
=

C

NαH
.

(3.16)

Finally, for (3.6), considering the above constraints and by combining equa-

tions (3.7), (3.13), and (3.16), we get

E
[
A2
N

]
≤ C

NαH+1
+

C

N (1+αH)∧(β((2H+1)/4)+1)
+

C

NαH

≤ C

NαH∧(β((2H+1)/4)+1)
. (3.17)

The convergence in L2, and therefore in probability, of AN in equation (3.5) is

ensured. The a.s. convergence comes from the Tshebyshev inequality, Borel–

Cantelli lemma, as in Remark 3, and setting 1/2 ≤ H ≤ 1 and α > 1/H ≥ 1.

By Slutsky’s Theorem, Lemma 1, and Table 4 in Appendix 5, the convergence

of |âN − a| → 0 is

• in probability for 2 > α > 1 and β > 1;

• a.s. for 2 > α > max{3/2, 1/H} and β > 2.

Remark 4. If H = 1/2, the i.i.d. case, by carefully examining the proofs in

Section 3, starting in equation (3.6), we obtain that the statement of Theorem 1

is valid with upper bound an rate of convergence controlled by the denominator

DN .

The exponential distribution is a particular limiting case that arises when

α = 2 and β = 4. The behavior of AN and DN , in this particular case, is shown

in Araya et al. (2019).



16 ARAYA ET AL.

Proof of Proposition 2

Proof. Let us consider âN(1) defined by (3.1), with N(1) the number of obser-

vations up to time T = 1. We can ensure that DN − DN(1) and AN − AN(1),

defined in (3.2) and (3.5), respectively, converge to zero a.s. when N → ∞. In

fact, note that if N(1) < N − 1, then τN(1) < 1 < τN−1, and if N − 1 < N(1),

then τN−1 < τN(1) < 1. Thus,

|DN −DN(1)| ≤
|N(1)−N + 1|

N
τ2

(N(1)∨(N−1)) ≤
|N(1)−N + 1|

N
(τ2
N−1 ∨ 1).

From the a.s. convergence of τN → 1 and the convergence of N(1)/N → 1,

obtained in Section 2.3, equation (2.6), and using the same arguments presented

in Remark 3, we have that |DN −DN(1)| converges in probability to zero if α > 1

and β > 1. The a.s. convergence is achieved when α > 3/2 and β > 2.

We now recall the Garsia-Rodemich-Rumsey Lemma in Garsia et al. (1970),

as well as Barlow and Yor (1982), which are powerful works in the study of the

sample path Hölder continuity of a stochastic process adapted to random times;

see Russo and Vallois (1993) and Nualart and Răscanu (2002).

Lemma 2. Let p ≥ 1, and u > p − 1. Then, there exists a constant Cu,p > 0

such that for any continuous function f on [0, T ] and for all t, s ∈ [0, T ], one has

|f(t)− f(s)|p ≤ Cu,p|t− s|up−1 ≤
∫ T

0

∫ T

0

|f(x)− f(y)|p

|x− y|up+1
dxdy,

with 0/0 = 0.

The following lemma provides the basic inequalities for the fBm.

Lemma 3. Let {BH
t : t ≥ 0} be a fractional Brownian motion of Hurst parameter

H ∈ (0, 1). Then for every 0 < ε < H and T > 0 there exists a positive random

variable ηε,T such that E(|ηε,T |p) < ∞, for all p ∈ [1,∞) and for all s, t ∈ [0, T ]

|BH
t −BH

s | ≤ ηε,T |t− s|H−ε a.s.

See Nualart and Răscanu (2002) for details.

From (2.5), (2.6), and the Tshebyshev inequality, we obtain

P
(∣∣∣∣N(1)

N
− 1

∣∣∣∣ > N−δ
)
≤ C

N (β−1−3δ)∧(2α−2−2δ)
. (3.18)

If δ < {((β−2)/3)∧ (α−3/2)}, applying the Borel–Cantelli lemma, the a.s. con-

vergence is ensured. We define Ω1
N as the set of ω ∈ Ω such that |N(1)/N − 1| ≤
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N−δ. Then, P(Ω1
N ) ≥ 1 − C/Nµ, with 0 < µ = {(2α − 2 − 2δ) ∧ (β − 1 − 3δ)}.

Furthermore,

P(|τN − 1| > N−4γ) ≤ E[(τN − 1)4]

N−4γ
≤ C

N−4γ+{(2α−2)∧(β−1)} . (3.19)

If α > 3/2, β > 2 and 0 < γ < {(2α − 3)/4 ∧ (β − 2)/4} the Borel–Cantelli

Lemma implies the a.s. convergence of |τN − 1| to zero. Define Ω2
N , the set

of ω ∈ Ω such that |τN (ω) − 1| ≤ N−γ . Then, P(Ω2
N ) ≥ 1 − C/Nν , with

0 < ν = −4γ + {(2α− 2) ∧ (β − 1)} and τN ≤ 1 +N−γ a.s.

In the set Ω1
N ∩Ω2

N , with P(Ω1
N ∩Ω2

N ) ≥ 1−C/Nν−C/Nµ, and applying the

Garsia-Rodemich-Rumsey Lemma to the random interval [0, τN (ω)], we have, for

any ε > 0,

sup
0≤s≤t≤τN

|BH
t −BH

s | ≤ Cν,H(1 +N−γ)H−ετH−εN ξN , (3.20)

where ξN is a random variable such that, for q ≥ 2/ε, and on Ω1
N ∩ Ω2

N ,

E(ξqN ) ≤ Cq,ε(1 +N−γ)εq. (3.21)

Then, from the previous analysis of (3.20) and (3.21), we obtain on Ω1
N ∩ Ω2

N ,

|AN −AN(1)| =

∣∣∣∣∣∣ 1

N

N(1)∨(N−1)∑
i=N(1)∧(N−1)

τi∆B
H
τi

∣∣∣∣∣∣ ≤ ξN Cν,H(1+N−γ)1+2H−2ε

N δ
. (3.22)

Let us now consider the random variable ξN on Ω1
N where, in that case, τN ≤

1 +N−γ a.s. By (3.21), with q = 2/ε we get, E(ξ
2/ε
N ) ≤ C2,ε(1 +N−γ)2.

For ρ > 0, P(ξN > Nρ) < E(ξ
2/ε
N )/N2ρ/ε ≤ C2,ε(1 +N−γ)2/N2ρ/ε, where the

last quantity goes to 0 as N goes to infinity for any ρ > 0. We can ensure the

a.s. convergence for ρ > ε/2.

Thus, considering Ω3
N , the set of ω ∈ Ω such that ξN (ω) ≤ Nρ, we have

P(Ω3
N ) ≥ 1 − C/N2ρ/ε, with ρ > ε/2. Define ΩN = Ω1

N ∩ Ω2
N ∩ Ω3

N . Then,

P(ΩN ) ≥ 1− C/Nν − C/Nµ − C/N2ρ/ε and, on ΩN ,

|AN −AN(1)| ≤ Cν,HC2,ε(1 +N−γ)1+2H−2εNρ−δ. (3.23)

For sufficiently small ε we can choose (β−2)/3 > ε/2 and α−3/2 > ε/2, implying

that ρ− δ < 0. This implies the a.s. convergence on ΩN of |AN −AN(1)| to zero

as N goes to infinity. In addition P(ΩN )→ 1.
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4. Simulation Study

Throughout this section, we develop a Monte Carlo simulation study to assess

the finite-sample properties for the LS estimator in the linear regression model

(1.1). The long-memory noise driven is by a fractional Brownian motion evaluated

at deterministic times and two different random times defined by Equation (2.1

The deterministic case: We consider the model defined by equation (1.1)

observed at equally spaced times, that is, τi = i/N , for i = 1, . . . , N . We consider

N = 200.

The exponential and beta prime case: The most studied renewal process

is the Poisson process (e.g., Last and Penrose (2017)), which appears when ti
has an exponential distribution (λ). We consider λ = 200. For the beta prime

distribution, we consider a distribution with parameters (1, 201).

For all the simulations shown, we consider M = 1,000 replicates of the model

with the parameters a = 0.2 and a = 2. For the exponential and beta prime cases,

the number of observations is a random variable N(1), representing how many

observations are within the interval [0, 1]. We also consider different values of the

Hurst parameter: H = 0.05, H = 0.25 and H = 0.45 (anti-persistent cases); and

H = 0.55, H = 0.75, and 0.95 (long-memory cases).

Figure 2 shows the value of âN(1) for different values of N(1) between 3 and

200 and for different values of H. The parametric estimation stabilizes when there

are approximately 100 observations per realization, either when a = 0.2 or a = 2,

even if the noise is driven by an anti-persistent process (H = 0.25). However,

for values of H less than 1/2, strong consistency is not ensured by the proposed

method studied. From the results of equation (3.17) and in Table 4, we obtain

an upper bound on the convergence rate of |aN(1) − a|. When an exponential

distribution of parameter λ = N is considered (α = 2 and β = 4), the upper

bound is given by C/N for the convergence in probability. For a.s. convergence,

the upper bound is C/N2H−1. The latter bound coincides when the times are

considered to be equally spaced. The following figure shows log |aN(1) − a| as a

function of log(N). The values in Table 1 correspond to the LS estimators of the

parameter µ (µ̂LS) in the equation

log |aN(1) − a| = C̃ + µ log(N), 3 ≤ N ≤ 200,

where C̃ = log(C), and µ corresponds to the exponent in the convergence rate in

probability.
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Table 1. Values of µ̂LS .

H = 0.75 H = 0.95
Exponential random times -1.053 -0.957

Deterministic times -1.129 -1.031
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(a) Exponential, H = 0.75.
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(b) Exponential, H = 0.95.
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(c) Deterministic, H = 0.75.
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(d) Deterministic, H = 0.95.

Figure 3. Rate of convergence bounds of log(|âN(1) − a|) under exponential and deter-
ministic case, for a = 0.2.

Figure 3 compares the regression model with the estimated parameter µ̂LS
(red dotted line) and − log(N), for 3 ≤ N ≤ 200 (blue long dashed line). The

green solid line represents −(2H − 1) log(N), 3 ≤ N ≤ 200.

The simulations in Figure 3 verify numerically our results for the upper bound

on the convergence rate. Finally, the simulations show that as H increases, the

slope fit improves.

Tables 2 and 3 show the mean, standard deviation (SD), and kurtosis (defined

as the difference between the kurtosis of a Gaussian distribution of the simulated

process) according to Equation (3.1), for different values of H, and M = 1,000

replicates of the process.

The values of the mean show that the estimator is unbiased. Note that the

SD decreases as the value of H approaches one, which is expected, because the
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Table 2. Exponential and beta prime: Mean, SD, and kurtosis with a = 0.2.

Exponential H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95
Mean 0.2001 0.1995 0.1997 0.2001 0.1999 0.1998
SD 0.0074 0.0064 0.0062 0.0057 0.0055 0.0051

Kurtosis 0.2879 0.1132 0.0150 -0.04568 0.0721 -0.3278
Beta prime H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

Mean 0.2003 0.2001 0.2000 0.2001 0.2000 0.2001
SD 0.0073 0.0065 0.0061 0.0059 0.0054 0.0052

Kurtosis 0.0678 -0.1624 0.1858 0.1662 0.0249 -0.0189

Table 3. Exponential and beta prime: Mean, SD, and kurtosis with a = 2.

Exponential H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95
Mean 1.9997 2.0002 1.9997 2.0002 2.0001 2.0002
SD 0.0072 0.0066 0.0061 0.0059 0.0057 0.0051

Kurtosis 0.1402 -0.1039 -0.0092 -0.1116 0.3593 0.0635
Beta prime H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

Mean 1.9998 2.0001 1.9999 2.0001 1.9998 2.0001
SD 0.0072 0.0067 0.0059 0.0058 0.0055 0.0050

Kurtosis 0.0670 0.1027 -0.0787 -0.0771 0.3047 0.2196

conditional variance of the noise decreases as H approaches one. In fact, for

0 ≤ τi < τj ≤ 1, with 0 ≤ i < j < N(1),

V ar

((
BH
τi −B

H
τj

τi

)
, τj

)
=

∫ 1

0

∫ 1

0
|t− s|2HgN,i(t)gN,j(s)dtds.

Then, for 0 ≤ τi < τj ≤ 1, V ar((BH′
τi − B

H′
τj )/τi, τj) ≤ V ar((BH

τi − B
H
τj )/τi, τj)

when H ′ > H.

5. Proof of Lemma 1

Proof. Let us consider DN with sampling random times as in (2.1). However,

as we show below, DN can be written in quadratic form, depending on the incre-

ments ti, which are i.i.d. r.v.’s. We have

DN =
1

N

N−1∑
k=0

τ2
k =

1

N

N−1∑
k=0

(
k∑
i=0

ti

)2

=
1

N

N−1∑
k=0

k∑
i=0

k∑
j=0

titj

=
1

N

N−1∑
i=0

N−1∑
j=0

(N − (i ∨ j)) titj
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=
1

N

N−1∑
i=0

(N − i) t2i +
2

N

∑
0≤i<j≤N−1

(N − (i ∨ j)) titj .

Inspired by Dacunha-Castelle and Fermı́n (2006), we center the sequence and

add terms to decompose DN as DN = RN + TN +QN + UN , where

RN = E [DN ] =
1

N

N−1∑
i=0

(N − i)E
[
t2i
]

+
2

N

∑
0≤i<j≤N−1

(N − j)E [titj ] , (5.1)

TN =
1

N

N−1∑
i=0

(N − i)
(
t2i − E

[
t2i
])
, (5.2)

QN =
2

N

∑
0≤i<j≤N−1

(tiE [tj ]+E [ti] tj−2E [ti]E [tj ]) (N− j) , (5.3)

UN =
2

N

∑
0≤i<j≤N−1

(titj−tiE [tj ]−tjE [ti]+E [ti]E [tj ]) (N−j) . (5.4)

Now, we show that RN converges to 1/3, and the remaining terms TN , QN , and

UN converge to zero as N goes to infinity. As in the proof of Proposition 1, to

prove the convergence results, we use Remark 3. From H1 to H3,

RN =
1

N

N−1∑
i=0

(N − i)E
[
t2i
]

+ 2
∑

0≤i<j≤N−1

(N − j)E [ti]E [tj ]


=

1

N

(N−1∑
i=0

i

)
E
[
t20
]

+ 2

N−1∑
j=1

j−1∑
i=0

(N − j) 1

N

1

N


=

1

N

(N(N + 1)

2

)
E
[
t20
]

+
2

N2

N−1∑
j=1

(N − j) j


=

E
[
t20
]

N

[
N(N + 1)

2

]
+

2

N3

N(N − 1)(N + 1)

6

=
κ1

2N1+α
[N(N + 1)] +

1

3N3
[(N − 1)N(N + 1)] . (5.5)

Then, RN converges pointwise, and so in probability and a.s., to 1/3 as N goes to

infinity, for α > 1. Second, we study the a.s. convergence of TN to zero. Recall

that from (5.2), E [TN ] = 0. In addition, we compute
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E
[
T 2
N

]
=

1

N2

N−1∑
i=0

N−1∑
j=0

(N − i)(N − j)E
[(
t2i − E

[
t2i
]) (

t2j − E
[
t2j
])]

=
1

N2

N−1∑
i=0

(N − i)2V ar
(
t20
)

=
V ar

(
t20
)

N2

(
N∑
i=1

i2

)

=
V ar

(
t20
)

6N2
N(N + 1)(2N + 1) ≤ C

N (β−1)∧(2α−1)
. (5.6)

In (5.6), we can see that for α > 1/2 and β > 1, TN converges in probability to

zero. Furthermore, for α > 1 and β > 2, converges a.s. to zero. From (5.3), QN =

(2/N)
∑

0≤i<j≤N−1 (ti(1/N) + tj(1/N)− 2(1/N)(1/N)) (N − j). Then E [QN ] =

0. To simplify the calculation of E(Q2
N ), we rewrite QN as

QN =
2

N

∑
0≤i<j≤N−1

(
ti
N
− 1

N2

)
(N − j) +

2

N

∑
0≤i<j≤N−1

(
tj
N
− 1

N2

)
(N − j)

=
2

N

N−2∑
i=0

(
ti
N
− 1

N2

)N−i−1∑
j=1

j

+
2

N

N−1∑
i=1

(
ti
N
− 1

N2

)
(N − i)i

=
2

N

N−1∑
i=0

(
ti
N
− 1

N2

)
(N − i)(N − i− 1)

2
+

2

N

N−1∑
i=0

(
ti
N
− 1

N2

)
(N − i)i

=
2

N

N−1∑
i=0

(
ti
N
− 1

N2

)[
(N − i)(N − i− 1)

2
+ (N − i)i

]

=
1

N

N−1∑
i=0

(Nti − 1)

(
(N − i)(N + i− 1)

N2

)
:=

1

N

N−1∑
i=0

Xi,Nai,N . (5.7)

Note that Xi,N = Nti−1 is a triangular array of i.i.d. centered random variables,

and ai,N = (N − i)(N + i − 1)/N2 is a triangular array of constants. We study

the a.s. convergence by analyzing the summability of the fourth moment of QN .

By the independence of the random variables ti we have

E
[
Q4
N

]
=E

( 1

N

N−1∑
i=0

Xi,Nai,N

)4
 =

1

N4

N−1∑
i=0

a4
i,NE

[
X4
i,N

]
+

6

N4

∑
0≤i<j≤N−1

a2
i,Na

2
j,NE

[
X2
i,N

]
E
[
X2
j,N

]
+

4

N4

∑
0≤i<j≤N−1

ai,Na
3
j,NE [Xi,N ]E

[
X3
j,N

]
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+
4

N4

∑
0≤i<j<k≤N−1

ai,Naj,Na
2
k,NE [Xi,N ]E [Xj,N ]E

[
X2
k,N

]
+

1

N4

∑
i<j<k<l

ai,Naj,Nak,Nal,NE [Xi,N ]E [Xj,N ]E [Xk,N ]E [Xl,N ] .

(5.8)

Noting that 0 < maxi ai,N ≤ 1 and E [Xj,N ] = 0, for ∀j ∈ N, (5.8) yields

E
[
Q4
N

]
=

1

N4

N−1∑
i=0

E
[
X4
i,N

]
+

6

N4

∑
0≤i<j≤N−1

E
[
X2
i,N

]
E
[
X2
j,N

]
≤ C

N (β−1)∧(2α−2)
.

Now, if α > 3/2 and β > 2, the a.s. convergence of QN to zero is achieved. The

convergence in probability is obtained for α > 1 and β > 1.

Finally, studying the a.s. convergence of UN to zero, we can see from (5.4)

that UN = (2/N)
∑

0≤i<j≤N−1 (ti − E [ti]) (tj − E [tj ]) (N − j), and E [UN ] = 0.

Studying the second moment, from the independence of the ti

E
[
U2
N

]
=

4

N2

∑
0≤i<j≤N−1

E
[
(ti − E [ti])

2 (tj − E [tj ])
2
]

(N − j)2

=
4

N2

∑
0≤i<j≤N−1

E

[(
ti −

1

N

)2(
tj −

1

N

)2
]

(N − j)2

=
4V ar2(t0)

N2

N−1∑
j=1

j−1∑
i=0

(N − j)2 =
4V ar2(t0)

N2

N−1∑
j=1

(N − j)2j


≤ 4V ar2(t0)

N2

N−1∑
j=1

(N − j)2j

 ≤ CN2V ar2(t0) ≤ C

N2α−2
. (5.9)

In (5.9), for α > 1, the convergence in probability is ensured, whereas for α > 3/2

the a.s. convergence is ensured.

Finally, in Table 4, we summarize the results obtained for RN , TN , QN ,

and UN . These enable us to identify the restrictions on α and β to ensure the

convergence in probability and a.s. convergence, recalling the methodologies in

Remark 3 and the condition α < 2 from H1 and H2.

Thus, DN converges in probability to 1/3 as N goes to infinity if 1 < α < 2

and β > 1. Considering 3/2 < α < 2 and β > 2, we ensure the a.s. convergence

of DN .
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Table 4. Values for α and β to ensure convergence in P and a.s. convergence.

convergence in P a.s. convergence

|RN − 1/3| ≤ C/Nα−1 α > 1 α > 1

E
[
T 2
N

]
≤ C/N (β−1)∧(2α−1) α > 1/2, β > 1 α > 1, β > 2

E
[
Q4
N

]
≤ C/N (β−1)∧(2α−2) α > 1, β > 1 α > 3/2, β > 2

E
[
U2
N

]
≤ C/N2α−2 α > 1 α > 3/2
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E-mail: tania.roa@uai.cl

Soledad Torres
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