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Abstract: This paper proposes an automated approach that uses adaptive shrinkage

techniques to determine the cointegrating rank and estimate the parameters simul-

taneously in a vector error correction model with unknown order p when its noise is

represented by independent and identically distributed heavy-tailed random vectors

with tail index α ∈ (0, 2). We show that the estimated cointegrating rank and order

p are equal to the true rank and the true order p0, respectively, with probability

trending to one as the sample size n→ ∞. The other estimated parameters achieve

the oracle property. That is, they have the same rate of convergence and the same

limiting distribution as those of the estimated parameters when the cointegrating

rank and the true order p0 are known. This paper also proposes a data-driven pro-

cedure for selecting the tuning parameters. Simulation studies are carried out to

evaluate the performance of the proposed procedure for finite samples. Lastly, we

use our techniques to explore the long-run and short-run behavior of the prices of

wheat, corn, and wheat flour in the United States.
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1. Introduction

The vector error correction (VEC) model was introduced by Granger (1983)

and Engle and Granger (1987). Estimating and testing cointegration is the most

essential target for the VEC model, and various approaches have been proposed

in the literature. Early research can be found in Phillips and Durlauf (1986),

Ahn and Reinsel (1990), Reinsel and Ahn (1992), Stock and Watson (1993),

and Johansen (1988, 1995), among many others. Recently, Wang and Phillips

(2012) proposed a test for nonlinear nonstationary models. Kristensen and Rah-

bek (2013) develop tests and estimators for nonlinear cointegrating VEC models.

Cavaliere, Nielsen and Rahbek (2015) consider a bootstrap test on the cointe-

gration rank relation in vector autoregressive (AR) models. To determine the

cointegrating relationship of vector time series, the classical method needs to im-
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plement a pre-testing procedure. Liao and Phillips (2015) proposed a method to

estimate the cointegration vector and its rank simultaneously using the shrinkage

technique–group Lasso approach. This approach does not need to estimate the

long-variance of linear processes using a nonparametric approach, as in Phillips

and Solo (1992), or predetermine the order of the VEC models, as in Johansen

(1995).

The research on cointegration systems focuses mainly on time series with

a finite second or even higher moment. Heavy-tailed time series do not have

a finite second moment, and are offen observed in financial markets, engineer-

ing, network systems and other areas; see Resnick (1997). Davis and Resnick

(1985, 1986) show that the limiting distribution of the least square estimator

(LSE) of the parameters in a heavy-tailed AR process is a function of two stable

random variables, with a rate of convergence much faster than
√
n. Mikosch et

al. (1995) studied the whittle estimators for the heavy-tailed ARMA model and

give its asymptotic properties. Zhang and Ling (2015) established the asymptotic

properties of the AR model with heavy-tailed G-GARCH noise. Caner (1998) de-

veloped the asymptotic theory for residual-based tests and quasi-likelihood ratio

tests for cointegration under the assumption of infinite variance errors. She and

Ling (2020) studied the heavy-tailed VEC model and established the asymptotic

theory of the full-rank LSE (FLSE) and reduced-rank LSE (RLSE). However,

their theory cannot be applied to test the cointegrating rank of a heavy-tailed

VEC model. Thus, except for a very special case in Caner (1998), it remains

an open problem to determine the cointegrating rank in a VEC model when its

noise is a heavy-tailed random vector.

This study develops an automated approach that uses adaptive shrinkage

techniques to determine the cointegrating rank and estimate the parameters si-

multaneously in a VEC model with unknown order p and noise represented by

independent and identically distributed (i.i.d.) heavy-tailed random vectors with

tail index α ∈ (0, 2). We show that the estimated cointegrating rank and order

p are equal to the true rank and the true order po, respectively, with probabil-

ity tending to one as the sample size n → ∞. The other estimated parameters

achieve the oracle property. That is, they have the same rate of convergence and

the same limiting distribution as those of the estimated parameters when the co-

integrating rank and the true order po are known. We also propose a data-driven

procedure for selecting the tuning parameters.

The Lasso approach was developed by Tibshirani (1996) for selecting vari-

ables and estimating parameters. It has been studied extensively and many vari-

ants have been proposed; see, for example, Fan and Li (2001) for a non-concave
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penalized likelihood, Fan and Li (2002) for Cox’s proportional hazards model,

Knight and Fu (2000) and Wang, Li and Tsai (2007) for Lasso-type estimators

of regression models, Yuan and Lin (2006) for model selection with grouped vari-

ables, Zou (2006) for the adaptive Lasso, and Huang, Ma and Zhang (2008) for

the adaptive Lasso in high-dimensional regression. Chen and Chan (2011) con-

sidered the adaptive Lasso for ARMA model selection, and obtained asymptotic

normality for the estimated parameters. Song and Bickel (2011) studied the Lasso

estimator for a large vector AR model. Kock (2016) investigated the adaptive

Lasso for AR models. Chan, Ling and Yau (2020) studied Lasso-based vari-

able selection for stationary and unit-root ARMA models. The results presented

here may provide a new insight into the Lasso approach for both stationary and

nonstationary heavy-tailed time series.

The remainder of the paper is organized as follows. Section 2 proposes the

shrinkage LSE for VEC models and gives its consistency. Section 3 gives the oracle

property of the shrinkage LSE. Section 4 presents the selection of the adaptive

tuning parameters. Simulation results are reported in Section 5. Section 6 applies

our method to an empirical example. All proofs of the main results are provided

in the appendix and Supplementary Material.

2. Model and LS Shrinkage Estimation

We consider the following VEC representation of a cointegrated system:

∆Yt = ΠoYt−1 +

p∑
j=1

Bo,j∆Yt−j + εt, (2.1)

where ∆Yt = Yt−Yt−1, Yt is an m-dimensional vector-valued time series, Πo =

αoβ
′
o, with αo and βo beingm×ro full-rank matrices, Bo,j(j = 1, . . . , p) arem×m

coefficient matrices, where p > true order po and Bo,j = 0 if j > po, and {εt}
is a sequence of i.i.d. m-dimensional random vectors. Model (2.1) is a partially

nonstationary vector AR(p+1) model of {Yt}; see, for example, Ahn and Reinsel

(1990) and Johansen (1988, 1995). Here, {Yt} is not stationary, but {β′oYt} is

a stationary time series. Thus, βo is called the cointegrating vector or long-run

cointegrating relations of Yt. The rank ro of Πo is called the cointegrating rank

of Yt, and it measures the number of cointegrating relations in the system. The

set of nonzero matrices Bo,j (j = 1, . . . , p) is characterizes the transient dynamics

in the systems.

We assume that εt satisfies the following condition:
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nP

(
ε1

an
∈ ·
)

v−→ µ(·), (2.2)

as n→∞, where µ is a Radon measure on (Rm,Bm), an is an increasing sequence

diverging to ∞, and
v−→ means the vague convergence in Durrett (2019, p.121).

Here, (2.2) is called the regular variation function, and is equivalent to there

existing a probability measure µ∗ on the unit sphere Sm in Rm, such that, for

any x > 0,
P (‖ε1‖ > tx, ε1/‖ε1‖ ∈ ·)

P (‖ε1‖ > t)

v−→ x−αµ∗(·),

as t → ∞, where α > 0 is called the tail index and ‖ · ‖ denotes the Euclidean

norm; see Resnick (1986). When α ∈ (0, 2), ε1 does not have a finite covariance

matrix and is called a heavy-tailed random vector. One class of heavy-tailed

random vectors is ε1 with its characteristic function as follows:

φ(u) = E expiu
′ε1 = exp−

∫
s∈Sm {|u

′s|α+iv(u′s,α)}Λ(ds)+iu′δ, ∀u ∈ Rm,

where Λ is a finite measure on Sm, δ is a shift vector in Rm, and for any y ∈ R,

v(y, α) =


−sign(y) ∗ tan

(
πα

2

)
|y|α, α 6= 1(

2

π

)
y ∗ ln(|y|), α = 1.

In this case, µ∗(·) is equal to Λ(·)/Λ(Sm). Furthermore, (2.2) implies that, for

any y > 0,

nP

(
‖ε1‖
an

> y

)
−→ c0y

−α,

as n → ∞, where c0 is some constant; see Resnick (1986). We choose an as

follows:

an = inf{x : P (‖ε1‖ > x) < n−1}.

Then, an = n1/αL(n), where L(n) is a slowly varying function; see Bingham,

Goldie and Teugels (1989). For example, when εt is defined as in (5.1) in Section

5, it has the following density function:

f(x, y) =
α(x2 + y2)α/2−1

2π2[1 + (x2 + y2)α]
.

Figure 1 (a) and (b) show plots of f(x, y) when α = 0.8 and 1.6, respectively.

We simultaneously determine the cointegrating rank ro and the lag order po,

in conjunction with an oracle-like efficient estimation of the cointegrating matrix
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Figure 1. Density f(x, y).

and transient dynamics. When ro = 0, we simply take Πo = 0. Let αo,⊥ and βo,⊥
be the matrices composed of normalized left and right eigenvectors, respectively,

corresponding to the zero eigenvalues in Πo. Then, αo,⊥ and βo,⊥ are m×(m−ro)
full-rank matrices, and are orthogonal complements of αo and βo, respectively.

Denote Q = [βo,αo,⊥]′. Following the same arguments as those in Liao and

Phillips (2015), we can show that Q−1 = [αo(β
′

oαo)
−1, βo,⊥(α

′

o,⊥βo,⊥)−1],

QΠo =

[
β
′

oαoβ
′
o

0

]
, and QΠoQ

−1 =

[
β
′

oαo 0

0 0

]
.

Thus, the cointegrating rank ro is the nonzero row vector count of QΠo. It follows

that a consistent selection of the cointegration rank ro is equivalent to determining

the number of zero rows in QΠo. Because of this, Q plays an important role in

our approach.

The row vectors of QΠo are denoted by Φ′(Πo) = [Φ′1(Πo),Φ
′
2(Πo), . . . ,

Φ′m(Πo)]. Let Sφ = {k : Φk(Πo) 6= 0} be the index set of nonzero rows of

QΠo and, similarly, let Scφ = {k : Φk(Πo) = 0} denote the index set of zero

rows of QΠo. From the definition of Q, we know that Sφ = {1, . . . , ro} and

Scφ = {ro + 1, . . . ,m}. Let Bo = [Bo,1, . . . ,Bo,p], and denote the index set of

the zero components in Bo as ScB, such that ‖Bo,j‖ = 0, for all j ∈ ScB, and

‖Bo,j‖ 6= 0 otherwise. The ordinary least squares (OLS) estimate of (Πo,Bo),

denoted by (Π̂1st, B̂1st), is the minimizer of the objective function

Ln(Π,B) =

n∑
t=1

∥∥∥∥∆Yt −ΠYt−1 −
p∑
j=1

Bj∆Yt−j

∥∥∥∥2

,
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where B = [B1, . . . ,Bp].

Denote Qn as the normalized left eigenvector matrix of eigenvalues of Π̂1st,

and the last m− ro row of Qn is an estimator of α′o,⊥. The true parameters are

estimated by the penalized LS estimation

(Π̂n, B̂n) = argmin
Π,B1,...,Bp∈Rm×m

{
Ln(Π,B)

+ n

p∑
j=1

λb,j,n‖Bj‖+ n

m∑
k=1

λr,k,n‖Φn,k(Π)‖

}
, (2.3)

where B̂n = [B̂n,1, . . . , B̂n,p], λb,j,n (j = 1, . . . , p) and λr,k,n (k = 1, . . . ,m) are

tuning parameters that directly control the penalization, and Φn,k(Π) is the kth

row vector of QnΠ. The penalty function on the coefficients Bj of the lagged

differences is called the group Lasso penalty. The penalty function on Π differs

from the group Lasso because it works on the rows of the adaptively transformed

matrix QnΠ, not the rows of Π directly. Given the tuning parameters, this

procedure delivers an estimator of model (2.1) with an implied estimate of ro
(based on the number of nonzero rows of QnΠ̂n) and an implied estimate of the

transient dynamic structure (including the order p) based on the fitted value B̂n.

The determinant of a square matrix A is denoted by |A|, and the M ×M
identity matrix is denoted by IM . We first state the following assumption.

Assumption 1. (i) The determinantal equation |C(z)| = 0 has roots on or

outside the unit circle, where

C(z) = Πoz +

p∑
j=0

Bo,j(1− z)zj with Bo,0 = −Im;

(ii) the matrix α′o,⊥(Im −
∑p

j=1 Bo,j)βo,⊥ is nonsingular.

From Ahn and Reinsel (1990) and Johansen (1995), Assumption 1 leads to

the following partial sum Granger representation:

Yt = CB

t∑
s=1

εs + Ξ(L)εt + CBY0, (2.4)

where CB = βo,⊥(α′o,⊥(Im −
∑p

j=1 Bo,j)βo,⊥)−1α′o,⊥, and Ξ(L)εt is a stationary

process. From the partial sum in (2.4), one can deduce that β′oYt and ∆Yt−j are

stationary. Denote ∆Xt−1 = [∆Y′t−1, . . . ,∆Y′t−p]
′. Model (2.1) can be written
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as

∆Yt = [Πo Bo]

[
Yt−1

∆Xt−1

]
+ εt.

Denote a matrix QB and its inverse as follows:

QB =

 β
′

o 0

0 Imp
α
′

o,⊥ 0

 and Q−1
B =

(
αo(β

′

oαo)
−1 0 βo,⊥(α

′

o,⊥βo,⊥)−1

0 Imp 0

)
.

Then,

Zt−1 ≡ QB

[
Yt−1

∆Xt−1

]
=

[
Z1,t−1

Z2,t−1

]
, (2.5)

where Z
′

1,t−1 = [Y
′

t−1βo ∆X
′

t−1] is a stationary process and Z2,t−1 = α
′

o,⊥Yt−1

is an I(1) process.

To study the asymptotic properties of (Π̂n, B̂n), we need one additional

assumption, where we use a stochastic integral result in Kurtz and Protter (1991)

for limiting properties.

Assumption 2. ε1 has a symmetric distribution.

Theorem 1. Suppose that (2.2) and Assumptions 1 and 2 are satisfied. If δr,n ≡
maxk∈Sφ λr,k,n = op(1) and δb,n ≡ maxj∈SB λb,j,n = op(1), then the LS shrinkage

estimator (Π̂n, B̂n) is consistent; that is, (Π̂n, B̂n)− (Πo,Bo) = op(1).

Theorem 1 implies that the nonzero eigenvalues of Πo are estimated as nonze-

ros asymptotically, which implies that the rank of Πo will not be under-selected.

However, consistency of the estimates of the nonzero eigenvalues is not neces-

sary for a consistent cointegration rank selection. As mentioned by Liao and

Phillips (2015), what is essential is that the probability limits of these estimates

are not zero, or at least that their rates of convergence are slower than those of

the estimates of the zero eigenvalues.

Define ãn = inf{x : P (‖ε1ε
′

2‖ > x) < n−1}. Note that a2
n/ãn = n1/αL̃(n),

where L̃(n) is a slowly varying function. The rate of convergence of (Π̂n, B̂n) is

given in the following theorem.

Theorem 2. Let δn = δr,n + δb,n. Under the conditions of Theorem 1,

(a) if ro = m, then a2
n/ãn[(Π̂n, B̂n)− (Πo,Bo)] = Op(1 + nã−1

n δn).

(b) if 0 ≤ ro < m, α ∈ (1, 2) or α = 1 and L̃(n)→ 0, then

a2
n

ãn
[(Π̂n −Πo)β̄, B̂n −Bo] = Op(1 + nã−1

n δn),
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n(Π̂n −Πo)β̄⊥ = Op(1 + na−2
n δn).

(c) if 0 ≤ ro < m, α ∈ (0, 1) or α = 1 and L̃(n)→∞, then

n[(Π̂n, B̂n)− (Πo,Bo)]Q
−1
B = Op(1).

The terms δr,n and δb,n represent the shrinkage bias that the penalty function

introduces to the LS shrinkage estimator. Denote

Dn,B =


1

n
Im(1+p) if α ∈ (0, 1), or α = 1 and L̃(n)→∞,

diag

{
ãn
a2
n

Iro+mp,
1

n
Id

}
if α ∈ (1, 2), or α = 1 and L̃(n)→ 0.

If the rates of convergence of λr,k,n(k ∈ Sφ) and λb,j,n(j ∈ SB) are fast enough

such that n1−1/α(δr,n + δb,n) = Op(1), then Theorem 2 implies that (Π̂n, B̂n) −
(Πo,Bo) = Op(n

−1) when ro = 0 and Op(n
− 1

α L̃(n)−1) when ro = m, and

[(Π̂n, B̂n)− (Πo,Bo)]Q
−1
B D−1

n,B = Op(1) otherwise; that is, the LS shrinkage esti-

mators have the same rates of convergence as the OLS estimators (Π̂1st, B̂1st). In

the next section, we give a condition on the tuning parameters such that the zero

rows of QΠo and the zero matrices in Bo are estimated as zero with probability

approaching one (w.p.a.1).

3. Oracle Properties

This section shows that the LS shrinkage estimator is oracle efficient in the

sense that it has the same asymptotic distribution as the RLSE when the true

cointegration rank and lagged differences are known. We subdivide the matrix

Qn as Q′n = [Q′α,n,Q
′
α⊥,n], where Qα,n and Qα⊥,n are the first ro rows and the

last m− ro rows of Qn, respectively. Under Lemma 3 and Theorem 1,

Qα,nΠ̂n = Qα,nΠ̂1st + op(1) = Λα,nQα,n + op(1), (3.1)

and, similarly,

Qα⊥,nΠ̂n = Qα⊥,nΠ̂1st + op(1) = Λα⊥,nQα⊥,n + op(1) = op(1), (3.2)

where Λα,n = diag[φ1(Π̂1st), . . . , φro(Π̂1st)], Λα⊥,n = diag[φro+1(Π̂1st), . . . ,

φm(Π̂1st)], and φk(Π̂1st) denotes the kth largest eigenvalues of Π̂1st, for k =

1, . . . ,m. Here, (3.1) implies that the first ro rows of QnΠ̂n are nonzero w.p.a.1,

and (3.2) implies that the last m− ro rows of QnΠ̂n are arbitrarily close to zero
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w.p.a.1. Denote

τ =


2− 2

α
if α ∈ (0, 1)

1− 1

α
if α ∈ [1, 2)

.

We have the following theorem.

Theorem 3. If the tuning parameters satisfy n1−1/α(δb,n+δr,n) = Op(1), n1−2/α

L̃(n)−1λr,k,n →p ∞, for k ∈ Scφ, and nτ L̃(n)−1λb,j,n →p ∞, for j ∈ ScB, then it

follows that for all j ∈ ScB, as n→∞,

P (Qα⊥,nΠ̂n = 0)→ 1 and P (B̂n,j = 0m×m)→ 1. (3.3)

Theorem 3 indicates that the zero rows of QΠo (and, hence, the zero eigen-

values of Πo) and the zero matrices in Bo are estimated as zeros w.p.a.1. This

implies a consistent selection of the cointegration rank ro and the lag order po.

Corollary 1. Under the conditions of Theorem 3, it follows that as n→∞,

P (r(Π̂n) = ro)→ 1 and P (B̂n,j = 0)→ 1 for j ∈ ScB.

We next derive the asymptotic distribution of (Π̂n, B̂SB), where B̂SB de-

notes the LS shrinkage estimator of the nonzero matrices in Bo. Let ISB =

diag(I1,m, . . . , IdSB ,m), where Ij,m(j = 1, . . . , dSB) are m ×m identity matrices,

and dSB is the dimensionality of the index set SB. Define

QS =

 β
′

o 0

0 ISB
α
′

o,⊥ 0

 ,

and

Dn,S =


1

n
Im+SB if α ∈ (0, 1), or α = 1 and L̃(n)→∞,

diag

{
ãn
a2
n

Iro+SB ,
1

n
Id

}
if α ∈ (1, 2), or α = 1 and L̃(n)→ 0,

where ISB = ImdSB in QS serves to accommodate the nonzero matrices in Bo.

Let ∆XS,t denote the nonzero lagged differences in (2.1). The true model can be

written as

∆Yt = ΠoYt−1 + Bo,SB∆XS,t−1 + εt, (3.4)
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where the transformed and reduced regressor variables are

ZS,t−1 = QS

[
Yt−1

∆XS,t−1

]
=

[
Z1S,t−1

Z2,t−1

]
, (3.5)

with Z
′

1S,t−1 = [Y
′

t−1βo ∆X
′

S,t−1] and Z2,t−1 = α
′

o,⊥Yt−1. By Theorem 4.2 in

Johansen (1995) and Assumption 1, we have the following expansions:

Z1S,t =

∞∑
i=0

Aiεt−i and Z2,t = [Id,0]

t∑
i=1

γi,

where Ai = O(ρi), γt =
∑∞

i=0ψiεt−i, d = m − ro, and ψi = O(ρi), with some

ρ ∈ (0, 1).

To ensure identification, we normalize βo as βo = [Iro ,Oro ]
′, where Oro is

some ro × (m − ro) matrix such that Πo = αoβ
′
o = [αo,αoOro ]. Let β̄⊥ =

βo,⊥(α′o,⊥βo,⊥)−1 = [β̄′⊥,1, β̄
′
⊥,2]′ and β̄ = αo(β

′
oαo)

−1 = [β̄′1, β̄
′
2]′, where β̄⊥,2

and β̄2 are the last m − ro rows of β̄⊥ and β̄, respectively. Because the cointe-

grating rank is consistently selected as ro, the LS shrinkage estimator Π̂n can be

decomposed as α̂nβ̂
′
n, where α̂n is the first ro columns of Π̂n and β̂n = [Iro , Ôn].

Here, →d denotes convergence in distribution. We have the following result.

Theorem 4. Under the conditions of Theorem 3, if δr,n + δb,n = op(1) when

α ∈ (0, 1) and = op(n
1/α−1) when α ∈ [1, 2), then it follows that

(a) n(Ôn −Oro)→d (α′oαo)
−1α′oR2Γ

−1
22 β̄

−1
⊥,2,

(b) n1/αL̃(n)(α̂n − αo, B̂SB − Bo,SB) →d R1Γ
−1
11 , when α ∈ (1, 2) or α =

1 and L̃(n)→ 0,

(c) n(α̂n −αo, B̂SB −Bo,SB)→d αo(α
′
oαo)

−1α′oF1 + [Im −αo(α′oαo)−1α′o]F2,

when α ∈ (0, 1) or α = 1 and L̃(n)→∞,

where R1 =
∑∞

i=0 Si+2A
′

i, Γ21 = R′2
∑∞

i=0 A′i + [Id,0]
∑∞

i=0

∑i
j=0ψjS1A

′
i, with

ψ =
∑∞

i=0ψi, Γ11 =
∑∞

l=0 AlS1A
′

l, F1 = −R2Γ
−1
22 Γ21Γ

−1
11 −R2Γ

−1
22 β̄

−1
⊥,2β̄2[Iro ,0],

F2 = R2Γ
−1
22 R′2(α′oαo)

−1α′o[Iro ,0]Γ−1
11 , and {Si}, R2, and Γ22 are defined in

Lemma 2 in the appendix.

Remark 1. If we replace A, B, B⊥, B̄⊥, and B̄ in She and Ling (2020) with

αo, β
′
o, α

′
o,⊥, β̄⊥ and β̄, respectively, then the limiting distributions in Theorem

4 are the same as those in She and Ling (2020) when ro and po are known; that

is, the estimates Ôn, α̂n, and B̂SB achieve their oracle property.
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Recently, the oracle properties of the Lasso were studied by Kock and Cal-

lot (2015) and Basu and Michailidis (2015) for the vector AR model, and by

Liang and Schienle (2019) for the VEC model when m → ∞. However, they

need to assume that the vector noise {εt} is i.i.d. normal or E‖εt‖4+δ <∞, with

δ > 0. These assumptions do not reflect heavy-tailed time series, such as that in

model (2.1). This remains a challenging problem for the Lasso procedure of the

heavy-tailed VEC model when the dimension m→∞.

4. Adaptive Selection of Tuning Parameters

This section develops a data-driven procedure for selecting the tuning pa-

rameters {λr,k,n}mk=1 and {λb,j,n}pj=1. As presented in Theorem 3, the conditions

require that the tuning parameters related to the zero and nonzero components

have different asymptotic behaviors. It is clear that some sort of adaptive penal-

ization should appear in λb,j,n and λr,k,n. One popular choice of a penalty is the

adaptive Lasso penalty in Zou (2006),

λr,k,n =
λ∗r,k,n

‖φk(Π̂1st)‖ω
and λb,j,n =

mωλ∗b,j,n

‖B̂1st,j‖ω
, (4.1)

where λ∗r,k,n and λ∗b,j,n are nonincreasing positive sequences, and ω is some positive

finite constant. The extra term mω is used to adjust the effect of the dimension-

ality of Bj on the adaptive penalty. We introduce the notation τ1 and τ2 as

τ1 =


0 if α ∈ (0, 1),

1− 1

α
if α ∈ [1, 2),

and τ2 =


2− 2

α
+ ω if α ∈ (0, 1),

1− 1

α
+
ω

α
if α ∈ [1, 2).

The following lemma gives the conditions under which the tuning parameters

λr,k,n and λb,j,n satisfy the assumptions of Theorem 3 and Theorem 4.

Lemma 1. If λ∗r,k,n = op(n
−τ1), λ∗b,j,n = op(n

−τ1), and n1−2/αnωL̃(n)−1λ∗r,k,n →
∞ and nτ2L̃(n)−1λ∗b,j,n →∞, for any j = 1, . . . , p and k = 1, . . . ,m, then under

Assumption 1 and (2.2), for any k ∈ Scφ and j ∈ ScB, it follows that

δr,n + δb,n = op(n
−τ1), n1−2/αL̃(n)−1λr,k,n →p ∞ and nτ L̃(n)−1λb,j,n →p ∞.

We now discuss the choice of λ∗r,k,n and λ∗b,j,n. From Lemma 1, we see that

the conditions on the tuning parameters that ensure the oracle properties in the

LS shrinkage estimation only restrict the rates at which the sequences λ∗r,k,n and

λ∗b,j,n go to zero. However, these conditions are not precise enough to provide
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a clear choice of tuning parameters in finite samples. On the one hand, λ∗r,k,n
and λ∗b,j,n should converge to zero as fast as possible so that nonzero T(k) and

nonzero Bo,j are not estimated as zero, with a high probability. This reduces the

shrinkage bias in the estimation of the nonzero components of the model. On the

other hand, these sequences should converge to zero as slowly as possible so that

the zero components in the model are estimated as zeros with a high probability

in finite samples. To achieve a balance, we recommend choosing λ∗r,k,n and λ∗b,j,n
as follows:

λ∗r,k,n = cr,kn
−1/2(ω+1−2/α) and λ∗b,j,n = cb,jn

−τ2/2, (4.2)

where ω ≥ 2/α, and cr,k and cb,j are some constants. It is not hard to see that

(4.2) satisfies the condition of Lemma 1.

To understand (4.2), we further discuss the Karuch–Kuhn–Tucker (KKT)

conditions (A.6) and (A.9) in the appendix. Let Pn = Q−1
n , and let Pn(k) be

the kth column of Pn. Denote

Fπ,n(k) =

n∑
t=1

(
∆Yt − Π̂nYt−1 −

p∑
j=1

B̂n,j∆Yt−j

)′
Pn(k)Y′t−1, (4.3)

Fb,n(j) =

n∑
t=1

(
∆Yt − Π̂nYt−1 −

p∑
j=1

B̂n,j∆Yt−j

)
∆Y′t−j , (4.4)

for k = 1, . . . ,m and j = 1, . . . , p. Denote T = QnΠo, and let T(k) be the

kth row of the matrix T. Note that Tn ≡ QnΠ̂n is an estimator of T. From

KKT conditions (A.6) and (A.9) in the appendix, the kth row of T is estimated as

zero, and the component Bo,j in Bo will be estimated as zero only if the following

condition holds:

∥∥a−2
n Fπ,n(k)

∥∥ < n1−2/αL̃(n)−1λ∗r,k,n

2‖φk(Π̂1st)‖ω
and (4.5)

∥∥ã−1
n Fb,n(j)

∥∥ < n1−1/αL̃(n)−1λ∗b,j,n

2‖B̂1st,j‖ω
. (4.6)

First, by Lemma 3, we have nφk(Π̂1st) = Op(1), for k ∈ Scφ, and B̂1st,j =

Op(n
−1/αL̃(n)−1) if α ∈ (1, 2) or α = 1 and L̃(n) → 0, and is equal to Op(n

−1)

if α ∈ (0, 1) or α = 1 and L̃(n) → ∞, for j ∈ ScB. By Lemma S.1 in the

Supplementary Material, if

n1−2/αnωL̃(n)−1λ∗r,k,n →∞ and nτ2L̃(n)−1λ∗b,j,n →∞, (4.7)



ESTIMATION FOR HEAVY-TAILED VEC MODELSS 2183

then (4.5) holds, which implies that a zero T(k) or Bo,j is estimated as zero

w.p.a.1. By Lemma 3, we have φk(Π̂1st)→p φk(Πo) 6= 0 and B̂1st,j →p Bo,j 6= 0

for k ∈ Sφ and j ∈ SB. By Lemma S.1 in the Supplementary Material, if

n1−2/αL̃(n)−1λ∗r,k,n → 0 and nτ L̃(n)−1λ∗b,j,n → 0, (4.8)

then (4.5) cannot hold, which implies that a nonzero T(k) or Bo,j is not estimated

as zero w.p.a.1. It is not hard to check that (4.2) guarantees (4.7) and that (4.8)

holds.

We next discuss how to choose cr,k and cb,j . First, take λ∗b,j,n = 2 log(n)n−τ2/2

and λ∗r,k,n = 2 log(n)n−(1/2)(ω+1−2/α), which satisfy the conditions of Lemma 1.

We perform a first-step LS shrinkage estimation to obtain estimates (T̂1,π, T̂2,π)

of (T1,π0
,T2,π0

). Following similar arguments to those in Liao and Phillips (2015),

we select cr,k and cb as

ĉr,k = 2‖Qn(k)T̂1,π‖ × ‖T̂2,π‖ and ĉb,j = 2

∥∥∥∥n−2/α
n∑
t=1

∆Yt−j∆Y′t−j

∥∥∥∥.
We further choose ω = 2/α. The data-dependent tuning parameters for the LS

shrinkage estimation are given as follows:

λr,k,n = 2n−1/2‖Qn(k)T̂1,π‖ × ‖T̂2,π‖ × ‖φk(Π̂1st)‖−2/α, and

λb,j,n =



2n(−1/2+1/2α−1/α2)‖n−2/α
∑n

t=1 ∆Yt−j∆Y′t−j‖ ×
(
‖B̂1st,j‖

m

)−2/α

,

if α ∈ (1, 2) or α = 1 and L̃(n)→ 0,

2n−1‖n−2/α
∑n

t=1 ∆Yt−j∆Y′t−j‖ ×
(
‖B̂1st,j‖

m

)−2/α

,

if α ∈ (0, 1) or α = 1 and L̃(n)→∞.

The tail index α is unknown, in practice. Based on Theorem A.2 in She and Ling

(2020), we can estimate 2/α by log(Tr[
∑n

t=1 ∆Yt∆Y
′
t ])/ log n. The simulation

results in the next section show that these data-dependent tuning parameters

work well.

5. Simulation Study

This section examines the performance of the shrinkage estimates in terms of

their cointegrating rank selection and efficient estimation in finite samples. First,

we investigate the model when m = 2. Here, {Yt}nt=1 are generated from
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Table 1. Rank and lagged order selection with adaptive Lasso penalty for model (5.1).

Cointegration rank selection

ro = 0 ro = 1 ro = 2

n=100 n=400 n=800 n=100 n=400 n=800 n=100 n=400 n=800

α = 0.2 r̂n = 0 0.731 0.991 0.997 0.014 0.003 0.000 0.007 0.001 0.000

r̂n = 1 0.262 0.009 0.003 0.956 0.997 1.000 0.013 0.002 0.000

r̂n = 2 0.007 0.000 0.000 0.030 0.000 0.000 0.980 0.997 1.000

α = 1.3 r̂n = 0 0.801 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000

r̂n = 1 0.198 0.000 0.000 0.833 0.979 0.999 0.002 0.000 0.000

r̂n = 2 0.001 0.000 0.000 0.166 0.021 0.001 0.998 1.000 1.000

Lagged difference selection

ro = 0 ro = 1 ro = 2

n=100 n=400 n=800 n=100 n=400 n=800 n=100 n=400 n=800

α = 0.2 p̂n ∈ T 0.800 0.971 1.000 0.916 0.996 0.995 0.946 0.978 0.991

p̂n ∈ C 0.185 0.029 0.000 0.070 0.000 0.000 0.038 0.000 0.000

p̂n ∈ I 0.015 0.000 0.000 0.014 0.004 0.005 0.016 0.022 0.009

α = 1.3 p̂n ∈ T 0.802 0.922 0.996 0.734 0.998 1.000 0.645 0.827 0.995

p̂n ∈ C 0.198 0.078 0.004 0.266 0.002 0.000 0.355 0.144 0.005

p̂n ∈ I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.000

Note: ”T” denotes selection of the true lags model (i.e., a model with p = 3 and B̂n,2 = 0), ”C” denotes

the selection of a consistent lags model (i.e., a model with p = 3 and B̂n,2 6= 0), and ”I” denotes the
selection of an inconsistent lags model (i.e., a model with p not selected as 3).

(
∆Y1,t

∆Y2,t

)
= Πo

(
Y1,t−1

Y2,t−1

)
+

10∑
j=1

Bo,j

(
∆Y1,t−1

∆Y2,t−1

)
+ εt, (5.1)

with εt = |xt|1/α(cos ζt, sin ζt), where xt ∼ i.i.d. Cauchy distribution and ζt ∼
i.i.d. U [0, 2π], and they are independent. The initial observation Y0 is set to be

zero. Furthermore, Πo is specified as follows:

Πo =

[
Π11 Π12

Π21 Π22

]
=

[
0 0

0 0

]
,

[
−1 −0.5

1 0.5

]
, and

[
−0.5 0.1

0.2 −0.4

]
,

which corresponds to cointegrating ranks of zero, one, and two, respectively. In

addition, Bo,1 and Bo,3 are taken to be diag(0.4, 0.4), and other B0,j = 0. We

take sample sizes n = 100, 400, 800, and use 1,000 replications. The tail index

α = 0.2 and α = 1.3. Model (5.1) is over-parameterized according to the true

model that generates the data set.

First, we are interested in how well the shrinkage method selects the correct

rank of Πo and the order of the lagged differences. Table 1 shows the finite-

sample probabilities of the shrinkage method for a joint rank and lagged order

selection. When the sample size is small (i.e., n = 100) and the data are i.i.d.,
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Table 2. Finite-sample properties of the shrinkage estimates of model (5.1).

ro = 1 and n=400

Π11 Π21 Π12 Π22

Bais Std Bais Std Bais Std Bais Std

α = 0.2 Lasso 0.01793 0.07266 0.01756 0.09658 0.00584 0.05347 0.00734 0.03170

OLS 0.00297 0.06269 0.00125 0.07926 0.00158 0.03152 0.00018 0.03996

Oracle 0.00208 0.05298 0.00926 0.08607 0.00118 0.02684 0.00478 0.04335

α = 1.3 Lasso 0.01256 0.06628 0.01378 0.09008 0.00332 0.03327 0.00531 0.04602

OLS 0.00321 0.06513 0.00639 0.06543 0.00177 0.03268 0.00301 0.03280

Oracle 0.00768 0.05298 0.00317 0.07626 0.00387 0.02718 0.00162 0.03815

B1,11 B1,21 B1,12 B1,22

Bais Std Bais Std Bais Std Bais Std

α = 0.2 Lasso 0.10046 0.09332 0.00005 0.12230 0.00117 0.07091 0.09441 0.10929

OLS 0.00293 0.09335 0.00079 0.10421 0.00161 0.07151 0.00105 0.07690

Oracle 0.00119 0.09599 0.00032 0.10431 0.00005 0.08780 0.00500 0.08054

α = 1.3 Lasso 0.08917 0.06717 0.00204 0.06268 0.01042 0.06485 0.08347 0.08091

OLS 0.00143 0.07762 0.00784 0.07191 0.00246 0.09634 0.00809 0.06506

Oracle 0.00449 0.06652 0.00530 0.08124 0.01033 0.07279 0.00195 0.07513

B2,11 B2,21 B2,12 B2,22

Bais Std Bais Std Bais Std Bais Std

α = 0.2 Lasso 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

OLS 0.00599 0.08441 0.00241 0.10716 0.00846 0.09003 0.00545 0.08565

Oracle 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

α = 1.3 Lasso 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

OLS 0.00229 0.07093 0.00576 0.07302 0.00598 0.08524 0.00285 0.07477

Oracle 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

B3,11 B3,21 B3,12 B3,22

Bais Std Bais Std Bais Std Bais Std

α = 0.2 Lasso 0.12461 0.07388 0.02298 0.07245 0.02132 0.04331 0.09549 0.08743

OLS 0.00187 0.10214 0.00207 0.11513 0.00198 0.10941 0.00376 0.09365

Oracle 0.00120 0.08595 0.00322 0.08927 0.00023 0.06855 0.00418 0.09054

α = 1.3 Lasso 0.10135 0.06506 0.02273 0.06214 0.02229 0.04619 0.04344 0.07441

OLS 0.00339 0.06372 0.00365 0.07404 0.00223 0.07452 0.00082 0.06865

Oracle 0.00449 0.06652 0.00530 0.085124 0.01033 0.07279 0.00185 0.07513

Note: Oracle estimate is the RLSE with ro = 1 and the restriction that Bo,2 = 0.

the probabilities of selecting the true rank ro = 2 when α ∈ (1, 2) and α ∈ (0, 1)

are almost equal to one. The probability of selecting the true rank ro = 1 when

α ∈ (0, 1) is close to one. The probability of falsely selecting the true rank ro = 0

and ro = 1 when α ∈ (0, 1) is increased. However, as the sample size grows,

the probability of selecting the true rank moves closer to one. When the sample

size is increased to 800, the probabilities of selecting the true rank ro = 1 when
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α ∈ (1, 2) and ro = 0 when α ∈ (0, 1) are almost equal to one. The probabilities

of selecting the true rank of the other cases are equal to one. Evidently, the

method performs well in selecting the true rank and true lagged differences in all

scenarios. This result shows that selecting the true rank also performs well when

adding lags to the model.

Table 2 presents the finite-sample properties of the LS shrinkage estimation

when ro = 1 and n = 400. The corresponding OLS estimates and oracle estimates

(i.e., RLSE with ro = 1 and the restriction that Bo,2 = 0) are also reported in

this table. Additional simulation results when ro = 0 and ro = 2 are presented

in the Supplementary Material. Table 2 shows that our method performs well in

estimating the parameters, overall. When compared with the oracle estimates,

some components in the LS shrinkage even have smaller variances, though their

finite-sample biases are slightly larger. Moreover, in general, the LS shrinkage

estimate has a smaller variance than that of the OLS estimate, though the finite-

sample bias of the shrinkage estimate of the nonzero component is slightly larger.

We now carry out a simulation study for the following VEC model:∆Y1,t

∆Y2,t

∆Y3,t

 = Πo

Y1,t−1

Y2,t−1

Y3,t−1

+

10∑
j=1

Bo,j

∆Y1,t−j
∆Y2,t−j
∆Y3,t−j

+ εt, (5.2)

with εt = |xt|1/α(sin ζt cosϕt, sin ζt sinϕt, cos ζt), where ϕt, ζt ∼ i.i.d. U [0, 2π] and

are independent of each other. In addition, Πo is specified as follows:

Πo = 03×3,

−0.5 −0.25 0.5

0.1 0.05 −0.1

0.2 0.1 −0.2

 ,
−0.5 −0.2 0.7

0.1 −0.3 0.2

0.2 0.2 −0.4

 , and

−0.4 0.0 0.0

0.0 −0.6 0.0

0.0 0.0 −0.8

 ,
which corresponds to cointegrating ranks ro = 0, 1, 2, 3, respectively, and Bo,1

and Bo,3 are taken to be diag(0.4, 0.4, 0.4) and other Bo,j = 0. The sample size

is n = 400 and 800, and the number of replications is 1,000. Table 3 reports the

finite-sample probabilities of the rank and lagged order selection for model (5.2).

The results show that our method performs well in selecting the true rank and

true lagged differences in all scenarios. The estimates of the other parameters

when ro = 1 and 2 are reported in the Supplementary Material.

6. An Empirical Example

This section uses the technique in Section 2 for time series modeling of the

long-run and short-run behavior of the prices of wheat, corn, and wheat flour
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Table 3. Rank and lagged order selection with adaptive Lasso penalty for model (5.2).

Cointegration rank selection

ro = 0 ro = 1 ro = 2 ro = 3

n=400 n=800 n=400 n=800 n=400 n=800 n=400 n=800

α = 0.2 r̂n = 0 0.667 0.909 0.001 0.000 0.000 0.000 0.001 0.000

r̂n = 1 0.305 0.087 0.972 0.990 0.003 0.001 0.003 0.002

r̂n = 2 0.028 0.004 0.027 0.010 0.995 0.999 0.010 0.000

r̂n = 3 0.000 0.000 0.000 0.000 0.002 0.000 0.986 0.998

α = 1.3 r̂n = 0 0.576 0.898 0.000 0.000 0.000 0.000 0.000 0.000

r̂n = 1 0.379 0.094 0.942 0.994 0.001 0.000 0.001 0.000

r̂n = 2 0.045 0.008 0.058 0.006 0.997 1.000 0.001 0.001

r̂n = 3 0.000 0.000 0.000 0.000 0.002 0.000 0.998 0.999

Lagged difference selection

ro = 0 ro = 1 ro = 2 ro = 3

n=400 n=800 n=400 n=800 n=400 n=800 n=400 n=800

α = 0.2 p̂n ∈ T 0.854 0.992 0.963 0.989 0.958 0.992 0.830 0.987

p̂n ∈ C 0.017 0.008 0.026 0.002 0.002 0.002 0.153 0.000

p̂n ∈ I 0.129 0.000 0.011 0.009 0.040 0.006 0.017 0.013

α = 1.3 p̂n ∈ T 0.695 0.983 0.903 0.960 0.697 0.967 0.775 0.987

p̂n ∈ C 0.305 0.017 0.097 0.039 0.177 0.004 0.245 0.007

p̂n ∈ I 0.000 0.000 0.000 0.001 0.126 0.029 0.000 0.006

in the United States. The sample used in the empirical study includes monthly

data over the period June 1987 to May 2017, with 360 observations. These

series for the period January 1961 through October 1972 have been considered

by Ahn and Reinsel (1988) in investigating the reduced-rank AR model. Let

Xt = (x1t, x2t, x3t)
′ denote the original data, and Yt = (y1t, y2t, y3t)

′ denote the

logarithms of the data, that is, yit = log(xit). The data {Yt} are shown in Figure

2. Evidently, the time series display the co-movement over the entire period.

Therefore, we can use the VEC model to analyze the data and try to reveal some

cointegrating relations. That is, we expect the cointegration rank ro to satisfy

0 < ro < 3.

We first use the first k-largest data and the Hill’s estimator to estimate the

tail index of the log-returns (i.e., rit = yit − yit−1) of each price, that is,

α̂i(k) =

{
1

k

k∑
t=1

log

( |ri|(t)
|ri|(k+1)

)}−1

,

where {|ri|(t) : t = 1, . . . , n} is the decreasing order statistics of {|rit| : t =
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Figure 2. The Logarithms of Monthly Prices of Wheat, Corn, and Wheat Flour.
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Figure 3. Hill estimator of tail index.

1, . . . , n}; see Resnick (1997). Because α̂i(k) relies on the choice of k, Figure 3

shows the plots of these estimated tail indices in term of k. It shows that the

tail index of each log-return is most likely less than two but larger than one. It

seems reasonable to assume these data are heavy-tailed time series.

We apply our shrinkage methods to estimate the following VEC model:

∆Yt = ΠYt−1 +

10∑
k=1

Bk∆Yt−k + εt. (6.1)

The unrestricted LS estimation of Π produced eigenvalues −0.0578, −0.0486,

and 0.00003, which indicates that Π might contain at least one zero eigenvalue,

because the last one, 0.00003, is very close to zero. The LS estimates of the

lag coefficients Bk are nonzero for k = 1, . . . , 10. We apply the LS shrinkage

estimation to model (6.1). The results are as follows:
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Π̂ =

0.0295 −0.0069 −0.0262

0.1056 −0.0797 −0.0327

0.1485 −0.0303 −0.1369

 ,

B̂1 =

0.1041 0.0013 0.0054

0.1046 −0.0757 −0.0004

0.1429 −0.0308 −0.0286

 and B̂5 =

0.0376 0.0013 −0.0191

0.0964 −0.0211 −0.0071

0.0534 0.0452 −0.0609

 ,
and the other Bk are estimated as zero. The eigenvalues of Π̂ are -0.1171, 0.0684,

and 0, which implies that the cointegrating rank ro is two. These results corrob-

orate the manifestation of the co-movement in the three time series through the

presence of two cointegrating vectors in the fitted model. In model (6.1), we set

p = 10. However, the results are the same when we set p from 10 to 15. It seems

that our approach is quite stable.

Supplementary Material

In the online Supplementary Material, we provide one preliminary result,

additional simulation results, and proofs for Theorem 1, Theorem 2, Lemma 1,

and Lemma 3.
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A. Appendix

We first state some preliminary results to prove the main theorems. From

Proposition 3.1 in Resnick (1986), we can see that the condition (2.2) is equivalent

to the following convergence

n∑
t=1

δεt−1/an
v−→
∞∑
i=1

δPi
= PRM(µ),

as n → ∞, where PRM(µ) is a Poisson random process with intensity measure

µ and {Pi} is a sequence of random vectors such that
∑∞

i=1 δPi
is the point

representation of PRM(µ). From Davis and Resnick (1986) we can see that
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nP

(
ε1ε
′
2

ãn
∈ ·
)

v−→ µ̃(·) and
ãn
an
→∞,

as n → ∞ when E‖ε1‖α = ∞, where µ̃ is a Radon measure on (Rm
2

,Bm2

).

Let {P(j)
i } be a sequence of random vectors such that

∑∞
i=1 δP(j)

i
is the point

representation of PRM(µ̃) for j = 2, 3, . . . and they are independent each other

for different j.

Since Z1,t−1 is a stationary process and Z2,t−1 comprises the I(1) components

under Assumption 1 and Theorem 4.2 in Johansen (1995). Then we have the

following expansions

Z1,t =

∞∑
i=0

Biεt−i and Z2,t = [Id,0]

t∑
i=1

γi,

where Bi = O(ρi) with some ρ ∈ (0, 1). Denote

R1n =

n∑
t=1

εtZ
′

1,t−1, R2n =

n∑
t=1

εtZ
′

2,t−1,

S11n =

n∑
t=1

Z1,t−1Z
′

1,t−1, S21n =

n∑
t=1

Z2,t−1Z
′

1,t−1 and S22n =

n∑
t=1

Z2,t−1Z
′

2,t−1.

By Theorem A.1 and Lemma B.1 in She and Ling (2020), it is straightforward

to show the following lemma.

Lemma 2. Suppose that (2.2) and Assumptions 1–2 hold, and E‖ε1‖α = ∞.

Then

(a).
1

ãn
R1n →d

∞∑
i=0

Si+2B
′

i,

(b).
1

a2
n

R2n →d R2,

(c).
1

na2
n

S22n →d Γ22,

(d).
1

a2
n

S11n →d

∞∑
l=0

BlS1B
′

l,

(e).
1

a2
n

S21n →d

{
R′2

∞∑
i=0

B′i + [Id,0]

∞∑
i=0

i∑
j=0

ψjS1B
′
i

}
.

where R2 = [
∫ 1

0 P(r)dP′(r)]′ψ′[Id,0]′ and Γ22 = [Id,0]ψ[
∫ 1

0 P(r)P′(r)dr]ψ′[Id,0]′,



ESTIMATION FOR HEAVY-TAILED VEC MODELSS 2191

S1 =
∑∞

i=1 P
(1)
i P

(1)′

i with P
(1)
i = Pi, Sj =

∑∞
i=1 P

(j)
i for all j > 1 and P(r) is a

stable process.

We next give the limiting distribution of the OLS estimator (Π̂1st, B̂1st) and

the asymptotic properties of the eigenvalues of Π̂1st.

Lemma 3. Suppose that (2.2) and Assumptions 1–2 hold, and E‖ε1‖α =∞ and

S1 is positive definite almost surely. Then

(a). [(Π̂1st, B̂1st)− (Πo,Bo)]Q
−1
B D−1

n,B →d (Bm,1,Bm,2), where Bm,2 = R2Γ
−1
22 ,

Bm,1 =

{
R∗1Γ

∗−1
11 if α ∈ (1, 2) or α = 1 and L̃(n)→ 0,

−R2Γ
−1
22 Γ∗21Γ

∗−1
11 if α ∈ (0, 1) or α = 1 and L̃(n)→∞,

R∗1 =
∑∞

i=0 Si+2B
′

i, Γ∗11 =
∑∞

l=0 BlS1B
′

l and Γ∗21 = R′2
∑∞

i=0 B′i + [Id,0]∑∞
i=0

∑i
j=0ψjS1B

′
i,

(b). for k = 1, . . . ,m, the eigenvalues of Π̂1st satisfy φk(Π̂1st)→p φk(Πo),

(c). the last m− ro eigenvalues of Π̂1st satisfy

n(φ1(Π̂1st), . . . , φm−ro(Π̂1st))→d (φ̃o,1, . . . , φ̃o,m−ro),

where the φ̃o,j(j = 1, . . . ,m − ro) are solutions of the equation |µIm−ro −
α′o,⊥R2Γ

−1
22 | = 0.

Lemma 3 is used to prove Theorem 1, 3 and Lemma 1. Its proof is given in

Supplemental material of this paper.

We subdivide the matrix Pn as Pn = [Pα,n,Pα⊥,n], where Pα,n is the first

ro columns of Pn (Pα⊥,n is defined accordingly). Then

Qα⊥,nPα⊥,n = Im−ro , Qα,nPα⊥,n = 0ro×(m−ro) and Qα⊥,nΠ̂1st = Λα⊥,nQα⊥,n,

where Λα⊥,n is a diagonal matrix with the ordered last (smallest) m− ro eigen-

values of Π̂1st. Define a useful estimator of Πo as

Πn,f = Π̂1st −Pα⊥,nΛα⊥,nQα⊥,n.

Πn,f may be interpreted as a modification to the unrestricted estimate Π̂1st which

removes components in the eigen-representation of the unrestricted estimate that

correspond to the smalllest m− ro eigenvalues. Then

Qα,nΠn,f = Qα,nΠ̂1st −Qα,nPα⊥,nΛα⊥,nQα⊥,n = Λα,nQα,n, (A.1)
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where Λα,n is a diagonal matrix with the ordered first (largest) ro eigenvalues of

Π̂1st, and more importantly

Qα⊥,nΠn,f = Qα⊥,nΠ̂1st −Qα⊥,nPα⊥,nΛα⊥,nQα⊥,n = 0(m−ro)×m. (A.2)

From Lemma 2 (b), (A.1) and (A.2), we can deduce that Qα,nΠn,f is a ro ×m
matrix which is nonzero w.p.a.1 and Qα⊥,nΠn,f is always a (m − ro) ×m zero

matrix for all n. By Lemma 3 (a) and (c), it follows that

(Πn,f −Πo)Q
−1D−1

n = Op(1), (A.3)

where Dn = n−1Im when α ∈ (0, 1) or α = 1 and L̃(n)→∞, and = diag{ãn/a2
n

Iro , n
−1Im−ro} when α ∈ (1, 2) or α = 1 and L̃(n)→ 0.

Proof of Theorem 3. Let T = QnΠ. We can rewrite the LS shrinkage estima-

tion problem in (2.3) as

(T̂n, B̂n) = argmin
T,B1,...,Bp∈Rm×m

n∑
t=1

∥∥∥∥∆Yt −PnTYt−1 −
p∑
j=1

Bj∆Yt−j

∥∥∥∥2

+ n

p∑
j=1

λb,j,n‖Bj‖+ n

m∑
k=1

λr,k,n‖Φn,k(PnT)‖. (A.4)

By definition of (A.4), Π̂n = PnT̂n and T̂n = QnΠ̂n for all n, and

T̂n =

(
Qα,nΠ̂n

Qα⊥,nΠ̂n

)
=

(
Qα,nΠ̂1st

Qα⊥,nΠ̂1st

)
+ op(1),

and thus the first result follows if we can show that the last m−ro rows of T̂n are

estimated as zeros w.p.a.1. Note that Φn,k(PnT) is the k−th row of Qn(PnT),

i.e., Φn,k(PnT) = T(k). The problem in (A.4) can be rewritten as

(T̂n, B̂n) = argmin
T,B1,...,Bp∈Rm×m

n∑
t=1

∥∥∥∥∆Yt −PnTYt−1 −
p∑
j=1

Bj∆Yt−j

∥∥∥∥2

+ n

p∑
j=1

λb,j,n‖Bj‖+ n

m∑
k=1

λr,k,n‖T(k)‖. (A.5)

Let T̂n(k) be the k-th row of T̂n. The Karuch-Kuhn-Tucker (KKT) opti-

mality conditions for T̂n are
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Fπ,n(k) =

nλr,k,n
2

T̂n(k)

‖ T̂n(k) ‖
if T̂n(k) 6= 0,∥∥n−1Fπ,n(k)

∥∥ < λr,k,n
2

if T̂n(k) = 0,

(A.6)

for k = 1, . . . ,m, where Fπ,n(k) is defined in (4.3). Conditioned on the event

{T̂n(k0) 6= 0} for some k0 satisfying ro < k0 ≤ m, we obtain the following

equation ∥∥a−2
n Fπ,n(k)

∥∥ =
na−2

n λr,k,n
2

. (A.7)

By Lemma 2 (b), (c) and (e), and Theorem 1, it follows that

1

a2
n

Fπ,n(k0) =
1

a2
n

n∑
t=1

[εt − (θ̂n − θo)Q−1
B Zt−1]′Pn(k0)Y′t−1 (A.8)

=
1

a2
n

n∑
t=1

[εt − (θ̂n − θo)Q−1
B Zt−1]′Pn(k0)Y′t−1

=
Pn(k0)′

∑n
t=1 εtY

′
t−1

a2
n

−
Pn(k0)′(θ̂n − θo)Q−1

B

∑n
t=1 Zt−1Y

′
t−1

a2
n

= Op(1).

By assumptions of tuning parameters, na−2
n λr,k,n →p ∞. Furthermore, by (A.7)

and (A.8), we must have

P (Qn(k0)Π̂n = 0) = P (T̂n(k0) = 0)→ 1 as n→∞,

for any k0 such that ro < k0 ≤ m. Thus, we obtain

P (Qα⊥,nΠ̂n = 0)→ 1 as n→∞.

We next show the second part in (3.3). The KKT optimality conditions for

B̂n,j are 
Fb,n(j) =

nλb,j,nB̂n,j

2 ‖ B̂n,j ‖
if B̂n,j 6= 0,∥∥n−1Fb,n(j)

∥∥ < λb,j,n
2

if B̂n,j = 0,

(A.9)

for any j = 1, . . . , p, where Fb,n(j) is defined in (4.4). On the event {B̂n,j 6=
0m×m} for some j ∈ ScB, we get the following equation from the optimality

conditions

‖Fb,n(j)‖ =
nλb,j,n

2
. (A.10)

Let δ̃n = ã−1
n when α ∈ (1, 2) or α = 1 and L̃(n) → 0, and δ̃n = na−2

n when
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α ∈ (0, 1) or α = 1 and L̃(n)→∞. Then, (A.10) is equivalent to∥∥∥δ̃nFb,n(j)
∥∥∥ =

nδ̃nλb,j,n
2

. (A.11)

By Lemma 2 (a), (d) and (e), and Theorem 1, we have

δ̃nFb,n(j) = δ̃n

n∑
t=1

[εt − (θ̂n − θo)Q−1
B Zt−1]∆Y′t−j

= δ̃n

n∑
t=1

εt∆Y′t−j − δ̃n(θ̂n − θo)Q−1
B

n∑
t=1

Zt−1∆Y′t−j = Op(1). (A.12)

However, under the assumptions of tuning parameters, nδ̃nλb,j,n →p ∞, which

together with results in (A.11) and (A.12) implies that

P (B̂n,j = 0m×m)→ 1 as n→∞,

for any j ∈ ScB, which finishes the proof.

Proof of Theorem 4. Without loss of generality, we assume the first ro columns

of Πo are linearly independent. Let βo,⊥ = (β′1,o⊥,β
′
2,o⊥)′, where β1,o⊥ is a

ro × (m− ro) matrix and β2,o⊥ is a (m− ro)× (m− ro) matrix. By definition of

βo and βo,⊥,

β′1,o⊥ + β′2,o⊥O′ro = 0 and β′1,o⊥β1,o⊥ + β′2,o⊥β2,o⊥ = Im−ro ,

which implies that

β′1,o⊥ = −β′2,o⊥O′ro and β2,o⊥ = (Im−ro + O′roOro)
−1/2. (A.13)

Let δ∗n = a2
n/ãn when α ∈ (1, 2) or α = 1 and L̃(n)→ 0, and = n when α ∈ (0, 1)

or α = 1 and L̃(n)→∞. We first show

δ∗n(B̂n −Bo) = Op(1), (A.14)

n(β̂n − βo) = Op(1), (A.15)

δ∗n(α̂n −αo) = Op(1). (A.16)

When α ∈ (1, 2) or α = 1 and L̃(n) → 0, and n1−1/α(δr,n + δb,n) = op(1), by

Theorem 2, we have

[δ∗n(Π̂n −Π0)αo(β
′
oαo)

−1, δ∗n(B̂n −Bo), n(Π̂n −Π0)βo,⊥(α′0,⊥β0,⊥)−1] = Op(1),
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which implies that (A.14) holds, and

δ∗n[(α̂n −αo)β̂′n +αo(β̂n − βo)′]αo(β′oαo)−1 (A.17)

= δ∗n(Π̂n −Π0)αo(β
′
oαo)

−1 = Op(1),

nα̂n(β̂n − βo)′βo,⊥(α′o,⊥βo,⊥)−1 (A.18)

= n(Π̂n −Π0)βo,⊥(α′0,⊥β0,⊥)−1 = Op(1).

By the definitions of β̂n and βo,⊥ and (A.18), we can deduce that

β′oα̂n[n(Ôn −Oro)]
′β2,o,⊥(α′o,⊥βo,⊥)−1 = Op(1). (A.19)

By (A.13) and (A.19), we have

n(Ôn −Oro) = [β′oαo + op(1)]−1Op(1)(α′o,⊥βo,⊥)(Im−ro + O′roOro)
1/2 = Op(1).

(A.20)

Again, by the definition of β̂n, (A.20) means that n(β̂n − βo) = Op(1), that is,

(A.15) holds. By (A.15) and (A.17), we know that (A.16) holds. When α ∈ (0, 1)

or α = 1 and L̃(n) → ∞ and δr,n + δb,n = op(1), by Theorem 2, similar to the

case when α ∈ (1, 2) or α = 1 and L̃(n)→ 0, we can show (A.14)–(A.16) hold.

From Theorem 3, we deduce that α̂n, β̂n and B̂SB minimize the following

criterion function w.p.a.1,

Vn(θS) =

n∑
t=1

∥∥∥∥∆Yt −αβ′Yt−1 −
∑
j∈SB

Bj∆Yt−j

∥∥∥∥2

+ n
∑
k∈Sφ

λr,k,n‖Φn,k(αβ
′)‖+ n

∑
j∈SB

λb,j,n‖Bj‖.

Define U∗1,n = δ∗n(α̂n − αo), U∗2,n = n(Ôn −Oro) and U∗3,n = δ∗n(B̂SB −Bo,SB).

Then

[(Π̂n −Πo), (B̂SB −Bo,SB)]Q−1
S D−1

n,S

= [δ∗nα̂n(β̂n − βo)′αo(β′oαo)−1 + δ∗n(α̂n −αo), δ∗n(B̂SB −Bo,SB),

nα̂n(β̂n − βo)′βo,⊥(α′o,⊥βo,⊥)−1]

= [n−1δ∗nα̂n[0ro ,U
∗
2,n]αo(β

′
oαo)

−1 + U∗1,n,U
∗
3,n, α̂n[0ro ,U

∗
2,n]βo,⊥(α′o,⊥βo,⊥)−1].

Denote U = (U1,U2,U3) ∈ Rm×ro ×Rro×(m−ro) ×Rm×mdSB and

Πn(U) = [n−1δ∗nα̂n[0ro ,U2]αo(β
′
oαo)

−1 +U1,U3, α̂n[0ro ,U2]βo,⊥(α′o,⊥βo,⊥)−1].
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Then, U∗n = (U∗1,n,U
∗
2,n,U

∗
3,n) minimizes the following criterion function

Vn(U) =

n∑
t=1

(‖εt −Πn(U)Dn,SZS,t−1‖2 − ‖εt‖2)

+ n
∑
k∈Sφ

λr,k,n[‖Φn,k[Πn(U)Dn,SQSL1 + Πo]‖ − ‖Φn,k(Πo)‖]

+ n
∑
j∈SB

λb,j,n[‖Πn(U)Dn,SQSLj+1 + Bo,j‖ − ‖Bo,j‖],

where Lj = diag(Aj,1, . . . ,Aj,dSB+1
) with Aj,j = Im and Ai,j = 0 for i 6= j and

j = 1, . . . , dSB+1.

For any compact set K ∈ Rm×ro × Rro×(m−ro) × Rm×mdSB and any U ∈ K,

there is Πn(U)Dn,SQS = Op(δ
∗−1
n ). Then we can deduce that

n
∑
k∈Sφ

λr,k,n[‖Φn,k[Πn(U)Dn,SQSL1 + Πo]‖ − ‖Φn,k(Πo)‖]

≤ nλr,k,n‖Φn,k(Πn(U)Dn,SQS)‖ = Op(nδ
∗−1
n λr,k,n) = op(1), (A.21)

and n
∑
j∈SB

λb,j,n[‖Πn(U)Dn,SQSLj+1 + Bo,j‖ − ‖Bo,j‖] = op(1), (A.22)

uniformly over U ∈ K.

Denote ϑ = {[vecO′ro ]
′, [vec(αo,Bo,SB)′]′}′. From (A.21) and (A.22), we

deduce that α̂n, Ôn and B̂SB minimize the following criterion function w.p.a.1

L(ϑ) =

n∑
t=1

‖εt(ϑ)‖2 and εt(ϑ) = ∆Yt −αo[Iro ,Oro ]Yt−1 −Bo,SB∆XS,t−1.

Then, using the similar argument as for Theorem 3.1 in She and Ling (2020), we

can obtain the limiting distribution.
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