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VARIATIONAL INFERENCE FOR LATENT

SPACE MODELS FOR DYNAMIC NETWORKS
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Abstract: Latent space models are popular for analyzing dynamic network data.

We propose a variational approach to estimate the model parameters and the la-

tent positions of the nodes in the network. The proposed approach is much faster

than Markov chain Monte Carlo algorithms, and is able to handle large networks.

Theoretical properties of the variational Bayes risk of the proposed procedure are

provided. We apply the variational method with the latent space model to simulated

and real data to demonstrate its performance.
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tional inference.

1. Introduction

Network data analysis has become an increasingly important research topic

in various scientific disciplines in recent years. Most existing work on network

data focuses on static networks, which means the inference is based on a static

list of nodes and edges in an observed network at a given point in time (see

Goldenberg et al. (2010) for a survey). However, the network structures of real-

world systems are often time varying, or dynamic, in nature, with the set of nodes

or the set of edges, or both, evolving over time. In this study, we focus on a time

series of observed networks with the same set of nodes and a sequence of sets

of edges observed at multiple time points. Analyzing such networks is crucial to

understanding their dynamic aspect, such as how social relations and structures,

gene-protein interactions, and co-authorship patterns evolve over time.

Many models for dynamic networks have been proposed in the literature.

Some are extensions of existing static network models, including the dynamic

versions of the stochastic blockmodel (SBM) (Yang et al. (2011); Xu and Hero

(2014); Xu, Kliger and Hero III (2014); Xu (2015); Matias and Miele (2017)),

degree-corrected stochastic blockmodel (Wilson, Stevens and Woodall (2019)),

mixed-membership stochastic blockmodel (MMSB) (Fu, Song and Xing (2009);
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Xing, Fu and Song (2010); Ho, Song and Xing (2011)), exponential random

graph model (Guo et al. (2007); Ahmed and Xing (2009); Hanneke, Fu and Xing

(2010); Krivitsky and Handcock (2014); Lee, Xue and Hunter (2020)), latent fac-

tor model (Ward, Ahlquist and Rozenas (2013); Durante and Dunson (2014a,b);

Hoff (2015)), latent feature relational model (Foulds et al. (2011); Heaukulani and

Ghahramani (2013)), and latent space model (Sarkar and Moore (2005); Sewell

and Chen (2015); Friel et al. (2016); Sewell and Chen (2017)). See Kim et al.

(2018) for a review of dynamic network models with latent variables.

The latent space model embeds dynamic networks into a low-dimensional Eu-

clidean space, and has the advantage of meaningful visualization and interpreta-

tion. The model has also been used for multilayer networks (Gollini and Murphy

(2016); Durante, Dunson and Vogelstein (2017)). Although sometimes dynamic

networks are treated as multilayer networks (Han, Xu and Airoldi (2015)), the

temporal aspect of dynamic networks is not considered in multilayer networks.

The latent space model is a popular approach for modeling dynamic net-

works, but estimating the model parameters and latent positions is often compu-

tationally intensive. Sewell and Chen (2015) used a Markov chain Monte Carlo

(MCMC) approach with a case-control approximate likelihood to reduce the com-

putational cost, but it still has difficulties in handling large networks. As an

alternative, the variational inference (VI) approach (Jordan et al. (1999); Wain-

wright and Jordan (2008)) is becoming increasingly popular in the statistics com-

munity; see Blei, Kucukelbir and McAuliffe (2017) for a comprehensive review.

Daudin, Picard and Robin (2008) proposed a variational approach to estimate

the parameters of the SBM, and this idea was later generalized by Mariadassou,

Robin and Vacher (2010) to deal with valued graphs and possible covariates.

Yang et al. (2011) and Matias and Miele (2017) designed variational expectation-

maximization (EM) algorithms for the dynamic version of the SBM. Airoldi et al.

(2008) used a variational approach to fit the MMSB, and Xing, Fu and Song

(2010) and Ho, Song and Xing (2011) proposed variational EM algorithms for

approximate inference for the dynamic version of the MMSB. Salter-Townshend

and Murphy (2013) proposed a variational Bayes (VB) algorithm for a static la-

tent space model with a community structure. Sewell and Chen (2017) proposed

a VB algorithm for projection models in dynamic networks.

Despite the empirical success of variational algorithms in estimating the pos-

terior distributions of the parameters of various network models, theoretical stud-

ies of such algorithms are limited. Some results for variational approaches have

been obtained under the SBM (Celisse, Daudin and Pierre (2012); Bickel et al.

(2013); Zhang and Zhou (2020)), but there are no theoretical results on variational
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algorithms for latent space models. Recently, Yang, Pati and Bhattacharya (2020)

proposed a more general class of VB algorithms, with the standard variational

approximation as a special case. They also developed variational inequalities and

convergence results on the Bayes risk of the proposed variational approximation.

Their results indicate that the parameter estimates given by the variational algo-

rithm converge to the true parameter values under certain conditions. This work

provides a framework for analyzing the theoretical properties of VB algorithms

for latent space models.

We consider a class of latent space models for dynamic networks, and propose

a variational algorithm for performing posterior inference for large-scale networks.

Furthermore, we show that the parameter estimation based on the variational

posterior is consistent. The simulation studies demonstrate that the proposed

variational algorithm is much faster than the MCMC algorithm, while still giving

satisfactory results, so it is more suitable for large-scale dynamic networks. We

also apply our method to analyze a friendship network from the “Teenage Friends

and Lifestyle Study” and a Wiki-talk communication network.

The rest of the paper is organized as follows. Section 2 considers a class

of latent space models for dynamic networks. Section 3 proposes a variational

algorithm for posterior inference. Section 4 gives finite-sample upper bounds

to the VB risk of the proposed procedure and shows the consistency of the pa-

rameter estimation. Sections 5 and 6 illustrate the performance of the proposed

method using simulation studies and real-world examples, respectively. Section

7 concludes the paper with a discussion.

2. Dynamic Latent Space Model

Latent space models for network data are a popular class of models first

proposed by Hoff, Raftery and Handcock (2002) for static networks, and later

generalized by Sewell and Chen (2015) and Sewell and Chen (2016) to dynamic

networks. This class of models embed the nodes of a network into an unobserved

latent space, which can provide visualization and insight into the evolution of the

network.

Suppose there are n nodes and T time steps in a dynamic network. Let

Y1, . . . ,YT be the observed n× n adjacency matrices at the T time steps, where

Yijt = 1 if there is an edge from node i to node j at time t, and zero other-

wise. Throughout this paper, the latent space we consider is the d-dimensional

Euclidean space Rd. Let Xit ∈ Rd be the latent position of the ith node at

time t, for 1 ≤ i ≤ n and 1 ≤ t ≤ T . The dynamic latent space model rep-
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resents the time series of networks using a hidden Markov model. The latent

positions of the nodes (which are the hidden states) evolve independently of each

other. The latent position of each node is modeled by a Markov process with the

initial distribution Xi1 ∼ N (0, σ2Id) (i = 1, . . . , n) and transition distribution

Xit|Xi(t−1) ∼ N (Xi(t−1), τ
2Id) (t = 2, . . . , T, i = 1, . . . , n), where Id is the d× d

identity matrix.

The observed networks Y1, . . . ,YT are conditionally independent, given the

latent positions across the time span. In addition, for the network Yt at time

t, we assume that all edges Yijt are formed independently, conditioning on the

latent positions at time t. A general expression for the probability that there

is an edge between nodes i and j can be written as p(Yijt = 1|Xit,Xjt,β) =

h(||Xit − Xjt||,β), 1 ≤ i 6= j ≤ n, 1 ≤ t ≤ T, where ||Xit − Xjt|| is the

Euclidean distance between nodes i and j at time t, β ∈ Rp are the model

parameters that do not change with t, and h : Rp+1 → [0, 1] is a function that

is strictly decreasing in its first argument. This model assumes that a smaller

distance between two nodes in the latent space yields a larger link probability

between them.

Different forms of the function h have been suggested in the literature. The

distance model in Hoff, Raftery and Handcock (2002) assumes that β is a one-

dimensional intercept term, and logit[h(||Xit − Xjt||, β)] = β − ||Xit − Xjt||.
However, the variation inference based on this formulation involves several addi-

tional approximation steps (Salter-Townshend and Murphy (2013)). Gollini and

Murphy (2016) suggested using logit[h(||Xit − Xjt||, β)] = β − ||Xit − Xjt||2,

which can reduce the number of approximation steps in VI. Sewell and Chen

(2015) proposed a more complicated h function to distinguish the effects of the

sender and the receiver in edge formation.

Here, we adopt the h function suggested by Gollini and Murphy (2016) to

derive the VI. More precisely, for any 1 ≤ i 6= j ≤ n and 1 ≤ t ≤ T , logit[p(Yijt =

1|Xit,Xjt, β)] = β − ||Xit −Xjt||2. Let X = {Xit : 1 ≤ i ≤ n, 1 ≤ t ≤ T} and

Y = {Yt : 1 ≤ t ≤ T}. Then, the model can be written as

p(Y |X , β) =

T∏
t=1

∏
1≤i 6=j≤n

exp{Yijt
(
β − ||Xit −Xjt||2

)
}

1 + exp{β − ||Xit −Xjt||2}
. (2.1)

3. A Variational Algorithm for Posterior Inference

VI or VB (Jordan et al. (1999); Wainwright and Jordan (2008)) is a powerful

tool for approximating intractable complex distributions. The basic idea of VB
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is to approximate the posterior distribution by the closest member in a certain

family of distributions (which is usually called the variational family). The clos-

est member, which is referred to as the variational distribution, is then used for

posterior inference. Thus, the posterior inference problem becomes an optimiza-

tion problem of finding the member in the variational family that minimizes a

divergence measure between the approximate posterior and the true posterior.

The most popular approach for VI is the mean-field method, which approxi-

mates the target distribution by a fully factorized distribution. In this section, we

further restrict each component of the factorized distribution to be in a family of

tractable distributions indexed by variational parameters. These variational pa-

rameters are chosen to minimize the Kullback–Leibler (KL) divergence between

the approximate posterior and the true posterior.

Now, we derive a variational algorithm for posterior inference of the dynamic

latent space model described in Section 2. We are interested in p(X , β|Y1, . . . ,YT ),

the posterior distribution of the intercept β, and the latent positions of the nodes

X . We assign a normal prior N (ξ, ψ2) for the intercept β, and view ξ, ψ2, σ2, and

τ2 as hyperparameters. Then, p(X , β|Y1, . . . ,YT ) ∝ p(β)p(X )
∏T
t=1 p(Yt|X , β).

We approximate the posterior by the following family of distributions:

q(X , β) = q(β = ·|ξ̃, ψ̃2)

T∏
t=1

n∏
i=1

q(Xit = ·|µ̃it, Σ̃),

where q(β = ·|ξ̃, ψ̃2) is a normal distribution with mean ξ̃ and variance ψ̃2, and

q(Xit = ·|µ̃it, Σ̃) is a d-dimensional normal distribution with mean vector µ̃it
and covariance matrix Σ̃. Note that we can also allow the covariance matrix Σ̃

to vary with i and t; the derivation of the variational algorithm is similar.

The main hindrance in deriving the analytical form of the KL divergence be-

tween q(X , β) and p(X , β|Y) is the expectation of the log-likelihood Eq[log p(Y |X ,

β)], which does not have an analytical form. Therefore, instead of working with

the original KL divergence, we approximate it by the following lower bound:

Eq[log p(Y |X , β)]

=

T∑
t=1

∑
i 6=j

Eq
[
Yijt(β − ||Xit −Xjt||2)− log

(
1 + eβ−||Xit−Xjt||2

)]

≥
T∑
t=1

∑
i 6=j

[
Yijt(ξ̃ − Eq[||Xit −Xjt||2])

]
− log

(
1 + Eq

[
eβ−||Xit−Xjt||2

])
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=

T∑
t=1

∑
i 6=j

{
Yijt

(
ξ̃ − 2 tr(Σ̃)− ||µ̃it − µ̃jt||2

)
− log

(
1 +

exp{ξ̃ + (1/2)ψ̃2}
det(I + 4Σ̃)1/2

· exp{−(µ̃it − µ̃jt)T (I + 4Σ̃)−1(µ̃it − µ̃jt)}
)}

,

where the inequality is from Jensen’s inequality. Then, the KL divergence D[q(X ,

β)||p(X , β|Y)] between the approximate posterior and the true posterior can be

approximated by an upper bound, as follows:

D [q(X , β)||p(X , β|Y)]

:= Eq[log q(X )]− Eq[log p(X )] + Eq[log q(β)]− Eq[log p(β)]

− Eq[log p(Y |X , β)] + constant

≤ −nT
2

log(det(Σ̃)) +

(
n

2σ2
+
n(T − 1)

τ2

)
tr(Σ̃)

+
1

2σ2

n∑
i=1

‖µ̃i1‖2 +
1

2τ2

T∑
t=2

n∑
i=1

∥∥µ̃it − µ̃i(t−1)

∥∥2

+
1

2

(
ψ̃2

ψ2
− log

ψ̃2

ψ2
+

(ξ̃ − ξ)2

ψ2

)
−

T∑
t=1

∑
i 6=j

{
Yijt

(
ξ̃ − 2 tr(Σ̃)− ||µ̃it − µ̃jt||2

)

− log

(
1 +

exp{ξ̃ + (1/2)ψ̃2}
det(I + 4Σ̃)1/2

· exp{−(µ̃it − µ̃jt)T (I + 4Σ̃)−1(µ̃it − µ̃jt)}

)}
+ constant. (3.1)

Two constant terms in the above derivation are not written out explicitly and

will be omitted later, because they do not play a role in the optimization proce-

dure. Compared with the multiple approximation steps in the derivation of the

variational algorithm in Salter-Townshend and Murphy (2013), only one approx-

imation step based on Jensen’s inequality is used in our derivation. Note too

that this Jensen’s bound is tighter than the lower bound given by a first-order

approximation.

Our goal is to minimize the approximated KL divergence (3.1) over the vari-

ational parameters {µ̃it}, Σ̃, ξ̃, and ψ̃2. For convenience, we define

f(µ̃, Σ̃, ξ̃, ψ̃2) :=
T∑
t=1

∑
i 6=j

log

(
1 +

exp{ξ̃ + (1/2)ψ̃2}
det(I + 4Σ̃)1/2

· exp{−(µ̃it − µ̃jt)T (I + 4Σ̃)−1(µ̃it − µ̃jt)}
)}

.
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In order to avoid searching for a numerical root in the optimization over {µ̃it}, we

use the Taylor expansion to approximate the gradient function f ′(x) = f ′(x0) +

f ′′(x0)(x− x0) + o(x− x0).

Assume we have estimates of the variational parameters after s iterations.

Then, the update equation for each variational parameter in the (s+1)th iteration

is as follows:

• Update of Σ̃:

Σ̃(s+1) ← nT

2

 n

2σ2
+
n(T − 1)

τ2
+

T∑
t=1

∑
i 6=j

2Yijt

 Id + J(Σ̃(s))

−1

,

where J(Σ̃(s)) is the Jacobian matrix of f evaluated at Σ̃(s), and has the

following expression:

J(Σ̃(s)) =

T∑
t=1

∑
i 6=j

1

Aijt

(
− 8(Id + 4Σ̃(s))−1(µ̃

(s)
it − µ̃

(s)
jt )

(µ̃
(s)
it − µ̃

(s)
jt )T (Id + 4Σ̃(s))−1

)
,

where Aijt = 1 + (exp{−ξ̃ − (1/2)ψ̃2}/det(I + 4Σ̃(s))−1/2) · exp{(µ̃it− µ̃jt)T

(I + 4Σ̃(s))−1(µ̃it − µ̃jt)}.

• Update of µ̃it:

µ̃
(s+1)
it ←

(
H(µ̃

(s)
it ) +

(
2

τ2
+
∑
j 6=i

2(Yijt + Yjit)

)
Id

)−1

·

[∑
j 6=i

2(Yijt + Yjit)µ̃
(s)
jt

+
1

τ2
(µ̃

(s)
i(t−1) + µ̃

(s)
i(t+1)) +H(µ̃

(s)
it )µ̃

(s)
it −G(µ̃

(s)
it )

]
,

where G(µ̃
(s)
it ) is the gradient of f evaluated at µ̃

(s)
it , and H(µ̃

(s)
it ) is the

Hessian matrix of f evaluated at µ̃
(s)
it ; that is,

G(µ̃
(s)
it ) =

∑
i 6=j

−2

Aijt
(Id + 4Σ̃(s))−1(µ̃

(s)
it − µ̃

(s)
jt ),

H(µ̃
(s)
it ) =

∑
i 6=j

4

1 +Aijt + 1/(Aijt − 1)
(Id + 4Σ̃(s))−1

(µ̃
(s)
it − µ̃

(s)
jt )(µ̃

(s)
it − µ̃

(s)
jt )T (Id + 4Σ̃(s))−1 − 2

1 +A
(Id + 4Σ̃(s))−1.
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• Update of ξ̃: ξ̃(s+1) ← (1+ψ2f ′′(ξ̃(s)))−1[ξ+ψ2(
∑T

t=1

∑
i 6=j Yijt+f

′′(ξ̃(s))ξ̃(s)−
f ′(ξ̃(s)))].

• Update of ψ̃2: ψ̃2 (s+1) ← (1/ψ2 + 2f ′(ψ̃2 (s)))−1.

The algorithm converges when the relative change in the log-likelihood at two

consecutive steps is smaller than some threshold value. After convergence, the

variational parameter µ̃it is the estimated posterior mean of the latent position

of node i at time t, and ξ̃ is the estimated posterior mean of the intercept.

4. Theoretical Properties

In this section, we provide theoretical properties of variational algorithms for

latent space models, which have not previously been studied in the literature. In

particular, we show that under certain regularity conditions, the point estimates

of the model parameters from the VB procedure converge to the true parameters

as the number of nodes goes to infinity. We achieve this result by showing that

the VB risk goes to zero as the number of nodes goes to infinity.

We follow the framework of Yang, Pati and Bhattacharya (2020) in which

the authors studied a slightly modified VB procedure, called α-VB, with the

standard VB algorithm as a special case. The authors showed that the point

estimates given by this VB procedure converge to the true parameters. The main

idea of the proof is to establish a finite-sample upper bound of the VB risk using

the VB objective function, and then to give the convergence rate of this upper

bound. Note that the theoretical results in Yang, Pati and Bhattacharya (2020)

are mainly for independent and identically distributed (i.i.d.) data, whereas our

results are tailored to dependent random variables in the network setting.

We first introduce some notation. Let D(p||q) =
∫
p log(p/q)dµ denote the

KL divergence between the probability density functions p and q with respect to

a measure µ. For α ∈ (0, 1), let Dα(p||q) := (1/α) log
∫
pαq1−αdµ denote the α-

divergence between the probability density functions p and q. In this section, we

use θ := (β, σ2, τ2) to denote all the parameters in the model, and π := (σ2, τ2)

to denote the parameters related to the latent variables. We use qθ and qX to

denote the variational distribution of the model parameters θ and the variational

distribution of the latent variables X , respectively. In addition, for the rest of

this section, we assume θ has the true value θ∗.

Now, we follow the framework of Yang, Pati and Bhattacharya (2020) to

derive a further decomposition of the VB objective function. If we adopt the

standard VB algorithm, we minimize the KL divergence between the variational

posterior and the true posterior; that is, we minimize the following objective
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function over the members of the variational family:

D(q(θ,X )||p(θ,X |Y))

= Eq[log q(X )] + Eq[log q(θ)]− Eq[log p(Y |X , θ)]− Eq[log p(X |θ)]
− Eq[log p(θ)] + constant

= D(q(θ)||p(θ))−
∫ ∫

log

[
p(Y |X , θ)p(X |θ)

qX (X )

]
qθ(dθ)qX (dX ) + constant.

(4.1)

Let ln(θ) := log p(Y |θ) = log(
∫
p(Y |θ,X )p(X |θ)dX ) and l̂n(θ) :=

∫
log(

p(Y |θ,X )p(X |θ)/qX (X ))qX (dX ). By Jensen’s inequality, ln(θ) ≥ l̂n(θ). Then,

the KL divergence (4.1) can be decomposed into three parts, as follows:

D(q(θ,X )||p(θ,X |Y))

= D(q(θ)||p(θ)) +

∫ (
ln(θ)− l̂n(θ)

)
qθ(dθ)−

∫
ln(θ)qθ(dθ) + constant, (4.2)

where the first term is the discrepancy between the variational distribution and

the prior of the model parameters, the second term is the average Jensen gap

(denoted by ∆J(qθ, qX )) from the variational approximation (which is the only

term that involves the variational distribution q(X )), and the third term is the

integrated log-likelihood. The constant term will be omitted later.

Define the following objective function:

Ψn(qθ, qX ) := −
∫

Θ
(ln(θ)− ln(θ∗))q(dθ) + ∆J(qθ, qX ) +D(q(θ)||p(θ)),

where the subscript n indicates the dependence of the objective function on the

number of nodes n. Note that minimizing Ψn over (qθ, qX ) is equivalent to

minimizing the KL divergence (4.2) over (qθ, qX ), because ln(θ∗) does not depend

on the variational distribution q(X ).

Yang, Pati and Bhattacharya (2020) proposed a slightly different procedure,

α-VB, in which a stronger penalty on the discrepancy between the variational

distribution and the prior is introduced into the objective function,

Ψn,α(qθ, qX ) : = −
∫

Θ
(ln(θ)− ln(θ∗))q(dθ) + ∆J(qθ, qX ) +

1

α
D(q(θ)||p(θ)),

(4.3)

where α ∈ (0, 1] is a tuning parameter, qθ and qX are variational distributions

that are restricted in some variational families Γθ and ΓX , respectively. Note that
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the α-VB objective function Ψn,α reduces to Ψn when α = 1. The α-VB solution

is defined by (q̂θ,α, q̂X ,α) := argminqθ∈Γθ,qX∈ΓX
Ψn,α(qθ, qX ). Note that all of the

theoretical results presented here are on this global optimum (q̂θ,α, q̂X ,α), which

may not be achieved in practice.

We use the average α-divergence (1/n(n− 1)T )D
(n)
α (θ, θ∗) := (1/n(n− 1)T )

Dα[p
(n)
θ ||p

(n)
θ∗ ] as the loss function, where p

(n)
θ denotes the distribution of Y given

the model parameter θ. This loss function measures the discrepancy between the

distribution of Y with model parameter θ and the distribution of Y with the true

model parameter θ∗.

The following theorem gives a finite-sample upper bound of the VB risk for

the case α < 1.

Theorem 1. With a certain choice of variational family ΓX and the variational

distribution qθ(θ) restricted to a certain KL-neighborhood (defined later), for any

ζ ∈ (0, 1), D > 1, and (εβ, επ) ∈ (0, 1)2, it holds with probability at least (1 −
2/(D − 1)2n(ε2β + ε2π)) that

∫
D

(n)
α (θ, θ∗)

n(n− 1)T
q̂θ,α(dθ) ≤ Dα

1− α
(ε2π+ε2β)− logPπ(Bn(π∗, επ))

n(n− 1)T (1− α)
−

logPβ(Bn(β∗, εβ))

n(n− 1)T (1− α)
,

(4.4)

where Pπ and Pβ are probability measures corresponding to the prior densities pπ
and pβ, respectively. Here, Bn(π∗, επ) and Bn(β∗, εβ) are KL-neighborhoods for

model parameters defined in the following way:

Bn(π∗, επ) :=
{
π : D (p(X 1|π∗)||p(X 1|π)) ≤ ε2π, V (p(X 1|π∗)||p(X 1|π)) ≤ ε2π

}
,

Bn(β∗, εβ) :=

{
β : sup

X11,X21

D(p(Y121|β∗,X11,X21)||p(Y121|β,X11,X21)) ≤ ε2β,

sup
X11,X21

V (p(Y121|β∗,X11,X21)||p(Y121|β,X11,X21)) ≤ ε2β
}
,

where X1 = {X1t : 1 ≤ t ≤ T}, and V (p||q) :=
∫
p log2(p/q)dµ denotes the

discrepancy measure between two probability density functions p and q.

The left-hand side of inequality (4.4) is the VB risk. The upper bound

is obtained based on a certain choice of variational family ΓX and a theorem

in Yang, Pati and Bhattacharya (2020) that connects the VB risk to the α-

VB objective function (4.3). The proofs of all theorems are provided in the

Supplementary Material.

The following theorem gives the convergence rate of the VB risk.
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Theorem 2. Assume that the prior densities pβ and pπ are thick and continuous

at β∗ and π∗, respectively (here, “thick” means pβ(β∗) > 0 and pπ(π∗) > 0).

Then, there exists a constant C > 0, such that as n→∞, it holds with probability

tending to one that ∫
1

n(n− 1)T
D(n)
α (θ, θ∗)q̂θ,α(dθ) .

C

n
.

Theorem 2 implies that the point estimate of the model parameter based on

optimizing the α-VB objective function (α < 1) converges to the true parameter

value as n→∞; that is, α-VB provides consistent parameter estimation.

For the usual VB (α = 1), stronger conditions are required to obtain the

variational risk bound. Note that for this part, we let the loss function be the

squared Hellinger distance h2(p||q) :=
∫

(
√
p − √q)2dµ. In addition, we define

h2(θ||θ∗) := h2(p(Y |θ)||p(Y |θ∗)) as the squared Hellinger distance between the

distributions of the observed networks generated by the parameters θ and θ∗.

We restrict the model parameters in the compact set [−M,M ]× [m,M ]2, where

M > m > 0 are some constants. We first state the assumptions.

Assumption 1. The prior densities pβ and pπ satisfy infβ pβ(β) > 0 and infπ
pπ(π) > 0.

Assumption 2. There exists a constant C > 0 such that the following inequali-

ties hold for any (β, π) and (β′, π′) in the parameter space:

D
(
p(Y121 = ·|β,X11,X21)||p(Y121 = ·|β′,X11,X21)

)
≤ C|β − β′|2,

V
(
p(Y121 = ·|β,X11,X21)||p(Y121 = ·|β′,X11,X21)

)
≤ C|β − β′|2,

D
(
p(X 1 = ·|π)||p(X 1 = ·|π′)

)
≤ C‖π − π′‖2,

V
(
p(X 1 = ·|π)||p(X 1 = ·|π′)

)
≤ C‖π − π′‖2.

Assumption 1 is the prior thickness condition. Assumption 2 is a regularity

condition that justifies the prior concentration condition, which ensures that the

prior mass of the KL neighborhood around the true parameter values is not too

small. The priors used in our implementation can be shown to satisfy these

assumptions by simple calculation.

The following theorem gives a high probability VB risk bound and the asymp-

totic variational posterior concentration result for the usual VB.

Theorem 3. Under Assumptions 1 and 2, for any D > 1, it holds with probability

at least (1− 1/(D − 1)2nε2n) that for any ε ∈ [εn, e
cn(n−1)ε2n ],
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Q̂θ
(
h2(θ||θ∗) ≤ ε2

)
→ 1 as n→∞,

where Q̂θ is the probability measure corresponding to the variational distribution

q̂θ given by the VB procedure.

Using this result, we can obtain the convergence rate for a truncated version

of the VB risk. See the proof of Theorem 3 in the Supplementary Material for

details.

5. Simulation Results

All computations are performed on a Linux machine with 2.20 GHz proces-

sors. In all simulation and real-data analyses, we set the dimension of the latent

space d = 2 for better visualization. More details of the implementation and

additional simulation studies can be found in the Supplementary Material.

We evaluate the performance using the area under the ROC curve (AUC)

values of in-sample predictions. To calculate this criterion, we plugged the esti-

mated posterior means of the model parameters and latent positions into (2.1)

and calculated the estimated link probabilities. Then, we compared the esti-

mated link probabilities with the observed data Y. A value of one implies perfect

model fitting, and a value of 0.5 implies random predictions. Note that although

the AUC criterion does not measure the discrepancy between the approximate

posterior and the true posterior directly, it measures the goodness-of-fit of the

model to the observed data.

We carried out simulation studies for networks with n = 100 and n = 1,000

nodes under various settings (see the Supplementary Material for the simulation

with n = 5,000 nodes). We simulated 20 dynamic networks with the number of

time steps T = 10 for each case. The average AUC values are reported in Figure 1

for n = 100 and in Figure 2 for n = 1,000. The variational method performed well

in all cases. Although the variance of the transition distribution does not seem

to have much effect on performance, the variational method performed better on

dense networks than it did on sparse networks.

Figure 3 plots the distribution of the pairwise distance ratios for each sim-

ulated network in the dense, small transition case with n = 100. That is, we

calculated the ratio ||µ̂it − µ̂jt||/||Xit −Xjt|| for each (i, j, t) of each simulated

network, and plotted the density curve of these ratios. Most of these distributions

are narrow and centered around one, which indicates that the estimated latent

positions are close to the truth.
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Figure 1. The average AUC values for VB on simulated networks with n = 100 nodes
and (left) small transition and (right) large transition.
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Figure 2. The average AUC values for VB on simulated networks with n = 1,000 nodes
and (left) small transition and (right) large transition.

6. Real-Data Analysis

6.1. Dynamic networks from “Teenage Friends and Lifestyle Study”

Here, we analyze a sequence of directed networks of friendship relations from

the “Teenage Friends and Lifestyle Study” data set (Michell and Amos (1997);

Michell and West (1996); Pearson, Steglich and Snijders (2006)). In this longi-

tudinal study, a total of 160 pupils were studied over a three-year period from

January 1995. At the measurement time point in each year, the pupils were asked
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Figure 3. Density plots of ratios of pairwise distances, comparing the estimated latent
positions with true latent positions.

to name up to 12 best friends, yielding three adjacency matrices. The (i, j)th

entry of the tth adjacency matrix is one if pupil i named pupil j as one of his

or her best friends at the tth measurement time point, and zero otherwise. The

study also collected information on substance use and adolescent behavior, such

as music preference and tobacco, alcohol, and cannabis consumption. We focus

on the networks formed by the 129 pupils who were present at all three measure-

ment time points (see the networks in the Supplementary Material). The average

edge density of this network is 0.0274.

We fitted the dynamic latent space model to the sequence of networks. To

implement the proposed VB algorithm, we set a normal prior N (0, 2) for the

intercept β and the hyperparameters σ2 = 0.5 and τ2 = 0.1. The variational

parameters {µ̃it} were randomly initialized, and the initial values of the other

variational parameters were set to Σ̃0 = I2, ξ̃0 = 0, and ψ̃2
0 = 2. The algorithm

converged in less than five seconds. The approximate posterior distribution of the

intercept β is N (−1.5092, 0.0001). The AUC values of the in-sample predictions

for the three time points are 0.9364, 0.9497, and 0.9681, respectively.

Figure 4 shows the estimated latent positions at the first time point based

on the approximate posterior, as well as where the actors are moving to in the

next two time points (indicated by the arrows). A longer arrow indicates a larger

move in the latent space. Filled squares denote boys, and filled circles denote

girls. We can see that the girls lie on the top-left side of the latent space, whereas

the boys lie on the bottom-right side. Only a few actors (actors 6, 8, 32, 93, 95)

are close to the opposite gender in the social space. This coincides with the claim
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Figure 4. Estimated latent positions of each node at the first time point. The arrows
denote where the actors are moving to in the next two time points. Filled squares denote
boys, and filled circles denote girls.

in Pearson, Steglich and Snijders (2006) that there is strong gender homophily

in friendship selection. From the trajectories of the nodes, we can also see the

formation of groups over time. For example, actors 15, 80, 87, 92, 100, and 116

were forming a new group, whereas actors 35 and 50 were leaving their original

social group.

To study the dynamics of the network, we calculated the squared distances

of the movements for each node during the two transitions and created box plots

for them (Figure 5). From these plots, we can see that the median and variation

of the moving distances of the first transition are larger than those of the second

transition, which indicates that the friendship network changed more during the

first transition. Pearson, Steglich and Snijders (2006) analyzed the same data

set, also claiming that the rate of network change is larger in the first transition

than it is in the second transition.

We also examined tobacco and cannabis consumption of these 129 pupils.

Figures 6 and 7 give the latent positions of the pupils, as well as their tobacco
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Figure 5. Box plots for the squared distances of movements for each node during two
transitions.

and cannabis consumption status at each time point. Note that pupils with

similar substance consumption behavior tended to move closer to each other. For

example, actors 24, 61, 108, and 111 occasionally or regularly used tobacco and

cannabis at the first time point, and they moved closer to each other in the latent

space during the two transitions. Another interesting observation is that as actor

63, who occasionally or regularly used cannabis at the first time point, moved

into the nearby social group, the whole group of pupils (actors 40, 41, 48, 58,

90, and 97) became occasional or regular cannabis users by time point 3. This

observation corroborates the conclusion in Pearson, Steglich and Snijders (2006)

that there is a significant positive influence effect of friends on cannabis use.

6.2. The wiki-talk temporal network

In this section, we analyze the Wiki-talk temporal network (Leskovec, Hut-

tenlocher and Kleinberg (2010); Paranjape, Benson and Leskovec (2017)). Wiki-

talk pages are part of the Wikipedia administration system, where users are able

to communicate with each other on possible improvements to Wikipedia pages.

Each user page has an associated talk page. Wikipedia users can edit a user’s

talk page by leaving a message.

The temporal network we analyzed represents the editing activities of Wikipedia

users on each other’s Wiki-talk pages. Nodes represent Wikipedia users, and an

edge from node i to node j at time point t means that user i edited user j’s

Wiki-talk page at time t. The original data set contains 1,140,149 nodes and

spans 2,277 days. We took a subset of 5,294 nodes and aggregated the tem-

poral edges between these nodes in each of the last three years to form three
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Figure 6. The latent positions and tobacco consumption of the 129 pupils at times 1, 2
(top), and 3 (bottom). The filled triangles represent actors who used tobacco occasionally
or regularly. The filled diamonds represent actors who never used tobacco or only tried
once.

networks. All 5,294 nodes are present at all three time points. The edge densities

of the observed network at the three time points are 0.0022, 0.0030, and 0.0012,

respectively.

We implemented the proposed VB algorithm with a normal prior N (0, 0.01)

on the intercept β and the hyperparameters σ2 = 5 and τ2 = 0.01. The vari-

ational parameters µ̃it were initialized randomly, and the initial values of the

other variational parameters were set as Σ̃0 = I2, ξ̃0 = 0, and ψ̃2
0 = 0.01. The

computation took about 20 minutes. The variational posterior of the intercept β

is N (−3.3054, 5.5278 × 10−6). The AUC values of the in-sample predictions at

each time step are 0.7260, 0.7486, and 0.6955, respectively.

Figure 8 shows the estimated latent positions at each time step. Most nodes

are concentrated around the center. With such a large number of nodes in the

area close to the center, it is not easy to plot the movements of the nodes or



2164 LIU AND CHEN

1

2

3

4

5
6

78

9

1011

12

13

14

15

16

1718

19

20

21

22 23

24 25

26
27

28
29

30
31

32

33

34

35

36

37

38

39

4041

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
61

62

63

6465

66

67

68
69

70

71

7273

74
75

76

77
78

79
80

81

82 83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100101

102

103

104

105

106

107

108

109

110111

112113

114

115

116

117

118

119

120

121

122
123

124

125

126
127
128

129

1

2

3

4

5

6

7
8

9

10
11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26 27
28 29

3031

32

33

34

35

36

37

38

39
40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64
65

66

67

68

69

70

71

72

73

7475
76

77

78

79 80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100101

102

103

104

105

106

107

108

109

110

111

112113

114

115

116

117

118

119

120

121

122
123

124

125

126

127

128

129

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26
27

28 29

3031

32

33

34

35

36

37

38

39

4041

42

43

44

45

4647

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

6465

66

67

68

69

70

71

72

73

7475
76

77

78

79 80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100
101

102

103

104

105
106

107

108

109

110111

112
113

114

115

116

117

118
119

120

121

122
123

124

125

126

127

128

129

Figure 7. The latent positions and cannabis consumption of the 129 pupils at times
1, 2 (top), and 3 (bottom). The filled triangles represent actors who used cannabis
occasionally or regularly. The filled diamonds represent actors who never used cannabis
or only tried once.

their trajectories. Instead, we plot the latent positions of the nodes with squared

moving distances greater than 5 or smaller than 0.01 during the two transitions

(Figures 9 and 10). For both transitions, actors with large moving distances are

more spread out in the latent space, whereas actors with small moving distances

are all concentrated around the center of the latent space. They are very likely to

be the most active users in terms of contributing to the website or administrative

users who have been granted certain privileges.

To study the dynamics of the network, we also calculated the squared dis-

tances of the movements for each node during the two transitions and created

box plots for them (Figure 11). From these plots, we can see that the ranges

of these distances are larger in the second transition than they are in the first

transition. The dynamics of the network did not seem to be stable during these

transitions.
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Figure 8. The estimated latent positions for the Wiki-talk data set at times 1, 2, and 3.
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Figure 9. The initial latent positions of the nodes with squared moving distances greater
than 5 (left) or smaller than 0.01 (right) during the first transition.
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Figure 10. The latent positions at the second time point of the nodes with squared
moving distances greater than 5 (left) or smaller than 0.01 (right) during the second
transition.

7. Discussion

We have proposed a VB algorithm for dynamic latent space models. The

proposed algorithm is able to handle large-scale networks, and performs well for
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Figure 11. Box plots of the distances of the movements of the nodes in the latent space
during the two transitions.

simulated and real-world networks. Furthermore, we have proved that under

certain conditions, the VB risk of the VB procedure goes to zero as the number

of nodes goes to infinity. To the best of our knowledge, this is the first study

to propose a variational algorithm for a dynamic distance model and address its

theoretical properties.

Note that the lower bound of the expected log-likelihood is not unique (see

Jaakkola and Jordan (2000) for another possible lower bound). However, the

one used in our derivation requires fewer approximation steps, and the resulting

objective function is easier to optimize. It is also well known that VI has a

tendency to underestimate the posterior variance because it approximates the

posterior using a factorized distribution. Because we focus on point estimates,

the underestimation of the variance does not affect our performance metric. It is

of interest to investigate the uncertainty estimation based on VB for the latent

space model.

In a dynamic network context, our mean-field approximation may not be the

most suitable for the time series aspect of the model. For example, the general-

ized mean-field approach in Xing, Fu and Song (2010) factorizes the approximate

posterior distribution into the product of several modules, and models each mod-

ule by a state-space model. Such variation is also possible for dynamic networks.

However, whereas state-space models can better capture the dependence struc-

ture, it is harder to study the theoretical properties of such algorithms.

The proposed VB algorithm can be extended to more complicated models.

For example, if we assume that the initial latent positions come from a mixture
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of Gaussian distributions and that their cluster assignments change over time,

our method can be modified to address the community detection problem for

dynamic latent space models. Additional global parameters, such as the parame-

ters characterizing popularity and social activity in Sewell and Chen (2015), can

also be incorporated into the model. Another possible extension is to incorporate

dyadic-level covariate information into the dynamic network model, extending

the model proposed by Krivitsky et al. (2009). It is also possible to generalize

the proposed method to dynamic multilayer latent space models. It is of interest

to develop a VB algorithm to accelerate the computation of such models.

In latent space models, the choice of the likelihood function is flexible. The

model we used can be categorized into a larger class of latent variable models

(LVMs) (see Rastelli, Friel and Raftery (2016)). Rastelli, Friel and Raftery (2016)

also introduced the Gaussian latent position model (GLPM) as a special class of

the LVM, which replaces the logistic link function for the edges with a non-

normalized multivariate Gaussian density. The proposed VB algorithm can be

modified to apply to the GLPM and dynamic GLPM. The modified algorithm

will involve a similar Jensen approximation to that of the proposed VB algorithm.

Supplementary Material

The online Supplementary Material contains proofs of all theorems and de-

tails of the implementation for the simulations, as well as additional simulation

studies that compare VB with MCMC, apply VB to networks with n = 5,000

nodes, investigate the effect of α in α-VB, and verify the asymptotic behavior of

the proposed algorithm.
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