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Abstract: We consider a novel partially linear additive functional regression model in

which both a functional predictor and some scalar predictors appear. The functional

part has a semiparametric continuously additive form, while the scalar predictors

appear in the linear part. The functional part has the optimal convergence rate,

and the asymptotic normality of the nonfunctional part is also shown. Simulations

and an empirical analysis of a Covid-19 data set demonstrate the performance of

the proposed estimator.
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1. Introduction

Regression problems in statistics can be classified as parametric analysis,

nonparametric, and semiparametric regressions. Statistical analyses of functional

data, or data involving curves defined on a continuous domain, have been stud-

ied for decades, originating with the pioneering works on parametric models of,

among others, Ramsay (1982) and Ramsay and Dalzell (1991). Nonparametric

kernel approaches to functional regression, well documented in the monograph of

Ferraty and Vieu (2006), have also had a profound impact in this area. Other

nonparametric functional regression approaches include those of Preda (2007)

and Lian (2007, 2011). Fewer studies have examined semiparametric approaches;

here, works include those of Ait-Saidi et al. (2008); Müller and Yao (2008); Chen,

Hall and Mueller (2011); McLean et al. (2014); Zhu, Yao and Zhang (2014) and

Radchenko, Qiao and James (2015), among others.

Several studies have considered the case in which we have both a functional

predictor and a more classical set of scalar predictors. Shin (2009) coined the

term partial functional linear regression for the proposed model in which both
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types of predictors are related to the response in a linear fashion, as given by

Y =

∫
T
X(t)β(t)dt+ Z>θ + ε, (1.1)

where β ∈ L2(T ) is the unknown slope function associated with the functional

predictor X, and θ = (θ1, . . . , θp)
T is the multivariate slope associated with the

multivariate predictor Z = (Z1, . . . , Zp)
T, with p assumed to be fixed. Kong

et al. (2016) extended the model to incorporate multiple functions and high-

dimensional multivariate predictors. On the other hand, Aneiros-Perez and Vieu

(2006) considered a nonparametric alternative, where
∫
T X(t)β(t)dt in (1.1) is

replaced by a general m(X) using a nonparametric function m : L2(T )→ R.

In this study, we use a semiparametric approach for the functional part pro-

posed in McLean et al. (2014) and Müller, Wu and Yao (2013). More specifically,

we assume the model

Y =

∫
T
F0(t,X(t))dt+ ZTθ0 + ε. (1.2)

The functional part above is a continuous version of the more familiar additive

form
∑J

i=1 Fj(tj , X(tj)) when J →∞. For nonfunctional data analysis, additive

models are frequently used to address the curse of dimensionality in multivariate

nonparametric regression (Stone (1986); Liang and Li (2009); Xue and Liang

(2010); Wang et al. (2014)). In general, additive models offer increased flexibility

and potentially lower estimation bias than linear models. Furthermore, they have

less variance in estimation and are less susceptible to the curse of dimensionality

than are models that make no additivity assumptions. The same can be said

about our functional extension (1.2).

We focus on a penalized estimation of the partially linear additive functional

model in a reproducing kernel Hilbert space (RKHS) framework, as in Cai and

Yuan (2012) and Wang and Ruppert (2015). Methodologically, this extension is

related to the large body of literature on partially linear models and partially lin-

ear additive models for nonfunctional data (Huang (1999); Liang and Li (2009)).

However, for functional data, the setups differ from those used in a nonparamet-

ric or semiparametric regression. Although Hall and Horowitz (2007) stated their

rate is “generic to a large class of noisy inverse problems,” this does not mean our

theory can be obtained directly from theirs, because our model is in an RKHS

framework. However, there are qualitative similarities, such as the rates being

faster if the estimation target is smoother. Compared with Wang and Ruppert

(2015), a main contribution of our work is to extend the model to include the case
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with a linear part, and to establish its asymptotic normality. We also incorporate

an additional smoothness parameter (denoted as r), whereas Wang and Ruppert

(2015) only considered r = 0. This requires a more careful analysis of the bias.

For the parametric part, the need to use a profiling strategy also makes the proof

more challenging. In addition, a minor point is that we try to clarify the issue of

the unidentifiability of F0, as mentioned in Wang and Ruppert (2015); however,

its implications for the theoretical results are not clear.

We establish that the functional part of the estimator has the optimal esti-

mation error, with the same rate as that in Wang and Ruppert (2015), whereas

the linear part has the parametric rate. The methodology and theoretical results

are presented in Section 2, with the proofs provided in the Supplementary Mate-

rial. Section 3 reports our simulation results, and presents an empirical analysis

of a real data set to illustrate our proposed approach. We conclude the paper in

Section 4.

Finally, we list some notation and properties for the different norms used.

For any operator F , we use FT to denote its adjoint operator. If F is self-adjoint

and nonnegative definite, F1/2 is its square root, satisfying F1/2F1/2 = F . For

f ∈ L2(T ) or L2(T 2), ‖f‖ denotes its L2 norm. For any operator F , ‖F‖op is

the operator norm ‖F‖op := sup‖f‖≤1 ‖Ff‖. The trace norm of an operator F is

tr(F) =
∑

k〈(FTF)1/2ek, ek〉, for any orthonormal basis {ek}. F is a trace class

operator if its trace norm is finite. The Hilbert–Schmidt norm of an operator is

‖F‖hs = (
∑

j,k〈Fej , ek〉2)1/2 = (
∑

j ‖Fej‖2)1/2. An operator is Hilbert–Schmidt

if its Hilbert–Schmidt norm is finite. From the definition, it is easy to see that

tr(FTF) = tr(FFT) = ‖F‖2hs. Furthermore, if F is a Hilbert–Schmidt operator

and G is a bounded operator, then FG is also a Hilbert–Schmidt operator, with

‖FG‖hs ≤ ‖F‖hs‖G‖op.

2. Profiled Partially Linear Additive Estimator

We assume T = [0, 1], without loss of generality. Following Wahba (1990),

a RKHS H ⊆ L2(W), where W = [0, 1] × X is a Hilbert space of real-valued

functions with inner product 〈·, ·〉H (〈·, ·〉 denotes the standard L2 inner prod-

uct), in which the point evaluation operator Lw : H → R, Lw(f) = f(w) is

continuous. The corresponding norm induced by the inner product is denoted by

‖ · ‖H. Here, X can simply be [0, 1] when some strictly increasing distribution

function is used to transform the range of X(t) to [0, 1]. This can be assumed

without much loss of generality, because F0 is a nonparametric function to be

estimated. One can also use X = R, without resorting to such a transforma-
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tion. By the Riesz representation theorem, this definition implies the existence

of a nonnegative-definite square-integrable bivariate function K(w,w′), such that

K(w, ·) ∈ H and 〈K(w, ·), f〉H = f(w), for every f ∈ H and w ∈ W . With a

slight abuse of notation, K also denotes the linear operator f ∈ L2(W)→ Kf =∫∫
K(·, (t, x))f(t, x)dtdx. For later use, we note that H is identical to the range

of K1/2.

In this section, we consider error bounds for the partially linear additive

functional model (PLAFM), assuming the function F0 is in some given RKHS

H. Given independent and identically distributed (i.i.d.) data (Xi,Zi, Yi), for

i = 1, . . . , n, the estimators of F0 and θ0 are obtained from

(F̂ , θ̂) = argmin
F,θ

n∑
i=1

(
Yi −

∫
F (t,Xi(t))dt− ZT

i θ

)2

+ nλ‖F‖2H. (2.1)

Our goal is to establish the asymptotic normality of θ̂ and the optimal con-

vergence rate of F̂ . The challenge here is the former, which requires a profiling

technique often used in semiparametric statistics. Computationally, F̂ and θ̂ can

be obtained simultaneously from (2.1). However, theoretically, we need to profile

out F in order to study the asymptotic properties of the estimator for θ. More

specifically, given any θ, we denote the minimizer of (2.1) for F (regarded as a

function of θ) by F̂ (·;θ), or simply F̂ (θ) for simplicity. Then, the final estimators

for F and θ are given by F̂ (·; θ̂) and θ̂, respectively, where θ̂ is obtained from

θ̂ = argmin
θ

n∑
i=1

(
Yi −

∫
F̂ (t,Xi(t);θ)dt− ZT

i θ

)2

. (2.2)

Note that by the reproducing property, we have∫
F (t, x(t))dt =

∫
〈F,K(·, (t, x(t)))〉H dt =

〈
F,

∫
K(·, (t, x(t)))dt

〉
H
. (2.3)

Let H = K−1/2F ∈ L2(W) and G(x) =
∫
K1/2(·, (t, x(t)))dt ∈ L2(W), where

K1/2 is the square root of K, defined by

K(w,w′) =

∫∫
K1/2(w, (t, x))K1/2(w′, (t, x))dtdx. (2.4)

Then, 〈F,
∫
K(·, (t, x(t)))dt〉H = 〈H,G(x)〉. Thus, in terms of H, the optimiza-
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tion problem (2.1) becomes

(Ĥ, θ̂) = argmin
H∈L2(W),θ

n∑
i=1

(Yi − 〈H,G(Xi)〉 − ZT
i θ)2 + nλ‖H‖2. (2.5)

For simplicity of notation, we denote U = G(X) and Ui = G(Xi), and define

f ⊗ g : L2(W) → L2(W) by (f ⊗ g)(h) = 〈g, h〉f , for any h ∈ L2(W). Let T be

the operator E[U ⊗ U ]. We assume that T has a spectral expansion given by

T =

∞∑
j=1

sjej ⊗ ej ,

where s1 ≥ s2 ≥ · · · ≥ 0 are the eigenvalues, and {ej} are the orthonormalized

eigenfunctions (more specific assumptions on sj are stated in Theorem 1).

Note that we can also define the bivariate function

T ((t, x), (t′, x′)) =

∫∫
E[K1/2((t, x), (u, x(u)))K1/2((t′, x′), (v, x(v)))]dudv,

where K1/2(·, ·) is defined in (2.4). Then, it is easy to see that T = E[U ⊗ U ] is

the operator mapping f ∈ L2(W) to
∫∫

T (·, (t, x))f(t, x)dtdx.

The estimator of the true function F0 is F̂ = K1/2Ĥ. For a given θ, the

minimizer of H in (2.5) has a closed form, and is given by

Ĥ(·;θ) = (Tn + λI)−1
(∑n

i=1(Yi − ZT
i θ)Ui

n

)
, (2.6)

where Tn :=
∑n

i=1 Ui ⊗ Ui/n, and I denotes the identity operator.

Before we state our assumptions. The important issue of the unidentifiability

of the model needs to be addressed. More specifically, in (1.2), it is easy to see

that if F0(t, x) is replaced by F0(t, x) + g(t), with some function g, such that∫ 1
0 g(t)dt = 0, the regression function does not change. This is also shown in (2.3),

which again shows that no g ∈ H with 〈g,
∫
K(., (t,X(t)))dt〉H =

∫
g(t)dt = 0

can be recovered. Let h = K−1/2g. Because 〈g,
∫
K(., (t,X(t)))dt〉H = 〈h, U〉,

such an h satisfies 〈h, U〉 = 0 almost surely. Thus, we see that h is in the kernel of

the operator T = E[U ⊗ U ]. In other words, unidentifiability here simply means

T is not invertible (the eigenvectors ei do not span L2(W)). Solving this difficulty

is then easy. We just need to focus on the case H ∈ L2
0(W) := {h : h⊥Ker(T )}.

By assuming H0 ∈ L2
0(W) (or projecting H0 onto L2

0(W) and only considering an

estimation for this projected function), we can then consider the error ‖Ĥ−H0‖,
for example.
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The following technical assumptions are imposed.

(A1) (Xi, Yi,Zi, εi) are i.i.d., E‖G(X)‖4 +E‖Z‖4 +E‖ε‖4 <∞, E[ε|X] = 0, and

E[ε|Z] = 0.

(A2) For all F ∈ H, we have

E

(∫
F (t,X(t))dt

)4

≤ C

(
E

(∫
F (t,X(t))dt

)2
)2

,

for some constant C > 0.

(A3) We assume H0 := K−1/2F0 ∈ {
∑∞

j=1 bjej :
∑

j b
2
j/s

r
j < ∞} ∩ L2

0(W), for

some r ≥ 0.

These assumptions are mostly standard. (A2) is the same as that in Wang and

Ruppert (2015). Note that because H is the range of K1/2, when r = 0, (A3)

simply states that F0 ∈ H. Because sj → 0, (A3) with a larger r can be regarded

as assuming greater smoothness of F0.Note too that assumption (A3) is the same

as saying H0 ∈ Ran(T r/2), where Ran(.) denotes the range of an operator.

Let γ0 = (γ01, . . . , γ0p)
T ∈ (L2(W))p be the minimizer obtained by

γ0j = min
γj

E

[(
Zj −

∫
γj(t,X(t))dt

)2
]
, j = 1, . . . , p, (2.7)

and define ηij = Zij−
∫
γ0j(t,X(t))dt, and ηi = (ηi1, . . . , ηip)

T, where Zj and Zij
denote the jth components of Z and Zi, respectively.

(A4) g0k := K−1/2γ0j ∈ {
∑∞

j=1 bjej :
∑

j b
2
j/s

r
j <∞}, for j = 1, . . . , p.

(A5) E[ηi] = 0 and both E[ZZT] and E[ηiη
T
i ] have eigenvalues bounded and

bounded away from zero.

Assumption (A4) means γ0j is sufficiently smooth. Such a projection is often

used in semiparametric models; for example, see equation (13) and assumption 3

of Li (2000). In particular, this ensures γ0j can be estimated at some sufficiently

fast rate. Assumption (A5) is related to the identifiability of θ. In particular,

this means Z cannot be represented by the functional part. If Z and X are

independent, then E[ηiη
T
i ] is indeed positive definite. Thus, the assumption on

η can also be understood as requiring that the dependence between the two is

not too strong.

A main goal of this study is to show that the functional part has the opti-

mal L2 error and prediction error. The L2 error is simply ‖F̂ − F0‖H = ‖Ĥ −
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H0‖. The prediction risk is defined as E∗[〈Ĥ −H0, U
∗〉2] = E∗[(

∫
F̂ (t,X∗(t))−

F0(t,X
∗(t))dt)2], where U∗ = G(X∗), with X∗ a copy of X, independent of the

observed data, and where E∗ denotes the expectation over the distribution of X∗.

It is clear that the prediction risk can be equivalently written as ‖T 1/2(Ĥ−H0)‖2.

Theorem 1. Assume (A1)–(A5). If sj � j−α, for some constant α > 1, and

r ∈ [0, 1] in assumptions (A3) and (A4), by setting λ � n−α/((1+r)α+1), we have,

as n→∞,

E∗〈Ĥ −H0, U
∗〉2 = Op

(
n−(1+r)α/((1+r)α+1)

)
. (2.8)

Furthermore, when r = 0, we have

‖θ̂ − θ0‖ = Op(n
−1/2),

and when r > 0, √
n(θ̂ − θ0)

d→ N(0,Σ−11 Σ2Σ
−1
1 ),

where Σ1 = E[(Z − 〈U,g0〉)(Z − 〈U,g0〉)T], and Σ2 = E[ε2(Z − 〈U,g0〉)(Z −
〈U,g0〉)T], where g0 = K−1/2γ0. The symbol

d→ denotes convergence in distribu-

tion.

Remark 1. The rate in (2.8) with r = 0 is the same as that in Wang and Ruppert

(2015) (note that Wang and Ruppert (2015) established the rate n−2r/(2r+1),

where the parameter 2r in their notation is the same as our α). Our assumption

(A3) with r = 0 is equivalent to saying that F0 ∈ H, without any additional

smoothness property, whereas a larger r implies greater smoothness. We do not

state the result for r > 1, but because assumptions (A3) and (A4) holding for

r > 1 implies that they hold for r = 1, we actually have the rate E∗〈Ĥ −
H0, U

∗〉2 = Op
(
n−2α/(2α+1)

)
for r > 1. In other words, smoothness beyond r = 1

does not improve the convergence rate. We do not know if this is an artefact

of our proof. For r = 0, Wang and Ruppert (2015) showed that for a mean

regression of a functional additive model, the minimax rate for F in the unit ball

of H is n−α/(α+1). For r > 0, we currently do not know whether the rate obtained

is minimax optimal, although it is faster than that for r = 0.

Remark 2. We assume an RKHS in which F0 is known to belong. If F0 does

not belong to H, there is probably some additional bias we need to deal with,

in theory, but we do not currently have any relevant theoretical results. The

problem is not unlike that of the standard nonparametric regression, where we

usually assume the function is in a certain space, such as a Hölder space, Sobolev

space, or Besov space. However, in the functional regression setting in the RKHS
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framework, we are not aware of any studies on estimators when the RKHS is

misspecified. We leave this as an open problem.

3. Simulations and an Application

In this section, we investigate the finite-sample properties of the proposed

estimating procedure. Both simulated and real data are used.

For the functional part, we focus on the RKHS H(K) with

K((s,Xi(s)), (t,Xj(t))) = ϕ

(√
(s− t)2 + (Xi(s)−Xj(t))2

)
,

where ϕ(·) denotes the density function of the standard normal distribution. A

similar derivation to that of Theorem 2 of Wang and Ruppert (2015) leads to

the estimator of F0 having the form
∑n

j=1 cj
∫ 1
0 K((t, x), (s,Xj(s)))ds, for some

c = (c1, c2, . . . , cn)> ∈ Rn. Then, by minimizing

1

n

n∑
i=1

(Yi − Z>i θ −Σic)
2 + λc>Σc

with respect to (θ>, c>)>, we obtain the estimators θ̂ and

F̂ (t, x) =

n∑
j=1

ĉj

∫ 1

0
K((t, x), (s,Xj(s)))ds.

Here, Σ = (
∫ 1
0

∫ 1
0 K((t,Xi(t)), (s,Xj(s)))dtds)1≤i,j≤n, and Σi denotes the ith

row of Σ. Note that, for a given λ, simple algebra yields

Ŷ =
(
Σ Z̄

)(nλI + Σ ΣZ̄

Z̄>Σ Z̄>Z̄

)−1(
Σ

Z̄>

)
Y =: H(λ)Y ,

where Y = (Y1, Y2, . . . , Yn)>, Z̄ = (Zij)1≤i≤n,1≤j≤p, and I denotes the identity

matrix of dimension n. Then, we can select the tuning parameter λ by minimizing

the generalized cross-validation score GCV(λ) = ‖Ŷ − Y ‖2/(1 − tr(H(λ))/n)2,

as in Wahba (1990).

3.1. Simulations

In this section, we carry out some simulation studies. We generate the data

{Xi, Yi}ni=1 from the following model:



PARTIALLY LINEAR ADDITIVE FUNCTIONAL REGRESSION 2207

Yi =

∫ 1

0
F0(t,Xi(t))dt+ Z1i + 0.5Z2i + εi,

where εi ∼ N(0, σ20), and Z1i, Z2i ∼ U([0, 5]) are independent. For F0, we consider

the following three cases:

• Case 1. F0(t,Xi(t)) = β0(t)Xi(t);

• Case 2. F0(t,Xi(t)) = cos(t−Xi(t)− 5);

• Case 3. F0(t,Xi(t)) = t exp(Xi(t)).

In Case 1, we take

Xi(t) = ζ1W1i +

50∑
k=2

√
2ζkWki cos(kπt), t ∈ [0, 1],

β0(t) = 0.3 +

50∑
k=2

4
√

2(−1)k+1k−2 cos(kπt),

and ζk = (−1)k+1k−ν/2, with ν = 1.1, where Wik are independently uniform on

[−
√

3,
√

3]. In Cases 2 and 3, we take Xi(t) =

cos(Ui1) sin

(
πt

5

)
+sin(Ui1) cos

(
πt

5

)
+cos(Ui2) sin

(
2πt

5

)
+sin(Ui2) cos

(
2πt

5

)
,

where Ui1, Ui2 are i.i.d. from Uniform[0, 2π]. We investigate four combinations

(n, σ) ∈ {(50, 0.5), (50, 1), (100, 0.5), (100, 1)} for each case.

For each setting, we repeat the experiment 1,000 times. In each repeated ex-

periment, we compute the value of ‖θ̂−θ0‖, and the root mean squared prediction

error,

RMSPE =

√√√√ 1

m

m∑
i=1

(∫ 1

0
F0(t,Xi(t))dt−

∫ 1

0
F̂ (t,Xi(t))dt

)2

,

where m denotes the sample size of the test data. Table 1 reports the mean

of these two quantities, as well as their standard deviation values, computed in

1000 experiments. We compare two models, namely, a partially linear functional

regression model (PLFM) and a partially linear additive functional regression

model (PLAFM). It turns out that both quantities become smaller as the sample

size increases. As expected, the PLAFM outperforms the PLFM in the nonlinear

cases in terms of the RMSPE.



2208 LIU ET AL.

Table 1. The root mean squared predicted errors for F̂ and θ̂ with independent covariates.

RMSPE n = 50 n = 100

Case σ PLAFM PLFM PLAFM PLFM

1 0.5 0.7848(0.1245) 0.7420(0.1162) 0.7749(0.0878) 0.7239(0.0789)

1 0.7877(0.1262) 0.7495(0.1223) 0.7801(0.0887) 0.7341(0.0819)

2 0.5 0.1004(0.0479) 0.1231(0.0103) 0.0889(0.0430) 0.1241(0.0074)

1 0.1314(0.0798) 0.1239(0.0103) 0.1192(0.0735) 0.1236(0.0073)

3 0.5 0.5853(0.0687) 0.8061(0.0146) 0.4957(0.0656) 0.8060(0.0107)

1 0.5872(0.1233) 0.8057(0.0148) 0.4917(0.1203) 0.8057(0.0105)

‖θ̂ − θ0‖ n = 50 n = 100

Case σ PLAFM PLFM PLAFM PLFM

1 0.5 0.0988(0.0597) 0.0946(0.0581) 0.0727(0.0438) 0.0624(0.0373)

1 0.1349(0.0804) 0.1336(0.0827) 0.0895(0.0508) 0.0926(0.0582)

2 0.5 0.0596(0.0346) 0.0595(0.0314) 0.0429(0.0226) 0.0472(0.0214)

1 0.1132(0.0696) 0.1109(0.0698) 0.0806(0.0454) 0.0796(0.0432)

3 0.5 0.1560(0.0309) 0.2060(0.0264) 0.1265(0.0226) 0.1998(0.0180)

1 0.1863(0.0633) 0.2312(0.0553) 0.1430(0.0444) 0.2110(0.0363)

Table 2. The root mean squared predicted errors for F̂ and θ̂ with dependent covariates.

RMSPE n = 50 n = 100

Case σ PLAFM PLFM PLAFM PLFM

1 0.5 0.6520(0.2106) 0.3762(0.1559) 0.6303(0.1423) 0.2756(0.0862)

1 0.6609(0.2137) 0.6038(0.1977) 0.6419(0.1448) 0.5682(0.1280)

2 0.5 0.0376(0.0224) 0.0471(0.0552) 0.0296(0.0142) 0.0313(0.0253)

1 0.0389(0.0243) 0.0430(0.7449) 0.0303(0.0149) 0.0286(0.0235)

4 0.5 1.5843(1.0383) 4.7431(1.7110) 1.2490(0.6622) 4.5914(1.0956)

1 1.4665(1.0068) 4.7207(1.6790) 1.1671(0.6411) 4.5804( 1.0828)

‖θ̂ − θ0‖ n = 50 n = 100

Case σ PLAFM PLFM PLAFM PLFM

1 0.5 0.7712(0.1652) 0.7421 0.1502) 0.7781(0.1121) 0.7505(0.0957)

1 0.7715(0.1657) 0.7460(0.1632) 0.7786(0.1127) 0.7528(0.1064)

2 0.5 0.7564(0.1256) 0.7444(0.1275) 0.7656(0.0831) 0.7540(0.0836)

1 0.7564(0.1256) 0.0504(0.1269) 0.7655(0.0831) 0.7544 (0.0837)

4 0.5 0.7452(0.2130) 0.7448(0.2946) 0.7561(0.1326) 0.7585(0.2091)

1 0.7451(0.2074) 0.7449(0.2938) 0.7559(0.1298) 0.7583(0.2092)

Furthermore, we provide four Q–Q plots of the estimators θ̂1 and θ̂2 in Case

2. Figure 1 shows that the empirical distributions of both θ̂1 and θ̂2 match the

normal distribution quite well.

Note that in the previous cases, all covariates Z1, Z2, and X are inde-

pendent. In the following, we investigate a more complex scenario such that
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(Z1, Z2,Wi1)
> ∼ N(0,Σ) with Σ = (1, 0.3, 0; 0.3, 1, 0; 0, 0.3, 1), and

Xi(t) = ζ1W1i +

50∑
k=2

√
2ζkWki cos(kπt), t ∈ [0, 1],

where ζk = (−1)k+1k−ν/2, with ν = 1.1, and Wik, for k = 2, 3, . . . , 50, are inde-

pendently uniform on [−
√

3,
√

3]. Obviously, Z1, Z2, and X are dependent. Here

F0 takes the same value as Case 1 and 2. We also use a new case,

• Case 4. F0(t,Xi(t)) = tX2
i (t).

Using the same estimating procedure, we obtain 1,000 estimates of θ̂ =

(θ̂1, θ̂2)
>. Table 2 reports the average of ‖θ̂ − θ0‖ and the root mean squared

prediction errors, as well as their standard errors. It turns out that we have

similar observations to those in Table 1 when Z1, Z2, and X are dependent.

Furthermore, we are interested in evaluating the finite-sample performance

of the joint asymptotic normality of the parametric part. In descriptive statistics,

a graphical method for assessing whether or not observations are generated from

a multivariate normal distribution is the DD plot (depth-versus-depth plot), in-

troduced by Liu, Parelius and Singh (1999). We generate the DD plot for (θ̂1, θ̂2)

based on the half-space depth, as shown in Figure 2. All points lie close to the

diagonal line, which indicates that it is reasonable to conclude that the estimates

are roughly jointly normally distributed.

3.2. An application to a COVID-19 data set

In this section, we illustrate the performance of the proposed model by ap-

plying it to a 2019 coronavirus data set, hereafter Covid-19 for convenience. Since

the first case reported in Wuhan, China, in December 2019, Covid-19 has emerged

as a global public health incident, with a rapid increase in cases and deaths.

In the following, we apply the PLAFM to model the relationship between

the mortality rates in various countries, and their demographics. Note that the

age distribution of a population of a country is related to the level of its med-

ical facilities and economic status. The data show that the proportion of the

elderly population in a developed country tends to be higher than those of other

countries. Obviously, the demography of a country can be characterized by func-

tional data, with age as the independent variable. Hence, we take the cumulative

probability functions for the ages of the populations in countries with reported

mortality as the functional covariate. There are 127 countries or regions with re-

ported mortality, which can be downloaded from the World Health Organization
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− − −

(a) θ̂1, n = 50

− − −

(b) θ̂2, n = 50

− − −

(c) θ̂1, n = 100

− − −

(d) θ̂2, n = 100

Figure 1. Q–Q plots for the estimates θ̂1 and θ̂2 of the PLAFM in Case 2 with σ2 = 1.

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019).

The values are calculated using the equation mortality = cumulative deaths /

cumulative cases. Note that we do not consider data from African countries

and some small islands. The Covid-19 data sets update daily, and we col-

lected the cumulative cases until 22 May. Up-to-date data on population by

age groups are available at the United Nations Department of Economic and

Social Affairs Population Dynamics, World Population Prospects 2019 (https:

//population.un.org/wpp/Download/Standard/Population/). Figure 3 re-

ports the cumulative probability functions of 127 countries or regions outside

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://population.un.org/wpp/Download/Standard/Population/
https://population.un.org/wpp/Download/Standard/Population/
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(c) n = 100, σ = 0.5
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(d) n = 100, σ = 1

Figure 2. DD plots for the standardized estimates (θ̂1, θ̂2)> of the PLAFM in Case 2
with dependent covariates.

of Africa. Note that age has been unitized.

Hereafter, we write yi, for i = 1, 2, . . . , 127, as the mortality of the ith country

or region, and xi(t) is the related cumulative probability at age t. We conduct an

initial analysis for the marginal relationship between yi and 1−xi(t) for given t =

40/105, 50/105, 60/105, 70/105. It turns out that the relationship between y and

x(t) is probably not linear at some given point t, and this relationship may vary

as t changes. Figure 4 reports scatter plots of mortality versus the ratio of people

older than 40, 50, 60, and 70, as well as the lines fitted by the linear, quadratic,

and smoothing splines regression models. As shown in Figure 4-(a), it seems
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Figure 3. The cumulative probability functions for age in 127 countries or regions outside
of Africa.

better to fit the data using the quadratic model, or some other nonlinear model,

than it is to use the linear model. On the other hand, the mortalities are relatively

small for some countries from high latitudes, such as Russia and Canada. It is

therefore natural to wonder whether mortality is correlated with latitude. The

latitude data are taken from https://www.latlong.net/. Motivated by this,

we consider the following PLAFM for this data set:

yi = θ1zi + θ2z
2
i +

∫ 1

0
F (t, xi(t))dt+ εi, i = 1, 2, . . . , 127,

where zi denotes the absolute latitude of the capital of the ith country or region.

Note that the latitudes of southern hemisphere countries take negative values.

The PLAFM and PLFM are employed to fit this data set. We choose the

data with indices from 1 to m = b0.75nc = 101 as the training data to fit

the models, and use the rest as the test data. It turns out that the test er-

ror
√

(1/n)
∑n

k=m+1(Yk − Ŷk)2 for the PLAFM is 0.0556, slightly smaller than

the 0.0572 of the PLFM. The resulting estimate of F is illustrated in Figure 5.

Furthermore, the estimate of the coefficients of the linear part in the PLAFM

is θ̂ = (0.0227,−0.0659)>, and that in the PLFM is (0.0274,−0.0684)>. This

indicates that the relationship between mortality and latitude has an inverse U -

shape, implying that countries with high or low latitudes have lower Covid-19

mortality rates. Note that the temperature in the low latitude area is relatively

high, and the temperature difference between day and night is small. However, in

https://www.latlong.net/
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Figure 4. Scatter plots of mortality versus the ratio of people older than 40, 50, 60, and
70, where the dash line is fitted by the linear model, the dot-dash line is by the quadratic
model, and the solid line is by the smoothing splines.

the high latitude area, although the outdoor temperature is low, this temperature

difference is also small, owing to the existence of heating systems. In contrast,

the temperature difference in the middle latitudes is greater than that of the low

and high latitude areas. In medicine, it is known that the temperature difference

between day and night affects the mortality rate of respiratory diseases, which is

supported by our findings.

4. Conclusion

We have extend the results on optimal prediction for the functional additive

regression model based on an RKHS framework to the partially functional addi-

tive regression model. When reduced to the purely functional case, the derived
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Figure 5. The fitted function F̂ (t, x).

convergence rate complements the results in Wang and Ruppert (2015), because

we also use stronger smoothness assumptions.

In the existing literature, the functional quantile regression model has also

been examined using the functional principle component analysis method. It

would be interesting to determine whether the RKHS framework can be adapted

for the functional quantile additive regression and the partially functional quantile

additive regression.

A notable limitation in our empirical data analysis is that our scalar covari-

ates only include latitude. Other variables, such as mitigation methods, medical

facilities, and economic status, may be more relevant. This is left for further

work.

Supplementary Material

The online supplementary material contains the proofs of the theorems.
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