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This supplement contains two sections. Section S1 includes technical proofs of propositions, lemmas, and theorems,
and Section S2 presents figures and detailed results from simulation studies.

S1 Appendix: Proofs

Proof of Proposition 1. Under M1, M4, A1-A3, we write the pdf of the marginal distribution
of Y at t ∈ C as f(y) and it is assumed to be symmetric (or even function) about α(t). Then

EPY [ψ
(
Y (t)− α(t)

)
] =

∫ ∞
−∞

ψ
(
Y (t)− α(t)

)
f
(
Y (t)− α(t)

)
dy = 0, t ∈ C,

under the assumption of odd function ψ(·). Thus, θ(t) = α(t).

Proof of Proposition 2. Under A1-A2, equation (2.3) implies that EPY
[
ρ(Y (t)−α(t)+α(t)−

θ(t))
]

equals specific value at each t ∈ C, say c1(t). Under B1, the marginal distribution of
Y (t) − α(t), t ∈ C, does not depend on t with the probability measure PZ . Then we can
equivalently write

EPZ
[
ρ(Z − {α(t)− θ(t)})

]
= c1,

and {α(t)− θ(t)} = c1 + c2, where constant c2 is determined by PZ . Let c = c1 + c2 then we
can write θ(t) = α(t) + c.

Proof of Theorem 1. Denote T (Pε)(t) by θε(t). Under D2, for any υ > 0, there exists δ > 0,

P (sup
t∈C
|θε(t)− θ(t)| > υ) 6 P (sup

t∈C

[
M(t, θε, P )−M(t, θ, P )

]
> δ)

6 P (sup
t∈C

[
M(t, θε, P )−M(t, θε, Pε) +M(t, θ, Pε)−M(t, θ, P )

]
> δ)

6 P (sup
t∈C
|M(t, θε, P )−M(t, θε, Pε)| > δ/2)

+ P (sup
t∈C
|M(t, θ, Pε)−M(t, θ, P )| > δ/2).

By D1, T (Pε)(t) is uniformly continuous as ε→ 0.

Proof of Theorem 2. By the estimating equation of (2.4),

0 = (1− ε)EP
[
δ(t)ψ(Y (t), θε(t))

]
+ εδ∗(t)ψ(Y ∗(t), θε(t))

= (1− ε)EP
[
δ(t){ψ(Y (t), θε(t))− ψ(Y (t), θ(t))}

]
+ εδ∗(t)ψ(Y ∗(t), θε(t))

= (1− ε)EP
[
δ(t)

ψ(Y (t), θε(t))− ψ(Y (t), θ(t))

ε

]
+ δ∗(t)ψ(Y ∗(t), θε(t))



Let ε→ 0, then

0 = EP
[
δ(t)ψ̇(Y (t), θ(t))

]
θ̇(t) + δ∗(t)ψ(Y ∗(t), θ(t)).

Thus,

θ̇(t) = IFT (Y ∗, δ∗)(t) =
δ∗(t)ψ(Y ∗(t)− θ(t))
−EP

[
δ(t)ψ̇(Y (t), θ(t))

] ,
and the bounded ψ(·) implies γ∞T <∞.

Proof of Lemma 1. Under the sampling scheme condition M2, we can define the empirical
process

Gn(t) =
1√
n

n∑
i=1

[h(t, Vi)− Eh(t, Vi)], t ∈ C,

where V1, . . . , Vn are i.i.d. random variables in V with common distribution f . Alternatively,
we may write

Gn(g) =
1√
n

n∑
i=1

[g(Vi)− E g(Vi)], g ∈ G

with the identification of g by ht for a given missing scheme h. Then

Wn =
1√
n

sup
t∈C

Gn(t) =
1√
n

sup
g∈G

Gn(g).

Recall that H : V → {0, 1} is a measurable envelope for G. Set M = max16i6nH(Vi). By
the local maximal inequality Chernozhukov, Chetverikov, and Kato (2014) with the locality
parameter δ = 1, there is a universal constant C > 0 such that

E[sup
g∈G

Gn(g)] 6 C
{
J(1,G, H)‖H‖f,2 +

‖M‖2J2(1,G, H)√
n

}
.

Since |H| 6 1 and ‖M‖2 6 1, we get

E[sup
g∈G

Gn(g)] 6 C
{
J(1,G, H) +

J2(1,G, H)√
n

}
.

Then it is immediate that

E[Wn] 6 C
{J(1,G, H)√

n
+
J2(1,G, H)

n

}
6 C

J(1,G, H)√
n

max
{

1,
J(1,G, H)√

n

}
.

Proof of Theorem 3. For t ∈ C, if |θ̂n(t) − θ(t)| > ε, then M(t, θ̂n, P ) −M(t, θ, P ) > δt by

D2, and supt
[
M(t, θ̂n, P )−M(t, θ, P )

]
> δ, where δ = supt δt. Then
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P (sup
t∈C
|θ̂n(t)− θ(t)| > ε) 6 P (sup

t∈C

[
M(t, θ̂n, P )−M(t, θ, P )

]
> δ)

= P (sup
t∈C

[
M(t, θ̂n, P )−M(t, θ̂n, Pn) +M(t, θ̂n, Pn)−M(t, θ, Pn)

+M(t, θ, Pn)−M(t, θ, P )
]
) > δ)

6 P (sup
t∈C

[
M(t, θ̂n, P )−M(t, θ̂n, Pn) +M(t, θ, Pn)−M(t, θ, P )

]
> δ)

6 P (sup
t∈C
|M(t, θ̂n, P )−M(t, θ̂n, Pn)| > δ/2)

+ p(sup
t∈C
|M(t, θ, Pn)−M(t, θ, P )| > δ/2)

By D1, θ̂n(t) uniformly converges to θ(t) over C as n→∞.

Proof of Theorem 4. Let Z̃n(t) = n−1/2
∑n

i=1 δi(t)Vi(t)/b(t). For any t1, . . . , tK ∈ C, denote

Z̃n = (Z̃n(t1), . . . , Z̃n(tK))T . By the multivariate CLT and the independence between δi and
Vi, we have

Z̃n
d→ N(0,Ξ),

where Ξ = {ϑjk}Kj,k=1 is the K×K covariance matrix with ϑjk = v(tj, tk)γ(tj, tk)/[b(tj)b(tk)].

By Theorem 7.4.2 in Hsing and Eubank (2015), the process {Z̃n(t) : t ∈ C} is a random
element in the Hilbert space H = L2(C,B(C), µ), where µ is a finite measure on C. Then
it follows from Theorem 7.7.6 in Hsing and Eubank (2015) for i.i.d. Hilbert space valued
random variables that

{Z̃n(t) : t ∈ C} GP(0, ϑ),

where the finite-dimensional restrictions of ϑ is given by the covariance matrix Ξ. Note that

sup
t∈C

∣∣∣Z̃n(t)− Zn(t)
∣∣∣ ≤ sup

t∈C
|Z̃n(t)| · sup

t∈C

∣∣∣∣1− b(t)

δn(t)

∣∣∣∣ ,
where δn(t) = n−1

∑n
i=1 δi(t). Note that

|δn(t)| ≥ b(t)− |δn(t)− b(t)| ≥ inf
t∈C

b(t)−Wn,

where

Wn = sup
t∈C
|n−1

n∑
i=1

[δi(t)− b(t)]|.

By Lemma 3.1, E[Wn] = O(n−1/2). Since supt∈C |Z̃n(t)| = OP (1), we have

sup
t∈C

∣∣∣Z̃n(t)− Zn(t)
∣∣∣ = OP (n−1/2).

Then Theorem 4 is an immediate consequence of Slutsky’s lemma.



Proof of Theorem 5. The estimating equation (2.4) can be equivalently written as,

1∑n
j=1 δj(t)

n∑
i=1

δi(t)ψ(Yi(t), θ̂n(t)) = 0.

By mean value theorem,

1∑n
j=1 δj(t)

n∑
i=1

δi(t)ψ(Yi(t), θ(t)) +
1∑n

j=1 δj(t)

n∑
i=1

δi(t)ψ̇(Yi(t), θ̃n(t))
(
θ̂n(t)− θ(t)

)
= 0,

where θ(t) 6 θ̃n(t) 6 θ̂n(t), t ∈ C. Rearranging terms, we get

√
n
(
θ̂n(t)−θ(t)

)
= −

[ 1∑n
j=1 δj(t)

n∑
i=1

δi(t)ψ̇(Yi(t), θ̃n(t))︸ ︷︷ ︸
(1)

]−1 1∑n
j=1 δj(t)

√
n

n∑
i=1

δi(t)ψ(Yi(t), θ(t))︸ ︷︷ ︸
(2)

,

where

(1) =
1∑n

j=1 δj(t)

n∑
i=1

δi(t)
[
ψ̇(Yi(t), θ̃n(t))− ψ̇(Yi(t), θ(t))

]
+

1∑n
j=1 δj(t)

n∑
i=1

δi(t)ψ̇(Yi(t), θ(t))

=
1∑n

j=1 δj(t)/n

n∑
i=1

[δi(t)
n
− b(t)

n

][
ψ̇(Yi(t), θ̃n(t))− ψ̇(Yi(t), θ(t))

]
+

b(t)∑n
j=1 δj(t)/n

[ 1

n

n∑
i=1

ψ̇(Yi(t), θ̃n(t))− ψ̇(Yi(t), θ(t))
]

+
1∑n

j=1 δj(t)

n∑
i=1

δi(t)ψ̇(Yi(t), θ(t))

6 sup
t∈C

{ 1∑n
j=1 δj(t)/n

}
sup
t∈C

∣∣∣ n∑
i=1

[δi(t)
n
− b(t)

n

][
ψ̇(Yi(t), θ̃n(t))− ψ̇(Yi(t), θ(t))

]∣∣∣
+ sup

t∈C

{ b(t)∑n
j=1 δj(t)/n

}
sup
t∈C

∣∣∣ 1
n

n∑
i=1

ψ̇(Yi(t), θ̃n(t))− ψ̇(Yi(t), θ(t))
∣∣∣

+
1∑n

j=1 δj(t)

n∑
i=1

δi(t)ψ̇(Yi(t), θ(t)).

As n→∞, under given conditions and Corollary 1, it is OP (n−1/2)+oP (1)+EPY ψ̇(Y (t), θ(t)).
By Theorem 4, term (2) converges to Gaussian Process with mean zero and covariance

function ϕ(s, t) = Cov
{
ψ(Y (t), θ(t)), ψ(Y (s), θ(s))

} v(s,t)
b(s)b(t)

, where v(s, t) = EPδ [δ(s)δ(t)].

Then it an immediate consequence of Slutsky’s lemma.

Proof of Corollary 2. The convergence of numerator of Tn follows about the same lines as
those in the proof of Theorem 1 of Shen and Faraway (2004) under functional limit the-
orem for robust M-estimator under partial sampling structure. The denominator of Tn,
trace(ξ̂(s, t)), converges to trace(ξ(s, t)) with consistent estimator ξ̂. By Slutsky’s theorem,
proof is done.
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Proof of Corollary 3. By Karhuneun-Loéve theorem, ξ(s, t) =
∑k

r=1 κrer(t)er(s) and we have
√
n(θ̂n(t)− θ(t)) =

∑k
r=1 ηrer(t), where

ηr =

∫
C

√
n
(
θ̂n(t)− θ(t)

)
er(t)dt ∼ AN(0, κr), r = 1, ..., k.

Then we can write

√
n〈(θ̂n(·)− θ(·)), φ(·)〉 =

√
n
(
〈θ̂n(t), φ(·)〉 − c

)
=

∫ ( k∑
r=1

ηrer(t)
)
φ(t)dt

=
k∑
r=1

ηr

∫
er(t)φ(t)dt =

k∑
r=1

ηr〈er(·), φ(·)〉,

Under the assumption of tr(ξ) < ∞,
∑k

r=1 ηr converges in distribution especially to nor-

mal distribution. Thus,
∑k

r=1 ηr〈er(·), φ(·)〉 also converges to normal distribution under
〈er(t), φ(t)〉 < ||er(t)|| · ||φ(t)|| = c < ∞. The asymptotic variance is derived as τ 2 =

Var
{∑k

r=1 ηr〈er(·), φ(·)〉
}

=
∑k

r=1 k
2
rκr, where k2r = 〈er(·), φ(·)〉2 =

∫ ∫
C
φ(s)φ(t)er(s)er(t)dsdt.



S2 Appendix: Additional Figure and Results from Simulation
Studies

S2.1 Simulated heavy-tailed Data

We present simulated data in Figure 1 under six heavy-tailed or contaminated scenarios

considered in Section 5.

Figure 1: Simulated data from the scenario of (a) Gaussian, (b) t3, (c) Cauchy, (d) white-noise t3 with
random scales, Gaussian partially contaminated by (e) Cauchy white-noise, and by (f) Cauchy processes.
Smooth central line indicates location function.
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S2.2 Additional Results for Simulation Studies

Figure 2 displays the estimation performances of robust estimators under partially observed
functional data, especially incomplete curves observed at randomly selected interval among
a fixed number of pre-specified intervals. Boxplots show similar behaviors that we observe
from the results under random interval structure in Section 5.1.2. Our proposed marginal M-
estimator achieves superior estimation accuracies compared two competitors under Cauchy
data and Gaussian data with Cauchy contaminated noise. Although slightly lower errors
are observed from two competing functional estimators under (a) Gaussian and (b) t(3)
distributed data compared to ours, differences do not seem significant and almost similar.

Tables 1, 2, and 3 provide detailed results for simulations on bootstrapped functional
trend test in Section 5.2 with coverage probabilities and the median length of bootstrapped
confidence intervals for projected coefficients to quadratic, linear, and constant basis func-
tions, respectively

Figure 2: Boxplots of ISE or log transformed ISE over 500 replications from the marginal M-estimator (M),
marginal scaled M-estimator (Sc.M), marginal M-estimator under pre-smoothed curves (M*), marginal scaled
M-estimator under pre-smoothed curves (Sc.M*), functional M-estimator (Func.M), and functional Median
(Med.) under partially observed data at randomly selected interval among a fixed number of pre-specified
intervals from (a) Gaussian, (b) t3, (c) Cauchy, (d) white-noise t3 with random scales, Gaussian partially
contaminated by (e) Cauchy white-noise, and by (f) Cauchy processes. Square dots represent mean values.



Table 1: Coverage probabilities and the median length of bootstrapped confidence intervals (in parenthesis)
of projection coefficient to Quadratic basis function from M-estimator (M), scaled M-estimator (Sc.M), and
mean over 500 repetitions

Regular Irregular1 Irregular2 Dense snippets

Mean Mt Sc.M Mean M Sc.Mt Mean M Sc.M Mean M Sc.M

Gaussian
0.94 0.942 0.942 0.936 0.954 0.954 0.942 0.946 0.952 0.910 0.915 0.915

(0.14) (0.15) (0.15) (0.23) (0.24) (0.24) (0.22) (0.24) (0.24) (0.17) (0.19) (0.19)

t(3)
0.46 0.948 0.95 0.94 0.95 0.95 0.938 0.944 0.948 0.930 0.920 0.920

(0.23) (0.18) (0.18) (0.35) (0.29) (0.29) (0.35) (0.28) (0.28) (0.27) (0.22) (0.22)

Cauchy
0.938 0.946 0.954 0.912 0.950 0.956 0.902 0.960 0.966 0.960 0.880 0.885

(1.55) (0.22) (0.24) (2.00) (0.37) (0.42) (2.41) (0.37) (0.40) (4.10) (0.29) (0.31)

Cont.1
0.934 0.952 0.954 0.910 0.944 0.946 0.926 0.948 0.954 0.920 0.925 0.935

(0.83) (0.21) (0.22) (0.95) (0.34) (0.35) (0.86) (0.34) (0.35) (1.19) (0.28) (0.28)

Cont.2
0.880 0.940 0.940 0.888 0.938 0.940 0.928 0.950 0.954 0.925 0.935 0.920

(0.83) (0.21) (0.22) (0.94) (0.34) (0.36) (0.99) (0.35) (0.36) (1.17) (0.28) (0.28)

Table 2: Coverage probabilities and the median length of bootstrapped confidence intervals (in parenthesis)
of projection coefficient to Linear basis function from M-estimator (M), scaled M-estimator (Sc.M), and
mean over 500 repetitions

Regular Irregular1 Irregular2 Dense snippets

Mean Mt Sc.M Mean M Sc.Mt Mean M Sc.M Mean M Sc.M

Gaussian
0.940 0.946 0.948 0.940 0.940 0.950 0.944 0.958 0.960 0.825 0.710 0.730

(0.19) (0.20) (0.20) (0.28) (0.30) (0.30) (0.30) (0.32) (0.32) (0.32) (0.36) (0.36)

t(3)
0.928 0.934 0.934 0.946 0.958 0.966 0.940 0.946 0.950 0.820 0.790 0.815

(0.30) (0.23) (0.23) (0.44) (0.35) (0.35) (0.47) (0.36) (0.37) (0.44) (0.40) (0.41)

Cauchy
0.908 0.948 0.942 0.896 0.946 0.95 0.902 0.952 0.940 0.910 0.680 0.70

(2.06) (0.29) (0.31) (2.56) (0.46) (0.51) (3.23) (0.48) (0.54) (3.31) (0.57) (0.62)

Cont.1
0.892 0.940 0.938 0.928 0.956 0.954 0.926 0.942 0.950 0.855 0.785 0.805

(1.42) (0.31) (0.32) (1.53) (0.47) (0.49) (1.39) (0.52) (0.54) (1.65) (0.56) (0.58)

Cont.2
0.918 0.942 0.944 0.888 0.930 0.934 0.936 0.948 0.952 0.870 0.715 0.725

(1.42) (0.31) (0.32) (1.55) (0.47) (0.49) (1.55) (0.47) (0.48) (1.40) (0.53) (0.55)

Table 3: Coverage probabilities and the median length of bootstrapped confidence intervals (in parenthesis)
of projection coefficient to Constant basis function from M-estimator (M), scaled M-estimator (Sc.M), and
mean over 500 repetitions

Regular Irregular1 Irregular2 Dense snippets

Mean Mt Sc.M Mean M Sc.Mt Mean M Sc.M Mean M Sc.M

Gaussian
0.950 0.956 0.950 0.944 0.952 0.952 0.954 0.956 0.954 0.690 0.640 0.665

(0.26) (0.27) (0.27) (0.35) (0.36) (0.36) (0.34) (0.35) (0.35) (0.32) (0.39) (0.40)

t(3)
0.908 0.954 0.954 0.916 0.934 0.936 0.940 0.958 0.960 0.735 0.760 0.785

(0.41) (0.30) (0.31) (0.52) (0.43) (0.43) (0.52) (0.40) (0.41) (0.43) (0.42) (0.43)

Cauchy
0.902 0.936 0.934 0.904 0.956 0.960 0.926 0.954 0.952 0.915 0.765 0.785

(2.92) (0.38) (0.42) (3.04) (0.55) (0.61) (3.51) (0.51) (0.57) (3.25) (0.58) (0.60)

Cont.1
0.918 0.964 0.966 0.912 0.950 0.960 0.922 0.948 0.952 0.755 0.690 0.710

(1.18) (0.34) (0.34) (1.25) (0.47) (0.48) (1.17) (0.49) (0.51) (0.99) (0.54) (0.55)

Cont.2
0.918 0.960 0.962 0.874 0.930 0.930 0.914 0.942 0.940 0.735 0.645 0.680

(1.17) (0.34) (0.34) (1.27) (0.47) (0.48) (1.28) (0.44) (0.45) (0.84) (0.49) (0.50)

S2.3 Validity of Robust Inference for Partially Observed Functional Data under
Sparse Design Points

To evaluate the numerical feasibility and performance of robust inference under partially
observed functional data recorded at sparse points, we apply sparse sampling scheme to sets
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Figure 3: (a) Coverage probabilities of bootstrapped confidence intervals of projection coefficients to
quadratic function under Gaussian, t3, Cauchy, and two contaminated data from M-estimator (M), scaled
M-estimator (Sc.M), and Mean functions over 500 repetitions under sparse data. (b) Median length of
bootstrapped confidence intervals of projection coefficient

of curves generated under five distributional assumptions considered in Section 5.2.

Specifically, we first define ε-equispaced grid points, t0, t1, ..., t1/ε, over [0, 1], for sufficiently
small ε > 0, then generate li = min(vi1, vi2) and ui = max(vi1, vi2) from vij, j = 1, 2, i.i.d.
from a discrete uniform random variable V on {t0, t1, ..., t1/ε} to set the lower and upper
bounds of the subinterval of each curve. Let tij, j = 1, ..., ni denote grid points within each
individual random subinterval and ti1 = li, tini = ui by definition. We then assume Bernoulli

distribution to draw binary indicator, δ(tij)
i.i.d.∼ Bernoulli(p), where p controls the sparsity

of the data. In our simulation, we set p = 0.4 and the sample size as n = 200.

As the generated data have regular sparse design points, the marginal M-estimator is
applied to each ε-equispaced grid point and Figure 3 displays coverage probabilities of 95%
bootstrapped confidence intervals for quadratic coefficient of location parameter and median
length of bootstrapped confidence intervals. First it can be seen that robust inferential
test performs well even under sparse design by detecting true quadratic trend with 90 −
95% coverage probabilities under various distributional settings. We also observe stable
behaviors of confidence intervals with almost constant length of confidence intervals even with
existence of heavy-tailed curves or contaminations. On the other hand, unstable performance
is observed from inferential test based on functional means.

Via simulation studies, we illustrate the numerical feasibility and validity of robust in-
ferential method for fragmented data observed at sparse grid points. Although further ex-
tension on theory, especially for conditions on partial sampling process, is required to fit
spares structure to our proposed framework, promising numerical results shine a light on the
generalization of our approach even to sparsely observed data.
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