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Supplementary Material

Appendix A. Notations, Assumptions and Preliminary Results

A.1 Notations

Let C, Cq, Cs, etc. be generic constants, which may be different even in the same line. For a
real valued vector a, denote ||a|| its Euclidean norm. For a matrix A = (a,;), denote [|Alx =
max; ) [a;;|, and let Apin(A) and Amax(A) be the smallest eigenvalue and largest eigenvalue of
matrix A, respectively. For a function ¢g on a domain D, ||g||co,p and ||g||, p are the supremum norm
and Lo norm defined in the Section in the main paper. For a 3D function g(s1,$2,t) on Q x T,
let [|g]loo = llgllco,x7 and ||gllL, = |l9]lL,,0x T for notational simplicity. For a vector valued function
G = (91, 0p) T, denote [lglz, = {502 lgwl3, 12 and lgllee = maxichep, gilloc: Further
denote [|glly,co = Maxi<i<p, |9klv,00, Where |grlvco = MaX|q, 4agtas)=v IVEIVEV®gr|lco. Denote
T@d)()P2) = {(g1,...,gp,) : gr € T@E(E),1 < k < po}. For any discrete set A, let |A| be the
cardinality of A.

For any two vectors of functions g(!) (s, s, t) = {g§1)(31, S9,t),. .. ,g,(,i)(sl, 59, 0)} T, g (s1,80,1) =

{g%z)(sl, S2,t), ... ,gl(,? (s1,82,t)} 7, define their empirical inner product as

1 n P2 P2
(g, g, = - > {ZXikglil)(Sila Siz, Tz)} {Z Xingy? (Si, Si27Ti)} ; (A1)

i=1 (k=1 k=1
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and theoretical inner product as

(g™, g®) {Zxkg (51,8, T }{Zxkg (S1, Sa, )}, (A2)

where (51,52, T) has the joint density function f(g, g, 7). Denote the corresponding empirical and

theoretical norms as || - ||, and || - ||, respectively. Define
(g, )y, Z /Q V2,0 (V2 g +(V?29;§1))(V§291(€2))}dsld82dt,
P2
99 = [ (T dsidsait.
o1/ OXT
We use || - ||, and || - ||, to represent their induced norms.

Next, we present some statements which summarize a few basic properties used in the proof of

theoretical results. See Appendix A in Lee| (2004).

P1. Suppose matrices A and B are bounded in row and columns sums, then the matrix AB is

bounded in row and columns sums.

P2. Suppose the elements a,, ;; of an n X n matrix A,, are O(e,,*) uniformly for all 4,5. If an n x n
matrix B,, is uniformly bounded in row and columns sums, then the elements of A,B, and

B, A, are O(e,!) uniformly for all 4, j.

P3. If the elements in Z are uniformly bounded, and lim,,_, o n~1Z77Z exists and is nonsingular, then

Z(Z"7Z)"'Z" and 1,, — Z(ZTZ)"'ZT are uniformly bounded in both row and column sums.

P4. Let A, be an n x n matrix. We have E(e' A, e) = o2tr(A,), and Var(e' A, e) = (my —
303) S0, a4+ oj{tr(A,A) + tr(A2)}, where my = Ee}.

A.2 Assumptions

In this section, we state the technical assumptions used in the main paper. Let G = WE 1.

(A1) Let hy = mp—mp—1 be the distance between two adjoint knots, satisfying that C; < max hy/ min by <

C5. Denote h = maxi<p<n+1 Ho.

(A2) Let p, be the radius of the largest disk contained in 7. The triangulation A is -quasi-uniform,
that is, there exists a positive constant ¢ such that the triangulation A satisfies |A|/p, < 6, for

all m € A.
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(A3) The joint density function of (S1,Ss,T), f(s,,s,,7)(";", "), is bounded away from zero and infinity
over Q X T.

(A4) {(Z;,X;,8S;,T;,€;)}, are independently and identically distributed. The random variables Z;,
and X;; are uniformly bounded for ¢ =1,...,n, £ =0,...,p1, and k = 1,...,ps. Denote that

Ai(s1,82,t) < -+ < Aigp4po(51,82,1) be the the eigenvalues of E{(Z],X])"(Z},X,)[S;

s,T; = t}. There are positive constants C; and Cs such that C7 < A(s1,892,f) < -+ <

Maprtpa(81,82,t) < CoforallseQ,teT.

(A5) Let gj(s1,s2,t) = {g; 1(51,52,1),. .. 290 o (s1,82,t)} 7 be the vector of functions that minimizes
E{Zi — X[ g(Si, T;)}? over g(s1,s2,t) = {g1(51,52,1),-,gp,(51,82,8)} 7. For g*(sq1,s2,t) =
{g5(s1,502,1),...,85 (51,52,1)} ", n"'E{Z — Xg*(S1,52,T)} '{Z — Xg*(51,52,T)} is positive
definite.

(A6) For any k = 1,...,ps, the coefficient function 8 € WitL>(Q) @ Ce~2(T).
(A7) There is a constant C' such that E|e;|**° < C < oo for some § > 0.

(A8) The triangulation size |A| and the subinterval size h for the univariate splines satisfies that
n'2|APPh — oo, n|A?¥2 — 0, and nh?¢ — 0. Roughness parameters A\; and o satisfy

Ant2|ATTRYZE 0, At 2| AIRT32 = 0, AinTHAT = 0 and AonthT1 — 0.

(A9) The matrix g is nonsingular. The matrices W and E; ' are uniformly bounded in both row
and column sums. Let w be a compact parameter space and ag be an interior point of zo. For

! exists and is uniformly bounded in both row or column sums.

any o € w, Z(a)”
(A10) The elements w;; of W are at most of order e, !, uniformly in all ¢, j, and lim, 0 €,/n = 0.
(A11) lim, oo n"HZ, X, Gug) " (Z,X, Gpy) exists and is nonsingular.

(A12) lim, o0 n'E {(GMO)T(In — HD,A)T(In — H]DJ,A)GH'Q} 75 0, where HD,A is in ‘)

The above assumptions are mild conditions that can be satisfied in many practical situations.
Assumptions (Al) — (A2) are commonly used in the literature of spline approximation. Assump-
tion (A1) requires that the knot sequence for the univariate spline have bounded mesh ratio, which

was used in [Huang| (2003) and Xue and Yang| (2006)). Assumption (A2) suggests the use of the
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quasi-uniform triangulations for bivariate splines; see [Lai and Wang| (2013). Assumption (A3) guar-
antees that the observations are randomly scattered in the domain. Assumption (A4) is to ensure
the non-multicollinearity of covariates. In addition, X and Z are assumed functionally unrelated as
in Assumption (A5). Assumption (A6) describes a smoothness condition commonly used in the non-
parametric estimation literature; see, for instance, Liu and Yang (2010), Lai and Wang| (2013 and
especially Mu et al.| (2018). Note that the tensor-product spline spaces is a type of sieve spaces.
Assumption (A1), (A2) and (A6) satisfy the typical assumptions on the sieve spaces; see Conditions
3.1 — 3.5 in |Chen| (2007)). The purpose of Assumption (A8) specifies the requirement of the number
of knots for univariate splines and the number of triangles for bivariate splines via triangulation. As-
sumptions (A7), (A9) and (A10) are routinely used in the SAR model literature; see, for example,
Assumptions 2-7 in |Leg| (2004). These assumptions provide the necessary requirements of the weight
matrix and disturbances for SAR models. Assumption (A11) requires that the generated regressors
G and explanatory variables are not asymptotically multicollinear. Assumption (A12) ensures the
uniqueness of the maximizer of the profiled likelihood function of a. Similar assumptions have been

used in [Leg| (2004)).

A.3 Properties of tensor-product splines

We first cite some important results for univariate polynomial splines and bivariate splines over a
triangulation. Lemma[A 1] states the approximation error of the bivariate splines over a triangulation
A. Lemmas and present the stability property of univariate polynomial splines and bivariate

splines over a triangulation, respectively.

Lemma A.1 (Theorem 10.2, Lai and Schumaker| (2007)). Suppose that |A| is a §-quasi-uniform

triangulation of a polygonal domain Q, and (-) € Wit1o(Q).

(i) For bi-integer (a1,a2) with 0 < ay + ag < d, there exists a spline ¢¥*(-) € SY(A) such that
Va1V (¢ — *) loo < C|A[FFI=792(4)| 414 o, where C is a constant depending on d, and

the shape parameter d.

(11) For bi-integer (a1,a2) with 0 < a1 + as < d, there exists a spline function ¥**(-) € SL(A)
(d > 3r +2) such that |[VIV2 () — p**) ||loo < C|A|T=17%2 4| 41y o, where C' is a constant

depending on d, r, and the shape parameter J.
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Lemma shows that, under some regularity conditions, S§(A) and S5(A), d > 3r + 2, have

full approximation power.

Lemma A.2 (Page 155, De Boor| (2001)). There exists a constant c¢o > 0, depending only on the

order o, such that for any s(t) = Zé\;g a,Uy(t) € Ue(m),

Nte 1/2 N+to 1/2
o Y adm-mg)} " <lslls < { > abm-m-)} (A.3)
b=1 b=1

Lemma A.3 (Lemma 1, Lai and Wang (2013))). Let {By,}mea be the basis for Sh(A) constructed
in Lai and Schumaker (2007), where M stands for an index set. Under Assumption (A2), there exist

positive constants C1,Cy depending on d and r such that

< CoAR Y (bl (A4)

2
2 2

AP S oul? < H 3 mem’Lzm)
meM meM meM

Next, we provide the proofs of Lemmas [I] and [2] in the main paper.

Proof of Lemma[l For any 1 < b < N + g, let £, = (=1)7"'(q — 116279 (m) /(0 — 1)!, where
Pu(t) = Hg;%(t_ﬂb+s). Let {cq,0,0 < ¢ < p—1} be the coefficients of the gth Bernoulli polynomial P,,
ie. Py(z) = mg—l—zg;é ¢q,0%%. For 1 < b < N+p and a sufficiently smooth function g(s1, s2,t) € QxT,

we define the linear operator as

o—1
Vig(s1,s2,t)|i= V?q(s1,89,t)]i= _
Ub(g)($1’52)zzfg,+w19{ o q! i _ Vst 0! i “eqohy 10,

q=0

where w is the integer satisfying (w — 1) < b < wp, and hy = 7, — mp—1. According to Theorem 1 in
Barrow and Smith| (1979), we have, for any given (s1,s2) € €, under Assumption (Al) in the main

paper and g(s1, sz, ) € W1 (Q) © Ce2(T),

sup
teT

N+o
Vs {V?;V?jg(sl,s%t) - Z ub(V“;llV;ljg)(sl,SQ)Ub(t)H

b=1

< Cysup [VEVEVEg(s1, s2,1)| R0 < C||VEVEVEgloh?™%, (A.5)
teT

where h = maxj<p<niohy. up(VEV§2g)(s1,s2) is a function of (s1,s2) and up(VEEViZg)(sy,52) =

ViVeuy(g)(s1, s2). According to Lemma u there exists uj(9)(51,52) = > ,cat Fb,mBm (51, 52)
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such that, under Assumption (A2) in the main paper and g(sy, s2,t) € WitL>(Q) @ Ce=2(T),

Vv { )(s1,82) E Kb,m B 81782)}‘

meM

sup
(31 ,SQ)EQ

= sup

a a 2 a a
= Ub(vslleQ 81,52 Rp mvsllvsngm(Sl’SQ)
(s1,52)€Q

meM

<G max [ VEVEVEgle AT

a1taz=d+

O§a3<g
which implies that
N+o
VaVEVEg(s,52,8) — > up(VEIVE2g)(s1,52) VieUp(t) (A.6)
b=1
N+o
= VaIVEVEg(s1,50,1) — Y { > Kom Ve Ve By(s1,5) +0<|A|d+1-a1-“2>} Ve U (1)
b=1 meM
N+o
= VOVEVEG(s1,80,8) = Y Y Kbm Ve VB (s1,52) Vit Uy(t) + O(| AT 702),
b=1 meM

Combining (A.5]) and (| -, we have

N+o
sup VaVa Vi < g(s1, s2,1) Z Z Kb,m B (51, 52)Up(t) p| = O(h®™% 4 |A]¢H1ma1me2),
s1,82€t€T b=1 meM
Thus, Lemma [1| has been established. O

Proof of Lemma[3 Note that the |7|-dimensional vector v = {v1,...,77} can be written as vector
{'ﬁl,...,71*N+g77§17...,'y|*/\4| N+Q} where 7, = ’Y(m—l)\M\+b~ By 7 it is easy to see that
Jo l9(s1, s2,t)Pdsidsy > C1|A|2 Y omeM ’ Zb U ()Y, b‘ . Therefore, by Assumptions (Al) — (A2),
and the stability properties in ) and -, we have

N+p
lolf: =l sa0Pdsadsaar 2 ISP 3 [ |5 vhterf
QxT mem
N+e N+o
>0 9|A| Z Z ’Ym b(Mo — My—g) 2 C1 QQh|A| Z Z ’Ym b= Cl,g@h|A|2 Z 7]2-
meM b=1 meM b=1 €T

Similarly, by 1.) Jo lg(s1,s2,8)[Pdsidsy < Co|Af? ZmeM‘Zé\[ ()’ymb’ . Then, it follows
directly from ) that
N+o

/ lg(s1, s9,t)[2dsidsadt < Co| A Z / ‘ Z Up(t ’Ymb‘ dt
QxT

N+o N+o

SCIAP DY S pylme —mimg) < Caol APR Y Y iy = Caol APR D A7

meM b=1 meM b=1 JjET
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Therefore, Lemma [2] has been verified. O

The next lemma shows that the theoretical inner product defined in (A.2)) can be approximated

by the empirical inner product defined in (A.1)) uniformly over the estimation spaces.

Lemma A.4. Fork =1,...,ps, g](cl)(S]_,SQ,t), g,(f)(sl,sQ,t) are the spline functions in T@%)(E),
and g\ = i W50 (51,52,0), 9 = X jer U (51, 52,t). Suppose Assumptions (A1) — (AS)
hold, then
< 2)> <g(1) g(2 >
Fn = Sup O g®@
g g ETe.t.n) (£)w2) Hg {9

= Og.s. {h_1/2|A|_1n_1/2(logn)1/2} .

Consequently, if h=1|A|72n"t(logn) — 0 as n — oo, then R,, = 045 (1).

Proof. Tt is easy to see

1 n P2 P2
(g, g®), = - SN ’Y;S»)Xiki/)j (S1i, 82, Th) p 4 > > ’Y;(C?;/Xik'%" (S1is 52, T3)

i=1 | k=1jeJ kK=1j'€J

1) (2)
E , E Vi Vi ¢j7wj/>n,kk”
k/

15,5'€T

k,

Where <’¢j, wj’>n,kk’ = % Z?:l XikXik’wj(Sih Sig, Ti)wj’ (Sih Sig, Ti). Similarly, we have

(g™, g" Z R v AR IR

kk'=135,5'€J

1 1 2 2
lgM|J? = Z 3 A0 Wi i, 9@ = Z S A Wi Y

k,k'=135,5'€T kk'=14,4'€T
where (U, ) i = E{ X X005 (Si1, Siz, Ti) 0 (Sin, Siz, Ti) }-
Given the spline basis function v;(s1,s2,t), the indices m(j) and £(j) satisfy 1;(s1,s2,t) =
By (s1,82)Us(j) (1) I [m(5) —=m(j")| > (d+2)(d+1)/2 or [£() = £(5")| > 0, ¥;j(s1, 52, )5 (51, 82, 1) =

0. Therefore, we have

1 2 2
(9", 9%)—(g", g®) Z Z ’Yz(cj)%(c/ o (V5 Vi Doy — Z Z 71@ l(c’)’ (W5, %3 )
k,k'=13,5'€T kk'=135,'€eT
p2 L )
= Z Z 7121)71(«)' {<¢j»¢j’>n,kk' - <¢jv¢j/>kk/}
k.k'=1 [€()—£(")|<e
[m(j)—m(3")|<(d+2)(d+1)/2
1/2
(1)? (2) 2
Zv D v max  |(, g ) ks — (85, 50 )| (A7)
k' -, k?,k) :17...,])2

J.J' €T
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_ 2 (v)2 ()2 2 (v)? .
It follows Lemma [2| that, for v = 1,2, Crh|AFP Y5, sy < lg™|F < Coh|AP Y2, ;v » which

v
J
implies that

1/2 1/2
1)2 2) 2 1)2 2
LIPS 0" S A0, < lgW @ < C2hlAP S A>T A2 . (A8)

k,j L k,j k.3

Combining (A.7)) and (A.8), we have

Rn S Oflh*1|A‘*2 i k/rilaX |<wj7wj’>n,kk’ — <wj7wj’>kk" .

=1,...,p2

Note that X;; are uniformly bounded. Hence, it is straightforward to obtain

L max [y gn ke — (5, Yy )kkr| = Oas. {n_1/2h1/2\ﬁl(10g n)1/2} :
s =1,...,p2
igeq

Lemma [A_4] follows. ]

Appendix B. Proof of the Main Results in Section

For the matrices Xy and Z given in (2.6), we denote

Vi1 Vio YAN/AAD &%
= v +]P)A7
Vo Vo XL.Z X3-Xyr

\Y%

where Py is defined in (2.7]). Then, the inverse of V can be represented as

V-loUo U —U11Vle2}1
*U22V21V1_11 Uy,

where Ul_ll = V11 — V12V2_21V217 and U2_21 = V22 — V21V1_11V12.
Denote

Py, = M1, ® (QJ P1Qy), Py, = \oI,, ® (QJ P2Qy), (B.1)

and

Iy = Xg-Xye +Pr, + Py, (B.2)
then, it is clear that Va5 = I'. Next, we denote

My =Z(Z'2)"'Z", Tpr =DM D+P,) DT,

Mxy..n = Xw*rf_\lx’l—;*7 Hx,..a =1, — Ix,. A (B.3)
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Then, we have
U =2" (I, — Ox,. A)Z, Uy =Xy (I, — Tz)Xye + Py, + Py, (B.4)

where Py,, Py,, and T'y in (B.1)) and (B.2).

Recall that

9 _n n 9 - 1
Lu (0%, 0) = =S log(2m) — 2 log(0*) + log(|2(0)]) - 55

Ly (@) = =5 {log(2m) + 1} —  log{6”(a)} + log(|=(a)]),

1Y (@) — DE(e)[%,

where E(a) =V IDTE(a)Y and 7%(a) = n~ Y (a) — ID)E(a)HQ. Denote
0*(a) = n"'Bl|Y (@) — D&(a)|*. (B.5)
It is straightforward to verify that

Qu(@) = maxE{Ly (0%, a)} = =2 {log(2m) + 1} — T log{o"(a)} + log(|E(a))).  (B.6)

o2

B.1 Proof of Theorem [

Lemma B.1. Under Assumptions (A1) — (A10), supyce [n ' Ln(a) — n71Qu ()| = op(1), where
L, (o) and Q,(a) are defined in and (B-6).

Proof. Tt is straight forward to obtain that
nt {Ln(a) — Qun(a)} = —9~1 {logEQ(a) — loga*z(a)} ,
where 52(a) and 0*?(a) are given in (2.9) and (B.5)), respectively. For 5%(a), note that

(L, = Hp,A)E()Y = (I, — Tpa)[Ln + (a0 — a)Glpg + (I, — Tp, 0 )E(a)Eq e

= (ap = @)(Iy = Mo A)Gpg + (Lo = Tp a)pg + (In — TIp a)E()Eq e

Thus, 62(a) in (2.9) can be written as

oy ) g2 (00— 0)? ., 1
3%(0) = L0~ Tl )= Y I = X1, T ) (Gpao) I 4+ (L — T )t
1 _ 2(ag —
(L~ Tl () el + 2O (1, T ) (X TGty

2(ap — « -
4 2000 () (1 Ty ) (T, T ) E(0)Z; e

2 _
+ Eug(ln —TIpa) " (I, — TIp A)E()E, "e.
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According to Lemma [C.4] we have

8’2(@) _ (Ozo _a>

1 =
[T = T 0 ) (Go) [* + — | (T =TI 0 )E()Eg €]

+ W(GHO)T(In —Tpa) " (I, - TIp A)E()E; e

2 _
+ gug(ln —Tpa)" (I, — HpA)E(a)Eq e + op(1).

Next, for o*?(a) in (B.5)), we have

2
o T \E(0)=s
2 (a) = 2tr {(E, HTE() (1, —Tpa) " (I, — MpA)E(a)E 1}

1
+ BTy = Tp A ){T + (a0 — )G hasg |

‘73 =—I\Te=/ T/ \=—1 2‘70 .——1 T ATT = y=m—1
= D (25" B0) E@)E ) - D {(25 ) o) T \E(0)E;

n
o2 T _ a
+;0tr{<=01f=< )THDAHDAH = 1}+T)E||<In—HD,A>Guo||2

+ E||(I —Tp A)pol® + E{ L, —Tpa) (I, — Hp )G} -

Notice that by Lemma [C.3] and Property P2 in Section B.1.2, we have
o [{2(0)2; "} T A2 ()85 1] = Op(1A] 207, (B5)
tr [{TIp AE(a) =5 '} TIp aB(a)Eq '] = Op(|A]2R7Y).

Then, it implies

2
g —
(00O 1, 10y ) G

m
e

-
+

2
o*2(a) = %tr (BN TE() " E(a)=

+ %EH(In — T a)pol* + Aoo o), {tg (X —Mp )" (I, = Mpa)Gpg} +op(l).  (B.10)

Combining (B.7) and - we have

_(oo=o) [I(T, = T, ) (Gpao)[I* = Ell(Tn — TIp a)(Gig) 1]

1 — 2 —_— — _—— 1 — _——

S(0)Z5 el - 2eT (B ()85 ) Ty AR e) S5 e + LT pZ (a5 e

o _ —_ N 2(ag — « —_ N ——
e [{mo)ms ) E@0)E ]+ 20 () (L )T T 0B ()55 e

2
+Eu§(In—HD,A) (I, — TIp, A)E() By '€ + 0p(1).

By Property P1 in Appendix A and Assumption (A9), {E(a)E;'} TE(a)E, ! is bounded uniformly,
for any o € w, both in row and column sums. Then, Var [e {E(a)=;"} E(a)=g €| = O(n). Thus,

sup | T (B()Z; '} E@)Ey e - (BT (E@E) E@E | =op(1), (B
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m

and E{e" {E(0)Ey "} TE(0)E; e} = odtr [{E(2)Z; '} T E(a)E; ' ]. Therefore,

swp |LeTmE; ) B @E - D [(E(@m ) =S| =or(). B2
Similarly, we have
sup =Py, @2 - @i, - T0) (G|} | = 0r().
Note that

(a0 — ) (Gpg) " (I = Tpa) " (I, — HpA)E()E '€
= (a0 — a)e {I, + (a0 — )G} ' (I, = ) " (I, — T A) G
= (ap — a)e' (I, —TIp A) " (I, — TIp A) Gy

+ (040 - a)Q(Ge)T(In — HD7A)T(In — HD,A)GN0~

Thus, by (C.13)) and (C.14)), we have

sup {2200 (@) (1, )71, ~ T 1) ()5 p = 0n(1). (B.13)

acw

Similarly, by (C.9)) and (C.13)), we obtain

2 N
sup {nug(ln - HD,A)T(IR —IIp A)E()E, le}

acw

= sup {ZMJ(In ~TIp )" (I, — TpA) (L, + (o0 — a)G)e} =op(1).

acw

Also, and (B.9) imply
nle {E(a)Ey '} Hp AE(a)Ey 'e = Op(n A 2R,

n~HTp AE()Eg e = Op(n ! A|2h7h).

It follows that

Slelp {n_leT(Eo_l)TE(a)THD,AE(a)EEIE} = Slelp {n_1||HD’AE(a)Egle||2} =op(1). (B.14)
By (B.11] - - -, %(a) — 0*?(a) = op(1) uniformly in o € @, then we can use the mean value
theorem,
1
~2 *2 ~2 *2
sup |logo“(a) —log o™ ()| = sup ——— [0“(a) — o™ “(a)| = op(1),
sup [log %) ~ 1o 0"%(0)| = sup 1< [5(a) = ()| = 0p(1)
where 5%(a) is between 5%(c) and G3%(c). Therefore, sup,eq 7' {Ln(a) — Qu(a)}| = op(1).

Lemma [B.1] is established. O
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Proof of Theorem[]l The proof follows from the following steps:
(i) SUPpew [P Ln(a) — n7'Qn(a)| = op(1); (ii) for any o € @, Qn(a) — Qn(ap) < 0; (iii) for any
e >0, limsup,,_, o [max, x7_ (4, nH{Qn(a) — Qn(ao)}] < 0, where N (ap) is the open neighborhood
of ap with radius e and N_(ag) is the closure of N (ayp).

Proof of Step (i). See the proof in Lemma in Appendix B.

Proof of Step (ii). Consider a standard SAR model: Y = aWY + €, where € ~ N(0,0%1,).
Then the corresponding log-likelihood function is L* (02, \) = —2 log(27) — % log(c?) + log(|Z(a)]) —

L||Z(a)Y]|?. Notice that

o2

Qi) = max Fog oy {1 (0%, @)} = — 2 {log(2m) + 1} — 5 log{0*(a)} + log(| ()],

—

2
where 02(a) = 2tr [{E(0)Z; '} T E(a)E; '] and E(42,q,) represents the expectation under the model

Y = agWY + ¢, where € ~ N(0,03L,). By Jensen’s inequality, we have
Qn (@) < Eqz 0 max {L*(c* a)} < E(52,a0) max {L*(0* a)} = Qi ().
It is straightforward to obtain

~Qu(@) — +Qula0) = +Q4(0) — +Qia0) — 5 flog{o™(@)} — log{o?(@)}]
1
2

[log{c**(ag)} —log{o*(0)}] -

According to in Appendix B, we have 0*?(a) —0?(a) > 0 for o # g and the difference between
o*2(ap) and 02(ayp) is negligible. Therefore, we could verify that n=1Q, () < n™1Q,(ap).

Proof of Step (iii). We prove the uniqueness of g by contradiction. If the uniqueness of ayg
doesn’t hold, then there exists € > 0 and a sequence {a,} € Nc(ap), such that

lim ~{Qn(an) — Qn(ao)} =0, lim an = a # ao, (B.15)

n—oo N n—00

Similar to the argument in the proof of Theorem 3.1 in [Lee| (2004), {n~1Q,(a)} is uniform equicon-

tinuous of «. Thus, by (B.15]), we have

lim l |Qn (@) — Qn(ag)| = nhanc}o% |Qn (@) — Qulan) + Qnlan) — Qn(ao)|

n—o00 N,

< lim %|Qn(an) — Qn(@)] + lim_ %|Qn(an) — Qn(ao)| =0.

n— oo
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Note that, for any o € w,
Qn(@0) = Q@) = Z{log(0"(a)) — log(0"* (o))} + log (o) — log(|=(a)])
= Z{log(0"%()) — log(0*(a))} + 5 {log(0* (a0)) — log (" ()}
+ 5 {log(0%(a) — log(0 ()} + log (o) — log(|E(e))).
According to the fact Q7 (ap) > Q}(c), we have
5 {log(0%()) ~ log(0” (00))} + log (=) ~ log([E(@)]) 2 0, for all a € =,

and 0*?(a) — 0?(a) > 0, for all @ € @. Then, lim, o 2~ H{Qn(an) — Qn(ap)} = 0 implies

nl;ngologa 2(@) —logo*(a) = 0, (B.16)
lim — [{10g( *(@)) — log(0* ()} + log(|Zo]) — log(|E(a)])] = 0. (B.17)

n—oo n
Thus, (B.16) leads to lim,,{c*?(@) — 0%(a)} = 0, which implies lim, oo n ™ ||(I, — Mpa){L, —
(g —@)G}pagl|? = 0. Therefore, lim,, 0o n ™ (Gpg) " (I, —Hp a) (I, —IIp )Gy = 0. Then, (B.17)

conflicts with Assumption (A12). Thus, aq is unique. O

B.2 Proof of Theorem [2

Proof of Theorem[3 Define

n n - 1
o, 0%,m) = — 5 log(2m) — 5 log(0?) + log{|Z(a)[} — 252 1Y (@) = Zn — Xy-0(a,m)[?,  (B.18)

where 8(a,n) = T7!X! . {Y(a) — Zn}. Denote k = (a,o2,n") ", ko = (ap,02,md)" and let & =
N A Do n n 0:Mo

(@,52,5")7 be the maximizer of (B.18). Notice that (&@,52,7') is equal to the TPST estimator

defined in Section Because K is the maximizer of (B.18)), V¢, (k)|x=z = 0 and

nl/? (R — Ko) {—n—lvnv,«en(n)|”:m}’1 {n_l/Qvnﬁn(n)|R:R0} ) (B.19)
We calculate the first order derivatives of :
Valn(a,o?,m) = —tr {E(a WY+ %{Y(a) —7Zm — Xy+0(a,n) }Hx ). A\AWY,
Vol 0%m) = =5 + (Y (a) — Zn — Xy 8(c.m)} T {Y (@) - Zn — Xyp- O, m)},

202 204

Viln(a,0%,m) = *g{Y(a) — Zn — Xy 0(a,m)} " Hy,. 4Z, (B.20)
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where Hx . o is given in (B-3). In addition, we have the following second order derivatives of the

profile log-likelihood function:

1
Vta(a,0®,m) = —6r(G?) = —(WY) HE,. \Hz,. AWY,

V32€n(a7027,’7) = L %{Y(O‘) —Zn — Xd,*e(a,'r])}—r{Y(a) —7ZIn — Xd’*e(aﬂ?)},

204
1
Vﬂv"llen(aa 027 T’) = _EZTng* ,AHX¢* 7AZ7
1
Vavazgn(av 027 77) = _E{Y(CO - ZT] - X¢*9(a, n)}Twa*aAWYa
1
Vav"lg’ﬂ(aa 027 77) = _EZTH;{E’,* ,AHX,,,x ,AWY7

1
e v'r)gn(aa 027 T’) = 7§ZTH;§F¢* ,A{Y(a) - ZT’ - Xi/)*e(aa 71)} (B21)

We first study the asymptotical normality of n=1/?V (£, (k)|x=x,. According to Lemma [1} for
Br(s1,82,1), k =1,...,pa, there exists 6 such that sup(,, s, yeax7 |Bk(51,52,1) — " (s1, 59,1) 05| =

O(he 4 |A|%t1). Denote that 8* = (8 ',..., 0;;) . Notice that

Y(Oéo) - ZT’O - X¢*0(O{0, 7’0) = HX¢*7A(€ + C) + L,

where ¢ = (§17~~~7§n {Z zkﬁk(Sﬂ;SzQ»T) zk'd) (51175227T Ta } and ¢ =
(t1y-+ oy tn) " = Xy=(Py, +Py,)0". Note that by Lemma in Appendix B, we have ¢; = Op(h? +
A7) and ;= Op(M|A]7TAY2 4 X|AIRT3/2), i = 1,...,n. Therefore, Voly(o,0%,0)|x=ro,

Vooln(a,02,m)|k=ro, and Vil (a, 0%,m)|k=r, are dominated by

—tr(G) + 0 %€ Hy . \Hx,. AGpo + 05 e Hy . \Hx,. 1Ge,

—0.505 *n +0.504 ‘e ' Hy . y\Hx,. a€, and — oy’ Hy . \Hx,. AZ,

respectively. By Lemma in Appendix B and (B.20)),

1 1 1 1
—Vaﬁn(a,aanﬂn:,{o =——tr(G) + 2eTHX . AGR + QETGG +op(1),
VT @ T M N

1 NG
= En 2 K=Ky — 8 _9 T 1 )

\/ﬁvaz (Oé,O’ ,TI)| =Ko 20_8+2\/ﬁa_616 6+0P( )

1

1
—Valn(a, o2, M k=r, = —ﬁeTwa AZ+op(1).
Vn Vnog

According to Theorem 1 in [Kelejian and Prucha/ (2001, the central limit theorem for linear-quadratic

functions can be applied.
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Under Assumptions (A1) — (A8), we have n‘l(uo—Zno)TH;gw AHx . a(po—Zmg) = O(|A[P4H2 4
h2r). Similar to the above discussion, by Lemma in Appendix B and (B.21]), we have

1 1
0V (0,0 0) g = —tr(G?) = — (Gatg) THE, yHiz, . Gtg — —€ G Ge+op(1),
0 0
V2L (0, 02, 1) ey = — — —eTe + op(1)
g " 208  o§

_ 1
n lvﬂvﬂ’gn(av 02a n)ln:no = _;ZTH;{I—#,* ,AHXw*vAZ + OP(l)a
0

1

NIV o Ve ln(a, 0%, )| ker, = —76TG6 +op(1),
90

1

TL71V()¢V7’]€TL(O[’ 025 77)|H:'i0 )
90

ZTH;&Z,*,AHXu;* 7AGHO + OP(1)7
1

NV 52 Vipln (o, 0%,m) | ker = —?ZTH%—W,AG +op(1).
0

Then, it is straightforward to show that

B {7V el (K)o Vil () o } = S + 2y + (1),

E{n"'VuVuln(K)|kere } = —Zn + o(1).

By (B.19), Theorem [2]is established. O

B.3 Proof of Theorem 3|

Theorem [B-1] below shows the estimation consistency of the oracle estimator.

Theorem B.1. Under Assumptions (A1) — (A8), the oracle estimator B = (B1,...,Bp,) " satisfies
that |8 — BollL. = Op (|A17F + ke + M\in~HA|73R™Y2 4+ Aon=HA|TLR™5/2 4 n 12| A7 1h~1/2).

Proof. We first decompose p, as follows
T
Mo = M + py = (ano, ceey Z::’lo)—r + {Xfﬁo(Su, S12,T1), ... ,X;Lrﬁo(snla Sn?aTn)} .
Then, we can write

é = U22X;* (In — HZ)(NC + M~ + 6) = UQQXL* (In — HZ)/J/V + UQQXL* (In — Hz)e = 0,,, + ée.

According to Lemma [1] in the main paper, for Bro(s1, s2,t), k = 1,...,pa, there exists 0} such that

SUD (s, 55,1 0T |BR0(51, 52, 8) =" (51, 52, )7 07| = O(h?4|A|9t1). Denote that 8* = (67 ',... ,H;I)T,
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By = " (s1,52,t) " 0%, and B (s, s2,t) = {B7(s1,2,1),..., 55, (s1,52,8)} . Denote " = {X . (I, —
HZ)XW}_1XL (I, — IIz) p¥, where

wy = {X] B (S11, 512, T1), - - ., X B*(Sn1, Sn2, Tn)}

Then, we have the following decomposition: 6 —8* = ,,—60*+6.. Notice that 8, —6* = UQQXL* (I, —
Hz)(py — Xyp-0%) — UgaPy, 0° — UssPy, 0%, Hence, |10, — 0*|| < |[U2X - (I, — TIz) (ptyy — X 07)|| +
U2y, 0%[| 4 [[U22Py,0%|| holds. Lemma [C.1]implies that

[UsaX e (I, — Thz) (pty — X367 < 0| A2 [ X (L, — Tz (pry — X-67)]
97 1/2

P2 n
< CnTHAPRTH(AITT 400 1Y {Z |Xikwj(SiIvSiQaTi)|}

k=1jeg li=1

= Op{|A|T RYV2(JA|H + ho)}. (B.22)

According to Lemmas and [C.2] we have
1/2
[UpPA0"|| <CntA|72R7H[PA*[| = Cn7H A 2h 71D (e PAO")?
J

=0p(Mn AT+ XonHAT2RTY), (B.23)

where e; is a vector with jth element being one and the rest of elements being zero. Now we derive

the order of ||@.||. Observe that

16| = UsoX e (L, — IIz)e < n A 2h 7YX e

97 1/2

P2 n
<n T HAIPPRT DO {Z Xinthj(Si, SZ-Q,Ti)Q} =O0p(n~Y3A|72h7Y).  (B.24)
k=1j€J (=1
Combining (B.22)) — (B.24)) and Lemma [2| we established Theorem O

Proof of Theorem[3 To study the consistency of the estimators of coefficient functions, we first con-
sider oracle estimators S,k = 1,...,py. For a given A = (A1, X2), let (7, 8) be the minimizer of the

following penalized minimization problem

{Y (o) = Zn — Xy-0} " {Y(a0) — Zm — Xy 0} + 0Py, 0 + 0P, 0,

and 6 = (9;, . ,9;;)T. Therefore, the oracle estimators of fi(s1, s2,t) is

Br(s1,52,t) = P(s1,82,1) | Qa0
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Notice that Y(ag) = Eo=j ' (g + €) = py + €. Then, we have

N=UnZ" (I, — Xy T ' X)) (o + €), 0 = UnoXe (L, — TIz) (g + €).

Notice that 6 = (é:—,... 0

L 2

)T = UpaX ). (I, — Hz)ZY and 8 = UpX]. (I, — IIz)E(@)Y. For
any k= 13"'ap27 let Bk(slas%t) = ¢*(517527t)—rék3 and B\k(sla"s?,t) = ¢*(517527t)T§k' Thena by

Theorem [2] Lemma and Lemma [C.6] in Appendix B, we obtain that

16 = 8]” = n~![UzeX e (I, — ) GE Y [* = n*| T [ Xy (L — TI2) G (e + €)1

=073 T P Xy (L = Tz) Gpao||* + 03| T [ X e (T — M) Gl < 0~ YT |+ 02| T .
Also, Theorem [B-1]in Appendix B implies that

1B — Boll < |A[WY2)6 8] + (18, — B

=0p (‘A|d+1 + he + >\1n—1|A|—3h—1/2 + )\Qn_l‘A|_1h_5/2 i n_1/2|A|_1h—1/2> .

Theorem B is established. O
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Appendix C. Additional Technical Lemmas

Lemma C.1. Under Assumptions (A1) — (A8), for Ty in and Ugy in in the main paper,
there exist constants 0 < ¢; < Cp < 00 and 0 < ¢cg < Cy < 00, such that, with probability approaching
one, as n — oo,
c1n] AP < Mnin(Ta) < Amax(Ta) < Cy (n|A|2h + M A T2h + /\2|A|2h73) , (C.1)
o APR < Amin(Uss) < Anax(Usg') < Ca (0| APR + M |A[T2h + Ao |APPRT3) . (C.2)
If An =A™ = 0 and Mn YA = 0 as n — 00, then Amax(Ta) < C1n|APh and Apax(Usy') <
Con|AI*h hold.

Proof. Tt is easy to see that, for any vector 8 = (0?, e ,0;2) ,

B )\1 D2 )\2 D2
n 10 TA0 = ||97||3L + " Z7Z[<¢j7¢j'>f1]j;j’€.77k + n Z’VkT[<1/Jj71/Jj’>fz]j,j’eJ’7k

k=1
2 2
)\1 P2 )\2 P2
2
=||97||n+;2 > g +;Z > it
k=1||7€T f1 k=1 |ljeT fa

where v = (74, ... ,'ym)T = Q50 with v, = (v;,7 € J)" and Gy = (Gryys - ’g'sz) with g,, being a

spline function with coefficient «,. Using the Markov’s inequality, we have

2

Z Z ’Vk‘j’l/)_] |A‘4 Z Z Fyquzzjj S C|A|72h||7||2?
k=1 ||jeT k=1||jeT Lo
2 2
P2 C D2 9 3 9
ST it S5 T wis| < CIAPRTE P
k=1||jeT fa k=1||j€T Lo

Therefore, by Lemma [A74] the largest eigenvalue of the matrix I' satisfies that
Amax(Ta) < C {(1 + Ro)|APh 4 Mn A 2R+ )\zn_1|A\2h_3} .

Consequently, we have Apax(Ta) < C1 (|APR 4+ An ™ A[72h + Agn~ ! A]2R™?) with probability ap-
proaching one, for some positive constant Cy. Using Lemma again, it is easy to obtain || gvaL =
(1 = Rn)llg4lI? > c(1 — R,)|A[*R||7][*. Therefore, the smallest eigenvalue of T'y is greater than
c(1 = R,)|APh = c1|A?h. Let

I 0
YT = :
—\A|—1h—1/2XTp*Z(ZTZ)—1 I
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where I is the identity matrix and 0 is a matrix with zeros. Denote D* = (Z, |A|7'h™1/2Xy+) T, then
we have
Tt 777 0
YT D' DY =
0 |A|_2h_1X;’;* (I, — z)Xy-
Lemma and Assumption (A4) implies that there exist co and Co such that Ay, (D*TD*) > con
and Apax(D*TD*) < Con. According to the fact that the eigenvalues of Y are equal to one and

properties of spectral radius of a squared matrix, we have

Anax (X TD*TD*Y) = p(XTD*TD*Y) < p(X )p(D*TD*)p(Y) < Can,

Amin(X TD*TD*Y) = {/\maX(T‘l(]D)*T]D)*)‘l(‘I‘T)‘l)}_l > {\ (D*TD*)}_l > com,

where p(-) represents spectral radius of a squared matrix. Therefore,
on| APR < Amin (Xgpe (T — T2) X+ ) < Amax (X (I — Tz) X+ ) < Con| A*h.
Similar to the discussion about the eigenvalues of (C.1f), we obtain (C.2). O

According to Lemma [1| in the main paper, for Bro(s1,s2,t), K = 1,...,pa, there exists 0}, such
that

sup  |Bro(s1, s2,t) — 9 (s1,82,8) 0| = O(h? + | A4, (C.3)

(81,32,t)€Q><7-

Let % = (077, .. .,OZZ)T and B} (s1, s2,t) = ¥ (s1, 82,t) ' 05. In addition, denote B*(s1, sa2,t) =

{Bi(s1,82,1),..., ;Q(Sh 52at)}T~

L 2]

Lemma C.2. Let 0% = (017,...,0°1)T, where 0} ’s are defined in . Under Assumptions (A1)

- (A8), for any vector a with ||al| = 1, we have

la™ (Px, +Px,)0"|

= O (D17 B2 + [AJRY2 4 | AR 2) £ 2 (1AI3/2 + | AIT2H5/2 1 [ Afhe- )},

where Py, and Py, are given in .

Proof. Let a = (ay ,...,a,,)", then we have
P2 P2
a' (P, +P),)0" = > Mal QI P1Q:0; + Y Aaay Q) P2Qs6; (C.4)
k=1 k=1

D2 D2

b2 b2
= MWas B s+ D AeWars B s < D Mllar 1Bkl + D Mllva 718l

k=1 k=1 k=1 k=1
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where 1, (51,52,t) = 1" (51, 52,t) " ay is a tensor-product spline function. By Markov inequality,
[baillF, < CLUAIT [ Gar [, < [AI2hllakl?, [Ya,l?, < Coh™Waill7, < 1APR?(lak®.  (C.5)

Combining Lemma [1} (C.4)), (C.5) yields Lemma O

Lemma C.3. Under Assumptions (A1) — (A8), IIp  is bounded in both column and row sums, and

the elements in IIp 5 are Op(n= Y A|72h™1) uniformly for all i, j.

Proof. Notice that

Uy —U11V12V§21 z"
H]DJ,A = (Z X¢*> )
7U22V21V1_1 U22 X;*
= ZUnZ" — Xy UppX Tz + Xy UgoXope — ZUNZ T Xpr (X e X ) 7' Xy, (C.6)

where U1 and Usgg are defined in {j Note that n‘lUﬁ1 is a consistent estimator of n‘lE{Z —
XTg*(Sy,S2, T)HZ —XTg*(S1, 82, T)} T, which is defined in the Assumption (A5). Assumption (A5)
implies that there exists a constant C' such that, for any ¢ = 1,...,n, Z?:1 |Z/U11Z;] < C and
Z?:l |Z]-TU11Zi\ < C. Thus, ZU1Z7 is bounded both in row and column sums. Next, we prove
Xy (XT—Z*XW)*XL is bounded both in row and column sums. Observe that

n

D {Xi @ %" (Sin, Siz, Ti)} T (X X)Xy @ 9™ (Sp1, Si2, Tv) }

t=1

< E nTHAIT2RTIC|XG @ 4t (Si, Siz, T Xe @ 97 (S, Si2, Th)|
(St1,S¢2,Te)€esy
D2 v

+ Z ¢ Z Z X Xow i (Si1, Siz, Ti) 0 (S, Se2, Ty) < C,

(St1,St2,Te) ey k,k'=17,j'=1

where e(;) represents the triangular prism contains (Sii,S2,T;). Hence, Xd,*(XJ,*XW)*lXL is
bounded both in row and column sums. Similarly, we can prove qu*UQQXl* is bounded both in
row and column sums. By , we have Ilp o and X¢*U22X1—Z*HZ are bounded in both column and
rOwW Sums.

Also, the elements of ZU1;Z" and IIy are Op(n~') uniformly for all 4, j. The elements of
Xy UgoXye and Xy (X Xy ) 7' X are Op(n™|A|7?h7") uniformly for all 4, j. Applying the
property in Lee (2004), we have the elements in IIp o are Op(n~!|A|72A~!) uniformly for all 4, j.
Lemma [C.3]is established. O
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Lemma C.4. Under Assumptions (A1) — (A10), we have

n g (I, = Mpa) T (L, — T a) g

= Op{|AP"2 + W%+~ (R[A7°h ! + A A 7207},
n_ll"’(TGT(In - HD,A)T(In - H]D),A)V’O

= Op{|AI" + 12+ n 2| A TPRT2 4 XN ATTR T2,
n~te (I, —Mpa) " (I, — Mp a)pg

= Op{n 2|A1M 4 07 2R 40T (A A[TPRTYE 4 X ATTRTI2)Y,
nileTGT(In - HDA)T(ITL —TIIp A) o

= Op{n V2IAIT 407 V2Re 40 (N |A[TPRTY2 4 Xa A TR TI2)),

where Tp y is defined in (B.3).

Proof. Notice that gty (I, — Hp,a) " (I, — IIp a)po = [|(Tn — Il o) | and

(I, — Mo a)pe = (I — Mpa) {Z] o + X By(Si, Siz. Th) }_,

= (I, —Ipa) {Zz'Tno + X B*(Si1, Sia, Ti) + X[ Bo(Sit, Sia, Ti) — X[ B*(Si, Si2, i)}

= (In - HD,A) {X;F/BO(SZI7SZ27TZ) - X;F/B*(S7417S1,27T1)}7:1 + DV_IPA(n(—l]—va*T)Tv

where 8* = (67 ",..., 0;;)—'— with 0}’s in 1' then we have

_ «T U;; Uy 0 0 N
DV~ 'PA(n),0% )" = (Z X4)

Uy, Uspy 0 Py +Py, 0"

i=1

—1 _ _
= {Z {Z7 (X, - Tx,. A)Z} LT Xy (X Xpe )7+ Xy {X e (L, — Tz)Xpe + Py, + Py, 17"

X (P, +Px,)0" = {(bi1 + bia) " (P, +Px,)0"},
where Ilx . A and Iz are defined in , and
b =Z] {27 (1, — Ty, \)Z} 27 Xy (X)X )1,
bio ={X; ® 9" (Si1, 82, 1)} {Xype (I — Tz) Xy + P, + Py, } 70
Lemma [C.1] yields that, for any i = 1,...,n,

_ _ _ —1
bl < Cn A2 Y ZT {27 (X, — T,y )2} 27 Xy

bizll < CnHA[T2RTHIX: @ 97(Si1, Sz, Th)|| = Op (™! |A[ 7207,

— OP(nfl‘A|flhfl/2)7
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By Lemma and Assumption (A8), we have

In 2DV 1Py (nd, 6" )T ||
1/2

n 1/2 n
<t {Z 167, (B, +PA2>9*||2} +nt {Z 152, +PA2>0*||2} (C.11)
=1

=1

= Op{Mn YA TBATY2 £ \on AT TRTE/2Y

According to the SVD decomposition of matrices D and Py, we can prove that Apin(IIpa) > 0

Thus, we have

(I, — Hp,a) { X By (i1, Si2. Ty) — X B (S, 5¢27ﬂ)}?:1 I
< Amax(In —IIp A)|| {X;rﬂo(sila Sio, T;) — X;ﬁ*(sm SizaTi)}jzl I

= {1 = Anin (T A) | {XS Bo(Sin, Si, Th) — X B*(Sin, Sia T3) }_, |l
1=1

= O{n'2(|A|* + ho)}. (C.12)

Combining (C.11)) and (C.12)), we obtain (C.7)). By Cauchy Schwarz inequality, we have

[n pg GT (T, = Tpa) " (I, — TIp a) ol < 07 H|(Tn — TIp,a) G ||| (L, — TIp o) T (T, — Thp p) o]

= Op{|A|" + ke + 0 2 (0] AITRT 4 Ko A 2R3,
which yields (C.8)). By the properties of €;, we have E{e" (I, — Ip )" (I, — IIp ) pe} = 0, and
Efe" (I, —Hp,a) " (I, — Opa)po}? = E[|(L, — o) " (L — Tp,a) ||

= O(n|APP4T2 £ nh2e 4+ A3A 78R =2 + M2 A| R0,

Thus, we obtain .

Similarly, we have E{e' GT(I,, — IIp )" (I, — IIp )i} = 0. According to Lemma (I, —
IIp ) is bounded both in row and column sums. Then, G(I,, —IIp 4 ) is bounded both in row and col-
umn sums, and Var{e G (I, —=Tpa)" (I, —Tpa)pe} = E{|GT (X, —Mpa) " (I, — Hp a)pol?} =
O(n|A|24+2 + nh?e + M A|78h=2 + \3|A|=*h~F), which yields (C.10). O

Lemma C.5. Under Assumptions (A1) — (A10), we have

n~te (I, —Tpa) (I, — p A)Guy = op(1), (C.13)

nle"GT (I, —Tpa) (I, — Mp A)Gpy = op(1), (C.14)

where Ilp 5 is defined in .
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Proof. Note that (I, — IIp )" (I, — IIp )G is bounded both in row and columns sums. Then
E{e"(I,—TIp ) " (L, —Tp A)Gpy} = 0, Var{e (L, —TIp ) " (I, —TIp,a)Gpo} = B[ (I, —Tpa) " (I, —
IIp A)Gpugl* = O(n), which implies . Similarly, E{(Ge)T (I, — Mpa) " (I, — MpA)Gpg} = 0
and Var{(Ge) " (I, — Ipa) " (I, — pA)Gpo} = E{[|G" (I, — Hpa) " (I, — Tp a) G} = O(n).
Therefore, holds. 0O

Lemma C.6. Under Assumptions (A1) — (A10), if C,, is uniformly bounded both in row sums and

column sums in absolute values, then we have Hn_IXJ*CnuOHz = Op(|APR).

Proof. Note that
n n T
X;*Cnuo = {Xl & ¢*(Sll7 8127 Tl)u LR 7XTL ® ¢*(Snl7 S’n27 Tn)} (Z cn,liMO'h sy Z Cn,niﬂoi)
i=1 i=1
Z Szl, Si2, T; ) Z Cn i’ J40,i’
i=1 =1
where X;r (29 ’lp*(Sil’ SZ‘Q, T’Z)T = {X;r (39 ’lﬂ(Sil, Sig,n)T}(IPQ X QQ) Then we have

“2(X g Cttg) T (X Cratg)

=[n"! Z{Xz @ P*(Si1, Si2, Tj)} 1 Z Cn,ii’MO,i"| ln_l Z X, @Y™ (S, Si2, T;) Z Cn,ss' 1O, s’

i=1 ir=1 s=1 s'=1

= [n_l Z{Xz @ P(Sit, Sia, Ti)} ' Z Cn,ii’MO,i’] (I, ® Q2)(I,, ® Q5 )

i=1 =1
l _1ZX ®’¢}Szl75127T chSSMOS]
s'=1
SCIn?QZZ ‘{XL ®¢(Si1a‘gi23 )} {X ®'¢ SzlaSlQa }| Z Z |Cn i’ ch ss’ |
i=1 s=1 i'=1s"=1
1 — 1 —
= ;lb(sﬂa Si2yTi)TE i/z::li/’(SmTi/) = Op(|A2h).
Lemma [C.6] has been established. O

Lemma C.7. Under Assumptions (A1) - (A12), we have

n_l/QeTHXW,AHXW’AGuO =op(1), (C.15)
nil/QETHXu)*’AHXTp*’AZ = Op(l)7 (CIG)
nil/QeTHXW’Ae =op(l), nil/QeTH;grw_’AHXW’Ae =op(l), (C.17)

n_l/QeTHXW,AGe =op(1), n_l/geTH;gw’AHXW’AGe =op(1). (C.18)
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Proof. First, we prove that 1) holds. Note that E(GTHX¢*,AHX¢*,AGN0) =0, and

Varl/Q(ETHXw,AHXW,AGNO) = M, . AHx,. A G

= [|(Xyp T3 Ko — Xopr T3 Ko X T X ) Gt |

n 1/2
* — _ 2

D {Xi @ " (Sir, Sz, T)T ' PAT Y ' Xy, Gt }

=1

= || Xy T 'PAT, "X G || =

n 1/2
< Cun 2| AR+ Aen T ATRT?) {Z 1Xi @ %" (i1, Sia, Ti)IIQIIXLGuoHQ}

i=1

= OP()\ln_l/Q‘A|—5h—1/2 + )\Qn_l/2|A|_1h_9/2).

Thus, (C.15) holds. Similarly, we can obtain (C.16]).

Note that E|eIIx,,. €| = tr(IIx,. a), E\eTH;gw*’AHXW,Ae\ = tr(Hg¢*7Awa*,A). According

to Lemma [C.1] we have
tr(Ix,. A) = Z{Xz ® " (Si1, S, Ti)} T X, @ ™ (Sin, Sin, Ti)} < C|A| 7207,
i=1
tr(Hsg,,*,AHXW,A) = Z{Xz‘ ® " (Si1, Sia, i)} T Ty X e Xop Ty X @ 7 (Si1, Si, T3) }

i=1

< C|AI72h71.
Therefore, by Property P4 in Appendix A,
Eln~'?e My ,. re| = O(n~'2|A|2h7Y), Bln~'/?e Ty | \Tx,. €| = O(n~'2[A[ 7).

By Assumption (A8), n~'/2€IIx,. € = op(1) and nil/QeTHBEW’AHwaAe = op(1), which yields
(1C.17).
It remains to show that (C.18) holds. Note that, by Property P4 in Appendix A,

n
Var(e 'TIx,. AGe) = (my — 307) Z(wa*vAG)zZi + ogtr(Tx,. AGIx,. AG)

i=1

+ Uétr(GTH;gr¢* Alx,. AG),

and (HXW,AG)“» is the (i,i)th entry of matrix Ilx . AG. Let (Ilx,. a):; be the (i,j)th entry of
matrix Ix . A. Lemma implies that

(Thx,. )ij = {Xs @ " (Sin, Sia, Ti)} T H{X; @ (551,552, Tj)} = Op(nH AT R,
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Hence, Y1 | (Ilx,. AG)3 < Cin?|A[T*h 7230 (3011 (G)ij)? < Con ' A|7*R72. In addition, we

i = j=1

have (Ix,. AG)i; = Op(n~'[A]72h71), and

tr(HX,P*,AGHX#,*,AG) = Z Z(wa*,AG)ik(wa*,AG)ki = OP(|A|_4}L_2),
i=1 k=1

tr(G 'y, z\Hx,. AG) = (Mx,. AG)ik(Mx,. AG)ik = Op(|A]7*A7?).
ap
1=1 k=1

Thus, Var(eIx,. AGe) = O(|A|7*h™2). Also, E (€'Ilx,. AGe) = tr(Ilx,. AG) = O(|A[72h71),
and Assumption (A8) implies (C.18)). Similarly, the second part in (C.18) can be established. O
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Appendix D. More on Implementation and Numerical Results

D.1

Choosing the optimal block size

For spatiotemporal process, there are two kinds of block sizes: the spatial block size and the temporal

block size, see [Valavi et al| (2019). In the spatial sense, the range, which is a crucial parameter in

the variogram, can be used to define the optimal separation distance between the testing and training

sets. We use the empirical variogram to estimate the range. At each observed time point, we calculate

the empirical variogram and get the corresponding range estimator. Let bg be the 0.7 quantile of

the estimated ranges. The spatial block size is set to be 4b§. In the temporal sense, we calculate

the empirical autocorrelation function (ACF) at each fixed location and find the smallest time point

where the empirical ACF is approximate to zero. The temporal block size br is set to the 0.7 quantile

of these estimated time points. In our proposed method, we first use the random CV to fit the model.

Following the above procedures, we use the residuals to decide the block sizes. Then, we refit the

model using block CV.

D.2

Additional simulation results

Figure (a)—(c) show the box plots of the MISEs of the estimators of the varying coefficients.
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Figure D.1: Boxplots of MISEs of the estimators of S in Simulation Study 1.

Figure [D-3]shows the sequences of spatial plots of the true coefficient functions evaluated at time

points ¢ = 0.0, 0.17, 0.50, 0.83 and 1.0. It also depicts the sequences of the estimated coefficient

functions via the TPST and GTWR methods based on a typical run in Simulation Study 1 with
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ng = 200, np = 50 and o9 = 1. These TPST plots are obtained using ¢ = 3, d = 2, r = 1 and the
triangular prism shown in Figure |2 in the main paper.

Figure illustrates sequences of spatial plots of the TPST estimated coefficient functions for
a typical run in Simulation Study 2, where the plots are based on six different triangular prisms with
ng = 100, np = 30 and o9 = 0.5. It is hard to tell the difference among the plots produced by different
triangular prisms, which implies the effect of different triangular prisms is negligible. Figure show
Agyq=1,2,3.
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Figure D.2: Triangulations on the horseshoe domainconsidered in Simulation Study 2.

Table reports the mean squared error (MSE) for the TPST estimators of the constant param-
eters and the mean integrated squared error (MISE) of the TPST estimator of the varying coefficient

function in Simulation Study 2.

D.3 Data and results in the COVID-19 study

Figure presents the triangulation used in the application example.

Tables and show the sources and the detailed explanation of the county-level predictors
used in the modeling of COVID-19 infection and death counts.

The fitted varying coefficient functions of S in the death model are shown in Figure in
which Figure (a)—(f) present the estimated coefficient function maps of at six different days from
April to June.

Figures (a)—(d) in the Supplementary Materials show example cases when the traditional SIR
model does not work. Without integrating the nearby information, the county-level prediction of SIR
is sensitive to observed data of each county. For example, in Figures (b) and (d), there are jumps

in the cumulative infected cases, which leads to severe over-predictions in the following seven days.



SPATIOTEMPORAL AUTOREGRESSION

Table D.1: Mean squared error (MSE) and mean squared integrated error (MISE) of the estimators

of the constant (functional) parameters and the average computing time in Simulation Study 2.

MSE (x10-°) MISE (x109)

(ns,nr) 0o Method
a o° 00 o1 To2 Bo1
TPST(&) 034 006 3477 010 0.08 721
TPST(E) 034 006 3464 010 0.08 7.45
o; TPST(E) 034 006 3494 010 008 7.38
S TPST(&) 035 007 3522 010 0.08 7.68
TPST(E5) 035 007 3564 010 0.08 7.97
TPST(E) 035 007 3583 010 0.08 8.08
(100,30) TPST(&,) 104 1.08 10618 039 033 19.00
TPST(E;) 1.04 107 10637 039 0.33 19.45
TPST(E;) 1.04 107 10626 039 0.33 19.35
Lo rpsT(g) 110 114 11245 039 033 20.56
TPST(E) 1.09 117 11114 039 0.33 21.37
TPST(&) 111 1.20 11320 0.39 0.33 21.85
TPST(&;) 025 0.03 2502 004 0.04 5.39
TPST(E,) 028 0.03 2836 0.04 0.04 5.64
TPST(E;) 025 0.03 2515 0.04 0.04 5.55
05 TPST(E,) 024 004 2387 004 0.04 5.77
TPST(E;) 023 0.04 2304 004 0.04 5.99
TPST(E) 022 004 2255 0.04 0.04 6.06
(100,50) TPST(&;) 0.76 055 7668 0.16 0.16 14.10
TPST(E,) 0.69 055 69.66 0.16 0.16 14.34
TPST(E;) 076 055 77.68 0.6 0.16 14.27
1O TpsT(6) 076 057 7727 016 0.16 15.10
TPST(E;) 073 058 7443 0.6 0.16 15.70
TPST(&) 073 059 7467 0.16 0.16 16.02
TPST(£;) 0.8 003 1851 003 0.05 444
TPST(E;) 020 0.03 2044 003 0.05 4.63
TPST(E;) 019 003 1950 0.03 0.05 457
05 TPST(E,) 020 003 1990 0.03 0.05 474
TPST(E) 019 003 1938 003 0.04 .90
TPST(E) 019 0.03 19.03 003 0.04 1.97
(200,30) TPST(&;) 059 051 5954 013 0.8 1171
TPST(E) 055 051 5533 013 0.8 11.90
TPST(E;) 056 051 56.84 013 0.18 11.85
L0 rpsT(e) 055 053 5583 013 0.8 12.54
TPST(E) 054 054 5473 013 0.8 13.03
TPST(E) 053 055 5380 013 0.18 13.30
TPST(&;) 008 0.02 844 003 0.02 3.25
TPST(E) 010 0.02 1017 0.03 0.2 3.41
os TPST(E) 010 002 962 003 002 3.36
S TPST(&) 0.09 002 933 003 0.02 3.49
TPST(E5) 000 0.02 916 0.03 0.2 3.62
TPST(E) 000 0.02 927 003 0.02 3.67
(200,50) TPST(&,) 020 029 205 013 0.09 8.20

1
TPST(E) 030 028 29.99 013 0.09 8.37
TPST(E;) 020 028 28.74 013 0.09 8.32
L0 TpsT(e,) 031 020 3068 0.3 0.09 8.85
TPST(E5) 030 030 29.88 013 0.09 9.21
TPST(E) 029 030 2933 013 0.09 9.43
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Table D.2: Sources of datasets
Data Type Source

COVID-19 Related Time-series

Infections Data NYT|(2020); |Atlantic|(2020); |(CSSE|(2020); USAFacts|(2020)
Fatality Data NYT|(2020); |Atlantic|(2020); |(CSSE|(2020); USAFacts|(2020)
Recovery Data Atlantic|(2020)

Mobility Data

Bureau of Transportation Statistics BTS|(2020)

Descartes Labs Warren and Skillman|(2020)
American Community Survey (ACS) Data

2005-2009 ACS 5-year Estimates USCB|(2018)
2012 Economic Census USCB|(2012)

Homeland Infrastructure Foundation-level Data |[DHS|(2020)
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Table D.3: County-level predictors used in the modeling of COVID-19 infection and death counts.

Covariates Description

Demographic Characteristics

AA Percent of African American population

HL Percent of Hispanic or Latino population

PD* Population density per square mile of land area
Old Aged people (age > 65 years) rate per capita
Sex Ratio of male over female

Socioeconomic Status
Affluence A measure of more economically privileged areas, including:
Percent of households with income over $75,000
Percent of adults obtaining bachelor’s degree or higher
Percent, of employed persons in management, professional and related occupations
Median value of owner-occupied housing units
Disadvantage A measure for conditions of economic disadvantage, including:
Percent of households with public assistance income
Percent of households with female householder and no husband present
Civilian labor force unemployment rate

Gini Gini coefficient, a measure of economic inequality and wealth distribution

Rural/urban Factor

Urban Urban rate

Healthcare Infrastructure

NHIC Percent of persons under 65 years without health insurance
EHPC Local government expenditures for health per capita
TBed* Total bed counts per 1000 population

Mobility Change in number of trips since March 2, 2020
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Figure D.4: Sequences of spatial plots of the coefficient functions for Simulation Study 2 using TPST

with different triangular prisms.
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Figure D.5: Triangulation used in the TPST.
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(a) April 25 (b) May 5 (c) May 15

(d) May 25 (e) June 5 (f) June 15

Figure D.6: Spatial plots of the estimated coefficient functions in death model.
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Figure D.7: Plots of prediction performance using STAR-PLVCM, STAR-LM, STAR, and SIR for the
cumulative infected cases in DeSoto County, Florida (a), Gilchrist County, Florida (b), Lyon County,
Minnesota (c), and Portage County, Wisconsin (d). The prediction starts from June 19 and is based

on the training data from April 19 to June 18.
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