Partially Linear Additive Functional Regression

Xiaohui Liu¹, Wenqi Lu^{2,3}, Heng Lian², Yuzi Liu¹ and Zhongyi Zhu³

Jiangxi University of Finance and Economics¹, City University of Hong Kong²,

Fudan University³

Supplementary Material

S1. Proof for Theorem 1

We define $\widehat{H}(\boldsymbol{\theta}) = K^{-1/2}\widehat{F}(\boldsymbol{\theta})$, $H_0 = K^{-1/2}F_0$. We have $\|F\|_{\mathcal{H}} = \|H\|$ when $F \in \mathcal{H}$ and $H = K^{-1/2}F$. Furthermore, the prediction risk can be written as $\|T^{1/2}(\widehat{H} - H_0)\|$.

Since the objective function (2.1) can be written as

$$\sum_{i=1}^{n} (Y_i - \langle H, U_i \rangle - \mathbf{Z}_i^{\mathrm{T}} \boldsymbol{\theta})^2 + n\lambda \|H\|^2,$$

we have, for given θ ,

$$\widehat{H}(\boldsymbol{\theta}) = (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n U_i (Y_i - \mathbf{Z}_i^{\mathrm{T}} \boldsymbol{\theta})}{n},$$
 (S1.1)

where $T_n = \sum_i U_i \otimes U_i / n$ is a simple moment estimator of $T = E[U \otimes U]$. Plugging (S1.1) into (2.2), we get that $\widehat{\boldsymbol{\theta}}$ is the minimizer of

$$\sum_{i=1}^{n} \left(Y_{i} - \langle U_{i}, (T_{n} + \lambda I)^{-1} \frac{\sum_{j=1}^{n} U_{j} (Y_{j} - \mathbf{Z}_{j}^{\mathrm{T}} \boldsymbol{\theta})}{n} \rangle - \mathbf{Z}_{i}^{\mathrm{T}} \boldsymbol{\theta} \right)^{2}$$

$$= \sum_{i=1}^{n} \left(\epsilon_{i} + \langle U_{i}, H_{0} \rangle - \langle U_{i}, (T_{n} + \lambda I)^{-1} \frac{\sum_{j=1}^{n} U_{j} (\epsilon_{j} + \langle U_{j}, H_{0} \rangle - \mathbf{Z}_{j}^{\mathrm{T}} (\boldsymbol{\theta} - \boldsymbol{\theta}_{0}))}{n} \rangle - \mathbf{Z}_{i}^{\mathrm{T}} (\boldsymbol{\theta} - \boldsymbol{\theta}_{0}) \right)^{2}.$$

Thus we have

$$\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 = \frac{1}{n} \left(\frac{\sum_{i=1}^n \tilde{\mathbf{Z}}_i \tilde{\mathbf{Z}}_i^T}{n} \right)^{-1}$$

$$\left(\sum_{i=1}^n \tilde{\mathbf{Z}}_i \left(\epsilon_i + \langle U_i, H_0 \rangle - \langle U_i, (T_n + \lambda I)^{-1} \frac{\sum_{j=1}^n U_j (\epsilon_j + \langle U_j, H_0 \rangle)}{n} \rangle \right) \right),$$

where $\tilde{\mathbf{Z}}_i = \mathbf{Z}_i - \langle U_i, (T_n + \lambda I)^{-1} \frac{\sum_{j=1}^n U_j \mathbf{Z}_j}{n} \rangle$. Here $\langle U_i, (T_n + \lambda I)^{-1} \frac{\sum_{j=1}^n U_j \mathbf{Z}_j}{n} \rangle$ denotes the p-vector with components $\langle U_i, (T_n + \lambda I)^{-1} \frac{\sum_{j=1}^n U_j Z_{jk}}{n} \rangle$ with Z_{jk} being the k-th component of \mathbf{Z}_j for $k = 1, 2, \ldots, p$.

As mentioned before, we define \widehat{F}^* to be the estimator of F_0 assuming $\boldsymbol{\theta}_0$ is known. Thus we have $\widehat{H}^* := K^{-1/2}\widehat{F}^* = (T_n + \lambda I)^{-1}\frac{\sum_{i=1}^n U_i(\epsilon_i + \langle U_i, H_0 \rangle)}{n}$. Note that \widehat{F}^* is exactly the regularized estimator of F_0 in a functional linear model without the multivariate part. Also, we define $\widehat{\mathbf{g}} := K^{-1/2}\widehat{\boldsymbol{\gamma}} = (K^{-1/2}\widehat{\gamma}_1, \dots, K^{-1/2}\widehat{\gamma}_p)^{\mathrm{T}} = (T_n + \lambda I)^{-1}\frac{\sum_{j=1}^n U_j \mathbf{Z}_j}{n}$, and actually $\widehat{\boldsymbol{\gamma}}$ is an estimator of $\boldsymbol{\gamma}_0$ defined in (2.7) based

on the RKHS approach. Then

$$\sum_{i=1}^{n} \tilde{\mathbf{Z}}_{i} \left(\langle U_{i}, H_{0} \rangle - \langle U_{i}, (T_{n} + \lambda I)^{-1} \frac{\sum_{j=1}^{n} U_{j}(\epsilon_{j} + \langle U_{j}, H_{0} \rangle)}{n} \rangle \right)$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{Z}}_{i} \langle U_{i}, H_{0} - \hat{H}^{*} \rangle$$

$$= \sum_{i=1}^{n} (\mathbf{Z}_{i} - \langle U_{i}, \hat{\mathbf{g}} \rangle) \langle U_{i}, H_{0} - \hat{H}^{*} \rangle$$

$$= \sum_{i=1}^{n} (\mathbf{Z}_{i} - \langle U_{i}, \mathbf{g}_{0} \rangle) \langle U_{i}, H_{0} - \hat{H}^{*} \rangle + \sum_{i=1}^{n} \langle U_{i}, \mathbf{g}_{0} - \hat{\mathbf{g}} \rangle \langle U_{i}, H_{0} - \hat{H}^{*} \rangle.$$

Using that $(\mathbf{Z}_i - \langle U_i, \mathbf{g}_0 \rangle)U_i = (\mathbf{Z}_i - \int \boldsymbol{\gamma}_0(t, X(t))dt)U_i = \boldsymbol{\eta}_i U_i$ has mean zero, the first term above is $O_p(\sqrt{n}\|H_0 - \widehat{H}^*\|) = O_p(\sqrt{n}\|F_0 - \widehat{F}^*\|_{\mathcal{H}})$, which is $O_p(\sqrt{n})$ when r=0 and $O_p(\sqrt{n})$ when r>0 (see (S1.3) in Theorem 1 in the Appendix B). The second term above is, by Cauchy-Schwarz inequality and (S1.4) in the appendix,

$$O_p(n||T_n^{1/2}(\mathbf{g}_0 - \widehat{\mathbf{g}})|||T_n^{1/2}(H_0 - \widehat{H}^*)||) = O_p\left(n^{1 - \frac{(1+r)\alpha}{(1+r)\alpha+1}}\right) = o_p(\sqrt{n})$$

when $\alpha > 1$ and $r \in [0, 1]$. Furthermore,

$$\sum_{i=1}^{n} \tilde{\mathbf{Z}}_{i} \epsilon_{i} = \sum_{i=1}^{n} (\mathbf{Z}_{i} - \langle U_{i}, \mathbf{g}_{0} \rangle) \epsilon_{i} + \sum_{i=1}^{n} \langle U_{i}, \mathbf{g}_{0} - \hat{\mathbf{g}} \rangle \epsilon_{i}$$

$$= \sum_{i=1}^{n} (\mathbf{Z}_{i} - \langle U_{i}, \mathbf{g}_{0} \rangle) \epsilon_{i} + \langle \sum_{i=1}^{n} U_{i} \epsilon_{i}, \mathbf{g}_{0} - \hat{\mathbf{g}} \rangle$$

$$= \sum_{i=1}^{n} (\mathbf{Z}_{i} - \langle U_{i}, \mathbf{g}_{0} \rangle) \epsilon_{i} + O_{p}(\sqrt{n}) \|\mathbf{g}_{0} - \hat{\mathbf{g}}\|,$$

$$\sum_{i=1}^{n} \tilde{\mathbf{Z}}_{i} \tilde{\mathbf{Z}}_{i}^{\mathrm{T}} - \sum_{i=1}^{n} (\mathbf{Z}_{i} - \langle U_{i}, \mathbf{g}_{0} \rangle) (\mathbf{Z}_{i} - \langle U_{i}, \mathbf{g}_{0} \rangle)^{\mathrm{T}}$$

$$= \sum_{i=1}^{n} (\mathbf{Z}_{i} - \langle U_{i}, \mathbf{g}_{0} \rangle) \langle U_{i}, \mathbf{g}_{0} - \widehat{\mathbf{g}} \rangle^{\mathrm{T}} + \sum_{i=1}^{n} \langle U_{i}, \mathbf{g}_{0} - \widehat{\mathbf{g}} \rangle (\mathbf{Z}_{i} - \langle U_{i}, \mathbf{g}_{0} \rangle)^{\mathrm{T}}$$

$$+ \sum_{i=1}^{n} \langle U_{i}, \mathbf{g}_{0} - \widehat{\mathbf{g}} \rangle \langle U_{i}, \mathbf{g}_{0} - \widehat{\mathbf{g}} \rangle^{\mathrm{T}}$$

$$= O_{p}(\sqrt{n}) \|\mathbf{g}_{0} - \widehat{\mathbf{g}}\| + O_{p}(n \|T_{n}^{1/2}(\mathbf{g}_{0} - \widehat{\mathbf{g}})\|^{2})$$

$$= o_{p}(n).$$

Thus $\|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\| = O_p(n^{-1/2})$ if r = 0, while if r > 0 the dominant term in $\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0$ is $\frac{1}{n} \sum_{i=1}^n (\mathbf{Z}_i - \langle U_i, \mathbf{g}_0 \rangle) \epsilon_i$ which established the asymptotic normality property.

For the estimator \widehat{H} , we have

$$\widehat{H} - H_0$$

$$= (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n U_i (Y_i - \mathbf{Z}_i^{\mathrm{T}} \widehat{\boldsymbol{\theta}})}{n} - H_0$$

$$= (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n U_i (Y_i - \mathbf{Z}_i^{\mathrm{T}} \boldsymbol{\theta}_0)}{n} - H_0 - (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n U_i \mathbf{Z}_i^{\mathrm{T}} (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)}{n}$$

$$= (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n U_i (Y_i - \mathbf{Z}_i^{\mathrm{T}} \boldsymbol{\theta}_0)}{n} - H_0 - \widehat{\mathbf{g}}^{\mathrm{T}} (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0).$$

Note the first term above is just $\widehat{H}^* = K^{-1/2}\widehat{F}^*$. Furthermore,

$$T^{1/2}\widehat{\mathbf{g}}^{\mathrm{T}}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$$

$$= T^{1/2}(\widehat{\mathbf{g}} - \mathbf{g}_0)^{\mathrm{T}}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + T^{1/2}\mathbf{g}_0^{\mathrm{T}}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$$

$$= O_p(\|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\|) = O_p(1/\sqrt{n}),$$

which finished the proof for $||T^{1/2}(\widehat{H} - H_0)||$.

S1.1 Results for purely functional additive regression

In this part, we consider the purely functional model $Y_i = \langle U_i, H_0 \rangle + \epsilon_i$ under the same conditions (A1)-(A3) (except that all assumptions involving **Z** now becomes void). With abuse of notation, the estimator is

$$\widehat{H} = \underset{H}{\operatorname{argmin}} \sum_{i} (Y_i - \langle U_i, H \rangle)^2 + n\lambda ||H||^2$$

(instead of writing it as \widehat{H}^* as in the main text).

Theorem 1. Assume (A1)-(A3). If $s_j \simeq j^{-\alpha}$ for some constant $\alpha > 1$ and $r \in [0,1]$ in assumptions (A3), by setting $\lambda \simeq n^{-\alpha/((1+r)\alpha+1)}$, we have

$$E^* \langle \widehat{H} - H_0, U^* \rangle^2 = \|T^{1/2} (\widehat{H} - H_0)\|^2 = O_p \left(n^{-\frac{(1+r)\alpha}{(1+r)\alpha+1}} \right), \quad (S1.2)$$

and

$$\|\widehat{F} - F_0\|_{\mathcal{H}}^2 = \|\widehat{H} - H_0\|^2 = O_p\left(n^{-\frac{r\alpha}{(1+r)\alpha+1}}\right). \tag{S1.3}$$

Furthermore, we have

$$(1/n)\sum_{i=1}^{n}\langle \widehat{H} - H_0, U_i \rangle^2 = \|T_n^{1/2}(\widehat{H} - H_0)\|^2 = O_p(n^{-1/2}) \text{ and } o_p(n^{-1/2}) \$1.4)$$

when r = 0 and r > 0, respectively

Remark 1. The first rate above with r=0 (assuming $F_0 \in \mathcal{H}$ without further smoothness assumptions) is the same as the bound in Cai and Yuan (2012). Note that when r=0, we only have $\|\widehat{F}-F_0\|_{\mathcal{H}}^2 = \|\widehat{H}-H_0\|^2 = O_p(1)$ meaning the estimator is inconsistent under this $\|.\|_{\mathcal{H}}$ error measure. Both convergence rates become faster as r increases.

Proof of Theorem 1. In the proofs we use C to denote a generic positive con-

stant. Using $Y_i = \langle H_0, U_i \rangle + \epsilon_i$, we have

$$\widehat{H} - H_0$$

$$= (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n \langle H_0, U_i \rangle U_i}{n} + (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n \epsilon_i U_i}{n} - H_0$$

$$= ((T_n + \lambda I)^{-1} T_n - I) H_0 + (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n \epsilon_i U_i}{n}$$

$$= -\lambda (T_n + \lambda I)^{-1} H_0 + (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n \epsilon_i U_i}{n}$$

$$=: A_1 + A_2.$$

Furthermore, we decompose

$$A_{1} = -\lambda (T + \lambda I)^{-1} H_{0} - \lambda (T_{n} + \lambda I)^{-1} (T - T_{n}) (T + \lambda I)^{-1} H_{0}$$

$$= -\lambda (T + \lambda I)^{-1} H_{0} - \lambda (T + \lambda I)^{-1} (T - T_{n}) (T + \lambda I)^{-1} H_{0}$$

$$+\lambda (T + \lambda I)^{-1} (T_{n} - T) (T_{n} + \lambda I)^{-1} (T - T_{n}) (T + \lambda I)^{-1} H_{0}$$

$$= A_{11} + A_{12} + A_{13},$$

where in both the first equality and the second, we used the identity $B^{-1}-A^{-1}=$ $B^{-1}(A-B)A^{-1}=A^{-1}(A-B)B^{-1}$ with $A=T+\lambda I$ and $B=T_n+\lambda I$. For simplicity, we define $H_0=\sum_{k=1}^\infty b_k e_k$, $S_1:=\sum_{j=1}^\infty b_j^2/(s_j+\lambda)$ and

 $S_2 = \sum_{j=1}^{\infty} s_j/(s_j + \lambda)$. Obviously, from Lemma 1, it follows

$$||A_{11}||^{2} = ||-\lambda(T+\lambda I)^{-1}H_{0}||^{2}$$
$$= \lambda^{2} \left\| \left(\sum_{j=1}^{n} (s_{j}+\lambda)^{-1}(e_{j} \otimes e_{j}) \right) \sum_{k=1}^{n} b_{k} e_{k} \right\|^{2} \leq \lambda S_{1}.$$

For A_{12} , similar to Lemma 2, we have

$$||A_{12}||^{2} \leq ||A_{11}||^{2}||(T+\lambda I)^{-1}(T-T_{n})||_{hs}^{2}$$

$$= O(\lambda S_{1}) \cdot O_{p} \left(\frac{1}{n} \sum_{k=1}^{\infty} \frac{s_{k}}{(s_{k}+\lambda)^{2}}\right)$$

$$= O_{p} \left(\frac{S_{1}S_{2}}{n}\right).$$

For A_{13} , we have

$$||A_{13}||^{2} \leq ||(T + \lambda I)^{-1}(T_{n} - T)||_{hs}^{2} \times ||\lambda(T_{n} + \lambda I)^{-1}||_{op}^{2} \times ||(T - T_{n})(T + \lambda I)^{-1/2}||_{hs}^{2} \times ||(T + \lambda I)^{-1/2}H_{0}||^{2}$$

$$= O_{p}\left(\frac{S_{2}}{n\lambda}\right) \cdot 1 \cdot O_{p}\left(\frac{S_{2}}{n}\right) \cdot S_{1}$$

$$= O_{p}\left(\frac{S_{1}S_{2}^{2}}{n\lambda}\right).$$

Now, write
$$A_2 = (T + \lambda I)^{-1} \frac{\sum_{i=1}^n \epsilon_i U_i}{n} + (T + \lambda I)^{-1} (T - T_n) (T_n + \lambda I)^{-1} \frac{\sum_{i=1}^n \epsilon_i U_i}{n} = :$$

 $A_{21} + A_{22}$. We have

$$E||A_{21}||^{2} = E[tr(A_{21} \otimes A_{21})]$$

$$= \frac{1}{n}tr\left((T+\lambda I)^{-1}E[\epsilon_{1}^{2}(U_{1} \otimes U_{1})](T+\lambda I)^{-1}\right)$$

$$= O\left(\frac{1}{n}tr(T(T+\lambda I)^{-2})\right)$$

$$= O\left(\frac{S_{2}}{n\lambda}\right).$$

Furthermore, we denote $C = (T + \lambda I)^{-1}(T - T_n)(T_n + \lambda I)^{-1}$ to avoid lengthy expressions below and consider the conditional expectation as follows.

$$E[\|A_{22}\|^{2}|\{X_{i}\}_{i=1}^{n}]$$

$$= E[tr(A_{22} \otimes A_{22})|\{X_{i}\}_{i=1}^{n}]$$

$$= O_{p}\left(\frac{1}{n}tr(\mathcal{C}T_{n}\mathcal{C})\right)$$

$$= O_{p}\left(\frac{1}{n}\|T_{n}^{1/2}\mathcal{C}\|_{hs}^{2}\right)$$

$$= O_{p}\left(\frac{1}{n}\|T_{n}^{1/2}(T_{n} + \lambda I)^{-1}(T - T_{n})(T + \lambda I)^{-1}\|_{hs}^{2}\right)$$

$$\leq O_{p}\left(\frac{1}{n}\|T_{n}^{1/2}(T_{n} + \lambda I)^{-1/2}\|_{op}^{2}\|(T_{n} + \lambda I)^{-1/2}\|_{op}^{2}\|(T - T_{n})(T + \lambda I)^{-1}\|_{hs}^{2}\right)$$

$$= O_{p}\left(\frac{1}{n\lambda}\right) \cdot O_{p}\left(\frac{S_{2}}{n\lambda}\right).$$

The rate (S1.3) is obtained by combining the bounds for $A_{11},A_{12},A_{13},A_{21},A_{22}$ above. More specifically, using the bounds $S_1=O(\lambda^{r-1})$ and $S_2=O(\lambda^{-1/\alpha})$

in Lemma 1, choosing λ to balance the two terms in $\lambda S_1 + S_2/(n\lambda)$, we get $\lambda \simeq n^{-\alpha/((1+r)\alpha+1)}$. With this choice of λ , other terms in the bounds above are of smaller order and we get the rates are dominated by $\lambda S_1 + S_2/(n\lambda)$ which is as in (S1.3).

The proof of (S1.2) is similar to the proof of (S1.3) with some changes. First we note that the prediction risk can be written as $||T^{1/2}(\widehat{H} - H_0)||$. We have

$$T^{1/2}\widehat{H} - T^{1/2}H_0$$

$$= A_{11}^* + A_{12}^* + A_{13}^* + A_{21}^* + A_{22}^*$$

where

$$A_{11}^{*} = -\lambda T^{1/2} (T + \lambda I)^{-1} H_{0}$$

$$A_{12}^{*} = -\lambda T^{1/2} (T + \lambda I)^{-1} (T - T_{n}) (T + \lambda I)^{-1} H_{0}$$

$$A_{13}^{*} = \lambda T^{1/2} (T + \lambda I)^{-1} (T_{n} - T) (T_{n} + \lambda I)^{-1} (T - T_{n}) (T + \lambda I)^{-1} H_{0}$$

$$A_{21}^{*} = T^{1/2} (T + \lambda I)^{-1} \frac{\sum_{i=1}^{n} \epsilon_{i} U_{i}}{n}$$

$$A_{22}^{*} = T^{1/2} (T + \lambda I)^{-1} (T - T_{n}) (T_{n} + \lambda I)^{-1} \frac{\sum_{i=1}^{n} \epsilon_{i} U_{i}}{n}.$$

The main modification is simply to use $\|(T + \lambda I)^{-1/2}T^{1/2}\|_{op} \leq 1$ and the fact that for two Hilbert-Schmidt operators A and B, $\|AB\|_{hs} \leq \|A\|_{hs} \|B\|_{op}$. More

specifically, we have

$$||A_{11}^*||^2 = \lambda^2 S_1,$$

$$||A_{12}^*||^2 \leq ||\lambda(T+\lambda I)^{-1/2}||_{op}^2 ||(T+\lambda I)^{-1/2}H_0||^2 ||(T-T_n)(T+\lambda I)^{-1/2}||_{hs}^2$$
$$= O_p\left(\frac{\lambda}{n}S_1S_2\right),$$

by Lemma 2, and

$$||A_{13}^*||^2 \leq ||(T+\lambda I)^{-1/2}(T-T_n)||_{hs}^2 \times ||\lambda(T_n+\lambda I)^{-1}||_{op}^2 \times ||(T-T_n)(T+\lambda I)^{-1/2}||_{hs}^2 \times ||(T+\lambda I)^{-1/2}H_0||^2$$

$$= O_p\left(\frac{S_1S_2^2}{n^2}\right).$$

Furthermore,

$$E\|A_{21}^*\|^2 = E[tr(A_{21}^* \otimes A_{21}^*)]$$

$$= \frac{1}{n}tr(T(T+\lambda I)^{-1}E[\epsilon_i^2(U_i \otimes U_i)](T+\lambda I)^{-1})$$

$$= O_p\left(\frac{1}{n}tr(T^2(T+\lambda I)^{-2})\right)$$

$$= O_p\left(\frac{1}{n}\sum_{j=1}^n \frac{s_j^2}{(s_j+\lambda)^2}\right)$$

$$= O_p\left(\frac{S_2}{n}\right),$$

where in the last step we used $s_j/(s_j + \lambda) \le 1$, and also

$$E[\|A_{22}^*\|^2 | \{X_i\}_{i=1}^n]$$

$$= E[tr(A_{22}^* \otimes A_{22}^*) | \{X_i\}_{i=1}^n]$$

$$= O_p\left(\frac{1}{n} \|T_n^{1/2} (T_n + \lambda I)^{-1} (T - T_n) (T + \lambda I)^{-1} T^{1/2} \|_{hs}^2\right)$$

$$= O_p\left(\frac{1}{n} \|T_n^{1/2} (T_n + \lambda I)^{-1} \|_{op}^2 \| (T - T_n) (T + \lambda I)^{-1/2} \|_{hs}^2\right)$$

$$= O_p\left(\frac{1}{n\lambda}\right) \cdot O_p\left(\frac{S_2}{n}\right).$$

To see (S1.2), using the bounds for $A_{11}^*, \ldots, A_{22}^*$ above, the same value of λ balances the two terms in $\lambda^2 S_1 + S_2/n$ and other terms in the rate are of smaller order and thus the convergence rate is $O_p(n^{-(1+r)\alpha/((1+r)\alpha+1)})$.

Finally, to establish (S1.4), we use

$$||T_n^{1/2}(\widehat{H} - H_0)||^2$$

$$= ||T^{1/2}(\widehat{H} - H_0)||^2 - \langle \widehat{H} - H_0, (T - T_n)(\widehat{H} - H_0) \rangle$$

$$\leq ||T^{1/2}(\widehat{H} - H_0)||^2 + O_p(n^{-1/2}||\widehat{H} - H_0||^2).$$

By (S1.2) and (S1.3), the above is $O_p(n^{-1/2})$ if r=0 and $o_p(n^{-1/2})$ if r>0. \square

Lemma 1. For $r \in [0,1]$ and $s_j \times j^{-\alpha}$ for some $\alpha > 1$, we have $S_1 := \sum_{j=1}^{\infty} b_j^2/(s_j + \lambda) = O(\lambda^{r-1})$ and $S_2 = \sum_{j=1}^{\infty} s_j/(s_j + \lambda) = O(\lambda^{-1/\alpha})$.

Proof of Lemma 1. When $r \in [0, 1]$, we have

$$S_1^2 = \sum_j \frac{b_j^2}{(s_j + \lambda)^2}$$

$$= \sum_j \frac{b_j^2}{s_j^r} \frac{s_j^r}{(s_j + \lambda)^2}$$

$$\leq C \max_j \frac{s_j^r}{(s_j + \lambda)^2}$$

$$\leq C \max_j \frac{1}{(s_j + \lambda)^{2-r}}$$

$$< C\lambda^{r-2}.$$

Let $J=\lambda^{-1/\alpha}$, by splitting the sum into $\sum_{j=1}^J$ and $\sum_{j=J+1}^\infty$, we have

$$S_2 = \sum_{j} \frac{s_j}{s_j + \lambda}$$

$$\leq C \sum_{j=1}^{J} 1 + C\lambda^{-1} \sum_{j=J+1}^{\infty} j^{-\alpha}$$

$$= O(J) + \lambda^{-1} O(J^{-\alpha+1})$$

$$= O(\lambda^{-1/\alpha}).$$

We complete the proof.

Lemma 2. Under the same assumptions as in Theorem 1, we have

$$E\|(T+\lambda I)^{-1/2}(T-T_n)\|_{op}^2 = O\left(\frac{S_2}{n}\right).$$
 (S1.5)

Proof of Lemma 2. Write $W_i = (T + \lambda I)^{-1/2} U_i \otimes U_i$ and $V_i = W_i - E(W_i)$.

A simple derivation leads to that

$$E\|(T + \lambda I)^{-1/2}(T - T_n)\|_{hs}^{2} = E\left[\langle \frac{1}{n} \sum_{i=1}^{n} V_i, \frac{1}{n} \sum_{i=1}^{n} V_i \rangle_{hs}\right]$$

$$= \frac{1}{n} E[\langle V_1, V_1 \rangle_{hs}]$$

$$= \frac{1}{n} E[\langle W_1, W_1 \rangle_{hs}] - \frac{1}{n} [\langle E(W_1), E(W_1) \rangle_{hs}]$$

$$\leq \frac{1}{n} E[\langle W_1, W_1 \rangle_{hs}].$$

Without confusion, write the Karhunen-Loève expansion of U_1 as $U_1 = \sum_{j=1}^{\infty} \xi_j e_j$, where ξ_j denote the random coefficients satisfying that $E(\xi_j) = 0$, $E(\xi_j^2) = s_j$. Then, we have

$$\langle W_1, W_1 \rangle_{hs} = \sum_{j,k} \langle (T + \lambda I)^{-1/2} (U_1 \otimes U_1) e_j, e_k \rangle^2$$

$$= \sum_{j,k} \xi_j^2 \langle (T + \lambda I)^{-1/2} U_1, e_k \rangle^2$$

$$= \sum_{j,k} \xi_j^2 \langle U_1, (T + \lambda I)^{-1/2} e_k \rangle^2$$

$$= \sum_{j,k} \xi_j^2 \langle U_1, e_k / \sqrt{s_k + \lambda} \rangle^2$$

$$= \sum_{j,k} \frac{\xi_j^2 \xi_k^2}{s_k + \lambda}.$$

This implies, by assumption (A2),

$$E[\langle W_1, W_1 \rangle_{hs}] = \sum_{j,k} \frac{s_j s_k}{s_k + \lambda} \le C \sum_k \frac{s_k}{s_k + \lambda} = CS_2.$$

This lemma then follows immediately.

Bibliography

Cai, T. and Yuan, M. (2012) Minimax and adaptive prediction for functional linear regression. *Journal of the American Statistical Association*, **107**, 1201–1216.