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Supplementary Material

S1. Proof for Theorem 1

We define H(8) = K~Y/2F(0), Hy = K~Y/2F,. We have ||F||, = ||H| when
F € H and H = K~Y2F. Furthermore, the prediction risk can be written as
|TV2(H — Hy)ll.

Since the objective function (2.1)) can be written as

STV~ (H,U) — Z70)” +nA|H|?,

=1

we have, for given 0,
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where T, = ). U; ® U;/n is a simple moment estimator of 7' = E[U ® U].

Plugging (S1.1) into (2.2)), we get that 6 is the minimizer of

n 2
1zj¢wm—zw5_zw>
n

> (Yi — (Ui, (T + M)~

2 Usle + Uy, Ho) — Z5 (6 — 6y))

n
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Thus we have

n

1
(Z Z ( U Ho) — (U (T, 4+ a1 2 Vil + H°>)>)> ,

where Zz =7Z; — (U, (T, + /\])_1_E?=anjzj ). Here (U, (T, + )\I)_l Z?;anij>
denotes the p-vector with components (U;, (T,, + \[ )*1M> with Z;;, be-
ing the k-th component of Z; for k = 1,2,...,p.

As mentioned before, we define F* to be the estimator of Fy assuming 6 is

known. Thus we have [* := K—V2F* = (T, + )L Zi= Ui(G;HU“HO». Note
that F* is exactly the regularized estimator of Fj in a functional linear model
without the multivariate part. Also, we define g := K~1/?4 = (K—V/25,,... K~1/23)T

(T, + M)~ w, and actually 7 is an estimator of ~, defined in (2.7)) based
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on the RKHS approach. Then

Zn: Zz (<U17H0> — <Uz> (Tn + )\])—1 Z;'lzl Uj(ejn+ <Uj, H0>)>>

S A Hy - Y
= > (LB Hy - B

i=1
n n

= Z(Zz — (Ui, 80))(Ui, Hy — ﬁ*> + Z<U"’ go — 8)(U;, Hy — ﬁ*)

i=1 =1
Using that (Z; — (Ui, go))Ui = (Z; — [ ~,(t, X(¢))dt)U; = m;U; has mean
zero, the first term above is O, (y/n||Hy — H*||) = O,(v/nl|| Fo — F*||3), which

is O,(y/n) when r = 0 and 0,(y/n) when r > 0 (see (ST.3) in Theorem [I] in

the Appendix B). The second term above is, by Cauchy-Schwarz inequality and

(S1.4)) in the appendix,

(14 o

Oy (T (g0 — BITY/2(Hy — %)) = O, (n"TH5T) = o, (v)
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when a > 1 and r € [0, 1]. Furthermore,

ZZEZ = ZZ@_ 17g0 Ez‘l’z zag()
=1
Z Uz7g0 € + ZUezagO

n

Z UmgO €1+O (\/E)Hgo_/g\uv

=1

Z 7,7} — Z(Zi — (Ui, 80))(Zi — (Ui, g0) "
= Z(Zz — (Ui, 80)) (Ui, 80 — &) + Z<Ui, g0 — 8)(Z; — (Ui, g0))"

+Z 27g0 UzagU g>T
= p(\/ﬁ)Hgo — 8l + 0,(n|T)* (g0 — 8)|°)

= op(n).

Thus [|@ — 6y|| = O,(n"/2) if r = 0, while if 7 > 0 the dominant term in
60—y is Lyt Y (Zi— (Ui, go))e; which established the asymptotic normality

property.
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For the estimator 7 , we have

H - H,
(T, 4 ATt 2 Ui(}f ~20) _ g,
(T, +AD)! 2 imt Uz’(i;z —Z/60) Hy — (T, + )" > UiZ;LT@ — 6))
— (T, M) > Ui(Yi — Z76,) Hy— 50— 6y).

n
Note the first term above is just H* = K-1/2F*, Furthermore,
T1/2/g\T(§ . 90)

TV2(g — g0)"(0 — 6,) + T/*gT (6 — 6,)

= O,([|0 = 6o])) = Op(l/\/ﬁ)v
which finished the proof for | TY/2(H — H,)]|. O

S1.1 Results for purely functional additive regression

In this part, we consider the purely functional model Y; = (U;, Hy) + ¢; under
the same conditions (A1)-(A3) (except that all assumptions involving Z now

becomes void). With abuse of notation, the estimator is

H = argmin » _(Y; — (U, H))? + nA||H|]
H ;
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(instead of writing it as H* as in the main text).

Theorem 1. Assume (Al)-(A3). If s; < j~% for some constant o > 1 and

r € [0, 1] in assumptions (A3), by setting \ < n~°/((1+12+1) "ye have
~ ~ (14r)a
EX(H — Hy, U*)? = |TV2(H — Hy)|]* = 0, <n‘7<13>a+1> . (S12)
and
IF — Ry|2, = ||H — H|* = 0, (n*7<1+?3”a+1) . (S1.3)

Furthermore, we have

(1/n) > (H — Ho, Up)* = |T/*(H — Hy)||* = Op(n~"2) and 0,(n~"/%S1.4)

=1

when r = 0 and r > 0, respectively

Remark 1. The first rate above with r = 0 (assuming Fy € H without further
smoothness assumptions) is the same as the bound in Cai and Yuan|(2012). Note
that when r = 0, we only have |F — Fy||2, = ||H — Ho||2 = O,(1) meaning the
estimator is inconsistent under this ||.|| error measure. Both convergence rates

become faster as r increases.

Proof of Theorem [I} In the proofs we use C' to denote a generic positive con-
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stant. Using Y; = (Hy, U;) + €;, we have

H— H,

(1, 4 A 2 Ul il
n

n

= ((Tn + )\I)flTn — [) Hy + (T, + AI)l#
= —MTa+ )" Ho+ (T, + M)—ly

= Al + AQ.
Furthermore, we decompose

Ay = =NT+X)"Ho— NT, + M) (T — T,,)(T + M)~ Hy
= AT+ ) "Hy— NT + X)) YT = T,,)(T + \I)""H,y
+MT + X)) T, =TT, + X)) "N (T — T,,)(T + \I)"'Hy

= Aj+ A+ A,

where in both the first equality and the second, we used the identity B~'—A~! =
B Y A-B)A'=AY A-B)B'withA=T+ X and B =T, + Al

For simplicity, we define Hy = Y, byeg, S1 := Y-, b3/(s; + A) and

Jj=1"7
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Sy =>7215j/(sj + A). Obviously, from Lemma it follows

[AL|? = [|[-MT + M) Hy|
n n 2
= )\2 (Z(Sj + )\)_1(6]‘ ® 6j)> Zbkek < )\Sl
7=1 k=1

For Ay, similar to Lemma 2] we have

[Awl* < [AulPI(T + AT = To)|lh
. 1 > Sk
= 0050y (n Z (3k+)\)2>

k=1
= 0, (Sf?).

For A3, we have

[Aws]* < T+ M) "HTo = Tl x IMT0 + A1),

(T = T)(T + A1) ™25, (T + M) ™2 Ho ||

TIORAOR

2
= 0, (—S:j?)

Now, write Ay = (T+AI)_1—Z?:;EiUi+(T—|—/\I)_1(T—Tn)(Tn—l—/\])_l—Z?:;LeiUi



S1. PROOF FOR THEOREM 19

A21 + AQQ. We have

E|An|* = E[tr(An ® An))
1
— ﬁw«T+AD*Eﬁah®wﬂ@+Aﬂ*)
-0 (%tr(T(T 4 AI)2)>
— 52
_ 0 (ﬁ
Furthermore, we denote C = (T + X )"Y(T — T,,)(T,, + M)~ to avoid

lengthy expressions below and consider the conditional expectation as follows.

B Ana [P X} )]
= E[tr(An ® An)|{Xi}1]
_ ( CTC)
= 0, (slImer)
_ op(;nzrl/? WA (T—Tn)(TMI)‘lHiS)
(

1 _
< 0, (FITYAT 4 AD V(T + M) I - T + 001

Sy
= O, —1]-0, )
P (nA) (n)\)
The rate (S1.3)) is obtained by combining the bounds for Aj;, Aq2, A1z, A2, Ao

above. More specifically, using the bounds S; = O(A\"™!) and S, = O(A~V/%)
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in Lemma |1} choosing \ to balance the two terms in AS; + Sy/(n)\), we get
A\ =< n~/((+r)at+l) With this choice of A, other terms in the bounds above are
of smaller order and we get the rates are dominated by AS; + S»/(nA) which is
as in (S1.3).

The proof of is similar to the proof of with some changes. First

we note that the prediction risk can be written as ||7"/ 2(?] — Hp)l|. We have

T1/2ﬁ[ . 7‘71/2[{0

- A)fl + AT2 + AT?, + A;l + A;2

where
Ar = =ATYXT + \I)"'H,
Ar, = —XTYHT + XY (T — T,)(T + \I)"*H,

Aty = NTYX(T + M) "YT, — T) (T, + M) ™Y (T — T,)(T + \I) "' Hy
A5 = TVA(T + A i Ui
n

Ay = Tl/z(T + )\I)_l(T — Tn)(Tn + )\[)—1M
n

The main modification is simply to use ||(7 + AI)~/2T"/2||,, < 1 and the fact

that for two Hilbert-Schmidt operators A and B, ||AB||ns < [|A||ns|| B||op- More



S1. PROOF FOR THEOREM 111

specifically, we have

IALI® = A5y,

1A < AT+ AD) TR+ AD T2 HPII(T = To)(T + M) ™2,
A
= 0, (—5152),
n
by Lemma 2] and

1ATI7 < T+ ADTYA(T = Tl > AT + AL, x

(T = T)(T + M) TY212, % (T + ATV H |
9,52
= O (n—) '

Furthermore,

E|ALI* = Eltr(A3 ® A3)]

tr(T(T + M) E[(U; @ UD|(T + A7)

~—~
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|
O

Il
ﬁO
TN T N N

= |
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where in the last step we used s;/(s; + A) < 1, and also

B A XY
= Eltr(As ® A%){Xi ]
= 0, (JITAT, 4 AT =TT + AT, )

1 _ _

= 0, (R, 4 AD I = T + AR, )
1 S

- o) o (3):

To see (SI1.2), using the bounds for Aj,,..., A%, above, the same value of A
balances the two terms in A\%2S; + Sy /n and other terms in the rate are of smaller
order and thus the convergence rate is O, (n~(1+7)a/((14m)at1)y

Finally, to establish (ST.4), we use

ITY?(H — Hy)||?
= ||[TY*(H — Ho)||* — (H — Hyo, (T — T,,)(H — Hy))

< | TV2(H — Ho)l* + Op(n” 2| H — Ho|l*).

By (ST.2) and (ST.3), the above is O,(n"*/2) if r = 0 and 0,(n~Y/?) if r > 0. O

Lemma 1. For r € [0,1] and s; < j~* for some o > 1, we have S; =

ZOO b2 (Sj + ) = O()\T—l) and Sy = Z;’il 3j/<5j +)) = O()\—l/a»

J=177
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Proof of Lemma(ll When r € [0, 1], we have

b2

52 — J
! zj: (Sj + )\)2
S by s
B s (55 + )2

s”

< _J
S CmR T

1
< C —_—
- mJaX (Sj + )\)Q_T

< ONT2

Let J = A~/ by splitting the sum into Z}]=1 and > ;. |, we have

S
52 - ZSji)\

J

J 00
< CY 1+t )y g
j=1

J=J+1
= O(J)+A7'o(J*)
= OV,

We complete the proof. 0

Lemma 2. Under the same assumptions as in Theorem|l| we have

E(T+X)T -T2, = 0<%). (S1.5)
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Proof of Lemmal[2] Write W; = (T+\I)~"/2U;@U; and V; = W; — E(W)).

A simple derivation leads to that

E[(T+M) AT ~T)l;, = E

= BI{Vi, Vil

= B[, W] — BV, BV

IN

%E[(Wl, W)l

Without confusion, write the Karhunen-Loeve expansion of U; as U; =
;21 §j¢j, where {; denote the random coefficients satisfying that F(¢;) = 0,

E(£7) = s;. Then, we have

(Wi, Widns = Y (T + M) (U @ Urey, )

Jk

= Y GUT + M) VU )

J.k

D G (T + M) ey
i,k

= Y U e/ vsr+ N)
7.k

B 313
N Z Skj—l- A

j7k
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This implies, by assumption (A2),

E[(W1, Wi)ps] :Zﬂ < CZ S_{k_ = C5,.
k
This lemma then follows immediately. 0
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