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Supplementary Material

Appendix A. Notations, Assumptions and Preliminary Results

A.1 Notations

Let C, C1, C2, etc. be generic constants, which may be different even in the same line. For a

real valued vector a, denote ‖a‖ its Euclidean norm. For a matrix A = (aij), denote ‖A‖∞ =

maxi
∑
j |aij |, and let λmin(A) and λmax(A) be the smallest eigenvalue and largest eigenvalue of

matrix A, respectively. For a function g on a domain D, ‖g‖∞,D and ‖g‖L2,D are the supremum norm

and L2 norm defined in the Section 3.1 in the main paper. For a 3D function g(s1, s2, t) on Ω × T ,

let ‖g‖∞ = ‖g‖∞,Ω×T and ‖g‖L2
= ‖g‖L2,Ω×T , for notational simplicity. For a vector valued function

g = (g1, . . . , gp2)>, denote ‖g‖L2
= {

∑p2
k=1 ‖gk‖2L2

}1/2 and ‖g‖∞ = max1≤k≤p2 ‖gk‖∞. Further

denote ‖g‖ν,∞ = max1≤k≤p2 |gk|ν,∞, where |gk|ν,∞ = max|a1+a2+a3|=ν ‖∇a1s1∇
a2
s2∇

a3
t gk‖∞. Denote

T(%,d,r)(E)(p2) = {(g1, . . . , gp2) : gk ∈ T(%,d,r)(E), 1 ≤ k ≤ p2}. For any discrete set A, let |A| be the

cardinality of A.

For any two vectors of functions g(1)(s1, s2, t) = {g(1)
1 (s1, s2, t), . . . , g

(1)
p2 (s1, s2, t)}>, g(2)(s1, s2, t) =

{g(2)
1 (s1, s2, t), . . . , g

(2)
p2 (s1, s2, t)}>, define their empirical inner product as

〈g(1), g(2)〉n =
1

n

n∑
i=1

{
p2∑
k=1

Xikg
(1)
k (Si1, Si2, Ti)

}{
p2∑
k=1

Xikg
(2)
k (Si1, Si2, Ti)

}
, (A.1)
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and theoretical inner product as

〈g(1), g(2)〉 = E

{
p2∑
k=1

Xkg
(1)
k (S1, S2, T )

}{
p2∑
k=1

Xkg
(2)
k (S1, S2, T )

}
, (A.2)

where (S1, S2, T ) has the joint density function f(S1,S2,T ). Denote the corresponding empirical and

theoretical norms as ‖ · ‖n and ‖ · ‖, respectively. Define

〈g(1), g(2)〉f1 =

p2∑
k=1

∫
Ω×T

{
(∇2

s1g
(1)
k )(∇2

s1g
(2)
k ) + (∇2

s2g
(1)
k )(∇2

s2g
(2)
k )
}
ds1ds2dt,

〈g(1), g(2)〉f2 =

p2∑
k=1

∫
Ω×T

(∇2
t g

(1)
k )(∇2

t g
(2)
k )ds1ds2dt.

We use ‖ · ‖f1 and ‖ · ‖f2 to represent their induced norms.

Next, we present some statements which summarize a few basic properties used in the proof of

theoretical results. See Appendix A in Lee (2004).

P1. Suppose matrices A and B are bounded in row and columns sums, then the matrix AB is

bounded in row and columns sums.

P2. Suppose the elements an,ij of an n× n matrix An are O(e−1
n ) uniformly for all i, j. If an n× n

matrix Bn is uniformly bounded in row and columns sums, then the elements of AnBn and

BnAn are O(e−1
n ) uniformly for all i, j.

P3. If the elements in Z are uniformly bounded, and limn→∞ n−1Z>Z exists and is nonsingular, then

Z(Z>Z)−1Z> and In − Z(Z>Z)−1Z> are uniformly bounded in both row and column sums.

P4. Let An be an n × n matrix. We have E(ε>Anε) = σ2
0tr(An), and Var(ε>Anε) = (m4 −

3σ2
0)
∑n
i=1 aii + σ4

0{tr(AnA>n ) + tr(A2
n)}, where m4 = Eε4i .

A.2 Assumptions

In this section, we state the technical assumptions used in the main paper. Let G = WΞ−1
0 .

(A1) Let hb = πb−πb−1 be the distance between two adjoint knots, satisfying that C1 ≤ maxhb/minhb ≤

C2. Denote h = max1≤b≤N+1 hb.

(A2) Let ρτ be the radius of the largest disk contained in τ . The triangulation 4 is δ-quasi-uniform,

that is, there exists a positive constant δ such that the triangulation 4 satisfies |4|/ρτ ≤ δ, for

all τ ∈ 4.
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(A3) The joint density function of (S1, S2, T ), f(S1,S2,T )(·, ·, ·), is bounded away from zero and infinity

over Ω× T .

(A4) {(Zi,Xi,Si, Ti, εi)}ni=1 are independently and identically distributed. The random variables Zi`

and Xik are uniformly bounded for i = 1, . . . , n, ` = 0, . . . , p1, and k = 1, . . . , p2. Denote that

λ1(s1, s2, t) ≤ · · · ≤ λ1+p1+p2(s1, s2, t) be the the eigenvalues of E{(Z>i ,X>i )>(Z>i ,X
>
i )|Si =

s, Ti = t}. There are positive constants C1 and C2 such that C1 ≤ λ1(s1, s2, t) ≤ · · · ≤

λ1+p1+p2(s1, s2, t) ≤ C2 for all s ∈ Ω, t ∈ T .

(A5) Let g∗` (s1, s2, t) = {g∗`,1(s1, s2, t), . . . , g
∗
`,p2

(s1, s2, t)}> be the vector of functions that minimizes

E{Zi` − X>i g(Si, Ti)}2 over g(s1, s2, t) = {g1(s1, s2, t), . . . , gp2(s1, s2, t)}>. For g∗(s1, s2, t) =

{g∗0(s1, s2, t), . . . ,g
∗
p1(s1, s2, t)}>, n−1E{Z − Xg∗(S1, S2, T )}>{Z − Xg∗(S1, S2, T )} is positive

definite.

(A6) For any k = 1, . . . , p2, the coefficient function βk ∈Wd+1,∞(Ω)⊗ C%−2(T ).

(A7) There is a constant C such that E|εi|4+δ ≤ C <∞ for some δ > 0.

(A8) The triangulation size |4| and the subinterval size h for the univariate splines satisfies that

n1/2|4|2h → ∞, n|4|2d+2 → 0, and nh2% → 0. Roughness parameters λ1 and λ2 satisfy

λ1n
1/2|4|−1h1/2 → 0, λ2n

1/2|4|h−3/2 → 0, λ1n
−1|4|−4 → 0 and λ2n

−1h−4 → 0.

(A9) The matrix Ξ0 is nonsingular. The matrices W and Ξ−1
0 are uniformly bounded in both row

and column sums. Let $ be a compact parameter space and α0 be an interior point of $. For

any α ∈ $, Ξ(α)−1 exists and is uniformly bounded in both row or column sums.

(A10) The elements wij of W are at most of order e−1
n , uniformly in all i, j, and limn→∞ en/n = 0.

(A11) limn→∞ n−1(Z,X,Gµ0)>(Z,X,Gµ0) exists and is nonsingular.

(A12) limn→∞ n−1E
{

(Gµ0)>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0

}
6= 0, where ΠD,Λ is in (B.3).

The above assumptions are mild conditions that can be satisfied in many practical situations.

Assumptions (A1) – (A2) are commonly used in the literature of spline approximation. Assump-

tion (A1) requires that the knot sequence for the univariate spline have bounded mesh ratio, which

was used in Huang (2003) and Xue and Yang (2006). Assumption (A2) suggests the use of the
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quasi-uniform triangulations for bivariate splines; see Lai and Wang (2013). Assumption (A3) guar-

antees that the observations are randomly scattered in the domain. Assumption (A4) is to ensure

the non-multicollinearity of covariates. In addition, X and Z are assumed functionally unrelated as

in Assumption (A5). Assumption (A6) describes a smoothness condition commonly used in the non-

parametric estimation literature; see, for instance, Liu and Yang (2010), Lai and Wang (2013) and

especially Mu et al. (2018). Note that the tensor-product spline spaces is a type of sieve spaces.

Assumption (A1), (A2) and (A6) satisfy the typical assumptions on the sieve spaces; see Conditions

3.1 – 3.5 in Chen (2007). The purpose of Assumption (A8) specifies the requirement of the number

of knots for univariate splines and the number of triangles for bivariate splines via triangulation. As-

sumptions (A7), (A9) and (A10) are routinely used in the SAR model literature; see, for example,

Assumptions 2–7 in Lee (2004). These assumptions provide the necessary requirements of the weight

matrix and disturbances for SAR models. Assumption (A11) requires that the generated regressors

Gµ0 and explanatory variables are not asymptotically multicollinear. Assumption (A12) ensures the

uniqueness of the maximizer of the profiled likelihood function of α. Similar assumptions have been

used in Lee (2004).

A.3 Properties of tensor-product splines

We first cite some important results for univariate polynomial splines and bivariate splines over a

triangulation. Lemma A.1 states the approximation error of the bivariate splines over a triangulation

4. Lemmas A.2 and A.3 present the stability property of univariate polynomial splines and bivariate

splines over a triangulation, respectively.

Lemma A.1 (Theorem 10.2, Lai and Schumaker (2007)). Suppose that |4| is a δ-quasi-uniform

triangulation of a polygonal domain Ω, and ψ(·) ∈Wd+1,∞(Ω).

(i) For bi-integer (a1, a2) with 0 ≤ a1 + a2 ≤ d, there exists a spline ψ∗(·) ∈ S0
d(4) such that

‖∇a1s1∇
a2
s2 (ψ − ψ∗) ‖∞ ≤ C|4|d+1−a1−a2 |ψ|d+1,∞, where C is a constant depending on d, and

the shape parameter δ.

(ii) For bi-integer (a1, a2) with 0 ≤ a1 + a2 ≤ d, there exists a spline function ψ∗∗(·) ∈ Srd(4)

(d ≥ 3r+ 2) such that ‖∇a1s1∇
a2
s2 (ψ − ψ∗∗) ‖∞ ≤ C|4|d+1−a1−a2 |ψ|d+1,∞, where C is a constant

depending on d, r, and the shape parameter δ.
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Lemma A.1 shows that, under some regularity conditions, S0
d(4) and Srd(4), d ≥ 3r + 2, have

full approximation power.

Lemma A.2 (Page 155, De Boor (2001)). There exists a constant c0 > 0, depending only on the

order %, such that for any s(t) =
∑N+%
b=1 a`Ub(t) ∈ U%(π),

c0

{N+%∑
b=1

a2
b(πb − πb−%)

}1/2

≤ ‖s‖L2
≤
{N+%∑
b=1

a2
`(πb − πb−%)

}1/2

. (A.3)

Lemma A.3 (Lemma 1, Lai and Wang (2013)). Let {Bm}m∈M be the basis for Srd(4) constructed

in Lai and Schumaker (2007), where M stands for an index set. Under Assumption (A2), there exist

positive constants C1, C2 depending on d and r such that

C1|4|2
∑
m∈M

|bm|2 ≤
∥∥∥ ∑
m∈M

bmBm

∥∥∥2

L2(Ω)
≤ C2|4|2

∑
m∈M

|bm|2. (A.4)

Next, we provide the proofs of Lemmas 1 and 2 in the main paper.

Proof of Lemma 1. For any 1 ≤ b ≤ N + %, let ξqu,b = (−1)q−1(q − 1)!φ
(%−q)
u (πb)/(% − 1)!, where

φu(t) =
∏%−1
s=1(t−πb+s). Let {cq,%, 0 ≤ q ≤ %−1} be the coefficients of the %th Bernoulli polynomial P%,

i.e. P%(x) = x%+
∑%−1
q=0 cq,%x

q. For 1 ≤ b ≤ N+% and a sufficiently smooth function g(s1, s2, t) ∈ Ω×T ,

we define the linear operator as

ub(g)(s1, s2) =

%−1∑
q=0

ξq+1
u,ω%

{
∇qtg(s1, s2, t)|t=πb

q!
− ∇

%
t g(s1, s2, t)|t=πb

%!
cq,ρh

%−q
b

}
,

where ω is the integer satisfying (ω − 1)% < b ≤ ω%, and hb = πb − πb−1. According to Theorem 1 in

Barrow and Smith (1979), we have, for any given (s1, s2) ∈ Ω, under Assumption (A1) in the main

paper and g(s1, s2, t) ∈Wd+1,∞(Ω)⊗ C%−2(T ),

sup
t∈T

∣∣∣∣∣∇a3t
{
∇a1s1∇

a2
s2 g(s1, s2, t)−

N+%∑
b=1

ub(∇a1s1∇
a2
s2 g)(s1, s2)Ub(t)

}∣∣∣∣∣
≤ C1 sup

t∈T

∣∣∇a1s1∇a2s2∇a3t g(s1, s2, t)
∣∣h%−a3 ≤ C1‖∇a1s1∇

a2
s2∇

a3
t g‖∞h%−a3 , (A.5)

where h = max1≤b≤N+% hb. ub(∇a1s1∇
a2
s2 g)(s1, s2) is a function of (s1, s2) and ub(∇a1s1∇

a2
s2 g)(s1, s2) =

∇a1s1∇
a2
s2ub(g)(s1, s2). According to Lemma A.1, there exists u∗b(g)(s1, s2) =

∑
m∈M κb,mBm(s1, s2)
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such that, under Assumption (A2) in the main paper and g(s1, s2, t) ∈Wd+1,∞(Ω)⊗ C%−2(T ),

sup
(s1,s2)∈Ω

∣∣∣∣∣∇a1s1∇a2s2
{
ub(g)(s1, s2)−

∑
m∈M

κb,mBm(s1, s2)

}∣∣∣∣∣
= sup

(s1,s2)∈Ω

∣∣∣∣∣ub(∇a1s1∇a2s2 g)(s1, s2)−
∑
m∈M

κb,m∇a1s1∇
a2
s2Bm(s1, s2)

∣∣∣∣∣
≤ C2 max

a1+a2=d+1,
0≤a3≤%

‖∇a1s1∇
a2
s2∇

a3
t g‖∞|4|d+1−a1−a2 ,

which implies that

∇a1s1∇
a2
s2∇

a3
t g(s1, s2, t)−

N+%∑
b=1

ub(∇a1s1∇
a2
s2 g)(s1, s2)∇a3t Ub(t) (A.6)

= ∇a1s1∇
a2
s2∇

a3
t g(s1, s2, t)−

N+%∑
b=1

{ ∑
m∈M

κb,m∇a1s1∇
a2
s2Bm(s1, s2) +O(|4|d+1−a1−a2)

}
∇a3t Ub(t)

= ∇a1s1∇
a2
s2∇

a3
t g(s1, s2, t)−

N+%∑
b=1

∑
m∈M

κb,m∇a1s1∇
a2
s2Bm(s1, s2)∇a3t Ub(t) +O(|4|d+1−a1−a2).

Combining (A.5) and (A.6), we have

sup
s1,s2∈Ω,t∈T

∣∣∣∣∣∇a1s1∇a2s2∇a3t
{
g(s1, s2, t)−

N+%∑
b=1

∑
m∈M

κb,mBm(s1, s2)Ub(t)

}∣∣∣∣∣ = O(h%−a3 + |4|d+1−a1−a2).

Thus, Lemma 1 has been established.

Proof of Lemma 2. Note that the |J |-dimensional vector γ = {γ1, . . . , γ|J |} can be written as vector

{γ∗1,1, . . . , γ∗1,N+%, γ
∗
2,1, . . . , γ

∗
|M|,N+%}, where γ∗m,b = γ(m−1)|M|+b. By (A.4), it is easy to see that∫

Ω
|g(s1, s2, t)|2ds1ds2 ≥ C1|4|2

∑
m∈M

∣∣∣∑N+%
b=1 Ub(t)γ

∗
m,b

∣∣∣2. Therefore, by Assumptions (A1) – (A2),

and the stability properties in (A.3) and (A.4), we have

‖g‖2L2 =

∫
Ω×T

|g(s1, s2, t)|2ds1ds2dt ≥ C1|4|2
∑
m∈M

∫
T

∣∣∣N+%∑
b=1

Ub(t)γ
∗
m,b

∣∣∣2dt
≥ C1,%|4|2

∑
m∈M

N+%∑
b=1

γ∗2m,b(πb − πb−%) ≥ C1,%%h|4|2
∑
m∈M

N+%∑
b=1

γ∗2m,b = C1,%%h|4|2
∑
j∈J

γ2
j .

Similarly, by (A.4),
∫

Ω
|g(s1, s2, t)|2ds1ds2 ≤ C2|4|2

∑
m∈M

∣∣∣∑N+%
b=1 Ub(t)γ

∗
m,b

∣∣∣2. Then, it follows

directly from (A.3) that∫
Ω×T
|g(s1, s2, t)|2ds1ds2dt ≤ C2|4|2

∑
m∈M

∫
T

∣∣∣N+%∑
b=1

Ub(t)γ
∗
m,b

∣∣∣2dt
≤ C2|4|2

∑
m∈M

N+%∑
b=1

γ∗2m,b(π` − π`−%) ≤ C2%|4|2h
∑
m∈M

N+%∑
b=1

γ∗2m,b = C2%|4|2h
∑
j∈J

γ2
j .
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Therefore, Lemma 2 has been verified.

The next lemma shows that the theoretical inner product defined in (A.2) can be approximated

by the empirical inner product defined in (A.1) uniformly over the estimation spaces.

Lemma A.4. For k = 1, . . . , p2, g
(1)
k (s1, s2, t), g

(2)
k (s1, s2, t) are the spline functions in T(%,d,r)(E),

and g
(1)
k =

∑
j∈J γ

(1)
kj ψj(s1, s2, t), g

(2)
k =

∑
j∈J γ

(2)
kj ψj(s1, s2, t). Suppose Assumptions (A1) – (A8)

hold, then

Rn = sup
g(1),g(2)∈T(%,d,r)(E)(p2)

∣∣∣∣∣
〈
g(1), g(2)

〉
n
−
〈
g(1), g(2)

〉∥∥g(1)
∥∥∥∥g(2)

∥∥
∣∣∣∣∣ = Oa.s.

{
h−1/2|4|−1n−1/2(log n)1/2

}
.

Consequently, if h−1|4|−2n−1(log n)→ 0 as n→∞, then Rn = oa.s.(1).

Proof. It is easy to see

〈g(1), g(2)〉n =
1

n

n∑
i=1


p2∑
k=1

∑
j∈J

γ
(1)
kj Xikψj (S1i, S2i, Ti)




p2∑
k′=1

∑
j′∈J

γ
(2)
k′j′Xik′ψj′ (S1i, S2i, Ti)


=

p2∑
k,k′=1

∑
j,j′∈J

γ
(1)
kj γ

(2)
k′j′ 〈ψj , ψj′〉n,kk′ ,

where 〈ψj , ψj′〉n,kk′ = 1
n

∑n
i=1XikXik′ψj(Si1, Si2, Ti)ψj′(Si1, Si2, Ti). Similarly, we have

〈g(1), g(2)〉 =

p2∑
k,k′=1

∑
j,j′∈J

γ
(1)
kj γ

(2)
k′j′〈ψj , ψj′〉kk′ ,

‖g(1)‖2 =

p2∑
k,k′=1

∑
j,j′∈J

γ
(1)
kj γ

(1)
k′j′〈ψj , ψj′〉kk′ , ‖g

(2)‖2 =

p2∑
k,k′=1

∑
j,j′∈J

γ
(2)
kj γ

(2)
k′j′〈ψj , ψj′〉kk′ ,

where 〈ψj , ψj′〉kk′ = E{XikXik′ψj(Si1, Si2, Ti)ψj′(Si1, Si2, Ti)}.

Given the spline basis function ψj(s1, s2, t), the indices m(j) and `(j) satisfy ψj(s1, s2, t) =

Bm(j)(s1, s2)U`(j)(t). If |m(j)−m(j′)| > (d+2)(d+1)/2 or |`(j)−`(j′)| > %, ψj(s1, s2, t)ψj′(s1, s2, t) =

0. Therefore, we have

〈g(1), g(2)〉n−〈g(1), g(2)〉 =

p2∑
k,k′=1

∑
j,j′∈J

γ
(1)
kj γ

(2)
k′j′ 〈ψj , ψj′〉n,kk′ −

p2∑
k,k′=1

∑
j,j′∈J

γ
(1)
kj γ

(2)
k′j′ 〈ψj , ψj′〉kk′

=

p2∑
k.k′=1

∑
|`(j)−`(j′)|≤%

|m(j)−m(j′)|≤(d+2)(d+1)/2

γ
(1)
kj γ

(2)
k′j′

{
〈ψj , ψj′〉n,kk′ − 〈ψj , ψj′〉kk′

}

≤ C

∑
k,j

γ
(1)
kj

2 ∑
k′,j′

γ
(2)
k′j′

2


1/2

max
k,k′=1,...,p2
j,j′∈J

|〈ψj , ψj′〉n,kk′ − 〈ψj , ψj′〉kk′ | . (A.7)
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It follows Lemma 2 that, for v = 1, 2, C1h|4|2
∑
k,j γ

(v)
kj

2
≤ ‖g(v)‖2 ≤ C2h|4|2

∑
k,j γ

(v)
kj

2
, which

implies that

C1h|4|2
∑

k,j

γ
(1)
kj

2 ∑
k′,j′

γ
(2)
k′j′

2


1/2

≤ ‖g(1)‖‖g(2)‖ ≤ C2h|4|2
∑

k,j

γ
(1)
kj

2 ∑
k′,j′

γ
(2)
k′j′

2


1/2

. (A.8)

Combining (A.7) and (A.8), we have

Rn ≤ C−1h−1|4|−2 max
k,k′=1,...,p2
j,j′∈J

|〈ψj , ψj′〉n,kk′ − 〈ψj , ψj′〉kk′ | .

Note that Xik are uniformly bounded. Hence, it is straightforward to obtain

max
k,k′=1,...,p2
j,j′∈J

|〈ψj , ψj′〉n,kk′ − 〈ψj , ψj′〉kk′ | = Oa.s.

{
n−1/2h1/2|4|(log n)1/2

}
.

Lemma A.4 follows.

Appendix B. Proof of the Main Results in Section 3

For the matrices Xψ∗ and Z given in (2.6), we denote

V ≡

 V11 V12

V21 V22

 =

 Z>Z Z>Xψ∗

X>ψ∗Z X>ψ∗Xψ∗

+ PΛ,

where PΛ is defined in (2.7). Then, the inverse of V can be represented as

V−1 ≡ U =

 U11 −U11V12V
−1
22

−U22V21V
−1
11 U22

 ,

where U−1
11 = V11 −V12V

−1
22 V21, and U−1

22 = V22 −V21V
−1
11 V12.

Denote

Pλ1
= λ1Ip2 ⊗ (Q>2 P1Q2), Pλ2

= λ2Ip2 ⊗ (Q>2 P2Q2), (B.1)

and

ΓΛ = X>ψ∗Xψ∗ + Pλ1
+ Pλ2

, (B.2)

then, it is clear that V22 = ΓΛ. Next, we denote

ΠZ = Z(Z>Z)−1Z>, ΠD,Λ = D(D>D + PΛ)−1D>,

ΠXψ∗ ,Λ = Xψ∗Γ−1
Λ X>ψ∗ , HXψ∗ ,Λ = In −ΠXψ∗ ,Λ. (B.3)
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Then, we have

U−1
11 = Z>(In −ΠXψ∗ ,Λ)Z, U−1

22 = X>ψ∗(In −ΠZ)Xψ∗ + Pλ1
+ Pλ2

, (B.4)

where Pλ2
, Pλ2

, and ΓΛ in (B.1) and (B.2).

Recall that

Ln
(
σ2, α

)
= −n

2
log(2π)− n

2
log(σ2) + log(|Ξ(α)|)− 1

2σ2
‖Y(α)− Dξ̂(α)‖2,

Ln (α) = −n
2
{log(2π) + 1} − n

2
log{σ̂2(α)}+ log(|Ξ(α)|),

where ξ̂(α) = V−1D>Ξ(α)Y and σ̂2(α) = n−1‖Y(α)− Dξ̂(α)‖2. Denote

σ∗2(α) = n−1E‖Y(α)− Dξ̂(α)‖2. (B.5)

It is straightforward to verify that

Qn(α) ≡ max
σ2

E
{
Ln(σ2, α)

}
= −n

2
{log(2π) + 1} − n

2
log{σ∗2(α)}+ log(|Ξ(α)|). (B.6)

B.1 Proof of Theorem 1

Lemma B.1. Under Assumptions (A1) – (A10), supα∈$ |n−1Ln(α) − n−1Qn(α)| = oP (1), where

Ln(α) and Qn(α) are defined in (2.10) and (B.6).

Proof. It is straight forward to obtain that

n−1 {Ln(α)−Qn(α)} = −2−1
{

log σ̂2(α)− log σ∗2(α)
}
,

where σ̂2(α) and σ∗2(α) are given in (2.9) and (B.5), respectively. For σ̂2(α), note that

(In −ΠD,Λ)Ξ(α)Y = (In −ΠD,Λ)[In + (α0 − α)G]µ0 + (In −ΠD,Λ)Ξ(α)Ξ−1
0 ε

= (α0 − α)(In −ΠD,Λ)Gµ0 + (In −ΠD,Λ)µ0 + (In −ΠD,Λ)Ξ(α)Ξ−1
0 ε.

Thus, σ̂2(α) in (2.9) can be written as

σ̂2(α) =
1

n
‖(In −ΠD,Λ)Ξ(α)Y‖2 =

(α0 − α)2

n
‖(In −ΠD,Λ)(Gµ0)‖2 +

1

n
‖(In −ΠD,Λ)µ0‖

+
1

n
‖(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε‖2 +
2(α0 − α)

n
µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)Gµ0

+
2(α0 − α)

n
(Gµ0)>(In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε

+
2

n
µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε.
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According to Lemma C.4, we have

σ̂2(α) =
(α0 − α)2

n
‖(In −ΠD,Λ)(Gµ0)‖2 +

1

n
‖(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε‖2

+
2(α0 − α)

n
(Gµ0)>(In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε

+
2

n
µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε+ oP (1). (B.7)

Next, for σ∗2(α) in (B.5), we have

σ∗2(α) =
σ2

0

n
tr
{

(Ξ−1
0 )>Ξ(α)>(In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0

}
+

1

n
E‖(In −ΠD,Λ){In + (α0 − α)G}µ0‖2

=
σ2

0

n
tr
{

(Ξ−1
0 )>Ξ(α)>Ξ(α)Ξ−1

0

}
− 2σ2

0

n
tr
{

(Ξ−1
0 )>Ξ(α)>Π>D,ΛΞ(α)Ξ−1

0

}
+
σ2

0

n
tr
{

(Ξ−1
0 )>Ξ(α)>Π>D,ΛΠD,ΛΞ(α)Ξ−1

0

}
+

(α0 − α)2

n
E‖(In −ΠD,Λ)Gµ0‖2

+
1

n
E‖(In −ΠD,Λ)µ0‖2 +

2(α0 − α)

n
E
{
µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)Gµ0

}
.

Notice that by Lemma C.3 and Property P2 in Section B.1.2, we have

tr
[
{Ξ(α)Ξ−1

0 }>Π>D,ΛΞ(α)Ξ−1
0

]
= OP (|4|−2h−1), (B.8)

tr
[
{ΠD,ΛΞ(α)Ξ−1

0 }>ΠD,ΛΞ(α)Ξ−1
0

]
= OP (|4|−2h−1). (B.9)

Then, it implies

σ∗2(α) =
σ2

0

n
tr
{

(Ξ−1
0 )>Ξ(α)>Ξ(α)Ξ−1

0

}
+

(α0 − α)2

n
E‖(In −ΠD,Λ)Gµ0‖2

+
1

n
E‖(In −ΠD,Λ)µ0‖2 +

2(α0 − α)

n
E
{
µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)Gµ0

}
+ oP (1). (B.10)

Combining (B.7) and (B.10), we have

σ̂2(α)− σ∗2(α) =
(α0 − α)2

n

[
‖(In −ΠD,Λ)(Gµ0)‖2 − E‖(In −ΠD,Λ)(Gµ0)‖2

]
+

1

n
‖Ξ(α)Ξ−1

0 ε‖2 − 2

n
ε>{Ξ(α)Ξ−1

0 }>ΠD,ΛΞ(α)Ξ−1
0 ε+

1

n
‖ΠD,ΛΞ(α)Ξ−1

0 ε‖2

− σ2
0

n
tr
[
{Ξ(α)Ξ−1

0 }>Ξ(α)Ξ−1
0

]
+

2(α0 − α)

n
(Gµ0)>(In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε

+
2

n
µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε+ oP (1).

By Property P1 in Appendix A and Assumption (A9), {Ξ(α)Ξ−1
0 }>Ξ(α)Ξ−1

0 is bounded uniformly,

for any α ∈ $, both in row and column sums. Then, Var
[
ε>{Ξ(α)Ξ−1

0 }>Ξ(α)Ξ−1
0 ε
]

= O(n). Thus,

sup
α∈$

∣∣∣∣ 1nε>{Ξ(α)Ξ−1
0 }>Ξ(α)Ξ−1

0 ε− 1

n
E
[
ε>{Ξ(α)Ξ−1

0 }>Ξ(α)Ξ−1
0 ε
]∣∣∣∣ = oP (1), (B.11)
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and E{ε>{Ξ(α)Ξ−1
0 }>Ξ(α)Ξ−1

0 ε} = σ2
0tr
[
{Ξ(α)Ξ−1

0 }>Ξ(α)Ξ−1
0

]
. Therefore,

sup
α∈$

∣∣∣∣ 1nε>{Ξ(α)Ξ−1
0 }>Ξ(α)Ξ−1

0 ε− σ2
0

n
tr
[
{Ξ(α)Ξ−1

0 }>Ξ(α)Ξ−1
0

]∣∣∣∣ = oP (1). (B.12)

Similarly, we have

sup
α∈$

∣∣∣∣ (α0 − α)2

n
‖(In −ΠD,Λ)(Gµ0)‖2 − (α0 − α)2

n
E
{
‖(In −ΠD,Λ)(Gµ0)‖2

}∣∣∣∣ = oP (1).

Note that

(α0 − α)(Gµ0)>(In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1
0 ε

= (α0 − α)ε>{In + (α0 − α)G}>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0

= (α0 − α)ε>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0

+ (α0 − α)2(Gε)>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0.

Thus, by (C.13) and (C.14), we have

sup
α∈$

{
2(α0 − α)

n
(Gµ0)>(In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε

}
= oP (1). (B.13)

Similarly, by (C.9) and (C.13), we obtain

sup
α∈$

{
2

n
µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)Ξ(α)Ξ−1

0 ε

}
= sup
α∈$

{
2

n
µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)(In + (α0 − α)G)ε

}
= oP (1).

Also, (B.8) and (B.9) imply

n−1ε>{Ξ(α)Ξ−1
0 }>ΠD,ΛΞ(α)Ξ−1

0 ε = OP (n−1|4|−2h−1),

n−1‖ΠD,ΛΞ(α)Ξ−1
0 ε‖2 = OP (n−1|4|−2h−1).

It follows that

sup
α∈$

{
n−1ε>(Ξ−1

0 )>Ξ(α)>ΠD,ΛΞ(α)Ξ−1
0 ε
}
� sup
α∈$

{
n−1‖ΠD,ΛΞ(α)Ξ−1

0 ε‖2
}

= oP (1). (B.14)

By (B.11) – (B.14), σ̂2(α) − σ∗2(α) = oP (1) uniformly in α ∈ $, then we can use the mean value

theorem,

sup
α∈$

∣∣log σ̂2(α)− log σ∗2(α)
∣∣ = sup

α∈$

1

σ̌2(α)

∣∣σ̂2(α)− σ∗2(α)
∣∣ = oP (1),

where σ̌2(α) is between σ̂2(α) and σ̂∗2n (α). Therefore, supα∈$
∣∣n−1 {Ln(α)−Qn(α)}

∣∣ = oP (1).

Lemma B.1 is established.
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Proof of Theorem 1. The proof follows from the following steps:

(i) supα∈$ |n−1Ln(α) − n−1Qn(α)| = oP (1); (ii) for any α ∈ $, Qn(α) − Qn(α0) ≤ 0; (iii) for any

ε > 0, lim supn→∞[maxα∈N ε(α0) n
−1{Qn(α)−Qn(α0)}] < 0, where Nε(α0) is the open neighborhood

of α0 with radius ε and N ε(α0) is the closure of Nε(α0).

Proof of Step (i). See the proof in Lemma B.1 in Appendix B.

Proof of Step (ii). Consider a standard SAR model: Y = αWY + ε, where ε ∼ N(0, σ2In).

Then the corresponding log-likelihood function is L∗(σ2, λ) = −n2 log(2π)− n
2 log(σ2) + log(|Ξ(α)|)−

1
σ2 ‖Ξ(α)Y‖2. Notice that

Q∗n(α) = max
σ2

E(σ2
0 ,α0)

{
L∗(σ2, α)

}
= −n

2
{log(2π) + 1} − n

2
log{σ2(α)}+ log(|Ξ(α)|),

where σ2(α) =
σ2
0

n tr
[
{Ξ(α)Ξ−1

0 }>Ξ(α)Ξ−1
0

]
and E(σ2

0 ,α0) represents the expectation under the model

Y = α0WY + ε, where ε ∼ N(0, σ2
0In). By Jensen’s inequality, we have

Q∗n(α) ≤ E(σ2
0 ,α0) max

σ2

{
L∗(σ2, α)

}
≤ E(σ2

0 ,α0) max
σ2,α

{
L∗(σ2, α)

}
= Q∗n(α0).

It is straightforward to obtain

1

n
Qn(α)− 1

n
Qn(α0) =

1

n
Q∗n(α)− 1

n
Q∗n(α0)− 1

2

[
log{σ∗2(α)} − log{σ2(α)}

]
+

1

2

[
log{σ∗2(α0)} − log{σ2(α0)}

]
.

According to (B.10) in Appendix B, we have σ∗2(α)−σ2(α) > 0 for α 6= α0 and the difference between

σ∗2(α0) and σ2(α0) is negligible. Therefore, we could verify that n−1Qn(α) ≤ n−1Qn(α0).

Proof of Step (iii). We prove the uniqueness of α0 by contradiction. If the uniqueness of α0

doesn’t hold, then there exists ε > 0 and a sequence {αn} ∈ N ε(α0), such that

lim
n→∞

1

n
{Qn(αn)−Qn(α0)} = 0, lim

n→∞
αn = α̃ 6= α0, (B.15)

Similar to the argument in the proof of Theorem 3.1 in Lee (2004), {n−1Qn(α)} is uniform equicon-

tinuous of α. Thus, by (B.15), we have

lim
n→∞

1

n
|Qn(α̃)−Qn(α0)| = lim

n→∞

1

n
|Qn(α̃)−Qn(αn) +Qn(αn)−Qn(α0)|

≤ lim
n→∞

1

n
|Qn(αn)−Qn(α̃)|+ lim

n→∞

1

n
|Qn(αn)−Qn(α0)| = 0.
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Note that, for any α ∈ $,

Qn(α0)−Qn(α) =
n

2
{log(σ∗2(α))− log(σ∗2(α0))}+ log(|Ξ0|)− log(|Ξ(α)|)

=
n

2
{log(σ∗2(α))− log(σ2(α))}+

n

2
{log(σ2(α0))− log(σ∗2(α0))}

+
n

2
{log(σ2(α))− log(σ2(α0))}+ log(|Ξ0|)− log(|Ξ(α)|).

According to the fact Q∗n(α0) ≥ Q∗n(α), we have

n

2
{log(σ2(α))− log(σ2(α0))}+ log(|Ξ0|)− log(|Ξ(α)|) ≥ 0, for all α ∈ $,

and σ∗2(α)− σ2(α) ≥ 0, for all α ∈ $. Then, limn→∞ n−1{Qn(αn)−Qn(α0)} = 0 implies

lim
n→∞

log σ∗2(α̃)− log σ2(α̃) = 0, (B.16)

lim
n→∞

1

n

[
{log(σ2(α̃))− log(σ2(α0))}+ log(|Ξ0|)− log(|Ξ(α̃)|)

]
= 0. (B.17)

Thus, (B.16) leads to limn→∞{σ∗2(α̃) − σ2(α̃)} = 0, which implies limn→∞ n−1‖(In − ΠD,Λ){In −

(α0− α̃)G}µ0‖2 = 0. Therefore, limn→∞ n−1(Gµ0)>(In−ΠD,Λ)>(In−ΠD,Λ)Gµ0 = 0. Then, (B.17)

conflicts with Assumption (A12). Thus, α0 is unique.

B.2 Proof of Theorem 2

Proof of Theorem 2. Define

`n(α, σ2,η) =− n

2
log(2π)− n

2
log(σ2) + log{|Ξ(α)|} − 1

2σ2
‖Y(α)− Zη − Xψ∗θ(α,η)‖2, (B.18)

where θ(α,η) = Γ−1
Λ X>ψ∗{Y(α) − Zη}. Denote κ = (α, σ2,η>)>, κ0 = (α0, σ

2
0 ,η
>
0 )> and let κ̂ =

(α̂, σ̂2, η̂>)> be the maximizer of (B.18). Notice that (α̂, σ̂2, η̂>) is equal to the TPST estimator

defined in Section 2.4. Because κ̂ is the maximizer of (B.18), ∇κ`n(κ)|κ=κ̂ = 0 and

n1/2 (κ̂− κ0) =
{
−n−1∇κ∇κ′`n(κ)|κ=κ0

}−1
{
n−1/2∇κ`n(κ)|κ=κ0

}
. (B.19)

We calculate the first order derivatives of (B.18):

∇α`n(α, σ2,η) = −tr
{
Ξ(α)−1W

}
+

1

σ2
{Y(α)− Zη − Xψ∗θ(α,η)}HXψ∗ ,ΛWY,

∇σ2`n(α, σ2,η) = − n

2σ2
+

1

2σ4
{Y(α)− Zη − Xψ∗θ(α,η)}>{Y(α)− Zη − Xψ∗θ(α,η)},

∇η`n(α, σ2,η) = − 1

σ2
{Y(α)− Zη − Xψ∗θ(α,η)}>HXψ∗ ,ΛZ, (B.20)
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where HXψ∗ ,Λ is given in (B.3). In addition, we have the following second order derivatives of the

profile log-likelihood function:

∇2
α`n(α, σ2,η) = −tr(G2)− 1

σ2
(WY)>H>Xψ∗ ,ΛHXψ∗ ,ΛWY,

∇2
σ2`n(α, σ2,η) =

n

2σ4
− 1

σ6
{Y(α)− Zη − Xψ∗θ(α,η)}>{Y(α)− Zη − Xψ∗θ(α,η)},

∇η∇η′`n(α, σ2,η) = − 1

σ2
Z>H>Xψ∗ ,ΛHXψ∗ ,ΛZ,

∇α∇σ2`n(α, σ2,η) = − 1

σ4
{Y(α)− Zη − Xψ∗θ(α,η)}>HXψ∗ ,ΛWY,

∇α∇η`n(α, σ2,η) = − 1

σ2
Z>H>Xψ∗ ,ΛHXψ∗ ,ΛWY,

∇σ2∇η`n(α, σ2,η) = − 1

σ4
Z>H>Xψ∗ ,Λ{Y(α)− Zη − Xψ∗θ(α,η)}. (B.21)

We first study the asymptotical normality of n−1/2∇κ`n(κ)|κ=κ0
. According to Lemma 1, for

βk(s1, s2, t), k = 1, . . . , p2, there exists θ∗k such that sup(s1,s2,t)∈Ω×T |βk(s1, s2, t)−ψ∗(s1, s2, t)
>θ∗k| =

O(h% + |4|d+1). Denote that θ∗ = (θ∗>1 , . . . ,θ∗>p2 )>. Notice that

Y(α0)− Zη0 − Xψ∗θ(α0,η0) = HXψ∗ ,Λ(ε+ ς) + ι,

where ς = (ς1, . . . , ςn)> =
{∑p2

k=1Xikβk(Si1, Si2, Ti)−
∑p2
k=1Xikψ

∗(Si1, Si2, Ti)
>θ∗k

}n
i=1

and ι =

(ι1, . . . , ιn)> = Xψ∗(Pλ1
+ Pλ2

)θ∗. Note that by Lemma C.2 in Appendix B, we have ςi = OP (h% +

|4|d+1) and ιi = OP (λ1|4|−1h1/2 + λ2|4|h−3/2), i = 1, . . . , n. Therefore, ∇α`n(α, σ2,η)|κ=κ0
,

∇σ2`n(α, σ2,η)|κ=κ0
, and ∇η`n(α, σ2,η)|κ=κ0

are dominated by

−tr(G) + σ−2
0 ε>H>Xψ∗ ,ΛHXψ∗ ,ΛGµ0 + σ−2

0 ε>H>Xψ∗ ,ΛHXψ∗ ,ΛGε,

−0.5σ−2
0 n+ 0.5σ−4

0 ε>H>Xψ∗ ,ΛHXψ∗ ,Λε, and − σ−2
0 ε>H>Xψ∗ ,ΛHXψ∗ ,ΛZ,

respectively. By Lemma C.7 in Appendix B and (B.20),

1√
n
∇α`n(α, σ2,η)|κ=κ0

= − 1√
n

tr(G) +
1√
nσ2

0

ε>H>Xψ∗ ,ΛGµ0 +
1√
nσ2

0

ε>Gε+ oP (1),

1√
n
∇σ2`n(α, σ2,η)|κ=κ0

= −
√
n

2σ2
0

+
1

2
√
nσ4

0

ε>ε+ oP (1),

1√
n
∇η`n(α, σ2,η)|κ=κ0

= − 1√
nσ2

0

ε>HXψ∗ ,ΛZ + oP (1).

According to Theorem 1 in Kelejian and Prucha (2001), the central limit theorem for linear-quadratic

functions can be applied.
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Under Assumptions (A1) – (A8), we have n−1(µ0−Zη0)>H>Xψ∗ ,ΛHXψ∗ ,Λ(µ0−Zη0) = O(|4|2d+2+

h2ρ). Similar to the above discussion, by Lemma C.7 in Appendix B and (B.21), we have

n−1∇2
α`n(α, σ2,η)|κ=κ0 = −tr(G2)− 1

σ2
0

(Gµ0)>H>Xψ∗ ,ΛHXψ∗ ,ΛGµ0 −
1

σ2
0

ε>G>Gε+ oP (1),

n−1∇2
σ2`n(α, σ2,η)|κ=κ0 =

n

2σ4
0

− 1

σ6
0

ε>ε+ oP (1),

n−1∇η∇η′`n(α, σ2,η)|κ=κ0
= − 1

σ2
0

Z>H>Xψ∗ ,ΛHXψ∗ ,ΛZ + oP (1),

n−1∇α∇σ2`n(α, σ2,η)|κ=κ0
= − 1

σ4
0

ε>Gε+ oP (1),

n−1∇α∇η`n(α, σ2,η)|κ=κ0 = − 1

σ2
0

Z>H>Xψ∗ ,ΛHXψ∗ ,ΛGµ0 + oP (1),

n−1∇σ2∇η`n(α, σ2,η)|κ=κ0
= − 1

σ4
0

Z>H>Xψ∗ ,Λε+ oP (1).

Then, it is straightforward to show that

E
{
n−1∇κ`n(κ)|κ=κ0

∇κ′`n(κ)|κ=κ0

}
= Σn + Ωn + o(1),

E
{
n−1∇κ∇κ′`n(κ)|κ=κ0

}
= −Σn + o(1).

By (B.19), Theorem 2 is established.

B.3 Proof of Theorem 3

Theorem B.1 below shows the estimation consistency of the oracle estimator.

Theorem B.1. Under Assumptions (A1) – (A8), the oracle estimator β̄ = (β̄1, . . . , β̄p2)> satisfies

that ‖β̄ − β0‖L2
= OP

(
|4|d+1 + h% + λ1n

−1|4|−3h−1/2 + λ2n
−1|4|−1h−5/2 + n−1/2|4|−1h−1/2

)
.

Proof. We first decompose µ0 as follows

µ0 = µc + µv = (Z>1 η0, . . . ,Z
>
n η0)> +

{
X>1 β0(S11, S12, T1), . . . ,X>nβ0(Sn1, Sn2, Tn)

}>
.

Then, we can write

θ̄ = U22X>ψ∗(In −ΠZ)(µc + µv + ε) = U22X>ψ∗(In −ΠZ)µv + U22X>ψ∗(In −ΠZ)ε = θ̄µ + θ̄ε.

According to Lemma 1 in the main paper, for βk0(s1, s2, t), k = 1, . . . , p2, there exists θ∗k such that

sup(s1,s2,t)∈Ω×T |βk0(s1, s2, t)−ψ∗(s1, s2, t)
>θ∗k| = O(h%+|4|d+1). Denote that θ∗ = (θ∗>1 , . . . ,θ∗>p2 )>,
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β∗k = ψ∗(s1, s2, t)
>θ∗k, and β∗(s1, s2, t) = {β∗1(s1, s2, t), . . . , β

∗
p2(s1, s2, t)}>. Denote θ∗ = {X>ψ∗(In −

ΠZ)Xψ∗}−1X>ψ∗(In −ΠZ)µ∗v, where

µ∗v = {X>1 β
∗(S11, S12, T1), . . . ,X>nβ

∗(Sn1, Sn2, Tn)}>.

Then, we have the following decomposition: θ̄−θ∗ = θ̄µ−θ∗+θ̄ε. Notice that θ̄µ−θ∗ = U22X>ψ∗(In−

ΠZ)(µv−X>ψ∗θ
∗)−U22Pλ1θ

∗−U22Pλ2θ
∗. Hence, ‖θ̄µ− θ∗‖ ≤ ‖U22X>ψ∗(In−ΠZ)(µv−X>ψ∗θ

∗)‖+

‖U22Pλ1θ
∗‖+ ‖U22Pλ2θ

∗‖ holds. Lemma C.1 implies that

‖U22X>ψ∗(In −ΠZ)(µv − X>ψ∗θ
∗)‖ ≤ n−1|4|−2h−1‖X>ψ∗(In −ΠZ)(µv − X>ψ∗θ

∗)‖

≤ Cn−1|4|−2h−1(|4|d+1 + h%)

 p2∑
k=1

∑
j∈J

{
n∑
i=1

|Xikψj(Si1, Si2, Ti)|

}2
1/2

= OP {|4|−1h−1/2(|4|d+1 + h%)}. (B.22)

According to Lemmas C.1 and C.2, we have

‖U22PΛθ
∗‖ ≤Cn−1|4|−2h−1‖PΛθ

∗‖ = Cn−1|4|−2h−1

∑
j

(e>j PΛθ
∗)2


1/2

=OP (λ1n
−1|4|−4h−1 + λ2n

−1|4|−2h−3), (B.23)

where ej is a vector with jth element being one and the rest of elements being zero. Now we derive

the order of ‖θ̄ε‖. Observe that

‖θ̄ε‖ = U22X>ψ∗(In −ΠZ)ε ≤ n−1|4|−2h−1‖X>ψ∗ε‖

≤ n−1|4|−2h−1

 p2∑
k=1

∑
j∈J

{
n∑
i=1

Xikψj(Si1, Si2, Ti)εi

}2
1/2

= OP (n−1/2|4|−2h−1). (B.24)

Combining (B.22) – (B.24) and Lemma 2, we established Theorem B.1.

Proof of Theorem 3. To study the consistency of the estimators of coefficient functions, we first con-

sider oracle estimators β̄k, k = 1, . . . , p2. For a given Λ = (λ1, λ2), let (η̄, θ̄) be the minimizer of the

following penalized minimization problem

{Y(α0)− Zη − Xψ∗θ}> {Y(α0)− Zη − Xψ∗θ}+ θ>Pλ1θ + θ>Pλ2θ,

and θ̄ = (θ̄
>
1 , . . . , θ̄

>
p2)>. Therefore, the oracle estimators of βk(s1, s2, t) is

β̄k(s1, s2, t) = ψ(s1, s2, t)
>Q2θ̄k.
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Notice that Y(α0) = Ξ0Ξ
−1
0 (µ0 + ε) = µ0 + ε. Then, we have

η̄ = U11Z>(In − Xψ∗Γ−1
Λ X>ψ∗)(µ0 + ε), θ̄ = U22X>ψ∗(In −ΠZ)(µ0 + ε).

Notice that θ̄ = (θ̄
>
1 , . . . , θ̄

>
p2)> = U22X>ψ∗(In − ΠZ)Ξ0Y and θ̂ = U22X>ψ∗(In − ΠZ)Ξ(α̂)Y. For

any k = 1, . . . , p2, let β̄k(s1, s2, t) = ψ∗(s1, s2, t)
>θ̄k, and β̂k(s1, s2, t) = ψ∗(s1, s2, t)

>θ̂k. Then, by

Theorem 2, Lemma C.1 and Lemma C.6 in Appendix B, we obtain that

‖θ̄ − θ̂‖2 � n−1‖U22X>ψ∗(In −ΠZ)GΞ0Y‖2 � n−3|J |2‖X>ψ∗(In −ΠZ)G(µ0 + ε)‖2

� n−3|J |2‖X>ψ∗(In −ΠZ)Gµ0‖2 + n−3|J |2‖X>ψ∗(In −ΠZ)Gε‖2 � n−1|J |+ n−2|J |2.

Also, Theorem B.1 in Appendix B implies that

‖β̂ − β0‖ ≤ |4|h1/2‖θ̄ − θ̂‖+ ‖β0 − β̄‖

= OP

(
|4|d+1 + h% + λ1n

−1|4|−3h−1/2 + λ2n
−1|4|−1h−5/2 + n−1/2|4|−1h−1/2

)
.

Theorem 3 is established.
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Appendix C. Additional Technical Lemmas

Lemma C.1. Under Assumptions (A1) – (A8), for ΓΛ in (B.2) and U22 in (B.4) in the main paper,

there exist constants 0 < c1 < C1 <∞ and 0 < c2 < C2 <∞, such that, with probability approaching

one, as n→∞,

c1n|4|2h ≤ λmin(ΓΛ) ≤ λmax(ΓΛ) ≤ C1

(
n|4|2h+ λ1|4|−2h+ λ2|4|2h−3

)
, (C.1)

c2n|4|2h ≤ λmin(U−1
22 ) ≤ λmax(U−1

22 ) ≤ C2

(
n|4|2h+ λ1|4|−2h+ λ2|4|2h−3

)
. (C.2)

If λ1n
−1|4|−4 → 0 and λ1n

−1|4|−4 → 0 as n → ∞, then λmax(ΓΛ) ≤ C1n|4|2h and λmax(U−1
22 ) ≤

C2n|4|2h hold.

Proof. It is easy to see that, for any vector θ = (θ>1 , · · · ,θ
>
p2)>,

n−1θ>ΓΛθ = ‖gγ‖2n +
λ1

n

p2∑
k=1

γ>k [〈ψj , ψj′〉f1 ]j,j′∈J γk +
λ2

n

p2∑
k=1

γ>k [〈ψj , ψj′〉f2 ]j,j′∈J γk

= ‖gγ‖2n +
λ1

n

p2∑
k=1

∥∥∥∥∥∥
∑
j∈J

γkjψj

∥∥∥∥∥∥
2

f1

+
λ2

n

p2∑
k=1

∥∥∥∥∥∥
∑
j∈J

γkjψj

∥∥∥∥∥∥
2

f2

,

where γ = (γ1, . . . ,γp2)> = Q2θ with γk = (γkj , j ∈ J )> and gγ = (gγ1
, . . . , gγp2

) with gγk
being a

spline function with coefficient γk. Using the Markov’s inequality, we have

p2∑
k=1

∥∥∥∥∥∥
∑
j∈J

γkjψj

∥∥∥∥∥∥
2

f1

≤ C

|4|4
p2∑
k=1

∥∥∥∥∥∥
∑
j∈J

γkjψj

∥∥∥∥∥∥
2

L2

≤ C|4|−2h‖γ‖2,

p2∑
k=1

∥∥∥∥∥∥
∑
j∈J

γkjψj

∥∥∥∥∥∥
2

f2

≤ C

h4

p2∑
k=1

∥∥∥∥∥∥
∑
j∈J

γkjψj

∥∥∥∥∥∥
2

L2

≤ C|4|2h−3‖γ‖2.

Therefore, by Lemma A.4, the largest eigenvalue of the matrix ΓΛ satisfies that

λmax(ΓΛ) ≤ C
{

(1 +Rn)|4|2h+ λ1n
−1|4|−2h+ λ2n

−1|4|2h−3
}
.

Consequently, we have λmax(ΓΛ) ≤ C1

(
|4|2h+ λ1n

−1|4|−2h+ λ2n
−1|4|2h−3

)
with probability ap-

proaching one, for some positive constant C1. Using Lemma A.4 again, it is easy to obtain ‖gγ‖2n =

(1 − Rn)‖gγ‖2 ≥ c(1 − Rn)|4|2h‖γ‖2. Therefore, the smallest eigenvalue of ΓΛ is greater than

c(1−Rn)|4|2h = c1|4|2h. Let

Υ> =

 I 0

−|4|−1h−1/2X>ψ∗Z(Z>Z)−1 I

 ,
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where I is the identity matrix and 0 is a matrix with zeros. Denote D∗ = (Z, |4|−1h−1/2Xψ∗)>, then

we have

Υ>D∗>D∗Υ =

Z>Z 0

0 |4|−2h−1X>ψ∗(In −ΠZ)Xψ∗

 .

Lemma C.1 and Assumption (A4) implies that there exist c2 and C2 such that λmin(D∗>D∗) ≥ c2n

and λmax(D∗>D∗) ≤ C2n. According to the fact that the eigenvalues of Υ are equal to one and

properties of spectral radius of a squared matrix, we have

λmax(Υ>D∗>D∗Υ) = ρ(Υ>D∗>D∗Υ) ≤ ρ(Υ>)ρ(D∗>D∗)ρ(Υ) ≤ C2n,

λmin(Υ>D∗>D∗Υ) =
{
λmax(Υ−1(D∗>D∗)−1(Υ>)−1)

}−1 ≥
{
λ−1

min(D∗>D∗)
}−1 ≥ c2n,

where ρ(·) represents spectral radius of a squared matrix. Therefore,

c2n|4|2h ≤ λmin(X>ψ∗(In −ΠZ)Xψ∗) ≤ λmax(X>ψ∗(In −ΠZ)Xψ∗) ≤ C2n|4|2h.

Similar to the discussion about the eigenvalues of (C.1), we obtain (C.2).

According to Lemma 1 in the main paper, for βk0(s1, s2, t), k = 1, . . . , p2, there exists θ∗k such

that

sup
(s1,s2,t)∈Ω×T

∣∣βk0(s1, s2, t)−ψ∗(s1, s2, t)
>θ∗k

∣∣ = O(h% + |4|d+1). (C.3)

Let θ∗ = (θ∗>1 , . . . ,θ∗>p2 )> and β∗k(s1, s2, t) = ψ∗(s1, s2, t)
>θ∗k. In addition, denote β∗(s1, s2, t) =

{β∗1(s1, s2, t), . . . , β
∗
p2(s1, s2, t)}>.

Lemma C.2. Let θ∗ = (θ∗>1 , . . . ,θ∗>p2 )>, where θ∗k’s are defined in (C.3). Under Assumptions (A1)

– (A8), for any vector a with ‖a‖ = 1, we have

‖a>(Pλ1
+ Pλ2

)θ∗‖

= O{λ1(|4|−1h1/2 + |4|dh1/2 + |4|−1h%+1/2) + λ2(|4|h−3/2 + |4|d+2h−3/2 + |4|h%−7/2)},

where Pλ1
and Pλ2

are given in (B.1).

Proof. Let a = (a>1 , . . . ,a
>
p2)>, then we have

a>(Pλ1
+ Pλ2

)θ∗ =

p2∑
k=1

λ1a
>
k Q>2 P1Q2θ

∗
k +

p2∑
k=1

λ2a
>
k Q>2 P2Q2θ

∗
k (C.4)

=

p2∑
k=1

λ1〈ψak
, β∗k〉f1 +

p2∑
k=1

λ2〈ψak
, β∗k〉f2 ≤

p2∑
k=1

λ1‖ψak
‖f1‖β∗k‖f1 +

p2∑
k=1

λ1‖ψak
‖f2‖β∗k‖f2 ,
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where ψak
(s1, s2, t) = ψ∗(s1, s2, t)

>ak is a tensor-product spline function. By Markov inequality,

‖ψak
‖2f1 ≤ C1|4|−4‖ψak

‖2L2
� |4|−2h‖ak‖2, ‖ψak

‖2f2 ≤ C2h
−4‖ψak

‖2L2
� |4|2h−3‖ak‖2. (C.5)

Combining Lemma 1, (C.4), (C.5) yields Lemma C.2.

Lemma C.3. Under Assumptions (A1) – (A8), ΠD,Λ is bounded in both column and row sums, and

the elements in ΠD,Λ are OP (n−1|4|−2h−1) uniformly for all i, j.

Proof. Notice that

ΠD,Λ =
(
Z Xψ∗

) U11 −U11V12V
−1
22

−U22V21V
−1
11 U22

 Z>

X>ψ∗


= ZU11Z> − Xψ∗U22X>ψ∗ΠZ + Xψ∗U22X>ψ∗ − ZU11Z>Xψ∗(X>ψ∗Xψ∗)−1X>ψ∗ , (C.6)

where U11 and U22 are defined in (B.4). Note that n−1U−1
11 is a consistent estimator of n−1E{Z −

X>g∗(S1, S2, T )}{Z−X>g∗(S1, S2, T )}>, which is defined in the Assumption (A5). Assumption (A5)

implies that there exists a constant C such that, for any i = 1, . . . , n,
∑n
j=1 |Z>i U11Zj | ≤ C and∑n

j=1 |Z>j U11Zi| ≤ C. Thus, ZU11Z> is bounded both in row and column sums. Next, we prove

Xψ∗(X>ψ∗Xψ∗)−1X>ψ∗ is bounded both in row and column sums. Observe that

n∑
t=1

{Xi ⊗ψ∗(Si1, Si2, Ti)}>(X>ψ∗Xψ∗)−1{Xt ⊗ψ∗(St1, St2, Tt)}

≤
∑

(St1,St2,Tt)∈e(i)

n−1|4|−2h−1C‖Xi ⊗ψ∗(Si1, Si2, Ti)‖‖Xt ⊗ψ∗(St1, St2, Tt)‖

+
∑

(St1,St2,Tt)/∈e(i)

c

p2∑
k,k′=1

|J |∑
j,j′=1

XikXtk′ψj(Si1, Si2, Ti)ψj′(St1, St2, Tt) ≤ C,

where e(i) represents the triangular prism contains (Si1, Si2, Ti). Hence, Xψ∗(X>ψ∗Xψ∗)−1X>ψ∗ is

bounded both in row and column sums. Similarly, we can prove Xψ∗U22X>ψ∗ is bounded both in

row and column sums. By (C.6), we have ΠD,Λ and Xψ∗U22X>ψ∗ΠZ are bounded in both column and

row sums.

Also, the elements of ZU11Z> and ΠZ are OP (n−1) uniformly for all i, j. The elements of

Xψ∗U22X>ψ∗ and Xψ∗(X>ψ∗Xψ∗)−1X>ψ∗ are OP (n−1|4|−2h−1) uniformly for all i, j. Applying the

property in Lee (2004), we have the elements in ΠD,Λ are OP (n−1|4|−2h−1) uniformly for all i, j.

Lemma C.3 is established.
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Lemma C.4. Under Assumptions (A1) – (A10), we have

n−1µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)µ0

= OP {|4|2d+2 + h2% + n−1(λ2
1|4|−6h−1 + λ2

2|4|−2h−5)}, (C.7)

n−1µ>0 G>(In −ΠD,Λ)>(In −ΠD,Λ)µ0

= OP {|4|d+1 + h% + n−1/2(λ1|4|−3h−1/2 + λ2|4|−1h−5/2)}, (C.8)

n−1ε>(In −ΠD,Λ)>(In −ΠD,Λ)µ0

= OP {n−1/2|4|d+1 + n−1/2h% + n−1(λ1|4|−3h−1/2 + λ2|4|−1h−5/2)}, (C.9)

n−1ε>G>(In −ΠD,Λ)>(In −ΠD,Λ)µ0

= OP {n−1/2|4|d+1 + n−1/2h% + n−1(λ1|4|−3h−1/2 + λ2|4|−1h−5/2)}, (C.10)

where ΠD,Λ is defined in (B.3).

Proof. Notice that µ>0 (In −ΠD,Λ)>(In −ΠD,Λ)µ0 = ‖(In −ΠD,Λ)µ0‖2 and

(In −ΠD,Λ)µ0 = (In −ΠD,Λ)
{
Z>i η0 + X>i β0(Si1, Si2, Ti)

}n
i=1

= (In −ΠD,Λ)
{
Z>i η0 + X>i β

∗(Si1, Si2, Ti) + X>i β0(Si1, Si2, Ti)−X>i β
∗(Si1, Si2, Ti)

}n
i=1

= (In −ΠD,Λ)
{
X>i β0(Si1, Si2, Ti)−X>i β

∗(Si1, Si2, Ti)
}n
i=1

+ DV−1PΛ(η>0 ,θ
∗>)>,

where θ∗ = (θ∗>1 , . . . ,θ∗>p2 )> with θ∗k’s in (C.3), then we have

DV−1PΛ(η>0 ,θ
∗>)> = (Z Xφ∗)

U11 U12

U21 U22

0 0

0 Pλ1
+ Pλ2

η0

θ∗


=
[
Z
{
Z>(In −ΠXψ∗ ,Λ)Z

}−1 Z>Xψ∗(Xψ∗>Xψ∗)−1 + Xψ∗{X>ψ∗(In −ΠZ)Xψ∗ + Pλ1
+ Pλ2

}−1
]

× (Pλ1 + Pλ2)θ∗ = {(bi1 + bi2)>(Pλ1 + Pλ2)θ∗}ni=1,

where ΠXψ∗ ,Λ and ΠZ are defined in (B.3), and

bi1 =Z>i
{
Z>(In −ΠXψ∗ ,Λ)Z

}−1 Z>Xψ∗(X>ψ∗Xψ∗)−1,

bi2 ={Xi ⊗ψ∗(Si1,Si2, Ti)}>{X>ψ∗(In −ΠZ)Xψ∗ + Pλ1
+ Pλ2

}−1.

Lemma C.1 yields that, for any i = 1, . . . , n,

‖bi1‖ ≤ Cn−1|4|−2h−1‖Z>i
{
Z>(In −ΠXψ∗ ,Λ)Z

}−1 Z>Xψ∗‖ = OP (n−1|4|−1h−1/2),

‖bi2‖ ≤ Cn−1|4|−2h−1‖Xi ⊗ψ∗(Si1,Si2, Ti)‖ = OP (n−1|4|−2h−1).
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By Lemma C.2 and Assumption (A8), we have

‖n−1/2DV−1PΛ(η>0 ,θ
∗>)>‖

≤ n−1/2

{
n∑
i=1

‖b>i1(Pλ1 + Pλ2)θ∗‖2
}1/2

+ n−1/2

{
n∑
i=1

‖b>i2(Pλ1 + Pλ2)θ∗‖2
}1/2

= OP {λ1n
−1|4|−3h−1/2 + λ2n

−1|4|−1h−5/2}.

(C.11)

According to the SVD decomposition of matrices D and PΛ, we can prove that λmin(ΠD,Λ) ≥ 0.

Thus, we have

‖(In −ΠD,Λ)
{
X>i β0(Si1, Si2, Ti)−X>i β

∗(Si1, Si2, Ti)
}n
i=1
‖

≤ λmax(In −ΠD,Λ)‖
{
X>i β0(Si1, Si2, Ti)−X>i β

∗(Si1, Si2, Ti)
}n
i=1
‖

= {1− λmin(ΠD,Λ)}‖
{
X>i β0(Si1, Si2, Ti)−X>i β

∗(Si1, Si2, Ti)
}n
i=1
‖

= O{n1/2(|4|d+1 + h%)}. (C.12)

Combining (C.11) and (C.12), we obtain (C.7). By Cauchy Schwarz inequality, we have

‖n−1µ>0 G>(In −ΠD,Λ)>(In −ΠD,Λ)µ0‖ ≤ n−1‖(In −ΠD,Λ)Gµ0‖‖(In −ΠD,Λ)>(In −ΠD,Λ)µ0‖

= OP {|4|d+1 + h% + n−1/2(λ1|4|−4h−1 + λ2|4|−2h−3)},

which yields (C.8). By the properties of εi, we have E{ε>(In −ΠD,Λ)>(In −ΠD,Λ)µ0} = 0, and

E{ε>(In −ΠD,Λ)>(In −ΠD,Λ)µ0}2 = E‖(In −ΠD,Λ)>(In −ΠD,Λ)µ0‖2

= O(n|4|2d+2 + nh2% + λ2
1|4|−8h−2 + λ2

2|4|−4h−6).

Thus, we obtain (C.9).

Similarly, we have E{ε>G>(In −ΠD,Λ)>(In −ΠD,Λ)µ0} = 0. According to Lemma C.3, (In −

ΠD,Λ) is bounded both in row and column sums. Then, G(In−ΠD,Λ) is bounded both in row and col-

umn sums, and Var{ε>G>(In −ΠD,Λ)>(In −ΠD,Λ)µ0} = E
{
‖G>(In −ΠD,Λ)>(In −ΠD,Λ)µ0‖2

}
=

O(n|4|2d+2 + nh2% + λ2
1|4|−8h−2 + λ2

2|4|−4h−6), which yields (C.10).

Lemma C.5. Under Assumptions (A1) – (A10), we have

n−1ε>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0 = oP (1), (C.13)

n−1ε>G>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0 = oP (1), (C.14)

where ΠD,Λ is defined in (B.3).
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Proof. Note that (In − ΠD,Λ)>(In − ΠD,Λ)G is bounded both in row and columns sums. Then

E{ε>(In−ΠD,Λ)>(In−ΠD,Λ)Gµ0} = 0, Var{ε>(In−ΠD,Λ)>(In−ΠD,Λ)Gµ0} = E‖(In−ΠD,Λ)>(In−

ΠD,Λ)Gµ0‖2 = O(n), which implies (C.13). Similarly, E{(Gε)>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0} = 0

and Var{(Gε)>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0} = E{‖G>(In −ΠD,Λ)>(In −ΠD,Λ)Gµ0‖2} = O(n).

Therefore, (C.14) holds.

Lemma C.6. Under Assumptions (A1) – (A10), if Cn is uniformly bounded both in row sums and

column sums in absolute values, then we have ‖n−1X>ψ∗Cnµ0‖2 = OP (|4|2h).

Proof. Note that

X>ψ∗Cnµ0 = {X1 ⊗ψ∗(S11, S12, T1), . . . ,Xn ⊗ψ∗(Sn1, Sn2, Tn)}

(
n∑
i=1

cn,1iµ0i, . . . ,

n∑
i=1

cn,niµ0i

)>

=

n∑
i=1

Xi ⊗ψ∗(Si1, Si2, Ti)
n∑

i′=1

cn,ii′µ0,i′ ,

where X>i ⊗ψ
∗(Si1, Si2, Ti)

> = {X>i ⊗ψ(Si1, Si2, Ti)
>}(Ip2 ⊗Q2). Then we have

n−2(X>ψ∗Cnµ0)>(X>ψ∗Cnµ0)

=

[
n−1

n∑
i=1

{Xi ⊗ψ∗(Si1, Si2, Ti)}>
n∑

i′=1

cn,ii′µ0,i′

][
n−1

n∑
s=1

Xs ⊗ψ∗(Si1, Si2, Ti)
n∑

s′=1

cn,ss′µ0,s′

]

=

[
n−1

n∑
i=1

{Xi ⊗ψ(Si1, Si2, Ti)}>
n∑

i′=1

cn,ii′µ0,i′

]
(Ip2 ⊗Q2)(Ip2 ⊗Q>2 )

×

[
n−1

n∑
s=1

Xs ⊗ψ(Si1, Si2, Ti)

n∑
s′=1

cn,ss′µ0,s′

]

≤C1n
−2

n∑
i=1

n∑
s=1

|{Xi ⊗ψ(Si1, Si2, Ti)}>{Xs ⊗ψ(Si1, Si2, Ti)}|
n∑

i′=1

n∑
s′=1

|cn,ii′ ||cn,ss′ |

� 1

n

n∑
i=1

ψ(Si1, Si2, Ti)
> 1

n

n∑
i′=1

ψ(Si′ , Ti′) � OP (|4|2h).

Lemma C.6 has been established.

Lemma C.7. Under Assumptions (A1) – (A12), we have

n−1/2ε>ΠXψ∗ ,ΛHXψ∗ ,ΛGµ0 = oP (1), (C.15)

n−1/2ε>ΠXψ∗ ,ΛHXψ∗ ,ΛZ = oP (1), (C.16)

n−1/2ε>ΠXψ∗ ,Λε = oP (1), n−1/2ε>Π>Xψ∗ ,ΛΠXψ∗ ,Λε = oP (1), (C.17)

n−1/2ε>ΠXψ∗ ,ΛGε = oP (1), n−1/2ε>Π>Xψ∗ ,ΛΠXψ∗ ,ΛGε = oP (1). (C.18)
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Proof. First, we prove that (C.15) holds. Note that E(ε>ΠXψ∗ ,ΛHXψ∗ ,ΛGµ0) = 0, and

Var1/2(ε>ΠXψ∗ ,ΛHXψ∗ ,ΛGµ0) = ‖ΠXψ∗ ,ΛHXψ∗ ,ΛGµ0‖

= ‖(Xψ∗Γ−1
Λ X>ψ∗ − Xψ∗Γ−1

Λ X>ψ∗Xψ∗Γ
−1
Λ X>ψ∗)Gµ0‖

= ‖Xψ∗Γ−1
Λ PΛΓ−1

Λ X>ψ∗Gµ0‖ =

[
n∑
i=1

{
Xi ⊗ψ∗(Si1, Si2, Ti)Γ−1

Λ PΛΓ−1
Λ X>ψ∗Gµ0

}2

]1/2

≤ C(λ1n
−2|4|−6h−1 + λ2n

−2|4|−2h−5)

{
n∑
i=1

‖Xi ⊗ψ∗(Si1, Si2, Ti)‖2‖X>ψ∗Gµ0‖2
}1/2

= OP (λ1n
−1/2|4|−5h−1/2 + λ2n

−1/2|4|−1h−9/2).

Thus, (C.15) holds. Similarly, we can obtain (C.16).

Note that E|ε>ΠXψ∗ ,Λε| = tr(ΠXψ∗ ,Λ), E|ε>Π>Xψ∗ ,ΛΠXψ∗ ,Λε| = tr(Π>Xψ∗ ,ΛΠXψ∗ ,Λ). According

to Lemma C.1, we have

tr(ΠXψ∗ ,Λ) =

n∑
i=1

{Xi ⊗ψ∗(Si1, Si2, Ti)}>Γ−1
Λ {Xi ⊗ψ∗(Si1, Si2, Ti)} ≤ C|4|−2h−1,

tr(Π>Xψ∗ ,ΛΠXψ∗ ,Λ) =

n∑
i=1

{Xi ⊗ψ∗(Si1, Si2, Ti)}>Γ−1
Λ X>ψ∗Xψ∗Γ

−1
Λ {Xi ⊗ψ∗(Si1, Si2, Ti)}

≤ C|4|−2h−1.

Therefore, by Property P4 in Appendix A,

E|n−1/2ε>ΠXψ∗ ,Λε| = O(n−1/2|4|−2h−1), E|n−1/2ε>Π>Xψ∗ ,ΛΠXψ∗ ,Λε| = O(n−1/2|4|−2h−1).

By Assumption (A8), n−1/2ε>ΠXψ∗ ,Λε = oP (1) and n−1/2ε>Π>Xψ∗ ,ΛΠXψ∗ ,Λε = oP (1), which yields

(C.17).

It remains to show that (C.18) holds. Note that, by Property P4 in Appendix A,

Var(ε>ΠXψ∗ ,ΛGε) = (m4 − 3σ4
0)

n∑
i=1

(ΠXψ∗ ,ΛG)2
ii + σ4

0tr(ΠXψ∗ ,ΛGΠXψ∗ ,ΛG)

+ σ4
0tr(G>Π>Xψ∗ ,ΛΠXψ∗ ,ΛG),

and (ΠXψ∗ ,ΛG)ii is the (i, i)th entry of matrix ΠXψ∗ ,ΛG. Let (ΠXψ∗ ,Λ)ij be the (i, j)th entry of

matrix ΠXψ∗ ,Λ. Lemma C.1 implies that

(ΠXψ∗ ,Λ)ij = {Xi ⊗ψ∗(Si1, Si2, Ti)}>Γ−1
Λ {Xj ⊗ψ∗(Sj1, Sj2, Tj)} = OP (n−1|4|−2h−1).
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Hence,
∑n
i=1(ΠXψ∗ ,ΛG)2

ii ≤ C1n
−2|4|−4h−2

∑n
i=1(

∑n
j=1(G)ij)

2 ≤ C2n
−1|4|−4h−2. In addition, we

have (ΠXψ∗ ,ΛG)ij = OP (n−1|4|−2h−1), and

tr(ΠXψ∗ ,ΛGΠXψ∗ ,ΛG) =

n∑
i=1

n∑
k=1

(ΠXψ∗ ,ΛG)ik(ΠXψ∗ ,ΛG)ki = OP (|4|−4h−2),

tr(G>Π>Xψ∗ ,ΛΠXψ∗ ,ΛG) =

n∑
i=1

n∑
k=1

(ΠXψ∗ ,ΛG)ik(ΠXψ∗ ,ΛG)ik = OP (|4|−4h−2).

Thus, Var(ε>ΠXψ∗ ,ΛGε) = O(|4|−4h−2). Also, E
(
ε>ΠXψ∗ ,ΛGε

)
= tr(ΠXψ∗ ,ΛG) = O(|4|−2h−1),

and Assumption (A8) implies (C.18). Similarly, the second part in (C.18) can be established.
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Appendix D. More on Implementation and Numerical Results

D.1 Choosing the optimal block size

For spatiotemporal process, there are two kinds of block sizes: the spatial block size and the temporal

block size, see Valavi et al. (2019). In the spatial sense, the range, which is a crucial parameter in

the variogram, can be used to define the optimal separation distance between the testing and training

sets. We use the empirical variogram to estimate the range. At each observed time point, we calculate

the empirical variogram and get the corresponding range estimator. Let bS be the 0.7 quantile of

the estimated ranges. The spatial block size is set to be 4b2S . In the temporal sense, we calculate

the empirical autocorrelation function (ACF) at each fixed location and find the smallest time point

where the empirical ACF is approximate to zero. The temporal block size bT is set to the 0.7 quantile

of these estimated time points. In our proposed method, we first use the random CV to fit the model.

Following the above procedures, we use the residuals to decide the block sizes. Then, we refit the

model using block CV.

D.2 Additional simulation results

Figure D.1 (a)–(c) show the box plots of the MISEs of the estimators of the varying coefficients.

(a) β0 (b) β1 (c) β2

Figure D.1: Boxplots of MISEs of the estimators of βk in Simulation Study 1.

Figure D.3 shows the sequences of spatial plots of the true coefficient functions evaluated at time

points t = 0.0, 0.17, 0.50, 0.83 and 1.0. It also depicts the sequences of the estimated coefficient

functions via the TPST and GTWR methods based on a typical run in Simulation Study 1 with
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nS = 200, nT = 50 and σ0 = 1. These TPST plots are obtained using % = 3, d = 2, r = 1 and the

triangular prism shown in Figure 2 in the main paper.

Figure D.4 illustrates sequences of spatial plots of the TPST estimated coefficient functions for

a typical run in Simulation Study 2, where the plots are based on six different triangular prisms with

nS = 100, nT = 30 and σ0 = 0.5. It is hard to tell the difference among the plots produced by different

triangular prisms, which implies the effect of different triangular prisms is negligible. Figure D.2 show

4q, q = 1, 2, 3.

41 (109 triangles) 42 (154 triangles) 43 (219 triangles)

Figure D.2: Triangulations on the horseshoe domainconsidered in Simulation Study 2.

Table D.1 reports the mean squared error (MSE) for the TPST estimators of the constant param-

eters and the mean integrated squared error (MISE) of the TPST estimator of the varying coefficient

function in Simulation Study 2.

D.3 Data and results in the COVID-19 study

Figure D.5 presents the triangulation used in the application example.

Tables D.2 and D.3 show the sources and the detailed explanation of the county-level predictors

used in the modeling of COVID-19 infection and death counts.

The fitted varying coefficient functions of βD in the death model are shown in Figure D.6, in

which Figure D.6 (a)–(f) present the estimated coefficient function maps of at six different days from

April to June.

Figures D.7 (a)–(d) in the Supplementary Materials show example cases when the traditional SIR

model does not work. Without integrating the nearby information, the county-level prediction of SIR

is sensitive to observed data of each county. For example, in Figures D.7 (b) and (d), there are jumps

in the cumulative infected cases, which leads to severe over-predictions in the following seven days.
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Table D.1: Mean squared error (MSE) and mean squared integrated error (MISE) of the estimators

of the constant (functional) parameters and the average computing time in Simulation Study 2.

(nS , nT ) σ0 Method
MSE (×10−3) MISE (×10−3)

α0 σ2 η00 η01 η02 β01

(100,30)

0.5

TPST(E1) 0.34 0.06 34.77 0.10 0.08 7.21

TPST(E2) 0.34 0.06 34.64 0.10 0.08 7.45

TPST(E3) 0.34 0.06 34.94 0.10 0.08 7.38

TPST(E4) 0.35 0.07 35.22 0.10 0.08 7.68

TPST(E5) 0.35 0.07 35.64 0.10 0.08 7.97

TPST(E6) 0.35 0.07 35.83 0.10 0.08 8.08

1.0

TPST(E1) 1.04 1.08 106.18 0.39 0.33 19.09

TPST(E2) 1.04 1.07 106.37 0.39 0.33 19.45

TPST(E3) 1.04 1.07 106.26 0.39 0.33 19.35

TPST(E4) 1.10 1.14 112.45 0.39 0.33 20.56

TPST(E5) 1.09 1.17 111.14 0.39 0.33 21.37

TPST(E6) 1.11 1.20 113.20 0.39 0.33 21.85

(100,50)

0.5

TPST(E1) 0.25 0.03 25.02 0.04 0.04 5.39

TPST(E2) 0.28 0.03 28.36 0.04 0.04 5.64

TPST(E3) 0.25 0.03 25.15 0.04 0.04 5.55

TPST(E4) 0.24 0.04 23.87 0.04 0.04 5.77

TPST(E5) 0.23 0.04 23.04 0.04 0.04 5.99

TPST(E6) 0.22 0.04 22.55 0.04 0.04 6.06

1.0

TPST(E1) 0.76 0.55 76.68 0.16 0.16 14.10

TPST(E2) 0.69 0.55 69.66 0.16 0.16 14.34

TPST(E3) 0.76 0.55 77.68 0.16 0.16 14.27

TPST(E4) 0.76 0.57 77.27 0.16 0.16 15.10

TPST(E5) 0.73 0.58 74.43 0.16 0.16 15.70

TPST(E6) 0.73 0.59 74.67 0.16 0.16 16.02

(200,30)

0.5

TPST(E1) 0.18 0.03 18.51 0.03 0.05 4.44

TPST(E2) 0.20 0.03 20.44 0.03 0.05 4.63

TPST(E3) 0.19 0.03 19.50 0.03 0.05 4.57

TPST(E4) 0.20 0.03 19.90 0.03 0.05 4.74

TPST(E5) 0.19 0.03 19.38 0.03 0.04 4.90

TPST(E6) 0.19 0.03 19.03 0.03 0.04 4.97

1.0

TPST(E1) 0.59 0.51 59.54 0.13 0.18 11.71

TPST(E2) 0.55 0.51 55.33 0.13 0.18 11.90

TPST(E3) 0.56 0.51 56.84 0.13 0.18 11.85

TPST(E4) 0.55 0.53 55.83 0.13 0.18 12.54

TPST(E5) 0.54 0.54 54.73 0.13 0.18 13.03

TPST(E6) 0.53 0.55 53.80 0.13 0.18 13.30

(200,50)

0.5

TPST(E1) 0.08 0.02 8.44 0.03 0.02 3.25

TPST(E2) 0.10 0.02 10.17 0.03 0.02 3.41

TPST(E3) 0.10 0.02 9.62 0.03 0.02 3.36

TPST(E4) 0.09 0.02 9.33 0.03 0.02 3.49

TPST(E5) 0.09 0.02 9.16 0.03 0.02 3.62

TPST(E6) 0.09 0.02 9.27 0.03 0.02 3.67

1.0

TPST(E1) 0.29 0.29 29.5 0.13 0.09 8.20

TPST(E2) 0.30 0.28 29.99 0.13 0.09 8.37

TPST(E3) 0.29 0.28 28.74 0.13 0.09 8.32

TPST(E4) 0.31 0.29 30.68 0.13 0.09 8.85

TPST(E5) 0.30 0.30 29.88 0.13 0.09 9.21

TPST(E6) 0.29 0.30 29.33 0.13 0.09 9.43
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Table D.2: Sources of datasets

Data Type Source

COVID-19 Related Time-series

Infections Data NYT (2020); Atlantic (2020); CSSE (2020); USAFacts (2020)

Fatality Data NYT (2020); Atlantic (2020); CSSE (2020); USAFacts (2020)

Recovery Data Atlantic (2020)

Mobility Data

Bureau of Transportation Statistics BTS (2020)

Descartes Labs Warren and Skillman (2020)

American Community Survey (ACS) Data

2005-2009 ACS 5-year Estimates USCB (2018)

2012 Economic Census USCB (2012)

Homeland Infrastructure Foundation-level Data DHS (2020)
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Table D.3: County-level predictors used in the modeling of COVID-19 infection and death counts.
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Demographic Characteristics
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Percent of households with female householder and no husband present

Civilian labor force unemployment rate

Gini Gini coefficient, a measure of economic inequality and wealth distribution

Rural/urban Factor

Urban Urban rate

Healthcare Infrastructure

NHIC Percent of persons under 65 years without health insurance

EHPC Local government expenditures for health per capita

TBed∗ Total bed counts per 1000 population

Mobility Change in number of trips since March 2, 2020
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Figure D.3: Sequences of spatial plots of the coefficient functions for Simulation Study 1.
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Figure D.4: Sequences of spatial plots of the coefficient functions for Simulation Study 2 using TPST

with different triangular prisms.
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Figure D.5: Triangulation used in the TPST.

(a) April 25 (b) May 5 (c) May 15

(d) May 25 (e) June 5 (f) June 15

Figure D.6: Spatial plots of the estimated coefficient functions in death model.
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(a) (b)

(c) (d)

Figure D.7: Plots of prediction performance using STAR-PLVCM, STAR-LM, STAR, and SIR for the

cumulative infected cases in DeSoto County, Florida (a), Gilchrist County, Florida (b), Lyon County,

Minnesota (c), and Portage County, Wisconsin (d). The prediction starts from June 19 and is based

on the training data from April 19 to June 18.
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