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Supplementary Material

This is the supplementary material of the article “Test for conditional variance of integer-valued
time series”. In this supplementary material, we provide all proofs of the main theorems 1-5,
additional examples of the goodness-of-fit test, and expressions of higher moments to derive

asymptotic variances for concrete examples.

S1 Proofs of main article

This section provides the proofs of Theorems 1-5 in the article “Test for

conditional variance of integer-valued time series”.

Proof of Theorem 1. From (B2), it follows that

sup |L,(6) — Ln(O)‘ _! Z sup |0(Zi,\(0)) — €(Z,0(0)))| — 0
0cO n 4= 6co

as n — oo. Define an open ball as B,.(0,) := {0 : ||@ — 04]|,, < 1/r}. By

the ergodic theorem for non-integrable processes (see [Francq and Zakoian
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(2010, p.181, Problem 7.3)), it can be shown that, for any 8, € ©,

limsup sup L,(0) <limsup sup L,(6)
n—oo  QeB,(01) n—oo 0B (01)

+ limsup sup En(e)—Ln(O)‘

n—oo 0B (01)

§E< sup E(Zt,)\t(O))) a.s..

0B, (61)
Since E (supgep, (a,) {(Z:,2:(0))) is a decreasing function with respect to r,
by Assumption (B1) and the Beppo-Levi theorem, we observe
E (SUpeeBT(ol) U(Z,M(0))) — E(6(Z;,M(01))) as 7 — oco. Hence, from

Assumptions (B3) and (B4), there exists a neighborhood B(6;) of 81(# 6,),

limsup sup L,(0) <E [ sup £(Z,\(61)) a.s.
n—oco OeB(01) 0cB(01)

<E(((Z,)(60)))  as.

= lim L,(6y) as..

n—o0

From Assumption (B5), there exists, for any covering set {B(0;) : i =
0,...,00} of ® such that an open neighborhood B(8,) of 6, and open
neighborhoods B(0;) with limsup,, ., SuPgcp(,) Ln(0) < lim,_s0 Ln(60)
and 0; € ©\B(0,) for i = 1,...,00, the finite covering set {B(0;) : i =

0,...,s}. Hence, it holds that, for sufficiently large n,

sup L,(0) = max sup L,(6)
0c® i=0,-:5 9e B(6;)
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= sup L,(0) as.
0cB(00)

Since 6, belongs to the neighborhood B(8y) of 8, almost surely for large n

and B(6) can be taken arbitrary, én converges to Oy a.s. asn — oco. [

Proof of Theorem 2. By Assumption (C7), we know that

N %En(e) —%an) g
<13 (Jrenrion (B - o),
+ H%At(e) (6’(Zt,it(9)) - f'(Ztht(e)U , )

— 0 a.s. asn — oo.

The definition of ,,, Assumptions (C6) and (C12), and Taylor’s expansion
yield that

0 ~ =
0 N
:\/E%Ln(en) + Op(l)

Vi Lnl00) = Vit (0, 00) (52 1 (0)) +o,(1). (51

where 8, < 0¥ < 0,
We define B, (6y) := {6 : |0 —60y||¢,, < 1/r}, and it holds that B,(68,) C
V (6,) for sufficiently large r. By the strong consistency of @,,, we observe

that % € B,(6,) for large n. By Assumption (C8) and the ergodic theorem,
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we have
2
<lz O Z0(0) — B2 t(Z,7(80))
0 Bsglipeo) 89 (99 [ZT4Y 89189]- ts\t\Yo
0? 0?
—E sup |=——UZ;,\M(0)) — E——L(Z;,\(O ))‘ a.s. as n — 0o.
0B, (00) | 00,00, 1 80,00, V70

From Assumption (C6) and the Beppo-Levi theorem, we can see that

o o>
96,00, 20,00, L ZoM(0)) - Eaeiaej

E sup E(Zt,)\t(eo))‘ —0 asr— oo,

0cB,(0o)

which shows that

2
—#Ln(ﬂi) — J a.s. asn — o0. (51.2)
Assumptions (A0), (C9), and (C10), and the martingale central limit

theorem give that

n

9, 0
Vn——=L,(0) :% ; 8_9€<Zt’>\t<90))

=N(0,1) asn — oo. (S51.3)

By Assumption (C11), we can show that J is a non-singular matrix.

Consequently, from (SLI))-(SL3]), we obtain the desired result. O

Proof of Theorem 3. (a) We shall prove that T,, = N(0,0?) as n — oo.

The proof will be completed once we show that
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()
e i {2~ 30 ~ o0,
- i (2= 20,07 = 0 (@)} | = o)
i
Ty MZ [z 20007~ ro0(8.))
- i (2= 200 = M8} | = o1,
(ii)
NiTs f {(Z~ M(80))" — so(00)}
= N (o, E ((Z — M(00))% — ﬁo(xt(oo))f) as 1 — oo, and
(v

&2 :Min ﬁ? {(Zt - 5\t(én))2 - HO(S\t(én))}Q

— 0% =E ((Z — M(00))? — ro(M(60)))”  as n — oo

First, we prove (i). By Assumption (A1), it is easy to see that

'\/lm ; {(Zt — Mi(0.))? = Fo(\(B ))}
- \/an i; {(Zt — M(01)) = ko(M\ (6 ))} ‘
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n

1 Y 2 2
Sﬁ tzlglelg ’(Zt —Ai(0))” = (Z: — M(0)) )

Z sup |ko(A - mo(At(e))’

96@
1% 1%
21—y Z,p |+ |— {V2t—|—2tsup)\9}
\/ﬁ; v \/ﬁ; g e )
Vi p

+%1—p

which, by the stationarity of {Z;} and the Markov’s inequality, tends

to 0 as n — oo.

From the Taylor’s expansion, it holds that

‘ Mn

7 2 (B = X060 = (6.}

Z{Zt A(60)) —mow(eo))}‘

"tl

=2\ (8, 00) MLZ% {(Z = 2(67)* - mow(e*))}‘
< B Vi (8, - 00)[ 5 D02~ A0 o) (1.4
=1 n
4 MT Vi (6,-60)| Mini%mowe*))' . (SL5)

where 8y < 0 < 6,,. By Assumption (M), the y/n-consistency of ,,
and the continuous mapping theorem, (SL.4) and (SL3]) converge to 0

as n — 0o. Hence, (ii) is established.

6



S1. PROOFS OF MAIN ARTICLE

Next, we show (iii). By Assumption (A0) and (M), it holds that

1 = 2
EZE< — M(80))? — Ko(Me(60)))

t=1

X n{\(zt — )2 — ko(M(60))] > \/Ee})
{

N ( (Zy — Mi(80))* — “0()%(‘90))}2

1] 120 = M(60) — mo(M(B0))I’
H{ (Ve g 1})

E|(Z — M(680))? — ro(M(80))]7 =0 asn — oo,

1
< -
~ (VMpe)?

and the ergodic theorem yields
_ZE< >\t 00)) —Iio(/\t 90 } |ft 1)

S E ({(Zt —A(00)? — mo(At(eo))f) as 1 — o0,

Since {(Z; — M\i(00))? — ro(A:(00))} is a martingale difference sequence,

the martingale central limit theorem immediately gives (iii).

Finally, we prove (iv). By the Assumption (A1), a simple algebra gives

that
= M (2~ (6.))* — ro(M(6,)))
-F M (2= M8, = ra(3(8,))) | = 0,01
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Next, we see that

By the Taylor’s expansion, we have

2

) { (120 = M8, — ro(M(8.)

(Z— M8 — ro(M(60)))’ }

> 5 (2= M) = o ((6)°

9

gl

SHVIOND

01
where 8y < 0" < 0,,. From Assumption (M>) and the y/n-consistency
of 0,, (BLO) is established. By Assumption (B3) and the ergodic

theorem, it holds that

1 A

S 2 (= A0 = 080

= E((Z — M(600))? — ko(M(80)))”  as. as n — oo,
which shows the required result.

As well as proof of (a), we shall prove that T,, = N(0,5?) as n — oo.

Define that
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Under our assumptions, it follows, from the Taylor expansion, that

- > [{@ =307 - - vioy)

~{rolh(B) - Féo(At(eo))”
Z {{ 0.) — (7~ N(05))}

3\

~{hon(8) — o Atwo))ﬂ +op(1)
; [ (Ze— 0(63)) — sbO(63)) (—iwm)T

00

3I'—

< (B, >} +oy(1)

= ({2<Zt ~ 0 (00)) = R 00} () )
X J—1% tzl %K(Zt,)\t(eo)) + 0,(1),

where 0, is a point between 6, and 0, Putting that

=5 ({202~ M(00) ~ K001} (- gton)) )

00
—E </@6(At(00)) ( 8‘2&(90)»

we have that

1 < 9
T, —T, = LTJA% 59 (Z6:Au(80)) + 0,(1).

=1

t
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For the vector-valued sequence (T}, — T°, T°)T, it holds that

nr n

T, — T L'J' 0 n
= (Z g) +0,(1),
70 0O 1 ] \+=
where
29U (Ze:2(00))

G =
\/Lﬁ {(Z = X(80))? — ro(Mi(80))}

By Assumption 3.1 and the definition of kg, we have that {(;}iez is
an R%*!-valued martingale difference. Moreover, we can see that this
martingale difference satisfies the Lindeberg’s condition from Assump-
tions 2.1 and 3.1. We obtain the following asymptotic normality under

null hypothesis by using the martingale central limit theorem:

ZQ:>N(O,C’) as n — 0o,
t=1

where
I Chp
C =
Cly o3
with
) T )
Cp=E %E(Zta/\t(eo)) {(Zi — Mi(60))” — Ko(Ae(60)) }

Therefore, we have that
-
T, — TP L'Jt O L'Jt O
= N|o, ¢
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Noting that

we obtain the conclusion by using continuous mapping theorem.

Proof of Theorem 4. Under Hy, we prove that P(|T,,| > C) =1, n — oo.

We have that

{7, >C} = {I,,-C>0}u{T,+C <0}

- \umt v Y gt e <o)

Put

1 1 1 1
T,— ———C, and A’ = T, + C.
VAL, M T AL Y,

Then, we can decompose A, and A/, as follows:

A, = (I) + (IT) + (ITT) + (IV), and A = (I) + (II) + (I1I) — (IV),
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_M%l Zi\i’i (Zt - >\t(00))2 - 50()\15<00))} )

(II1) = 3+ M {(Z — M(80))* — 5(A(60))}
— 1 2 {ro(M(B0)) — K(M(60))}
and
1

VM,
Hereafter, we show that (), (I1) = o,(1),

(IV) = C.

(I11) =P E (ko(M(00)) — k(Ae(60))) # 0, and (IV) = o(1), which imply
our conclusion.

Clearly, we have that (IV) = o(1). We can easily see that

(1), (1) = 0p(1),

for both cases M,, = o(n) and M,, = n, by the similar approach to the proof

of Theorem 3.3 (a) and (b) since we assume that

sup (A (0) — X\ (0)| < Vp!  as.  sup|ro(M(0))—ko(A(0))| < Vsuppt  a.s.
0cO RC) 9co

in Assumption 2.1 and we have that

V(8 — 8y) = 0,(1)
from Theorem 2. By the ergodic theorem, it holds that

(111) =E ((Z: — M(60))* — £(Ai(60))) + E (k0(Ae(80)) — £(Ae(80))) + 0,(1)
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= (E ((Zt - )\t(90))2 - %()\t(eo))|ft—1))
+ Er0(A:(00)) — £(Ae(00))] + 0p(1)

—E o (M(00)) — £(3(80))] + 0,(1).
Therefore, we have that
A, AL =P A n— oo,
where A = E (ko(Ae(00)) — £(A:(00))) . Note that the assumption
E (ko(Ae(00)) — £(Ae(60))) # 0

ensures to apply the continuous mapping theorem to deduce that

Tia,>0p =P Iiasoy and  Ipar <oy =P Iiacoy, n — oo.
Using the dominated convergence theorem, we obtain that

lim P(|T,] > C) = lim {P(A, > 0)+ P (A, >0)}

n—0o0 n—oo

= nh_}r{)lo {E (Ita,501) +E (It <0y) }

= E([tas0y) + E (Tra<oy)

= 1,
which ends the proof. O

Proof of Theorem 5. Denote {P,} as the sequence of probability distribu-
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tions for H,, Under H,,, we have that

T, =)+ (II)+ (111),

where
(= Z X {20 = M(0.2))* = ko8 }
— A= (2= 2l60)) = roM(8))
(1) = = S {(Z = 282 = ro(0(62)) }
— i 2o {(Ze = Ai(60))* = ko(Ae(60))}
and

(I11) = \/;an Zi\g (Z: = Ae(60))? — Kn(Xe(60))}

— A it {ro(M(B0)) = Kn(Ae(60))}

for both cases M,, = o(n) and M,, = n. As well as the proof of Theorem 4,

we can see that (I) = o,, (1) and (II) satisfies that

0p,, (1) M, = o(n),
(1) =

LT =50 gl ZiAi(60)) + 0, (1) M, =n.

For (/11I), it holds that

(111) = Z (2~ M(80)? = ka(MOD} + 3 Z hA(60))

14
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The ergodic theorem implies that

My,

ML >~ h(A\(80)) = E(h(A(80))) + 0y, (1).

n

Therefore, under Hy, and M, = o(n), we have that

My

Tn = \/m tz; {(Zt - )‘t(eo))2 - '%n()\t(eo))} + E(h()\t(eo))) + Opn(l)'

Noting that
{(Z = 2(00))° = ka(M(B0)) } e,

is a martingale difference array, that

My

B ({(Z0 = M(60)) = 5u(M(80)} 1Fis)

! dE ({(Zt — M\(60))% = Fu(Ae(60)) } ]]—"t_l>

2_ . R
ST ({2~ M0 = kn((80)} S=hOMOu)I7 )

+ML ZE (Z\/[an()\t(g()))‘z’]:t_l)

no,_

= 0-2 +0pn(1)7

and that the Lindeberg condition holds under our assumptions, we have

that

T, = N(E(h(A(60))), o*)

by using the central limit theorem for martingale difference arrays (see, e.g.,

15
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Pollard! (1984)). When M,, = n, it holds that

LTJ1 O n
T, = (1,1) (23m)+mmu%m+%xm
O 1) \=

where

Ct,n =
L {(Z = M(80))* = rn(M(60))}

Noting that {C,}i<t<n is an R¢Tl-valued martingale difference array, we
can apply the central limit theorem as well as the case M, = o(n) and
obtain that

T, = N(E(h(X\(60))),5°),

which implies our conclusion. Il

S2 Additional examples of goodness of fit tests

This section serves goodness-of-fit tests for binomial and gamma distribu-

tions.

Goodness of fit test for binomial distribution. If we choose n =
log(p/(1 —p)), A(n) = mlog(l + exp(n)), and h(z) = ,,C,, Z, follows
the binomial distribution with an unknown parameter p and a known
parameter m. Then, the mean and variance are \ := mp and mp(1 —

p) = A(1 — A/m), respectively. Here, we need to restrict the range of

16
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the intensity A to (0,m] to ensure Var(Z;) > 0. Under the appropriate

moment conditions and the null Gy, the test statistic 7", defined as

bin
Tn

where

n

52 — % 3 ((6 +2r)AN0,) + (127 + 4r2)A3(0,) + (77 + 2r*)A2(6,,)
t=1
+ r?&t(én)) /r®

and 62 is defined in Theorem 3 for k(X (0)) = A\ (8) (1 — X\(8)/m),

converges to the standard normal distribution, as n — oo.

Note that the Bernoulli distribution is the special case which corre-

sponds to m = 1.

Goodness of fit test for gamma distribution. By choosing n = —f,
A(n) = —log(—n)®, and h(z) = 27 '/I'(«), Z, follows the Gamma
distribution with a known shape parameter a and unknown rate [.
Then the mean and variance are given by \ := /8 and /% = \? /a,

respectively. Under appropriate moment condition and the null Gy,

17



YUICHI GOTO AND KOU FUJIMORI

the test statistic 75", defined as

67 e S (2= M0, = HO2 Y M, = o(n)

Tsam =
~ n ~ A 32(0,,
7 S (2~ M) - MY =,

where

21 i (2a 4 6) AX(8,,)

a3

t=1

and 62 is defined in Theorem 3 for ko (A\(0)) = A\ (8)?/a, converges to
the standard normal distribution as n — oo. When a = 1, we have

the goodness-of-fit test for the exponential distribution.

S3 Higher moments for several conditional distribu-

tions

This section provides the explicit expression of higher moments to calculate

the asymptotic variances for several conditional distributions.

S3.1 Poisson distribution

Let Z be a random variable whose distribution is Poisson with a parameter
[. The moment generating function is given by e/ =Y. Subsequently, the

higher moments are given by

E(Z) =1,

18
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E(Z%) =l(l+1),
E(Z%) =I1(I* + 31 + 1),

E(ZY) =l(I’+ 61> + Tl + 1).
A simple calculation gives

E((Z-1)?-1)" =21 +1.

S3.2 Binomial distribution

Let Z be a random variable whose distribution is binomial with parameters
p and m. Since the moment generating function is given by (pe’ + (1 —p))",

we have

E(Z)=mp=1,
E(Z?%) =mp(mp —p+1) =1+ —1*/m,
E (Z°) =mp(m®p® + (1 = 3m)p” + 3m — L)p+p° —2p+ 1)
=1+ 31* +1° + (21*)/m?* — (31*)/m — (31°) /m,
E (Z*) =mp{m?®p® + (—6m”> + 4m — 1)p* + (6m> — 4m + 1)p?
+ (Tm —4)p* + (8 = 14m)p® + (Tm — 4)p — p° + 3p* — 3p + 1}
= — (61*)/m?® + (11*)/m? — (61*)/m + I* + (121%) /m? — (181*)/m
+ 603 — (T1*) /m + 71> + 1.

19
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Hence, it holds that
E(Z—1)? = (I —12/m))* =1*(=6/m® + 2/m?) + 1*(—=4/m + 12/m?)

+ 122 —17/m) + 1.

S3.3 Negative binomial distribution

Let Z be a random variable whose distribution is negative binomial with
parameters 7 and p. The moment generating function is given (p/(1 — (1 —
p)et))" for t < —log(1—p), and the higher order moments can be calculated

as
E(Z)=—-(p—-Dr)/p=1,
E(Z%) =((p = V)r((p — Dr = 1)/p* = (Pr + 1> + 1)/,
E(Z%) == ((p—Dr((0® =20+ 1)r* + (3 =3p)r —p+1) + 1)) /1’
=(20% + 31%r 4 31%r + Ir* + 31%r* + I°r%) /1?,
E(Z2%) =(p — D)r{(»* — 3p* + 3p — 1)r® + (—6p* + 12p — 6)r*
+ (—4p* +8p —4)r —p* + 2p = 14 ((Tp = T)r + 4p — 4) — 1} /p"
=(1*® + 61*? + 110% + 61* + 61373 + 1813r% + 1203 + T1%r® + T1%r?
+1r3) /r?.
We can see that
E(((Z =12 =@ +1r)/r))* =(61")/r® + (204 /r> + (120%) /r? + (41%) /r

20
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+(T12))r + 202 + 1.

S3.4 Gamma distribution

Let Z be a random variable whose distribution is gamma distribution with
a shape parameter a and a rate parameter b. Then, the moment generating

function is given by (b/(b — t))* for t < b, which yields that

E(Z) =a/b=1,
E (Z?) =a(a+1)/b> = (1 + a)l*)/a,
E(Z°) =a(a+1)(a+2)/6° = ((a + 1)(a +2)I*)/a’,
E(Z%) =a(a+1)(a+2)(a+3)/b* = (a+ 1)(a +2)(a+ 3)I*/a’.

It is easy to see that

E((Z—1)?—12/a))* =(61*)/a® + (21*) /a®.
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