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Abstract: This study examines a measure of uncertainty for robust small area es-

timation (SAE). We consider the estimation of the mean squared prediction error

(MSPE) of the observed best predictor (OBP) in SAE under the Fay-Herriot model

with potential model misspecification. Previously, it was thought that the tradi-

tional Prasad-Rao (PR) linearization method could not be used, because it is derived

under the assumption that the underlying model is correctly specified. However,

we show that when it comes to estimating the unconditional MSPE, the PR esti-

mator, derived for estimating the MSPE of the OBP, assuming that the underlying

model is correct, remains first-order unbiased, even when the underlying model is

misspecified in its mean function. A second-order unbiased estimator of the MSPE

is derived by modifying the PR MSPE estimator. The PR and modified PR es-

timators also have much smaller variation than that of existing MSPE estimators

for the OBP. The theoretical findings are supported by empirical results, including

simulation studies and real-data applications.

Key words and phrases: Fay-Herriot model, model misspecification, observed best
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1. Introduction

Robust small area estimation (SAE; e.g., Rao and Molina (2015)) has received

considerable attention in recent studies; see, for example, Sinha and Rao (2009),

Jiang, Nguyen and Rao (2011), and Jiongo, Haziza and Duchesne (2013). In par-

ticular, Jiang, Nguyen and Rao (2011) introduced the observed best prediction

(OBP) method which is known to be more robust against model misspecifica-

tion than is the traditional empirical best linear unbiased prediction (EBLUP)

method. See Pfeffermann (2013), Jiang, Nguyen and Rao (2015), Chen, Jiang

and Nguyen (2015), and Jiang and Rao (2020) for reviews and extensions. The
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robustness of the OBP is achieved by entertaining two models: an assumed model

(e.g., a linear mixed model), which is used to derive the best predictor (BP), and

a broader model, which is used to derive estimators for the parameters involved

in the BP. The assumed model is more useful, owing to its simplicity and the

direct use of available covariates. However, owing to the specificity of the model,

the assumed model is likely to be misspecified. The broader model, on the other

hand, is almost always correct, but is not useful in terms of using the available

covariates. The broader model is only used to derive estimators for the parame-

ters in the BP in a way that is not affected by the model misspecification. Note

that the difference between the OBP and the traditional EBLUP is in how the

unknown parameters in the BP are estimated (see below).

Nevertheless, the weak assumption of the broader model makes it difficult

to assess the uncertainty associated with the OBP. This is because the OBP is

derived by taking into account the potential model misspecification. Therefore, to

derive a measure of uncertainty, the potential model misspecification also needs

to be considered. More importantly, it is desirable to evaluate the uncertainty

due to the potential model misspecification. A standard measure of uncertainty

is the mean squared prediction error (MSPE). In this study, we focus on the

area-level model, or Fay-Herriot model (Fay and Herriot (1979)), arguably the

most widely used model in SAE. The model can be expressed in terms of a linear

mixed model (LMM) as

yi = x′iβ + vi + ei, i = 1, . . . ,m, (1.1)

where xi is a vector of known covariates, β is a vector of unknown regression

coefficients (the fixed effects), vi is an area-specific random effect, and ei is a

sampling error. It is assumed that vi and ei are independent, with vi ∼ N(0, A)

and ei ∼ N(0, Di). The variance A is unknown, but the sampling variance, Di,

is known, for 1 ≤ i ≤ m. The problem of interest is to estimate the small area

means, which, under the assumed model, are θi = x′iβ + vi, for 1 ≤ i ≤ m. If β

and A are known, the BP for θi under the assumed model is

θ̃i = x′iβ +
A

A+Di
(yi − x′iβ) = Biyi + (1−Bi)x′iβ, (1.2)

where Bi = A/(A + Di), for 1 ≤ i ≤ m. Note that the BP is in the sense of

minimizing the MSPE under model (1.1), denoted by MSPE1 = E1(θ̃i − θi)
2.

Here the expectation E1 is with respect to model (1.1), that is, assuming that

(1.1) holds, and that β and A involved in θ̃i are the true parameters under model
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(1.1). This is different to the true MSPE and expectation, denoted by MSPE

and E (without the subscript 1), respectively, introduced below under a broader

model.

Let θ = (θi)1≤i≤m denote a vector of the true small area means, which may

or may not be expressed as x′iβ + vi. If in (1.2) β and A are treated as fixed and

unknown parameters, Jiang, Nguyen and Rao (2011) showed that the MSPE of

θ̃ = (θ̃i)1≤i≤m has the following expression:

MSPE(θ̃) = E(|θ̃ − θ|2)
= E{(y −Xβ)′Γ2(y −Xβ) + 2Atr(Γ)− tr(D)}, (1.3)

where X = (x′i)1≤i≤m, y = (yi)1≤i≤m, Γ = diag(1 − Bi, 1 ≤ i ≤ m), and

D = diag(Di, 1 ≤ i ≤ m). In (1.3), the expectation is with respect to the

true distribution of y under the following broader model:

yi = µi + vi + ei, i = 1, . . . ,m, (1.4)

where µi is completely unknown, and vi and ei are as in (1.1). Note that (1.4)

is much broader than (1.1). It follows that the true small area means can be

expressed as θi = µi + vi, for 1 ≤ i ≤ m. The idea is to find estimators of β and

A that minimize the expression inside the expectation on the right side of (1.3),

that is,

Q(β,A) = (y −Xβ)′Γ2(y −Xβ) + 2Atr(Γ)− tr(D).

These are known as the best predictive estimators (BPE), and are denoted by β̂

and Â, respectively. The BPE is different to, for example, the standard maximum

likelihood estimator (MLE). We illustrate the difference using a simple example.

Example 1. For simplicity, assume that A is known. Then, under model (1.1),

the BPE of β has the expression

β̂ =

{
m∑
i=1

(
Di

A+Di

)2

xix
′
i

}−1 m∑
i=1

(
Di

A+Di

)2

xiyi.

In comparison, the MLE of β has the expression

β̃ =

(
m∑
i=1

xix
′
i

A+Di

)−1 m∑
i=1

xiyi
A+Di

.

Comparing the two expressions, we see that both estimators are weighted averages

of the data; the only difference is in how the weights are assigned. Whereas the
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MLE gives more weight to areas with a smaller sampling variance, Di, the BPE

dose the opposite, giving more weight to areas with a larger sampling variance.

As noted, the only difference between the OBP and the EBLUP is in how

the model parameters in the BP are estimated; in fact, both are special cases of

the empirical best predictor (EBP), that is, the BP with the model parameters

replaced by some estimators. The OBP of θi, denoted by θ̂i, is obtained using

(1.2), with β and A replaced by their BPEs, for 1 ≤ i ≤ m. The OBP is more

robust to a misspecification of the assumed model than is the EBLUP, because the

estimators used in the OBP are derived under an objective function, that is, (1.3),

where the E does not depend on the assumed model. In contrast, the estimators

used in the EBLUP are derived using an objective function that depends on the

assumed model, such as the log-likelihood or restricted log-likelihood (e.g., Jiang

(2007), sec. 1.3). This difference is illustrated in Example 1. As explained in

Jiang, Nguyen and Rao (2011), this is why the OBP, which corresponds to the

BPE, is more robust to model misspecification than is the EBLUP, which in this

case corresponds to the MLE, in terms of predictive performance.

The main focus of this study is a measure of uncertainty for the OBP, namely,

its MSPE. Here, the MSPE refers to that under the true underlying model, which

in our case is model (1.4). The estimation of area-specific MSPEs has been stud-

ied extensively in the SAE literature. See, for example, Datta et al. (2011),

Pfeffermann (2013), and Rao and Molina (2015) for recent reviews. It is desir-

able to obtain a second-order unbiased estimator of the MSPE in the sense that

the bias of the MSPE estimator is o(m−1), where m is the number of small areas

from which data are collected. This is challenging, both analytically and com-

putationally; see, for example, Prasad and Rao (1990), Jiang, Lahiri and Wan

(2002), Hall and Maiti (2006), Datta et al. (2011), Rao and Molina (2015), Jiang

(2017), and Jiang and Torabi (2020). Note that these works assume that the

assumed model is correct; that is, model (1.1) holds. The problem is even harder

when the assumed model is potentially misspecified, which is the situation we are

dealing with.

A well-known method for obtaining a second-order unbiased MSPE estimator

is the Prasad-Rao (PR) linearization method (Prasad and Rao (1990)). The

method is developed under the assumption that the underlying model is correct.

In fact, the assumed model is heavily used in the derivation of the PR MSPE

estimator. Given that, it is somewhat surprising that in the case of a model

misspecification, the PR MSPE estimator for the OBP (which is the EBP, with

the model parameters estimated by the BPE) is still mostly correct. In fact, the
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PR MSPE estimator remains first-order unbiased in the sense that the bias of

the estimator is O(m−1), even if the underlying model is misspecified in its mean

function. Note that the order of the area-specific MSPE is typically O(1). It

follows that the PR MSPE estimator is asymptotically unbiased. Furthermore,

the PR MSPE estimator can be modified to achieve second-order unbiasedness,

again under potential model misspecification in the mean function.

Note that the robust feature of the PR estimator has been previously found in

a different aspect. Lahiri and Rao (1995) considered the Fay-Herriot model, (1.1),

and showed that the PR estimator of the MSPE of the EBLUP, derived under the

normality of both vi and ei, remains second-order unbiased when the normality

assumption about vi is relaxed to a certain moment condition. However, the

normality of ei is still needed. The phrase, ”That Prasad-Rao is Robust”, in the

title of the current paper is not in the sense of Lahiri and Rao.

The rest of the paper is organized as follows. In Section 2, we discuss the

model misspecification and rationale of the unconditional MSPE. We also derive

some nice properties of the limit of the BPE and, as a consequence, the first-order

unbiasedness of the PR MSPE estimator under the potential model misspecifi-

cation. In Section 3, we propose a modification of the PR MSPE estimator that

is second-order unbiased, again under the model misspecification, and provide a

theoretical justification. In Section 4, we provide empirical evidence from simu-

lation studies that fully supports our theoretical findings. A real-data example

on the prediction of the incubation period of Covid-19 is discussed in Section 5

to further demonstrate the advantage of the new MSPE estimators. Proofs and

further details are deferred to the Supplementary Material.

2. First-Order Unbiasedness of PR MSPE Estimator

In the SAE literature, different types of MSPEs have been considered, in-

cluding conditional and unconditional ones; see, for example, Datta et al. (2011)

for a review and discussion. In most cases, the MSPE is conditional on x, the co-

variates or auxiliary data; in other words, the auxiliary data are considered fixed.

However, when model misspecification is taken into account, an MSPE condi-

tional on x may not be reasonable, especially if one wishes to consider potential

model misspecification when measuring uncertainty.

To see the rationale of the unconditional MSPE, it may be helpful to first

understand that of the conditional MSPE. Note that when the underlying model is

correctly specified, the small area mean, θi, is a linear function of xi, plus an area-

specific random effect, vi [see above (1.2)]. Thus, knowing xi has helped reduce
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the uncertainty in θi. Therefore, when the underlying model is correctly specified,

one can focus on the MSPE conditional on the auxiliary data, xi, because there

is no need to worry about uncertainty due to the latter. However, when the

underlying model is misspecified, knowing xi does not take away its uncertainty

contribution to θi. In fact, because one is not sure how, or even whether, θi is

associated with xi, it may not even make sense to use the MSPE conditional on

xi as a measure of uncertainty.

There are other reasonable features of the unconditional MSPE. In practice,

some of the auxiliary data are often sampled randomly with the responses, y, and

are therefore subject to the same sampling variation. For example, in the hospital

data of Morris and Christiansen (1995), which was used by Jiang, Nguyen and

Rao (2011) to illustrate the OBP, the xi denotes a severity index corresponding to

the randomly selected hospitals. Suppose we wish to estimate or predict the mean

failure rate of kidney transplants for hospital i, for 1 ≤ i ≤ m, for the purpose

of future planning. Obviously, for a future period of time, the xi may not be the

same as for the current period. Therefore, the potential future variation in xi
must be considered when assessing the uncertainty of the OBP.

For these reasons, we consider the MSPE with respect to the joint distribution

of both the response, y, and the covariates, x. Specifically, we consider an area-

level model, and assume that the true underlying model can be expressed as

yi = x′iβ + ∆i + vi + ei, (2.1)

for i = 1, . . . ,m. Here, ∆i is an unobserved (random) variable satisfying the con-

ditions below. Comparing (2.1) and (1.1), ∆i represents the term of misspecifica-

tion in the mean function. Let zi = (x′i,∆i)
′ and δi = ∆i−x′i{E(x1x

′
1)}−1E(x1∆1).

We assume that the following assumptions hold:

A1. zi, vi, ei, for i = 1, . . . ,m, are independent.

A2. E(zi), E(ziz
′
i), and E(δ4i ) are finite and do not depend on i, vi ∼ N(0, A),

and ei ∼ N(0, Di), where A > 0 is unknown and Di > 0, for 1 ≤ i ≤ m, is

known.

An important feature of (2.1) is that it is not specific about the expression of

∆i; thus, technically, (2.1) is no different from (1.4), which is the broader model

used to derive the OBP (Jiang, Nguyen and Rao (2011)). Note that the true

small area mean is θi = x′iβ + ∆i + vi, i = 1, . . . ,m. A difference between ∆i

and vi is that vi is assumed to have a specific distribution with mean zero and

constant variance; no such assumption is made for ∆i.
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The standard LMM (e.g., Jiang (2007)) is a conditional model in that the

covariates, xi, are considered fixed. In contrast, the above model is considered

a marginal model because xi (and ∆i) is a random variable. In the literature

about correlated data, marginal models are known to be more robust to model

misspecification when making inferences about characteristics of interest, such

as the mean function (e.g., Song (2007)). However, we use the marginal model

differently, because it is only used to evaluate a measure of uncertainty, that is,

the MSPE. Here, we consider the unconditional, area-specific MSPE defined as

MSPE(θ̂i) = E(θ̂i − θi)2, (2.2)

where the expectation is taken with respect to the joint distribution under model

(2.1) with assumptions A1, A2.

Jiang, Nguyen and Rao (2011) derived an estimator of the MSPE conditional

on xi, and showed that the estimator is second-order unbiased. This is referred to

as the JNR estimator hereafter. Note that, if M̃SPE is a second-order unbiased

estimator of the conditional MSPE, that is, E{(θ̂i−θi)2|X}, then, under regularity

conditions, M̃SPE is also a second-order unbiased estimator of the unconditional

MSPE, because E(M̃SPE) = E{E(M̃SPE|X)} = E[E{(θ̂i− θi)2|X}+ oP(m−1)] =

MSPE + o(m−1), applying regularity conditions to ensure that E{oP(m−1)} =

o(m−1). A problem with the JNR estimator is that its leading [O(1)] term involves

a single observation, yi, that has large variation. Specifically, the leading term of

the JNR estimator is

(θ̂i − yi)2 +Di(2B̂i − 1), (2.3)

where B̂i is Bi with A replaced by Â. Owing to the involvement of yi in the

leading term, the JNR estimator has large variation; in fact, the variance of the

JNR estimator is O(1). Thus, there is a non-vanishing probability, even as the

sample size increases, that the JNR MSPE estimator is negative. This can be

seen because the second term in (2.3) becomes negative when B̂i < 1/2. For

example, Jiang, Nguyen and Rao (2011) computed the JNR estimator for the 23

hospitals in the kidney transplant data of Morris and Christiansen (1995), finding

that the value of the JNR estimator is negative for six out of the 23 hospitals.

In contrast, the PR MSPE estimator is stable in the sense that it is a function

of Â, an estimator based on data from all of the small areas. For example, the

leading term of the PR estimator is given by (e.g., Datta and Lahiri (2000))

ÂDi

(Â+Di)
. (2.4)
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Here, (2.4) is typically denoted by g1i(Â), following the notation of Prasad and

Rao (1990). Note that g1i(A) is the MSPE of the BP when the underlying model

is correctly specified, and A is the true variance of vi. It is easy to show that,

under regularity conditions, the variance of (2.4) is O(m−1). As a result, the

variance of the PR estimator is also O(m−1). Another well-known feature of

the PR MSPE estimator is that it is second-order unbiased, provided that the

underlying model is correctly specified. However, here, the underlying model

is misspecified in terms of the mean function. Could it be that, somehow, the

PR MSPE estimator is still correct, or mostly correct, in spite of the model

misspecification?

The short answer is yes. To see why this is even possible, note that, according

to the theory established in Jiang, Nguyen and Rao (2011), the BPE of ψ =

(β′, A)′, denoted by ψ̂ = (β̂, Â)′, converges in probability to the minimizer of

q(ψ) = E{|θ̃(ψ)− θ|2} =

m∑
i=1

E{θ̃i(ψ)− θi}2, (2.5)

where θ̃(ψ) = [θ̃i(ψ)]1≤i≤m and θ̃i(ψ) is the right side of (1.2) when ψ is treated as

a parameter vector (rather than the true parameter vector). Here, the expectation

is taken with respect to the true underlying distribution. Let ψ∗ = (β′∗, A∗)
′

denote the minimizer of (2.5). Note that ψ∗ is not necessarily equal to the true

parameter vector under (2.1), denoted by ψ0 = (β′0, A0)
′, if the underlying model

is misspecified (i.e., ∆i 6= 0). If one takes the limit of (2.4) by letting m → ∞,

the leading term of the PR estimator becomes

A∗Di

(A∗ +Di)
. (2.6)

To obtain an expression for ψ∗, note that one can derive the expression

E{θ̃i(ψ)− θi}2 = E

(
A

A+Di
yi +

Di

A+Di
x′iβ − θi

)2

=

(
A

A+Di

)2

Di +

(
Di

A+Di

)2

[A0 + E{x′1(β − β0)−∆1}2] (2.7)

using assumptions A1, A2 above, noting that the true small area mean is θi =

x′iβ0 + ∆i + vi with vi ∼ N(0, A0). By differentiating q in (2.5) with respect to β

and A and letting the derivatives equal to zero, we can derive the following:

β∗ = β0 + {E(x1x
′
1)}−1E(x1∆1), (2.8)
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A∗ = A0 + E{x′1(β∗ − β0)−∆1}2. (2.9)

A consequence of (2.8) and (2.9) is that, under the misspecified model, we have

E{xi(yi − x′iβ∗)} = 0, E(yi − x′iβ∗)2 = A∗ +Di. (2.10)

A remarkable feature of ψ∗ is that, although it is the minimizer of the overall

MSPE, (2.5), which is the sum of the MSPEs for different small areas, it actually

minimizes the MSPE for all small areas. We formally state the result as follows.

Theorem 1. The parameter vector ψ∗, defined as the minimizer of (2.5) satis-

fying (2.8) and (2.9), minimizes E{θ̃i(ψ)− θi}2 over all ψ, for every 1 ≤ i ≤ m.

Proof. Write θ̃i(ψ) = gi(ψ, yi) and note that θi = yi − ei. It can then be shown,

using (2.10) in particular (see the Supplementary Material) that for any ψ, we

have

E{gi(ψ, yi)− θi}2 = E{gi(ψ∗, yi)− θi}2 + E{gi(ψ, yi)− gi(ψ∗, yi)}2

≥ E{gi(ψ∗, yi)− θi}2, (2.11)

with the equality on the right side of (2.11) holding if and only if E{gi(ψ, yi) −
gi(ψ∗, yi}2 = 0. This argument applies to any 1 ≤ i ≤ m.

On the other hand, the true MSPE of θ̂i, by (2.2), is

MSPE(θ̂i) = E{gi(ψ̂, yi)− θi}2, (2.12)

where β̂ and Â are the BPEs, and θi is the true small area mean. Because

β̂
P−→ β∗, Â

P−→ A∗, under regularity conditions, the leading term of the true

MSPE is (2.12), with β̂ and Â replaced by β∗ and A∗, respectively, which is

equal to the right side of (2.7) with β and A replaced by β∗ and A∗, respectively.

Therefore, by (2.7), (2.9), and (2.6), we conclude the following:

Leading term of the true MSPE

=

(
A∗

A∗ +Di

)2

Di +

(
Di

A∗ +Di

)2

[A0 + E{x′1(β∗ − β0)−∆1}2]

=

(
A∗

A∗ +Di

)2

Di +

(
Di

A∗ +Di

)2

A∗ =
A∗Di

A∗ +Di

= Leading term of the PR MSPE estimator. (2.13)

Note that, typically, the leading terms are O(1), while the remaining terms

are O(m−1). Thus, (2.13) makes us believe that the PR estimator is, at least,
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first-order unbiased. The latter conjecture is, indeed, correct (which is implied

by the arguments of the proof of Theorem 2).

However, as it turns out, under the current model misspecification, the PR

estimator is not “second-order robust” as in Lahiri and Rao (1995); see the note

in Section 1). One reason for this is that the OBP is not the BP, even with ψ̂

replaced by ψ∗. Recall that ψ∗ is not the true parameter vector. In fact, with

the form of ∆i in (2.1) unknown, it is not even clear what the true parameter

vector is under the assumed model, (1.1). As a result, one does not have the

well-known orthogonal decomposition of the MSPE that is associated with the

BP. Specifically, one has

MSPE(θ̂i) = ci(A∗) + 2E[{gi(ψ∗, yi)− θi}{gi(ψ̂, yi)− gi(ψ∗, yi)}]
+E{gi(ψ̂, yi)− gi(ψ∗, yi)}2, (2.14)

where ci(A) = E{gi(ψ∗, yi) − θi}2 = ADi/(A + Di). Under a correct specifi-

cation of the model, ψ∗ = ψ0, and hence gi(ψ∗, yi) is the BP. As a result, the

second term on the right side of (2.14) vanishes, and one gets the orthogonal

decomposition. However, this (typically) is no longer true under the misspecified

model (2.1). In fact, it is shown (see the proof of Theorem 2 in the Supple-

mentary Material) that the second term on the right side of (2.14) is O(m−1)

under the misspecified model. Because the PR estimator only provides a second-

order unbiased estimation of the first and third terms on the right side of (2.14),

assuming that the orthogonal decomposition holds, it follows that the PR esti-

mator is not second-order unbiased for estimating the MSPE of the OBP under

the model misspecification. There are also other reasons why the PR estimator

is not second-order unbiased (see the next section for further explanation).

3. A Modified PR MSPE Estimator

Nevertheless, the PR estimator can be modified to achieve second-order un-

biasedness. There are two issues that we need to handle in order to come up

with a second-order unbiased modification of the PR estimator, called the MPR

estimator. First, as noted earlier, the middle term on the right side of (2.14) is

O(m−1), rather than zero or even o(m−1). This term needs to be estimated with

a bias of o(m−1).

Second, although the parameter vector ψ∗ possesses some nice properties,

such as (2.10), these only work up to the second moments. For example, the

fourth moment of yi − x′iβ∗ does not follow that of a zero-mean normal distri-

bution. Note that if ∆i = 0, then β∗ = β0, and hence yi − x′iβ∗ = vi + ei ∼
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N(0, A + Di). Thus, we have E(yi − x′iβ∗)4 = 3(A + Di)
2. However, the latter

may not hold when ∆i 6= 0. When this difference is ignored, a bias of order

O(m−1) is induced. Thus, to achieve second-order unbiasedness, a solution must

be found to the difficulties related to the higher moments. Here, we use a similar

idea to the observed information (e.g., Efron and Hinkley (1978)). For example,

if E(yi − x′iβ∗)4 cannot be expressed as a known function of ψ∗, we do not at-

tempt to compute the expectation. Instead, we remove the expectation sign, and

replace the expression inside by its estimated version, that is, (yi−x′iβ̂)4. In this

example, the replacement does not yield a second-order unbiased estimator, but

this is not what we are actually dealing with. Luckily, we only have to make such

replacements when the term is already O(m−1). In this case, the replacement

results in a difference of lower order, that is, o(m−1), which is what we are looking

for.

Another point to keep in mind is that we need to avoid using a term that

involves a single observation, such as (2.3) in the JNR estimator, in our MSPE

estimator. This is because such a term has high variation, even if second-order

unbiasedness can be achieved by using such a term. Thus, for example, a single

term such as (yi − x′iβ̂)4 is replaced by a weighted average of such terms over all

of the small areas in order to reduced the variation.

The MPR estimator is given below. By Jiang, Nguyen and Rao (2011), the

BPE of ψ, ψ̂ = (β̂′, Â)′ is the minimizer of Q(ψ, y) =
∑m

j=1Qj(ψ, yj), with

Qj(ψ, yj) =

(
Dj

A+Dj

)2

(yj − x′jβ)2 +
2ADj

A+Dj
. (3.1)

Let p = dim(β). Define r̂i = Di/(Â+Di), t̂m =
∑m

j=1(Â+Dj)
−2,

ŝkm =

m∑
j=1

r̂2j

(Â+Dj)k
, k = 0, 1, 2, ûkm = p

m∑
j=1

Dj r̂
3
j

(Â+Dj)k
, k = 0, 1.

Next, define the following quantities:

T̂m =

m∑
j=1

{
(yj − x′j β̂)4

(Â+Dj)2
− 3

}
, V̂km =

m∑
j=1

r̂4j

(Â+Dj)k

{
(yj − x′j β̂)4

(Â+Dj)2
− 1

}
,

for k = 0, 1. Finally, define âi = r̂4i T̂m/(Â+Di)
2ŝ1mt̂m and

b̂i = r̂2i

{
2û1m
ŝ0mŝ1m

+
3

ŝ31m
(ŝ1mV̂1m − ŝ2mV̂0m) +

2V̂0m

(Â+Di)ŝ21m

}
.
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The MPR estimator of MSPE(θ̂i) is given by

M̂SPE(θ̂i) = ci(Â)− 2âi + b̂i, (3.2)

where ci(·) is defined below (2.14). Interpreting separately, ci(Â) + b̂i is the

combination of a bias-correction term to ci(Â) and an estimator of the last term

on the right side of (2.14); furthermore, −âi is an estimator of the expected

cross-product on the right side of (2.14).

The PR MSPE estimator, without modification, is derived in the same way as

the MPR estimator, except we compute the fourth moments of yi−x′iβ∗ under the

assumption that the underlying model is correct. Under the latter assumption,

we have E(yi − x′iβ∗)4 = 3(A∗ +Di)
2 (note that ψ∗ = ψ0 when there is no model

misspecification). Therefore, the PR estimator is given by the same expression

of the MPR estimator, except with âi replaced by zero, and V̂km replaced by

v̂km = 2
∑m

j=1 r̂
4
j/(Â+Dj)

k, for k = 0, 1.

To justify the second-order unbiasedness of the proposed MPR estimator, we

follow the treatment of Das, Jiang and Rao (2004) (also see Jiang, Lahiri and

Wan (2002)) to regularize the BPE, as follows. Let ψ̂ be unchanged if |ψ̂| ≤
C{log(m+ 1)}K , where C and K are any given positive constants; otherwise, let

ψ̂ = ψf , where ψf is any known vector satisfying |ψf | ≤ C{log(m + 1)}K . Note

that such a truncation make no difference in practice, because one can argue that

there are always constants C and K such that |ψ̂| ≤ C{log(m + 1)}K holds for

the data. Therefore, there is no need to truncate ψ̂ in practice; the truncation

is only for the theoretical argument below. In addition, following Jiang, Lahiri

and Wan (2002), the estimator ψ̂ is said to be consistent uniformly (c.u.) at rate

m−d if, for any δ > 0, there is a constant cδ such that P(Acδ) ≤ cδm
−d, where

Aδ = {∂Q̂/∂ψ = 0, |ψ̂ − ψ∗| ≤ δ}, with ∂Q̂/∂ψ = ∂Q/∂ψ|ψ̂. In addition to

assumptions A1, A2 of Section 2, we assume the following regularity conditions:

A3. E(|zj |10), for 1 ≤ j ≤ m, are bounded, E(x1x
′
1) is nonsingular, and there

are constants 0 < b ≤ B <∞ such that b ≤ Di ≤ B, for 1 ≤ i ≤ m.

A4. ψ̂ − ψ∗ = OP(m−1/2), and ψ̂ is c.u. at rate d, for some d > 2.

The nonsingularity of E(x1x
′
1) in assumption A3 is needed for expression

(2.8) to hold. Jiang, Nguyen and Rao (2011) give sufficient conditions for the

root-m consistency of ψ̂, which is the first part of assumption A4. For the verifi-

cation of the c.u. condition, see Jiang, Lahiri and Wan (2002). The second-order

unbiasedness of the MPR estimator is established by the following theorem.
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Theorem 2. Under assumptions A1–A4, the MPR estimator, (3.2), is second-

order unbiased; that is, E{M̂SPE(θ̂i)} = MSPE(θ̂i) + o(m−1) for every i.

Outline of the proof: Where are the modifications? The proof of Theorem

2 is given in the Supplementary Material. An outline of the proof is given below,

which also explains where the modifications of the PR estimator take place. The

first modification deals with the middle term on the right side of (2.14), which is

O(m−1). The PR estimator does not involve this term (because it is zero when

the model is correctly specified). Denote the middle term by 2I1. It is shown that

I1 = −E(âi) + o(m−1), where âi is given above (3.2). Two important identities,

which can be derived from (2.10), are used to simplify the expression of E(âi)

and obtain its second-order unbiased estimator, namely,

E[x′i{E(x1x
′
1)}−1xi(yi − x′iβ∗)2] = (A∗ +Di)p; (3.3)

E(yi − x′iβ∗)4

(A∗ +Di)2
− 3 =

K(δ1)

(A∗ +Di)2
, (3.4)

where δi is defined below (2.1), and the kurtosis of a random variable, ξ, is defined

as K(ξ) = E(ξ4) − 3{E(ξ2)}2. Note that (3.4) holds for every 1 ≤ i ≤ m. This

leads to a way to “solve” for the unknown K(δ1) by taking summations of both

sides of the equation over i, leading to

K(δ1) = E


m∑
j=1

1

(A∗ +Dj)2


−1

m∑
j=1

{
(yj − x′jβ∗)4

(A∗ +Dj)2
− 3

} . (3.5)

In fact, expression (3.5) helps to obtain a bias-corrected estimator of I1.

The second modification has to do with the last term on the right side of

(2.14), denoted by I2. This term is known to have the following kind of expression

(e.g., Prasad and Rao (1990), Datta and Lahiri (2000)):

I2 =

m∑
j=1

E(u′jG
−1RiG

−1uj) + o(m−1), (3.6)

where uj = ∂Qj/∂ψ|ψ∗ , G =
∑m

j=1 E(∂2Qj/∂ψ∂ψ
′|ψ∗), and Ri is another matrix

that depends on A∗ and E(x1x
′
1). Expressions of uj , G, and Ri can be obtained.

The expression of the first term on the right side of (3.6) can be simplified, with

the help of (2.10) and (3.3); however, it still involves E(yj−x′jβ∗)4, for 1 ≤ j ≤ m.

Prasad and Rao computed these fourth moments under the correct specification

of the model, that is, E(yj−x′jβ∗)4 = 3(A∗+Dj)
2. In our case, the latter identity

does not hold, owing to the model misspecification, and the fourth moments are
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are not (known) functions of ψ∗. When the Prasad-Rao calculation is mistakenly

used, it results in a bias of the order O(m−1). In our modification, the first term

on the right side of (3.6) is estimated in a way similar to the observed information

noted in the second paragraph of this section. This way, we can express I2 as

E(d̂i) + o(m−1), where d̂i is part of b̂i in (3.2).

The final modification has to do with the bias correction to ci(Â). Here,

we once again encounter the issues related to the fourth moments. The same

strategy is used to solve the problem. This leads to the expression ci(A∗) =

E{ci(Â) + ĥi}+ o(m−1), where ĥi is another part of b̂i in (3.2).

4. Simulation Studies

In this section, we carry out simulation studies to investigate the finite-

sample performance of different estimators of the MSPE of the OBP under various

scenarios, where the underlying model is correctly specified or misspecified. As

noted, the OBP may be viewed as an EBP in which the model parameters are

estimated by the BPE (see Section 1). Specifically, we compare the two proposed

PR MSPE estimators for the OBP proposed in the previous sections, and their

comparison with the existing MSPE estimators for the OBP, including the JNR

estimator (see Section 2) and a naive MSPE estimator for OBP, also considered

by Jiang, Nguyen and Rao (2011) for comparison purposes. The computational

details of the simulations are given in the Supplementary Material in algorithmic

form.

Three examples are considered to account for different kinds of scenarios,

with or without model misspecification. In all examples, the assumed model can

be expressed as yi = β0 + x′iβ + vi + ei, for i = 1, 2, . . . ,m, and the true model

takes the following forms, respectively, for the three examples:

(I). yi = β0 + x′iβ + vi + ei, for i = 1, 2, . . . ,m;

(II). yi = β0 + β1x1i + arctan(zi) + vi + ei, for i = 1, 2, . . . ,m;

(III). yi = arctan(4x′iβ) + vi + ei, for i = 1, 2, . . . ,m.

Here, β0 = 0.2, β1 = 0.5, and xi = (x1i, x2i)
′ such that (x′i, zi)

′ has a trivariate

normal distribution with means zero, variances two, cov(x1i, x2i) = cov(x2i, zi) =

0.4, and cov(x1i, zi) = 0; vi ∼ N(0, A) with A = 1, and ei ∼ N(0, Di) with

Di = 0.5+(i− 1)/(m− 1), for i = 1, 2, . . . ,m. In Example (I), the assumed model

is the same as the true one; hence, there is no model misspecification. In Example

(II), the nonlinear part of the true model is misspecified as linear, indicating that
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Table 1. Comparison of MSPE Estimators in Mean %RB, Mean %|RB|, and %NE.

m MPR PR Naive JNR

M%RB M%|RB| M%RB M%|RB| M%RB M%|RB| %NE M%RB M%|RB| %NE

(I) 20 4.55 4.69 4.85 5.00 −47.44 47.44 36 4.57 5.00 21

40 0.25 1.30 0.66 1.45 −25.28 25.28 27 0.31 1.61 19

80 −0.05 1.11 0.12 1.12 −13.03 13.03 22 0.01 1.80 18

160 −0.02 1.13 0.02 1.13 −6.59 6.61 19 −0.00 1.61 16

320 0.03 1.12 0.04 1.12 −3.28 3.42 17 0.03 1.64 16

640 −0.03 1.15 −0.04 1.15 −1.70 2.26 16 −0.03 1.70 16

(II) 20 −0.09 1.17 1.99 1.99 −33.37 33.38 19 0.93 1.44 9

40 −0.90 1.38 −0.07 1.12 −17.29 17.30 10 −0.36 1.53 5

80 −0.06 1.15 0.19 1.15 −8.32 8.32 4 0.11 1.43 3

160 −0.16 1.16 −0.09 1.15 −4.32 4.42 2 −0.11 1.27 1

320 0.14 1.18 0.15 1.18 −1.95 2.24 1 0.15 1.45 < 1

640 0.04 1.14 0.04 1.14 −1.01 1.65 < 1 0.04 1.37 < 1

(III) 20 0.41 1.70 1.83 2.26 −39.20 39.21 26 0.38 1.80 13

40 −0.10 1.19 0.64 1.37 −19.50 19.51 16 0.33 1.38 10

80 −0.11 1.19 0.12 1.21 −9.93 9.93 10 0.02 1.42 7

160 −0.10 1.20 −0.03 1.20 −5.04 5.07 6 −0.04 1.54 5

320 0.15 1.11 0.17 1.12 −2.33 2.60 4 0.17 1.48 4

640 0.02 1.11 0.01 1.11 −1.23 1.80 3 0.02 1.38 3

the assumed model is partly misspecified. In Example (III), all predictors are

nonlinearly associated with the response; hence, the model is misspecified.

For each example, we carried out 10,000 simulation runs. The sample size,

m, varies from 20 to 640. The MSPE estimators, MPR, PR, Naive, and JNR,

are first compared in terms of their percentage relative bias, defined as

%RB = 100×
[

E(M̂SPE)−MSPE

MSPE

]
,

where M̂SPE denotes an MSPE estimator, E(M̂SPE) is the simulated mean of

M̂SPE, and MSPE is the true MSPE, which is evaluated empirically (see Section

A.3 of the Supplementary Material). The %RB is then averaged over different

small areas, and the mean %RB (M%RB) is reported in Table 1. Because the

M%RB involves the average of %RB over different small areas, positive and neg-

ative %RBs may cancel each other. To take this into account, we also report

the mean absolute value of the %RBs over the small areas (M%|RB|, i.e., taking

the absolute value before averaging over the small areas). The standard devia-

tions corresponding to the M%RB and %|RB| are deferred to the Supplementary

Material.

Box plots of the %RB, corresponding to m = 20, 40, 80, are presented in

Figure 1 for the %RBs for different small areas. Note that the box plots provide
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information about the %RB for individual small areas, not just the average %RB.

Therefore, the pictures are quite clear even without the box plots for the absolute

values of the %RBs.

Also reported in Table 1 are the percentage of negative MSPE estimates

(%NE). The PR and MPR estimates were positive in all simulation runs, but

some of the naive and JNR estimates were negative. The %NE, observed in

the simulation runs and averaged over the small areas, is reported for the naive

MSPE estimator and JNR.

It is clear that MPR, PR, and JNR significantly outperform the naive MSPE

estimator in terms of both %RB and %|RB|, which is not surprising. Both MPR

and JNR are second-order unbiased, while the naive MSPE estimator is only first-

order unbiased (Jiang, Nguyen and Rao (2011)). Although PR is also first-order

unbiased, its performance is superb, at least for this simulation study. In fact, it

seems that MPR and PR perform better in terms of the standard deviations of

the %RB and %|RB| (over the small areas) than does JNR (see Supplementary

Material). In terms of M%RB, MPR and JNR seem to perform slightly better

than PR when m is relatively small; when m is relatively large, MPR, PR, and

JNR are quite close in terms of M%RB. In terms of M%|RB|, MPR outperforms

JNR in all cases; in most cases, MPR outperforms PR, or the two perform equally

well. As noted [see the paragraph below (3.2)], the only difference between the

PR and MPR estimators is the treatment of

E(yj − x′jβ∗)4, 1 ≤ j ≤ m (4.1)

in the estimation. For PR, the terms in (4.1) are replaced by

3(Â+Dj)
2, 1 ≤ j ≤ m, (4.2)

leading to simplified expressions. For MPR, (4.1) are estimated using the ob-

served information approach. Although, theoretically speaking, MPR is second-

order unbiased while PR is first-order unbiased, at least in this simulation study,

the performance of MPR and PR are quite close, especially for larger m.

Although, in terms of %RB, JNR appears to be doing well, the real difference

between JNR and the two PR estimators is in the variance. Table 1 shows that

the NE% of JNR can be as high as 20%, indicating a significant chance that the

JNR estimator is negative; for the naive MSPE estimator, the %NE can be as

high as 35%. In contrast, the two PR estimators never take negative values in the

simulation runs. Note that a negative value for an MSPE estimator is unpleasant,

and hence should be avoided as much as possible.
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Figure 1. Box plots of %RB for Different MSPE Estimators.

Table 2 and Figure 2 show the performance of the MSPE estimators in terms

of the variance. Presented in Table 2 are summaries of the simulated standard

deviations (s.d.) of the MSPE estimators. For each small area, we obtain the s.d.

of the MSPE estimator, and then report the mean and standard deviation of the

simulated s.d. under each scenario and sample size, and for each method. Figure

2 presents box plots of the simulated s.d.’s. It is clear from Table 2 and Figure
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Table 2. Mean s.d. of MSPE Estimators (the Number in Parentheses Show the Ratio of
the Mean s.d. of the Corresponding Estimator to That of the MPR Estimator).

Example m MPR PR Naive JNR

(I) 20 0.1295 (1.00) 0.1286 (0.99) 0.8616 ( 6.65) 1.5666 (12.10)

40 0.1058 (1.00) 0.1063 (1.00) 0.7992 ( 7.55) 0.8741 ( 8.26)

80 0.0801 (1.00) 0.0793 (0.99) 0.7605 ( 9.49) 0.7984 ( 9.96)

160 0.0578 (1.00) 0.0573 (0.99) 0.7427 (12.85) 0.7618 (13.19)

320 0.0408 (1.00) 0.0407 (1.00) 0.7304 (17.88) 0.7399 (18.11)

640 0.0292 (1.00) 0.0291 (1.00) 0.7269 (24.88) 0.7318 (25.05)

(II) 20 0.1141 (1.00) 0.1077 (0.94) 0.7015 ( 6.15) 0.8492 ( 7.44)

40 0.0898 (1.00) 0.0864 (0.96) 0.6245 ( 6.95) 0.6833 ( 7.61)

80 0.0634 (1.00) 0.0616 (0.97) 0.5842 ( 9.21) 0.6142 ( 9.68)

160 0.0455 (1.00) 0.0448 (0.98) 0.5659 (12.43) 0.5810 (12.77)

320 0.0319 (1.00) 0.0316 (0.99) 0.5573 (17.49) 0.5649 (17.73)

640 0.0229 (1.00) 0.0228 (1.00) 0.5527 (24.13) 0.5565 (24.30)

(III) 20 0.1294 (1.00) 0.1278 (0.99) 0.8606 ( 6.65) 2.4415 (18.87)

40 0.1070 (1.00) 0.1072 (1.00) 0.8011 ( 7.48) 0.8834 ( 8.25)

80 0.0802 (1.00) 0.0793 (0.99) 0.7598 ( 9.47) 0.7976 ( 9.94)

160 0.0583 (1.00) 0.0578 (0.99) 0.7421 (12.74) 0.7612 (13.06)

320 0.0410 (1.00) 0.0408 (1.00) 0.7310 (17.84) 0.7406 (18.08)

640 0.0291 (1.00) 0.0291 (1.00) 0.7273 (24.95) 0.7321 (25.12)

2 that the two PR methods have significant advantage over the naive MSPE

estimator and JNR in terms of the variance. Between the two PR estimators, it

appears that the mean s.d. of PR is slightly smaller than that of MPR, which

is reasonable. As noted, MPR uses the observed information approach, which

results in a slight increase of the variance of the MSPE estimator. The numbers

in parentheses report the ratio of the mean s.d. of the corresponding MSPE

estimator to that of the MPR estimator. It is seen that the ratios for PR are

either equal to one or slightly less than one, while the ratios for Naive and JNR

are all much larger than one (some as high as 25). It is also seen (especially from

Figure 2) that JNR performs worse than Naive in term of the variance.

In conclusion, the simulation results show that the two PR estimators per-

form extremely well, both in terms of the bias and in terms of the variation.

Especially in terms of the variation, the two PR estimators significantly out-

perform the naive and JNR estimators. In addition, unlike the naive and JNR

estimators, no negative values are observed for the two PR estimators. All three

estimators, MPR, PR, and JNR, significantly outperform the naive MSPE esti-

mator in terms of the bias. Between the two PR estimators, it appears that MPR

performs slightly better than PR in terms of the bias, and PR performs slightly
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Figure 2. Box plots of Simulated s.d. for Different MSPE Estimators.

better than MPR in terms of the variation.

5. Applications: Prediction of Incubation Period for Covid-19

Since the first case reported in Wuhan, China in December 2019, the 2019

coronavirus disease (Covid-19) there has been a rapid increase in cases and deaths.



2236 LIU, MA AND JIANG

From a scientific point of view, the incubation period (IP) of the disease plays an

important role in prevention and control efforts, as well as mathematical modeling

of the coronavirus transmission. The current quarantine period in China is fixed

at 14 days, without considering any other auxiliary information; see, for example,

Guan et al. (2020), Li et al. (2020) and Linton et al. (2020).

A complication of the existing IP in the human population is that it may have

to do with both the nature of the disease and the regional efforts used to test and

report the disease cases. Wuhan, the center of the disease outbreak, and the entire

Hubei province (of which Wuhan is the capital city), is considered different from

other provinces in China in terms of the magnitude of the outbreak. In this study,

we were able to obtain data from 1,493 confirmed cases outside Hubei province

in China, including histories tracking these cases to the first reported contact

with a disease carrier. Thus, the results of our study may help us to understand

the behavior of the IP outside Hubei province. One potential factor that may

contribute to the IP distribution is age. Figure A.1 of the Supplementary Material

presents a plot of the reported mean (natural) logarithm of IP against mean age.

Owing to such considerations, we consider the 27 provinces of China (all except

Hubei) crossed by three age groups, namely, less than 23, 23–55, and greater than

55 years old, as small areas. This leads to a total of 64 small areas from which

data are available.

The age factor is further considered as a covariate. Specifically, let yi and

xi be the observed means of log(IP) and age, respectively, for the ith small area.

We consider the logarithm of the IP because the lognormal distribution, along

with other distributions of the exponential form in general, is widely used to

characterize the distribution of the IP in investigations of infectious diseases;

see, for example, Sartwell (1950). In other words, it is assumed that log(IP) ∼
N(µ, σ2). Therefore, it is quite natural to assume the dependence of log(IP)

on the available auxiliary variable through its conditional mean functions. In

addition, Figure A.1 suggests that the relationship between yi and xi may be

quadratic. Furthermore, empirical evidence suggests that there is a potential

climate effect. Specifically, provinces under continental climate conditions tend

to have a lower IP than do those under non-continental climate conditions. Let Ii
be an indicator, equal to one if the ith small area is associated with a continental-

climate province, and zero otherwise. We consider the following area-level model:

yi = β0 + β1xi + β2x
2
i + β3Ii + vi + ei, i = 1, 2, . . . , 64, (5.1)

where vi and ei satisfy the conditions of the Fay−Herriot model. Here, Di is
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obtained via approximation to the sampling variance. That is, let σ2 be the

population variance of log(IP). Then, we have Di = σ2/ni ≈ σ̂2/ni, where ni is

the sample size for the ith small area, of which yi is the average log(IP), and σ̂2

is the sample variance of log(IP) obtained from the data combining all provinces

and age groups. The Di, along with other information, is provided in Table A.2

of the Supplementary Material.

The BPEs of the model parameters are β̂0 = 2.518, β̂1 = −0.042, β̂2 = 0.001,

β̂3 = −1.365, and Â = 0.062. The estimate of β2, the coefficient of x2i in (5.1), is

positive, whereas that of β3, the coefficient of the continental-climate indicator,

is negative. We then obtain the OBPs and their correspondng MSPE estimates

using the MPR, PR, and JNR methods. Box plots of the MSPE estimates are

presented in Figure A.2 of the Supplementary Material. It is seen that there are

some negative values for the JNR estimates. Figure A.3 of the Supplementary

Material presents the OBPs with corresponding margins of error, defined in the

same way as in Figure 5. Note that some of the margins of error for JNR are not

available owing to the negative MSPE estimates.

6. Conclusion

We have shown that the traditional PR method, originally derived under the

correct specification of the underlying model, remains first-order unbiased under

a misspecification of the mean function. Furthermore, we showed that the PR

method can be (slightly) modified to achieve second-order unbiasedness. These

results are important both theoretically and practically, because the PR method

is popular in SAE and is easy to implement (available in commercial or online

software packages).

Another way to understand the robustness of the PR method is to observe

that, under the misspecified model, one can define the “true parameter” of β

as β∗ given by (2.8). Note that this is the parameter vector that minimizes the

MSPE function; see Jiang, Nguyen and Rao (2011). The hypothetical “mean

function” under β∗ is then x′iβ∗, and the variation of the true small area mean,

θi = x′iβ0+∆i+vi, from the hypothetical mean is θi−x′iβ∗ = x′i(β0−β∗)+∆i+vi ≡
v∗i . The variance of v∗i is exactly the right side of (2.9), owing to the independence

of vi and zi (Assumption A1). Thus, the true variation is correctly captured by

A∗, which is consistently estimated by the BPE.

Although the original PR method was derived under the assumption that

the mean function is correctly specified, we showed that it remains first-order

unbiased even if the mean function is misspecified. Note that the specific form
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of the PR MSE estimator varies depending on the method used to estimate the

model parameters. The original PR method (Prasad and Rao (1990)) was based

on method of moments (MM) estimators of the model parameters; Datta and

Lahiri (2000) derived the forms of the PR MSPE estimators with ML and REML

estimators of the model parameters. We have derived the form of the PR MSPE

estimator (without modification) using the BPE of the model parameters.

Furthermore, we has shown empirically that the PR method performs almost

as well as a modified version that is second-order unbiased. In a way, this is similar

to Lahiri and Rao (1995), who showed that although the PR MSPE estimator was

derived under the normality assumption, it remains second-order unbiased when

the random effects are not normal, provided that a certain moment condition

holds. It is in this sense that we consider the PR method to be robust, thus

justifying the title of the paper.

Supplementary Materials

The Supplementary Material contains proofs of the theoretical results, com-

putational details of the simulation study, as well as additional tables and figure

from the simulation study and real-data applications.
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