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Abstract: With increasingly abundant data that relate to both space and time

becoming available, spatiotemporal modeling is receiving much attention in the

literature. This paper study develops a class of spatiotemporal autoregressive par-

tially linear varying-coefficient models that are sufficiently flexible to simultaneously

capture the spatiotemporal dependence and nonstationarity often encountered in

practice. When spatial observations are observed over time and exhibit dynamic

and nonstationary behaviors, our models become particularly useful. We develop

a numerically stable and computationally efficient estimation procedure, using the

tensor-product splines over triangular prisms to approximate the coefficient func-

tions. The estimators of both the constant coefficients and the varying coefficients

are consistent. We also show that the estimators of the constant coefficients are

asymptotically normal, which enables us to construct confidence intervals and make

inferences. The method’s performance is evaluated using Monte Carlo experiments,

and applied to model and forecast the spread of COVID-19 at the county level in

the United States.
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1. Introduction

The wide availability of data observed over time and space has stimulated

studies in a variety of disciplines, such as economics, environmental science, epi-

demiology, and many areas of health studies. At the same time, spatiotemporal

data are generated at scales and levels of complexity far beyond what could have

been imagined previously. For example, there are many large-scale economic

studies based on panels of data collected at the census tract, city, or county level

with an implicit, but complex spatial structure. The observations in data can

be regularly or irregularly distributed in space or time. Complex data call for
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statistical models that are sufficiently flexible to adapt to underlying signals, al-

lowing scientists to discover unknown patterns and predict the time evolution of

the variables of interest. Although spatiotemporal models have gained in popu-

larity in recent years, enhancing the capability of spatiotemporal modeling and

analysis remains a long-standing challenge.

In the statistical literature, there is a long history of using spatial data in

regression analyses to investigate covariate effects on response variables in the

presence of spatial correlation. The literature on spatial data modeling is over-

whelmingly dominated by “global” regression models, which intrinsically assume

that relationships between the regressors and the regressand are homogeneous

(stationary) over space and/or time. Classical spatial autoregressive (SAR) mod-

els, which fit linear models with autoregressive errors and spatial lags of the de-

pendent and independent variables, have attracted much attention in spatial data

analysis and its application in many fields. For instance, Kelejian and Prucha

(2010) developed a method of inference for SARs that allows for the possibility

of heteroskedasticity. Lee (2004) investigated the asymptotic properties of the

quasi-maximum likelihood estimator. Pace et al. (1998) and Lee and Yu (2010)

explored SAR models under a spatiotemporal framework. Xu, Wang and Shin

(2020) consider a dynamic spatial autoregressive quantile model using predeter-

mined network information.

However, in practice, many data exhibit clearly heterogeneous and nonsta-

tionary features; see the discussions in Cressie and Wikle (2011), Fotheringham,

Brunsdon and Charlton (2002), and Zhang and Wang (2015). The assumption

of stationarity or structural stability over time and space is generally unrealistic,

because the processes tend to vary over the study area and time period. For

instance, in real estate applications, spatially varying-coefficient models are use-

ful for capturing the spatial heterogeneity in housing prices and accounting for

local features (Helbich and Griffith (2016)). Neglecting these features might have

serious consequences for model estimation, such as biased regression coefficients,

resulting in inappropriate conclusions (LeSage (2008)). To incorporate nonsta-

tionarity in the regression models, Hoover et al. (1998), Cai (2007), and Chen, Li

and Li (2015) studied time-varying-coefficient models (TVCM) with correlated

errors. Fotheringham, Brunsdon and Charlton (2002) and Gelfand et al. (2003)

introduced spatially varying-coefficient models (SVCMs) to explore the spatial

nonstationarity of a regression relationship. In this study, we illustrate how spa-

tiotemporal dependence and nonstationarity can be modeled simultaneously in a

regression analysis framework.

Suppose there are n space-time observations An = {(S1, T1), . . . , (Sn, Tn)},
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where Ti ∈ T and Si ≡ (Si1, Si2)> ∈ Ω are the time and the spatial location,

respectively, of the ith observation. Let Yi be the response variable, and let

Zi = (1, Zi1, . . . , Zip1)
> and Xi = (Xi1, . . . , Xip2)

> be the explanatory variables.

We consider the following spatiotemporal autoregressive partially linear varying-

coefficient model (STAR-PLVCM):

Yi = α0

n∑
j=1

wijYj +

p1∑
`=0

Zi`η0` +

p2∑
k=1

Xikβ0k(Si1, Si2, Ti) + εi, (1.1)

where α0 is a global parameter, wij is the weight of the neighbor effects, satisfy-

ing wii = 0 and
∑

j 6=iwij = 1, for any i = 1, . . . , n, η0` are unknown coefficient

parameters, β0k(·, ·, ·) are unknown varying-coefficient functions, and εi’s are in-

dependent and identically distributed (i.i.d) random noises, with E (εi) = 0 and

Var (εi) = σ2
0, and εi is independent of Zi and Xi. In the rest of this paper, we

denote W = (wij) as the n × n weight matrix. The STAR-PLVCM accounts

for both spatiotemporal nonstationarity and autocorrelation simultaneously. In

addition, it offers greater flexibility in assessing varying effects at different times

and locations than do current global models in the literature. At the same time,

it preserves the simplicity and efficiency when some of the coefficients are indeed

constants.

The STAR-PLVCM encompasses many existing models as special cases, such

as the spatiotemporal autoregressive (STAR) model, when all β0k are assumed

to be constant (Pace et al. (1998)); the binary treatment model with spatial in-

teractions, when Xik consists of a constant term only; the semiparametric SAR

model, when Xik consists of a constant term only and its coefficient effect is as-

sumed to be spatially dependent only (Su and Jin (2010)); the partially linear

varying-coefficient model (Li and Liang (2008)), when there is no neighbor effect

in the model, that is, α0 = 0; the TVCM (Fan and Zhang (2008); Park et al.

(2015); Yang et al. (2006)), when only the time index is included in the coeffi-

cient functions; and the SVCM in Fotheringham, Brunsdon and Charlton (2002)

Gelfand et al. (2003), and Mu, Wang and Wang (2018), when only the spatial

index is included and neighbor effects are not considered.

The coefficient estimators play an important role in reflecting the spatiotem-

poral nonstationarity of the regression relationship and, thus, largely determine

the analysis results. Huang, Wu and Barry (2010) and Fotheringham, Crespo

and Yao (2015) developed the geographically and temporally weighted regres-

sion (GTWR) method to deal with both spatial and temporal nonstationarity

simultaneously by incorporating the temporal effects into the standard SVCM.



2122 YU ET AL.

Wu, Li and Huang (2014) proposed a geographically and temporally weighted

autoregressive (GTWAR) model to further account for correlation among the

observations. The GTWAR assumes that all coefficients are spatially varying.

However, in reality, some covariates may have homogenous effects, while others

have heterogeneous effects across locations. The STAR-PLVCM is a parsimonious

special case of the GTWAR.

Estimating the STAR-PLVCM is challenging. There are suitable methods for

spatiotemporal time modeling, such as the kriging or kernel smoothing methods

(Müller, Stadtmüller and Tabnak (1997)), when sufficient information is avail-

able in both dimensions and the data are regularly distributed over a rectangular

domain. However, in many cases, the observations can be dense at some loca-

tions or time intervals, while sparse at others, and the shape of the domain may

not be regular or show gaps and holes; see Sangalli, Ramsay and Ramsay (2013)

and Wood, Bravington and Hedley (2008), for example. As pointed out in Wang

and Ranalli (2007) and Ramsay (2002), many traditional smoothing tools, such

as kriging and kernel smoothing, perform badly when used to smooth data over

such complex domains, because they smooth inappropriately across the bound-

ary features (referred to as the “leakage” problem in the literature). Thus, we

propose using penalized tensor product splines over triangular prismatic parti-

tions (TPST), which are the tensor products of bivariate splines and univariate

splines, to overcome these challenges. We prefer the TPST, owing to their (i)

computational efficiency, (ii) ability to handle sparse designs, and (iii) convenient

representations with flexible degrees and various smoothness. To estimate the

proposed model in (1.1), we use the profile maximum likelihood (ML) method,

which is a popular method for (semi)parametric SAR models. Under some reg-

ularity conditions, we obtain the asymptotically normal distribution of the esti-

mators of the constant coefficients in the linear part, and derive the convergence

rates of the estimators of the varying-coefficient functions.

The rest of the paper is organized as follows. In Section 2, we describe

our model, briefly review univariate splines and bivariate splines over triangu-

lations, and introduce the penalized estimation method. Section 3 provides the

asymptotic properties of the estimators of the linear coefficients and the coeffi-

cient functions. Section 4 discusses how to implement the proposed methodology

in practice. In Section 5, we conduct simulation studies to evaluate the finite-

sample performance of the proposed method. In Section 6, we apply our method

to model and forecast COVID-19 infection counts and death counts in all counties

in the United States. Concluding remarks are given in Section 7. Proofs of the

main results are deferred to Sections A, B, and C in the Supplementary Material.
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Additional simulation results and a description of related COVID-19 data set are

given in Section D of the Supplementary Material.

2. Methodology

Denote n-dimensional vectorsY = (Y1, . . . , Yn)>, ε = (ε1, . . . , εn)>, and µ0 =

(µ01, . . . , µ0n)>, where µ0i = Z>i η0+X>i β0(Si1, Si2, Ti), η0 = (η00, η01, . . . , η0p1)
>,

and β0 = (β01, . . . , β0p2)
>. Let W = (wij) be an n × n weight matrix. Model

(1.1) can be written in the following matrix form: Y = α0WY + µ0 + ε. For

any value of α, denote Ξ(α) = In − αW. Then the equilibrium vector Y is

Y = {Ξ(α0)}−1(µ0 + ε). Denote Y(α) = Ξ(α)Y. For simplicity of notation,

we denote Ξ0 = Ξ(α0) in the rest of our paper. If the noise term ε is assumed

to follow a Gaussian distribution with mean zero and variance σ2In, then the

log-likelihood function is

Ln(α,η,β, σ2) = −n
2

log(2π)− n

2
log(σ2) + log(|Ξ(α)|)

− 1

2σ2
{Y(α)− µ}> {Y(α)− µ} , (2.1)

where µ = (µ1, . . . , µn)>, with µi = Z>i η + X>i β(Si1, Si2, Ti). We propose using

the profile log-likelihood approach to estimation the model. For each fixed α, we

maximize (2.1) with respect to η and β(s1, s2, t) to obtain the estimators η̂(α)

and β̂(s1, s2, t;α), respectively, which are functions of α. Next, to estimate α, we

plug η̂(α) and β̂(·, ·, ·;α) into (2.1), and obtain the estimators α̂ by maximizing

(2.1) with respect to α.

2.1. Tensor-product splines over triangular prismatic partition

For the estimation of the coefficient functions βk(·), we assume βk(·) are

defined over a 3D domain Ω × T , where Ω is a polygon on the spatial plane, T
is an interval on the time dimension, and without loss of generality, we assume

T = [t1, t2] throughout the paper. We propose approximating βk(·) using the

tensor-product basis of bivariate splines and univariate splines over triangular

prismatic partitions, detailed below.

2.2. Triangular prismatic partitions

Over the time domain [t1, t2], suppose there are N points {π1, . . . , πN} sat-

isfying t1 = π0 < π1 < · · · < πN < πN+1 = t2. Let Ib = [πb−1, πb), for

b = 1, . . . , N +1. Then, {I1, . . . , IN+1} is a partition of [t1, t2]. For the spatial di-

mension, we consider triangulation of a polygonal domain Ω, which is an effective
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Figure 1. An example of a triangular prismatic partition.

tool to handle data distributed on irregular 2D regions with complex boundaries

and/or interior holes. Lindgren and Rue (2015), Mu, Wang and Wang (2018),

and Yu et al. (2020) use triangulation to partition the spatial domain into tri-

angles. In the following, we use τ to denote a triangle, which is a convex hull

of three points not located in one line. A collection {τ1, . . . , τK} of K triangles

is called a triangulation of Ω = ∪Ka=1τa, provided that if a pair of triangles in 4
intersect, then their intersection is either a common vertex or a common edge.

Denote the size of 4 by |4|, which is the length of the longest edge of 4.

Note that, given triangle τa ∈ 4 and interval Ib ∈ T , ea,b = τa × Ib is

a triangular prism element. By triangular prism, we mean a prism with two

parallel triangular faces and three rectangular faces. The domain Ω×T can thus

be subdivided into the union of non-overlapping shape-regular triangular prism

elements, such that the nonempty intersection of any distinct pair of elements is

a single common vertex, edge, or face. In the following, let E = {ea,b, 1 ≤ a ≤
K, 1 ≤ b ≤ N+1} be a face-to-face partition of the polyhedron Ω×T into prisms;

see Figure 1 for an example.

2.3. Tensor-product splines

We define the tensor-product splines over a triangular prismatic partition.

We first introduce the univariate splines over the time domain, which is

a piecewise polynomial smoothly connected at its knots. The interior points

{πb}Nb=1 defined above can serve as the knots. For a fixed integer %, let π be a

knots vector of [t1, t2] with N interior knots that satisfies π = {t1 = π1−% = · · · =
π0 < π1 < · · · < πN < πN+1 = · · · = πN+% = t2}. The polynomial splines of order

% are polynomial functions with (%−1)-degree (or less) on subintervals [πb, πb+1),

for b = 0, . . . , N−1, and [πN , πN+1], and have %−2 continuous derivatives globally.

Let U%(π) stand for the space of such polynomial splines. A basis of U%(π) can

be formed as B-splines, which are denoted as U(t) = {U1(t), . . . , UN+%(t)}>.

Next, we introduce the bivariate splines over a triangulation4. For a nonneg-

ative integer r, let Cr(Ω) be the collection of all rth continuously differentiable
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functions over Ω. Given a triangulation 4, let Srd(4) = {ζ ∈ Cr(Ω) : ζ|τ ∈
Pd(τ), τ ∈ 4} be a spline space of degree d and smoothness r over triangulation

4, where ζ|τ is the polynomial piece of spline ζ restricted on triangle τ , and Pd is

the space of all polynomials of degree less than or equal to d. Let {Bm}m∈M be the

set of Bernstein basis polynomials for Srd(4) constructed in Lai and Schumaker

(2007), whereM is the index set of the Bernstein basis functions, and the cardi-

nality ofM, |M|, is K(d+1)(d+2)/2. Any function ζ(s) ∈ Srd(4), s ∈ Ω, can be

expressed as ζ(s) =
∑

m∈MBm(s)ϑm = B(s)>ϑ, subject to Hϑ = 0, where H is

the matrix that collects the smoothness conditions across all shared edges of trian-

gles, referred to as the constraint matrix. See Yu et al. (2020) for an example of H.

Denote the space of tensor-product splines over the triangular prismatic partition

E by T(%,d,r)(E) ≡ {
∑N+%

q=1

∑
m∈M cq,mUq(t)Bm(s); Hcq = 0 for cq = (cq,m,m ∈

M)>}. Let {ψj(s1, s2, t)}j∈J = {U1(t)B1(s), U1(t)B2(s), . . . , UN+%(t)B|M|(s)}
be the tensor-product spline basis functions, where J is the index set of the

tensor-product spline basis and |J | = (N+%)|M|. Then, any function φ(s1, s2, t)

∈ T(%,d,r)(E) can be expressed as

φ(s1, s2, t) =
∑
j∈J

ψj(s1, s2, t)γj = ψ(s1, s2, t)
>γ, subject to Hγ = 0, (2.2)

where γ is the spline coefficient vector, and H = IN+% ⊗H is the matrix that

collects the smoothness conditions across all the shared faces of triangular prisms.

The above basis can be constructed easily using via the R package TPST (Yu and

Wang (2020)).

2.4. Penalized tensor-product spline estimator

To balance the goodness-of-fit and smoothness, we consider the tensor-product

spline approximation with a smoothness penalty. Let λk,1, λk,2 ≥ 0 be the

penalty parameter, for βk, k = 1, . . . , p2. Suppose, for now, α is known. Given

{(Si, Ti,Zi,Xi, Yi(α))}ni=1, we consider the following regularized minimization

problem:

min
η`∈R, `=0,...,p1

βk∈T(%,d,r)(E), k=1,...,p2

n∑
i=1

{
Yi(α)−

p1∑
`=0

Zi`η` −
p2∑
k=1

Xikβk(Si, Ti)

}2

+

2∑
m=1

p2∑
k=1

λk,mfm(βk), (2.3)
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where, for any trivariate function β(s1, s2, t), f1(β) =
∫

Ω×T {(∇
2
s1β)2 + (∇2

s2β)2}
ds1ds2dt and f2(β) =

∫
Ω×T (∇2

tβ)2ds1ds2dt, and the tuning parameters λk,m con-

trol the smoothness of the fitted coefficient functions. For a tensor-product spline

function
∑

j∈J ψj(s1, s2, t)γj , we have f1(
∑

j∈J ψjγj) = γ>P1γ = γ>MU⊗PBγ

and f2(
∑

j∈J ψjγj) = γ>P2γ = γ>PU ⊗MBγ, where “⊗” denotes the Kro-

necker product, MU and PU are (N + %) × (N + %) matrices with (MU )q,q′ =∫
T Uq(t)Uq′(t)dt and (PU )q,q′ =

∫
T ∇

2
tUq(t)∇2

tUq′(t)dt, and MB and PB are

|M| × |M| matrices with

(MB)m,m′ =

∫
Ω
Bm(s1, s2)Bm′(s1, s2)ds1ds2,

(PB)m,m′ =

∫
Ω

{
∇2
s1Bm(s1, s2)∇2

s1Bm′(s1, s2)

+∇2
s2Bm(s1, s2)∇2

s2Bm′(s1, s2)
}
ds1ds2.

We approximate the function βk(s1, s2, t) by
∑|J |

j=1 ψj(s1, s2, t)γkj = ψ(s1, s2, t)
>

γk, where γk = (γkj , j ∈ J )> is the spline coefficient vector.

Using the tensor-product spline approximation in (2.2), solving the mini-

mization problem in (2.3) is approximately equivalent to solving the following

constrained minimization problem:

min
η`∈R, `=0,...,p1

γk∈R|J |, k=1,...,p2

n∑
i=1

{
Yi(α)−

p1∑
`=0

Zi`η` −
p2∑
k=1

Xikψ(Si, Ti)
>γk

}2

,

+

p2∑
k=1

λk,1γ
>
k P1γk +

p2∑
k=1

λk,2γ
>
k P2γk, subject to Hγk = 0, (2.4)

where γk = (γkj , j ∈ J )> is the spline coefficient vector, for k = 1, . . . , p2. We can

remove the constraint using the QR decomposition H> = (Q1 Q2)
(R1

0

)
, where

(Q1 Q2) is an orthogonal matrix, and R1 is an upper-triangle matrix. Simple

algebra shows that Q2 = IN+% ⊗ Q2. We reparametrize using γk = Q2θk, for

some θk. Then Hγk = 0 holds. Thus, the minimization problem in (2.4) is

converted to

min
η`∈R, `=0,...,p1

θk, k=1,...,p2

n∑
i=1

{
Yi(α)−

p1∑
`=0

Zi`η` −
p2∑
k=1

Xikψ(Si, Ti)
>Q2θk

}2

+

p2∑
k=1

λk,1θ
>
k Q>2 P1Q2θk +

p2∑
k=1

λk,2θ
>
k Q>2 P2Q2θk. (2.5)
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Let ψ∗(s1, s2, t) = Q>2 ψ(s1, s2, t), and denote

X>ψ∗={Xi⊗ψ∗(Si, Ti)}ni=1, X>=(X1, . . . ,Xn), Z>=(Z1, . . . ,Zn), D=(Z,Xψ∗) .
(2.6)

Let Λ1 = diag(λ1,1, λ1,1, . . . , λp2,1), Λ2 = diag(λ1,2, λ1,2, . . . , λp2,2), and

PΛ =

(
0 0

0 Λ1 ⊗ (Q>2 P1Q2) + Λ2 ⊗ (Q>2 P2Q2)

)
. (2.7)

For any α, denote ξ(α) = {η>(α),θ>1 (α), . . . ,θ>p2(α)}>. Solving the penalized

least squares problem in (2.5) yields the following estimator of ξ(α):

ξ̂Λ(α) = {η̂>Λ (α), θ̂>1,Λ(α), . . . , θ̂>p2,Λ(α)}> = (D>D + PΛ)−1D>Y(α). (2.8)

Therefore, the TPST estimator of βk(s1, s2, t) is β̂k,Λ(s1, s2, t;α) = ψ(s1, s2, t)
>

γ̂k,Λ(α), where γ̂k,Λ(α) = Q2θ̂k,Λ(α), for k = 1, . . . , p2.

Plugging η̂>Λ (α), β̂k,Λ(s1, s2, t;α), for k = 1, . . . , p2, into (2.1), we now con-

sider the maximization problem for estimating α0 and σ2
0:

Ln
(
σ2, α

)
= −n

2
log(2π)− n

2
log(σ2) + log(|Ξ(α)|)

− 1

2σ2
{Y(α)− µ̂Λ(α)}>{Y(α)− µ̂Λ(α)},

where µ̂Λ(α) = ΠD,ΛY(α), with ΠD,Λ = D
(
D>D + PΛ

)−1 D>. Setting the partial

derivative of the objective function on σ2 to zero and solving the equation, we

have

σ̂2
Λ(α) =

1

n
{Y(α)− µ̂Λ(α)}>{Y(α)− µ̂Λ(α)}

=
1

n
Y(α)>(In −ΠD,Λ)>(In −ΠD,Λ)Y(α). (2.9)

The concentrated log-likelihood function of α is

Ln(α) = −n
2

{
log(2π) + 1 + log σ̂2

Λ(α)
}

+ log(|Ξ(α)|). (2.10)

Maximizing the concentrated log-likelihood in (2.10), we obtain the maximum

likelihood estimator (MLE) of α0, that is, α̂Λ = argmaxα∈${−(n/2) log(σ̂2
Λ(α))+

log(|Ξ(α)|)}, where $ is a compact parameter space. We consider $ = [−1, 1]

and, for any α ∈ $, Ξ(α)−1 exists, as stated in Assumption (A9) below. Finally,

we plug α̂Λ into (2.8) and (2.9) to obtain estimators of η0, β0, and σ2
0, that

is, η̂Λ = η̂Λ(α̂Λ), β̂k,Λ(s1, s2, t) = β̂k,Λ(s1, s2, t; α̂Λ), and σ̂2
Λ = σ̂2

Λ(α̂Λ), respec-
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tively. In the rest of the paper, we suppress “Λ” in the estimators for notational

simplicity.

3. Asymptotic Properties

3.1. Properties of tensor-product splines over a triangular prismatic

partition

In this section, we first study the properties of tensor-product splines over a

triangular prismatic partition, which are necessary to establish the asymptotics of

the TPST estimators. We now state some regularity conditions on the partition

of the domain.

For any function f on a domain D, D = T , Ω, Ω × T , denote ‖f‖∞,D =

supx∈D |f(x)| as the supremum norm of the function f over D. For any L2-

integrable functions f1(x) and f2(x), for x ∈ D, denote the L2 inner prod-

uct and the induced norm by 〈f1, f2〉L2,D =
∫
x∈D f1(x)f2(x)dx and ‖f1‖2L2,D =

〈f1, f1〉L2,D, respectively. For any function g(x), for x ∈ D, for any direction

xq, let ∇vxqg(x) be the vth-order derivative in the direction xq at the point x.

For any nonnegative integer p, let Cp(T ) be the functional space consisting of

all univariate functions whose pth-order derivatives exist, and is continuous on

T . For any nonnegative integer ι, let Wι,∞(Ω) = {f : |f |k,∞,Ω <∞, 0 ≤ k ≤ ι}
be the standard Sobolev space of bivariate functions on the domain Ω, where

|f |υ,∞,Ω = maxi+j=υ ‖∇is1∇
j
s2f(s1, s2)‖∞,Ω. Denote by Wι,∞(Ω) ⊗ Cp(T ) the

functional space defined on Ω × T . If function g(s1, s2, t) ∈ Wι,∞(Ω) ⊗ Cp(T ),

it satisfies the following: (i) for 0 ≤ a1 + a2 ≤ ι − 1 and any given (s1, s2) ∈ Ω,

∇a1
s1∇

a2
s2 g(s1, s2, t) ∈ Cp(T ); and (ii) for 0 ≤ a3 ≤ p and any given t ∈ T ,

∇a3

t g(s1, s2, t) ∈Wι,∞(Ω).

Note that under Assumptions (A1) and (A2), h and |4| reflect the number

of basis functions of the univariate component and the bivariate component,

respectively, that is, N � h−1 and |M| � |4|−2. Lemma 1 illustrates how the

numbers of univariate spline basis functions and bivariate spline basis functions

affect the approximation power of the tensor-product splines.

Lemma 1. Under Assumptions (A1) and (A2) in the Supplementary Mate-

rial, for any function g(s1, s2, t) ∈ Wd+1,∞(Ω) ⊗ C%−2(T ), there exists a spline

function g∗ ∈ T(%,d,r)(E) such that for any 0 ≤ a1 + a2 ≤ d, 0 ≤ a3 ≤ %,∥∥∇a1
s1∇

a2
s2∇

a3

t (g − g∗)
∥∥
∞,Ω×T = O(h%−a3 + |4|d+1−a1−a2).

To work with splines, we need to choose a basis to represent the functions.

If a basis is suitable for numerical computations, functions with “small” function
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values should have “small” coefficients of the basis functions, and vice versa. A

basis with this property is said to be stable. Lemma 2 shows that the tensor-

product spline basis of spline space T(%,d,r)(E) exhibits this stability property;

that is, small perturbations of the spline coefficients can only lead to small per-

turbations in the spline function.

Lemma 2. Under Assumptions (A1)–(A2) in Section A of the Supplementary

Material, for any tensor-product spline function g(s1, s2, t) =
∑

j∈J γjψj(s1, s2, t)

∈ T(%,d,r)(E), there exist positive constants C1 and C2 depending on %, d, r, such

that, C1h|4|2
∑

j∈J γ
2
j ≤ ‖g‖2L2,Ω×T ≤ C2h|4|2

∑
j∈J γ

2
j .

3.2. Asymptotic properties of the TPST estimators

Without loss of generality, in this section, we assume λ1 = λ1,1 = · · · = λ1,p2

and λ2 = λ2,1 = · · · = λ2,p2 . Theorem 1 illustrates that α̂, σ̂2, η̂, and β̂ are

consistent estimators. See Sections B and C of the Supplementary Material for

detailed proofs.

Theorem 1. Suppose Assumptions (A1)–(A12) in Section A of the Supplemen-

tary Material hold, α0, σ2
0, η0, and β0 are globally identifiable, and α̂, σ̂2, η̂, and

β̂ are consistent estimators of α0, σ2
0, η0, and β0, respectively.

Theorem 2 establishes the asymptotic normality of the proposed estimators

α̂, σ̂2, and η̂. Let κ = (α, σ2,η>)> and κ0 = (α0, σ
2
0,η
>
0 )>. Let G = WΞ−1

0 .

Denote

Σ11,n =
1

n
E{tr(G2)}+

1

n
E{tr(G>G)}+

1

nσ2
0

E(µ>0 G>H>Xψ∗ ,ΛHXψ∗ ,ΛGµ0),

Σ22,n =
1

2σ4
0

, Σ33,n =
1

nσ2
0

E(Z>H>Xψ∗ ,ΛHXψ∗ ,ΛZ), Σ23,n = 0,

Σ12,n = Σ21,n =
1

nσ2
0

E{tr(G)}, Σ13,n = Σ31,n =
1

nσ4
0

E(Z>H>Xψ∗ ,ΛHXψ∗ ,ΛGµ0),

where HXψ∗ ,Λ is defined in (B.3) in the Supplementary Material. For any matrix

A, let (A)ii be the (i, i)th entry of matrix A, and let Ai· represent the ith row

of A. Denote

Ω11,n =
m4 − σ3

0

nσ4
0

E

{
n∑
i=1

(G)2
ii

}
+

2m3

nσ4
0

n∑
i=1

E{(G)ii(HXψ∗ ,Λ)i•Gµ0},

Ω22,n =
m4 − 3σ4

0

4nσ8
0

,Ω33,n = 0, Ω23,n = Ω32,n =
m3

2nσ6
0

E(1>nHXψ∗ ,ΛZ),
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Ω12,n = Ω21,n =
1

2nσ6
0

E
{

(m4 − 3σ4
0)tr(G) +m31

>
nHXψ∗ ,ΛGµ0

}
,

Ω13,n = Ω31,n =
m3

2nσ6
0

E
(
1>nHXψ∗ ,ΛZ

)
,

where m3 and m4 are the third and fourth moments of εi, respectively. Next, let

Σn =

Σ11,n Σ12,n Σ13,n

Σ21,n Σ22,n Σ23,n

Σ31,n Σ32,n Σ33,n

 , Ωn =

Ω11,n Ω12,n Ω13,n

Ω21,n Ω22,n Ω23,n

Ω31,n Ω32,n Ω33,n

 .

Theorem 2. Under Assumptions (A1)–(A12) in Section A of the Supplementary

Material,
√
n(κ̂ − κ0) → N(0,Σ−1 + Σ−1ΩΣ−1), where Σ = limn→∞Σn and

Ω = limn→∞Ωn.

Theorem 2 illustrates the advantages of considering a model with spatiotem-

porally varying coefficients. If we ignore the spatiotemporal heterogeneity in the

model, less variation of the data will be explained, which leads to an estimator of

σ2
0 larger than the true value, along with a larger variance of other parameters.

Theorem 3 provides the L2 convergence rate of the spline estimators β̂k.

Theorem 3. Under Assumptions (A1)–(A12) in Section A of the Supplementary

Material, for any k = 1, . . . , p2, the spline estimators β̂k are consistent and satisfy

that

‖β̂k − β0k‖L2
= OP

(
|4|d+1 + h% + λ1n

−1|4|−3h−1/2

+λ2n
−1|4|−1h−5/2 + n−1/2|4|−1h−1/2

)
.

Remark 1. Let a = (2% + 1)(d + 2) − 1. For |4| � n−%/a, h � n−(d+1)/a, λ1 =

O(n1/2−2%/a), and λ2 = O(n1/2−2(d+1)/a), the tensor-penalized spline estimator

attains the L2 convergence rate n−%(d+1)/a. Specifically, if % = d+ 1, and we take

|4| � h � n−1/(2%+3) and λ1 � λ2 = O(n(2%−1)/(4%+6)), then the L2 convergence

rate is n−%/(2%+3), which is the optimal convergence rate in Stone (1982).

4. Implementation

4.1. Triangular prismatic partition selection

To construct a triangular prismatic partition, we need to determine the num-

ber and locations of the knots for the univariate splines, and use triangulation for

the bivariate splines. Here, typical triangulation construction methods include

the Delaunay Triangulation, MATLAB code “Distmesh” (Persson and Strang
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(2004)), and R package “Triangulation” (Lai and Wang (2019)). Note that Re-

mark 1 suggests that |4| � n−%/a, h � n−(d+1)/a, where % ≥ 1 is the order of the

univariate spline basis functions, and d ≥ 1 is the degree of the bivariate spline

basis functions. Next, we explain how to select the knots and triangulation.

Knots selection. For the univariate splines, we consider the widely used

quadratic and cubic spline basis functions. For the locations of the knots, we

suggest placing knots on a grid of evenly spaced sample quantiles. For the number

of the knots, we take: N = min{bc1n
1/(2%+3)c, bnT /(4p2)c} + 1, where nT is the

total number of observed time points, c1 is a tuning parameter (typically, c1 ∈
[1, 5]), and bxc denotes the integer part of a real number x. The term n1/(2%+3)

ensures the property stated in Remark 1, and the term nT /(4p2) guarantees that

there are at least four observations in each subinterval between two adjacent knots

to avoid getting (near) singular design matrices in smoothing. Specifically, if we

use the piecewise quadratic univariate spline (% = 3) and the piecewise quadratic

bivariate spline (d = 2), we take N = min{bc1n
1/9c, bnT /(4p2)c}+ 1.

Triangulation selection. There are some core criteria that one can use when

selecting a triangulation. In general, a “good” triangulation refers to those with

well-shaped triangles, that is, no small angles and/or no obtuse angles. For a

fixed number of triangles, Lai and Schumaker (2007) and Yu et al. (2020) recom-

mend constructing the triangulation according to the “max-min” criterion, which

maximizes the minimum angle of all the angles of the triangles in the triangula-

tion. Monte Carlo experiments show that the triangulation should be fine enough

to capture the features of the function, but once this minimum necessary number

of triangles has been reached, further refining the triangulation usually has little

effect on the fitting process, but increases the computational burden. In practice,

if the boundary of the spatial domain is not complicated, we suggest taking the

number of triangles as the following: min{bc2n
2/(2d+5)c, bnS/(4p2)c} + 1, for a

tuning parameter c2, where nS is the number of observed spatial location points.

When % = 3 and d = 2, we take K = min{bc2n
2/9c, bnS/(4p2)c}+ 1. For simple

spatial domains, we suggest taking c2 ∈ [1, 10]. However, c2 can be taken from

10 to 20 for complex domains, such that the triangulation well approximates the

domain, and the penalty term can regularize the model complexity.

4.2. Roughness penalty selection

In the spatiotemporal problem, data are often generated with dependence.

However, when performing cross-validation (CV), these dependence structures

are usually ignored, which can lead to underestimation of the predictive error

(Roberts et al. (2017)). To tackle this problem, we adopt the block CV strategy in
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Roberts et al. (2017) and Valavi et al. (2019). The sample points are first divided

into spatiotemporal blocks using nonoverlapped and equal-volume cuboids. Then,

these blocks are randomly allocated to the CV folds. Choosing the optimal size

of the blocks is important; see Section D.1 in the Supplementary Material for a

detailed procedure.

4.3. Standard error formula for the estimates

To calculate the standard errors of the estimators of the parameters in the

STAR-PLVCM, we need to estimate the matrices Σ and Ω in Theorem 2. Let

µ̂ = µ̂(α̂), Ĝ = WΞ(α̂)−1, m̂3 = n−1
∑n

i=1 ε̂
3
i , m̂4 = n−1

∑n
i=1 ε̂

4
i , and ε̂ =

(ε̂1, . . . , ε̂n)> = Y(α̂) − µ̂. For any matrix or vector A with n rows, define a

linear operator PΛ such that PΛA = ΠXψ∗ ,ΛA, where ΠXψ∗ ,Λ is defined in (B.3).

We can estimate the elements in Σ and Ω as follows:

Σ̂11,n =
1

n
tr(Ĝ2) +

1

n
tr(Ĝ>Ĝ) +

1

nσ̂2
{Ĝµ̂− PΛ(Ĝµ̂)}>{Ĝµ̂− PΛ(Ĝµ̂)},

Σ̂22,n =
1

2σ̂4
, Σ̂33,n =

1

nσ̂2
(Z− PΛZ)>(Z− PΛZ), Σ̂23,n = 0,

Σ̂12,n = Σ̂21,n =
1

nσ̂2
tr(Ĝ), Σ̂13,n = Σ̂31,n =

1

nσ̂4
(Z− PΛZ)>{Ĝµ̂− PΛ(Ĝµ̂)},

Ω̂11,n =
m̂4 − σ̂3

nσ̂4

n∑
i=1

(Ĝ)2
ii +

2m̂3

nσ̂4

n∑
i=1

(Ĝ)ii(In −ΠXψ∗ ,Λ)i•Ĝµ̂,

Ω̂22,n =
m̂4 − 3σ̂4

4nσ̂8
, Ω̂33,n = 0, Ω̂23,n = Ω̂32,n =

m̂3

2nσ̂6
1>n (Z− PΛZ),

Ω̂12,n = Ω̂21,n =
1

2nσ̂6

{
(m̂4 − 3σ̂4)tr(Ĝ) + m̂31

>
n {Ĝµ̂− PΛ(Ĝµ̂)}

}
,

Ω̂13,n = Ω̂31,n =
m̂3

2nσ̂6
1>n (Z− PΛZ).

4.4. Specification of the weight matrices

It is crucial to choose proper weights for the STAR-PLVCM. A proper weight

matrix can substantially benefit the model by including both the spatial and

the temporal dependence of the data. Pace et al. (1998) considered the fol-

lowing weight matrices: φSWS + φTWT and φSWS + φTWT + φSTWSWT +

φTSWTWS , where WS specifies the spatial relations among observations, WT

specifies the temporal relations among observations, and φS , φT , φST , and φTS are

parameters. In Huang, Wu and Barry (2010), the authors construct the weight

matrix based on the spatiotemporal distance d =
√
d2
S + ad2

T , where dS is the

spatial distance between two points, dT is the temporal distance, and a is some
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parameter. In simulation study 2, similarly to Huang, Wu and Barry (2010), we

calculate the spatiotemporal distance with a = 1, construct the weight matrix

based on 10 nearest points as the neighborhood, and assign the same weights for

the neighbor points. In the application study, the weight matrix has the form

φSWS + φTWT . The parameters φS and φT are selected using CV. In practice,

we can use several different weight matrices and choose the one with the best

prediction performance.

5. Monte Carlo Study

In this section, we conduct two experiments to evaluate the finite-sample

performance of the proposed method using the recently developed R package

“STARX” (Yu, Wang and Wang (2020)). In both experiments, we randomly

sample nS points from the spatial domain Ω, which is the modified horseshoe

domain in Sangalli, Ramsay and Ramsay (2013), and each point is observed at

a sequence of nT equally spaced time points over T = [0, 1]. Both experiments

are conducted on a local computer with a 3.8 GHz 8-Core Intel Core i7 processor

and 32GB RAM. We conduct 100 Monte Carlo replications for each simulation

setting.

5.1. Simulation study 1

In this example, we randomly sample nS = 200 and 500 locations {Si ≡
(Si1, Si2), i = 1, . . . , nS} from the spatial domain Ω, and each point is observed at

a sequence of nT = 50 and 100 equally spaced time points over T = [0, 1]. For the

observed space-time points {(S1, T1), . . . , (Sn, Tn)}≡{(S1, 1/nT ), . . . , (SnS , 1/nT ),

(S1, 2/nT ), . . . , (SnS , 1)}, we generate data from the following special case of the

STAR-PLVCM with α0 = 0 and η0 = 0: for any i = 1, . . . , n,

Yi = β00(Si1, Si2, Ti) + β01(Si1, Si2, Ti)Xi1 + β02(Si1, Si2, Ti)Xi2 + εi, (5.1)

where β00(s1, s2, t) = 2m0(s1, s2)(t − 0.5)2, m0(·, ·) is a bivariate function given

in Sangalli, Ramsay and Ramsay (2013), β01(s1, s2, t) = 2 cos(0.5s1 + s2
2)t, and

β02(s1, s2, t) = 2 sin{πs2(t − 0.5)}. Figure D.3 in the Supplementary Material

shows the sequences of spatial plots of the true coefficient functions evaluated

at time points t = 0.0, 0.17, 0.50, 0.83, and 1.0. The covariates {Xi1}ni=1 and

{Xi2}ni=1 are independently generated from the normal distribution N(0, 1). The

error term εi is generated from N(0, σ2
0), with the noise level σ0 being 1.0 or

2.0. Model (5.1) is the spatiotemporally varying-coefficient model in Huang, Wu

and Barry (2010) and Fotheringham, Crespo and Yao (2015), referred to as the
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Figure 2. Triangular prime partition E .

STVCM.

To implement our proposed method, we use TPST with % = 3, d = 2,

and r = 1 to estimate the coefficient functions. Figure 2 shows the triangular

prismatic partition E that we use in this simulation study.

We compare our method with the GTWR method, which is commonly used

to fit STVCMs. This method is implemented by the R package GWmodel. The

mean integrated squared error (MISE) for β00, β01, and β02 and the average

computing time are reported in Table 1. Figure D.1 (a)–(c) in the Supplementary

Material show box plots of the MISEs of the estimators of the varying coefficients.

The results indicate that our method significantly outperforms the GTWR in

terms of both estimation accuracy and computing speed. The MISEs of our

method are much lower than those of the GTWR. In addition, our proposed TPST

method is computationally efficient and easy to implement using the R package

TPST. The computing time of the GTWR increases dramatically as the sample

size grows, in contrast to our proposed method, which barely increases. Figure

D.3 in Supplementary Material shows the sequences of the estimated coefficient

functions for the TPST and GTWR methods based on a typical run with nS =

200, nT = 50, and σ0 = 1.0. It is clear that the estimated functions of the TPST

are very similar to the true functions. However, the GTWR estimates have some

obvious bias because they do not take the complex boundary into any account

and they smooth across the gap inappropriately.

5.2. Simulation study 2

We generate data from the following:

Yi = α0

n∑
j=1

wijYj + η00 + η01Zi1 + η02Zi1 +β01(Si1, Si2, Ti)Xi1 + εi, i = 1, . . . , n,

where α0 = 0.5, η00 = 5, η01 = 1, η02 = −1, β01(s1, s2, t) = 2m0(s1, s2)(t− 0.5)2,

and m0(·, ·) is a bivariate function given in Sangalli, Ramsay and Ramsay (2013).
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Table 1. Mean integrated squared errors (MISEs) of the varying-coefficient estimators
and the average computing time in Simulation Study 1.

(nS , nT ) σ0 Method MISEβ00
MISEβ01

MISEβ02
Time (seconds)

(200,50)

1.0
TPST 0.0095 0.0086 0.0103 418.5

GTWR 0.0393 0.0428 0.0479 1919.0

2.0
TPST 0.0169 0.0197 0.0168 408.1

GTWR 0.0745 0.0696 0.0865 1,959.7

(200,100)

1.0
TPST 0.0082 0.0067 0.0095 534.1

GTWR 0.0284 0.0322 0.0367 4,321.1

2.0
TPST 0.0136 0.0143 0.0143 528.9

GTWR 0.0543 0.0513 0.0619 4,201.0

(500,50)

1.0
TPST 0.0062 0.0060 0.0079 592.1

GTWR 0.0248 0.0269 0.0283 5,486.3

2.0
TPST 0.0103 0.0124 0.0112 597.9

GTWR 0.0477 0.0450 0.0548 5,700.9

(500,100)

1.0
TPST 0.0070 0.0051 0.0082 884.1

GTWR – – – –

2.0
TPST 0.0098 0.0092 0.0105 896.7

GTWR – – – –

The “–” indicates that the result is unavailable owing to out of memory crashes.

See Figure D.4 in the Supplementary Material for a sequence of spatial plots of

the coefficient function β01 at different time points. The weight matrix W =

(wij) is a standardized row matrix; that is, wij = δij/
∑

j 6=i δij , where δij =

1 if (Sj1, Sj2, Tj) is among the 10 nearest neighbors of (Si1, Si2, Ti), otherwise

δij = 0. The covariates Zi1, Zi2, and Xi1 are independently generated from

N(0, 1). Furthermore, the error term εi is generated from N(0, σ2
0). In our

simulation below, we consider (nS , nT ) = (100, 30), (100, 50), (200, 30), (200, 50),

and σ0 = 0.5 and 1.0.

To examine the effect of the triangular prism, we consider the following six

different triangular prisms: Eq, q = 1, . . . , 6. For q = 1, 2, 3, Eq is constructed

based on 4q with three equally spaced quantile interior knots; for q = 4, 5, 6,

Eq is constructed based on 4q−3 with five equally spaced quantile interior knots.

Figure D.2 in the Supplementary Material shows the three triangulations 4q,

q = 1, 2, 3.

We calculate the mean squared error (MSE) for the estimators of the constant

parameters, α0, σ0, η0`, for ` = 0, 1, 2, and the MISE for the estimator of the

varying coefficient β01 in the STAR-PLVCM. Table D.1 in the Supplementary

Material reports the MSE for the TPST estimators of the constant parameters

and the MISE of the TPST estimator of the varying-coefficient function. The
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results show that, at noise level σ0 = 0.5, the MSE or MISE of the estimators

is nearly constant for all six triangular prisms, indicating that the number of

triangular prism elements is not very important when there is a fair amount

of noise. When the triangular prism is too fine, often there is a slight penalty

of statistical accuracy, especially when the sample size is small. Figure D.4 in

the Supplementary Material shows sequences of spatial plots of the estimated

coefficient functions using the TPST with different triangular prisms with nS =

100, nT = 30, and σ0 = 0.5. The plots are very similar. Table D.1 summarizes

the numerical results for these TPST estimators. The results indicate similar

estimation performance across different triangular prisms.

Next, we compare our method with the classical spatiotemporal autoregres-

sive linear model (STAR-LM), where all the coefficients are treated as constant.

We also consider the GTWAR model, in which all the coefficients are treated as

varying-coefficient functions. In Table 2, we use “LM,” “VCM,” and “PLVCM”

to distinguish three classes of spatiotemporal autoregressive models with different

types of coefficients. We use the R package spdep to fit the STAR-LM, and use

β̂01 as the estimator of β01(s1, s2, t). The GTWAR is implemented in R, and we

apply 10-fold CV to select the proper bandwidth in the kernel smoothing proce-

dure. In Wu, Li and Huang (2014), the global parameter α0, η00, η01, and η02

are all considered as spatiotemporally varying functions. Therefore, in this simu-

lation example, the GTWAR estimators of α0, η00, η01, and η02 are the averages

of the estimated functions for 80×50×50 grid points over Ω×T . In addition, to

illustrate the prediction capability, we conduct 10-fold CV for each Monte Carlo

sample and compare the CV mean squared prediction error (MSPE). The perfor-

mance of our method, the STAR-LM, and the GTWAR is reported in Table 2.

From Table 2, one can observe that both the estimation error and the prediction

error of our method are much lower than those of the STAR-LM and GTWAR.

Finally, we check the accuracy of the proposed standard error formula in

Section 4.3 for α0, σ2
0, η00, η01, and η02. The results, shown in Table 3, indicate

that the averages or medians of the estimated standard errors are very close to the

true standard deviations, which verifies the accuracy of the proposed standard

error formula. In addition, the SEIQR are much smaller than those of the other

three SEs, which implies that the variance of the standard error calculated by

our formula is very small.
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Table 2. Mean squared error (MSE) and mean integrated squared error (MISE) of the
estimators of the constant (functional) parameters and 10-fold cross-validation mean
squared prediction error (MSPE) of Y in Simulation Study 2.

(nS , nT ) σ0 Model Method
MSE (×103) MISE(×103) MSPE Time

α0 σ2
0 η00 η01 η02 β01 Y (seconds)

(100,30)

0.5

LM STAR-LM 0.57 278.71 58.36 0.21 0.21 303.38 0.54 44.2

VCM GTWAR 0.76 – 75.24 0.16 0.16 45.39 0.34 1,673.7

PLVCM TPST(E1) 0.34 0.06 34.77 0.10 0.08 7.21 0.27 413.7

1.0

LM STAR-LM 1.11 277.26 113.84 0.49 0.45 303.75 1.29 42.7

VCM GTWAR 2.18 – 216.41 0.41 0.59 123.17 1.15 1,675.3

PLVCM TPST(E1) 1.04 1.08 106.18 0.39 0.33 19.09 1.03 429.4

(100,50)

0.5

LM STAR-LM 0.38 275.58 37.65 0.11 0.09 303.11 0.53 154.4

VCM GTWAR 0.81 – 82.22 0.13 0.13 49.30 0.31 2,428.0

PLVCM TPST(E1) 0.25 0.03 25.02 0.04 0.04 5.39 0.26 570.1

1.0

LM STAR-LM 0.73 275.80 73.75 0.22 0.20 303.40 1.29 155.1

VCM GTWAR 2.11 – 212.83 0.30 0.31 88.81 1.12 2,318.6

PLVCM TPST(E1) 0.76 0.55 76.68 0.16 0.16 14.10 1.02 585.2

(200,30)

0.5

LM STAR-LM 0.36 280.24 36.34 0.08 0.09 302.44 0.54 451.3

VCM GTWAR 0.54 – 54.13 0.14 0.10 50.05 0.32 2,554.2

PLVCM TPST(E1) 0.18 0.03 18.51 0.03 0.05 4.44 0.26 874.3

1.0

LM STAR-LM 0.63 279.26 64.63 0.18 0.22 302.62 1.29 447.3

VCM GTWAR 1.42 – 143.90 0.41 0.31 67.27 1.12 2,700.2

PLVCM TPST(E1) 0.59 0.51 59.54 0.13 0.18 11.71 1.02 874.7

(200,50)

0.5

LM STAR-LM 0.18 275.79 17.36 0.05 0.04 302.44 0.53 1,891.3

VCM GTWAR 0.24 – 24.25 0.06 0.05 39.80 0.30 4,267.6

PLVCM TPST(E1) 0.08 0.02 8.44 0.03 0.02 3.25 0.26 2,296.8

1.0

LM STAR-LM 0.34 273.90 33.58 0.14 0.10 302.53 1.28 1,838.6

VCM GTWAR 0.76 – 75.24 0.16 0.16 45.39 1.08 4,001.9

PLVCM TPST(E1) 0.29 0.29 29.50 0.13 0.09 8.20 1.02 2,346.1

6. An Empirical Application to COVID-19 Infection and Death Data

6.1. COVID-19 data

As an empirical illustration, we apply the proposed methodology to a study

of the spread of COVID-19 in the United States. For infectious diseases, the

transmission pattern depends on many factors and varies with location and time.

For example, in COVID-19 studies, the effect of control policy on the spread

of SAS-CoV-2 differs from county to county. Government agencies also adjust

the control measures at different stages of disease spread. The above obser-

vations motivate us to consider a spatiotemporally varying-coefficient model to
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Table 3. Standard error estimates of the constant parameters in Simulation Study 2.

(nS , nT ) Parameter
σ0 = 0.5 σ0 = 1.0

SEmc SEmean SEmedian SEIQR SEmc SEmean SEmedian SEIQR

(100,30)

α0 0.018 0.018 0.018 0.0005 0.034 0.031 0.031 0.0008

σ2
0 0.006 0.006 0.006 0.0002 0.025 0.025 0.025 0.0007

η00 0.186 0.176 0.176 0.0052 0.346 0.309 0.310 0.0085

η01 0.010 0.009 0.009 0.0002 0.020 0.018 0.018 0.0004

η02 0.009 0.009 0.009 0.0002 0.018 0.018 0.018 0.0004

(100,50)

α0 0.015 0.014 0.014 0.0003 0.027 0.024 0.024 0.0005

σ2
0 0.005 0.005 0.005 0.0001 0.019 0.020 0.020 0.0004

η00 0.154 0.137 0.137 0.0038 0.274 0.241 0.241 0.0054

η01 0.007 0.007 0.007 0.0001 0.013 0.014 0.014 0.0002

η02 0.006 0.007 0.007 0.0001 0.013 0.014 0.014 0.0003

(200,30)

α0 0.014 0.013 0.013 0.0002 0.023 0.022 0.022 0.0004

σ2
0 0.005 0.005 0.005 0.0001 0.020 0.018 0.018 0.0004

η00 0.138 0.125 0.125 0.0024 0.231 0.220 0.220 0.0039

η01 0.006 0.006 0.006 0.0001 0.012 0.013 0.013 0.0002

η02 0.007 0.006 0.006 0.0001 0.013 0.013 0.013 0.0002

(200,50)

α0 0.010 0.010 0.010 0.0002 0.020 0.017 0.017 0.0003

σ2
0 0.004 0.004 0.004 0.0001 0.015 0.014 0.014 0.0002

η00 0.100 0.098 0.098 0.0019 0.204 0.172 0.172 0.0026

η01 0.006 0.005 0.005 0.0001 0.011 0.010 0.010 0.0001

η02 0.005 0.005 0.005 0.0001 0.010 0.010 0.010 0.0001

SEmc, the standard deviation of estimated parameters based on 100 Monte Carlo samples (can be viewed
as the true values for SE); SEmean, mean of the estimated SE from 100 simulations; SEmedian, median of
the estimated SE from 100 simulations; SEIQR, interquartile range of the estimated SE from 100 Monte
Carlo replications divided by 1.349.

capture the heterogeneity across space and time. In particular, we focus on the

spatiotemporal dynamics of the disease, accounting for mobility and other local

features. The data for the COVID-19 outbreak are collected and cleaned from a

combination of public data repositories. These data sets are introduced and their

sources are provided in Table D.2 in the Supplementary Material. We consider

five types of local features: socioeconomic status, healthcare infrastructure, de-

mographic characteristics, mobility, and a rural/urban factor. See Table D.3 in

the Supplementary Material for a detailed explanation of the covariates.

6.2. Estimation results

We collect the daily infection count data for 3,104 counties in the 48 contigu-

ous states and the District of Columbia from April 22 to June 21, 2020. In total,

we have 186,240 observations with space-time points {(S1, T1), . . . , (Sn, Tn)}},
where nS = 3,104 is the number of observed spatial points, nT = 60 is the length

of the observed date, and Si ≡ (Si1, Si2) is the latitude and longitude of the
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geographic center of a county. Denote Yi as the new confirmed cases at county

Si and date Ti. We take log(Yi + 1) as the response variable, and consider the

following model for the infection count:

log(Yi + 1) =

n∑
j=1

αIwij log(Yj + 1) + ηI0 + η1AAi + ηI2HLi + ηI3PD∗i + ηI4Oldi

+ ηI5Sexi + ηI6Affluencei + ηI7Disadvantagei + ηI8Ginii + ηI9Urbani + ηI10NHICi

+ ηI11EHPCi + ηI12TBed∗i + ηI13Mobilityi + βI(Si, Ti) log(Ii + 1) + εIi , (6.1)

where Ii is the number of active cases for county location Si and day Ti − 1. We

also apply our proposed model and method to the number of fatal cases. Let Di

be the number of new deaths for county location Si and day Ti. According to

CDC (2020), the median number of days from symptom onset to death is around

15 days. Therefore, in our death model, we consider the variable IDi , which is

the number of active cases for county location Si and day Ti − 15. We consider

the following death model:

log(Di + 1) =

n∑
j=1

αDwij log(Dj + 1) + ηD0 + η1AAi + ηD2 HLi + ηD3 PD∗i + ηD4 Oldi

+ ηD5 Sexi + ηD6 Affluencei + ηD7 Disadvantagei + ηD8 Ginii + ηD9 Urbani + ηD10NHICi

+ ηD11EHPCi + ηD12TBed∗i + ηD13Mobilityi + βD(Si, Ti) log(IDi + 1) + εDi . (6.2)

In this empirical study, to create the the weight matrix W, we need to gen-

erate the spatial weight matrix WS and the temporal weight matrix WT , as

described in Section 4.4. We follow the idea in Nappi and Maury (2009) to con-

struct the spatial and temporal weight matrices WS = (wij,S) and WT = (wij,T ),

respectively, as follows: for any i, j = 1, . . . , n, wij,S = I(Si and Sj are adjacent

counties, and Tj = Ti − 1), wij,T = I(1 ≤ Ti − Tj ≤ r0 and Si = Sj), where I(·)
is the indicator function and we take r0 = 7. Similarly to Pace et al. (1998) and

Nappi and Maury (2009), we construct the weight matrix W = φW̃T+(1−φ)W̃S ,

where 0 ≤ φ ≤ 1, and W̃S and W̃T are the matrices obtained from WS and WT ,

respectively, by normalizing their row sums to one. The parameter φ is chosen

by partitioning the data into training and testing groups and evaluating its pre-

diction errors; φ = 0.8 in this application. We use the TPST with triangulation

presented in Figure D.5 in the Supplementary Material and three evenly dis-

tributed interior knots within 60 days to fit the infection model (6.1) and death

model (6.2). We also consider the STAR model with the same autoregressive

structure, but no additional predictors. Table 5 presents the estimated α and σ2
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Table 4. Estimated linear coefficients (Est), estimated standard errors(SE), and the
corresponding p-values of county-level predictors in STAR-PLVCM.

Parameter
Infection model Death model

Est (×102) SE (×102) p-value Est (×102) SE (×102) p-value
Intercept −7.0952 0.4345 < 10−8 −2.9294 0.1746 < 10−8
AA 0.0938 0.2767 0.7347 0.5880 0.1164 4.38× 10−7

HL 1.0838 0.2640 4.03× 10−5 0.0546 0.1098 0.6188
Gini 2.5419 0.1754 < 10−8 0.9575 0.0749 < 10−8

Affluence 0.2953 0.2482 0.2341 0.0030 0.1057 0.9775
Disadvantage −0.9565 0.2702 4.00× 10−4 −0.1685 01143 0.1403
Urban 3.6082 0.2637 < 10−8 0.2732 0.1123 1.50× 10−2

NHIC 1.5829 0.2449 < 10−8 0.6273 0.1039 < 10−8

EHPC −0.0552 0.1542 0.7202 0.0302 0.0657 0.6462
Sex −0.1764 0.1598 0.2698 −0.0694 0.0682 03089
PD 1.7372 0.3310 1.54× 10−7 −0.0501 0.1375 0.7158
TBed 1.9764 0.1625 < 10−8 0.4414 0.0693 < 10−8

Old −0.9226 0.1980 3.17× 10−6 0.2782 00841 9.35× 10−4

Mobility 1.7222 0.1625 < 10−8 0.4249 0.0690 < 10−8

and the corresponding 95% confidence intervals for both the infection and the

death models.

Table 4 reports the estimated coefficients and their corresponding p-values in

both models using the STAR-PLVCM, which reveals how the county-level predic-

tors influence the daily new cases. In the infection model, one can observe that

“HL,” “Gini,” “Urban,” “NHIC,” “PD,” “TBed,” and “Mobility” have signifi-

cantly positive effects on the number of daily new infection cases. This suggests

that when the population density is high, people have more contact, and thus

have more opportunities to spread the disease. The mobility data describe traffic

trends for each county. When people commute more, they are more likely to

get infected, and there are more daily new infection cases. In addition, “Disad-

vantage” and “Old” have negative effects on the number of daily new infection

cases. For the death model (6.2), our analysis shows that “AA,” “Gini,” “Ur-

ban,” “NHIC,” “TBed,” “Old,” and “Mobility” have positive effects on daily

new deaths. The risk of severe illness increases with age. Thus, communities

with larger proportions of older adults tend to have a larger number of daily new

deaths. However, at the same time, older adults have stricter precautions, which

reduce the number of new infection cases.

The fitted varying-coefficient functions of βI in infection model (6.1) are

shown in Figure 3 (a)–(f) at six different days from April to June. At the end of

April, higher values are captured in regions such as the northeast and west coast

and the Midwestern states. After slightly slowing down in May, coronavirus
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Table 5. Estimated (Est) α and σ2, estimated standard errors (SE), and the correspond-
ing 95% confidence intervals (CIs) of county-level predictors in STAR-PLVCM.

Model Parameter
Infection model Death model

Est SE 95% CI Est SE 95% CI

STAR-PLVCM
α 0.9107 0.0029 (0.9051, 0.9164) 0.9107 0.0033 (0.9042, 0.9172)
σ2 0.3626 0.0012 (0.3603, 0.3649) 0.0661 0.0002 (0.0656, 0.0665)

(a) April 25 (b) May 5 (c) May 15

(d) May 25 (e) June 5 (f) June 15

Figure 3. Spatial plots of the estimated coefficient functions in infection model.

cases started to surge in June in states such as Arizona and Texas, which is also

reflected in the fitted varying-coefficient map. Figures D.6 (a)–(f) present the

estimated coefficient function of βD for the death model (6.2). The numbers of

fatal cases in California and Arizona have been increasing at a faster pace than

in other states since April, which corresponds to a higher value in the varying-

coefficient function maps. In contrast, in the state of New York, the number of

new fatal cases decreased significantly after mid-April.

6.3. Prediction performance

We compare the proposed methods with the STAR, STAR-LM, and SIR

in terms of their short-term prediction performance. The STAR model does

not include county-level predictors. The STAR-LM assumes the βI and βD in

the Models (6.1) and (6.2) are constant. The SIR fits a Susceptible-Infectious-

Recovered model for each county. For simplicity, we denote Îi,t+h and ÎDi,t+h as

the h-day-ahead prediction of the infected cases and deaths in county i based

on the data before day t, while Ii,t+h and IDi,t+h are the actual observed number

of cases. We use data collected from April 2 to June 23, 2020, to evaluate the

prediction performance. Each time, we fit the model with a set of nT = 60 days
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Table 6. Root mean squared prediction error (RMSPE) of STAR-PLVCM, STAR-LM,
STAR, and SIR models for COVID-19 data.

Model
RMSPE (Infection) RMSPE (Death)

Avg. Time(s)
RI1 RI2 RI3 RD1 RD2 RD3

STAR-PLVCM 29.1966 54.0458 81.2411 1.1806 1.988 2.7109 2,630.89
STAR-LM 31.9166 60.0774 91.0084 1.1585 1.9275 2.6116 7.05

STAR 33.1791 62.8897 95.4139 1.1752 1.9652 2.6798 5.77
SIR 135.4645 156.9696 180.4252 – – – 4,682.32

of the county-level data for the estimation, and then the h-day-ahead predictions

are computed, where h = 1, 2, 3. The procedure is repeated 20 times. The root

mean squared prediction errors (RMSPEs) are calculated and presented in Table

6: for h = 1, 2, 3 and T = 20, RIh = T−1
∑T

t=1{n
−1
S

∑nS
i=1(Îi,t+h − Ii,t+h)2}1/2 and

RDh = T−1
∑T

t=1{n
−1
S

∑nS
i=1(ÎDi,t+h − IDi,t+h)2}1/2.

As expected, the STAR-PLVCM outperforms the STAR, STAR-LM, and

SIR in terms of the infection model’s prediction accuracy. By adding county-

level predictors and considering spatiotemporally varying-coefficient functions,

the STAR-PLVCM is more flexible and can capture more local features. For the

death model, the STAR, STAR-LM, and STAR-PLVCM have similar prediction

performance. Compared with infected cases, deaths counts are more rare across

the United States. Many counties have zero daily new deaths. Therefore, a

flexible model with a more complex structure has a limited advantage under

this scenario. Figures D.7 (a)–(d) in the Supplementary Material show example

cases when the traditional SIR model does not work. Without integrating nearby

information, the county-level prediction of the SIR is sensitive to the observed

data of each county. For example, in Figures D.7 (b) and (d), there are jumps

in the cumulative infected cases, which lead to severe over-predictions in the

following seven days.

7. Conclusion

We have addressed several challenges arising from the inclusion of spatiotem-

poral effects in regression models. The first kind concerns the unrealistic assump-

tion of stationary or structural stability over time and space in the regression

modeling. The second addresses how to model and estimate spatiotemporal au-

tocorrelation and heterogeneity simultaneously. We propose a flexible class of

spatiotemporal autoregressive regression models that extends the ordinary spa-

tial autoregressive models to accommodate the spatiotemporal effects of some

covariates. We develop a profiled ML approach to estimate the constant param-
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eters and varying-coefficient functions in the proposed semiparametric models.

Our work is novel, and it also has merits in the following aspects. First, our

proposed method solves the problem of “leakage” across complex domains (i.e.,

the inappropriate linking of parts of the domain separated by physical barriers),

suffered by many conventional smoothing tools. Second, because our method

does not require the data to be evenly distributed or on regular-spaced grids, it

is generally applicable to many spatiotemporal data analysis problems. Finally,

compared with existing approaches, such as kriging and kernel approaches, our

proposed method is much more computationally efficient using the spline basis

expansion technique.

The Specification of the varying covariates is crucial in the modeling of the

STAR-PLVCM. Model misspecification could lead to biased regression coefficients

or reduce the estimation efficiency. A test against the parametric linear coefficient

will help to identify covariates with constant linear coefficients. We can use a

wild bootstrap to test whether the coefficient function β0k(s, t) is constant by

following the idea in Ferraty, Keilegom and Vieu (2010). Such tests require

simulation-based validation and a theoretical guarantee, which we leave to future

work.

Owing to the existence of pre-symptomatic and asymptomatic COVID-19

cases and the potentially limited testing capacity, many infection cases may not

have been reported. Our study does not consider the under-reported issue in

order to simplify the illustration of the proposed methodology. Incorporating

this issue is left to future work.

Supplementary Material

In the Supplemental Material, we provide the technical assumptions and

proofs for the main theorems, additional results from the simulation studies, and

a description of the county-level predictors used in the study of the dynamics of

COVID-19.
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