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PRIOR KNOWLEDGE GUIDED ULTRA-HIGH

DIMENSIONAL VARIABLE SCREENING

WITH APPLICATION TO NEUROIMAGING DATA

Jie He and Jian Kang

University of Michigan

Abstract: Variable screening is a powerful and efficient tool for dimension reduc-

tion under ultrahigh-dimensional settings. However, most existing methods over-

look useful prior knowledge in specific applications. In this work, from a Bayesian

modeling perspective, we develop a unified variable screening procedure for linear

regression models. We discuss different constructions of posterior mean screening

(PMS) statistics to incorporate different types of prior knowledge according to spe-

cific applications. With non-informative prior specifications, PMS is equivalent to

the high-dimensional ordinary least-square projection (HOLP). We establish the

screening consistency property for PMS with different types of prior knowledge.

We show that PMS is robust to prior misspecifications. Furthermore, when the

prior knowledge provides correct information on the true parameter settings, PMS

can substantially improve the selection accuracy over that of the HOLP and other

existing methods. We illustrate our method using extensive simulation studies and

an analysis of neuroimaging data.

Key words and phrases: Linear regression, posterior mean screening, prior knowl-

edge, screening consistency.

1. Introduction

Modern technologies have produced a vast amount of high-throughput data,

in which the number of variables far outweighs the sample size. This has mo-

tivated the development of feature learning and screening methods: a powerful

and efficient tool for dimension reduction (Fan and Fan (2008); Fan and Song

(2010); Bühlmann and van de Geer (2011); Zhao and Li (2012)) in regression.

The pioneering work on variable screening was that on sure independence

screening (SIS) (Fan and Lv (2008)), which has been extended to generalized

linear models (Fan and Fan (2008); Fan, Samworth and Wu (2009); Fan and

Song (2010)), generalized additive models (Fan, Feng and Song (2011)), quantile

regression (He, Wang and Hong (2013); Ma, Li and Tsai (2017)), and the propor-

Corresponding author: Jian Kang, Department of Biostatistics, University of Michigan, Ann Arbor, MI
48109-2029, USA. E-mail: jiankang@umich.edu.

https://doi.org/10.5705/ss.202020.0427
mailto:jiankang@umich.edu


2096 HE AND KANG

tional hazards model (Zhao and Li (2012); Gorst-Rasmussen and Scheike (2013)).

By extending screening criteria based solely on the marginal correlations between

the outcome and the predictors, a variety of statistics have been proposed that

account for the dependence between the predictors, thus improving the screening

accuracy and robustness (Li et al. (2012); Zhu et al. (2011); Cho and Fryzlewicz

(2012); Hall and Miller (2009)). In particular, the high-dimensional ordinary least

squares projection (HOLP) (Wang and Leng (2016)), which uses the generalized

inverse of the design matrix in lieu of marginal correlations, exhibits good the-

oretical properties and high computational efficiency. In addition to the above

methods based on model assumptions, variable screening has been generalized to

model-free cases. As a result, the corresponding screening statistics are applica-

ble to a general model class without a specific expression (Zhu et al. (2011); Li,

Zhong and Zhu (2012); Cui, Li and Zhong (2015); Zhu et al. (2017); Pan et al.

(2020)).

Variable screening has a wide range of applications in biomedical sciences,

such as brain imaging and genetics. For instance, functional magnetic resonance

imaging (fMRI) has been broadly employed to measure neural activities related

to brain functions (Huettel, Song and McCarthy (2004); Smith and Fahrmeir

(2007)). There is a growing interest in selecting important voxels with strong

fMRI signals in order to identify brain regions that are highly associated with

certain brain function behaviors or psychiatric disorders. The standard brain

template for fMRI images contains 200,000 spatially contiguous voxels, which

can be partitioned into groups based on the brain anatomy. In addition, exist-

ing studies may have identified locations or voxels where the brain activity is

strongly associated with a response variable of interest, such as cognitive behav-

iors or disease status. This poses an interesting question on how to incorporate

such prior information, including prior important knowledge and the prior spa-

tial structure, into variable screening methods. Several methods have been de-

veloped to address this questions. For example, conditional sure independence

screening (CSIS) (Barut, Fan and Verhasselt (2016); Hong, Kang and Li (2018))

directly includes predetermined important features into the model when screen-

ing variables. Similarly, the partition-based screening (PartS) method (Kang,

Hong and Li (2017)) incorporates a spatial-guided partition structure into gen-

eralized linear models, and performs variable screening by dividing all covariates

into groups, whereas the covariance-insured screening (CIS) method (He et al.

(2019)) applies prior information through inter-feature dependence. However,

these methods are all developed from a frequentist perspective, and only focus

on incorporating one type of prior information. As straightforward approaches to
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integrating prior knowledge, Bayesian variable selection methods have been de-

veloped for neuroimaging applications (Smith and Fahrmeir (2007); Goldsmith,

Huang and Crainiceanu (2014); Li et al. (2015); Kang, Reich and Staicu (2018)).

These methods often aim to make a fully Bayesian inference on model selection,

that is, selecting important predictor variables into the model, and then estimate

the posterior distribution of the parameters, along with the posterior inclusion

probability of each predictor variable. Thus, they incur large computational

costs for high-dimensional problems, and many existing methods are not feasible

for ultrahigh–dimensional problems. In contrast, the variable screening methods

screen out predictor variables that are not strongly associated with the response

variable, thus achieving efficient dimension reduction with less of a computational

burden. There is a need to develop Bayesian variable screening methods to sys-

tematically incorporate prior knowledge and structural information in science.

In this work, from a Bayesian modeling perspective, we propose a unified

feature screening procedure for the linear regression model. We construct the

screening statistics using the posterior mean of the coefficients, which can incor-

porate prior information according to specific applications. Many prior models

are available for linear regression, for example, the spike-slab priors (Ishwaran

and Rao (2005)), non-local priors (Rossell and Telesca (2017)) and global-local

shrinkage priors (Bhattacharya, Chakraborty and Mallick (2016)), for which effi-

cient posterior computation methods are available for fully Bayesian inferences in

the high-dimensional case. However, our focus is on variable screening. Thus we

choose the normal prior for simplicity and good interpretations. The normal dis-

tribution is a conjugate prior, the closed form of the posterior mean is available,

and the computation only involves non-iterative matrix operations. In addition,

it is more straightforward to incorporate useful knowledge into the screening pro-

cedure using normal priors. To illustrate our idea, we consider a simple example.

We simulate data from a linear regression model with 100 samples and generate

10,000 predictors from a multivariate normal distribution with mean zero and

variance one. The correlation between any two predictors is set to 0.5. The true

values of the regression coefficients are specified as β1 = β2 = 3, β3 = −7.5, and

βj = 0, for j = 4, . . . , 10000. Suppose we have prior knowledge that predictors 1

and 3 are more likely to be selected. We assign the normal priors to the regression

coefficients and incorporate the prior selection information into the mean param-

eters using the empirical Bayes method. In this case, we obtain the closed form

of the posterior mean of the regression coefficients; refer to Section 3.1 for more

details. This is equal to our proposed posterior mean screening (PMS) statistics.

We repeat the experiments 500 times and obtain the distributions of the screening
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Figure 1. A simulated example for the distributions of the screening statistics by HOLP
and posterior mean sceerning (PMS) based on 500 replicates. The true values are spec-
ified as follows: β1 = β2 = 3, β3 = −7.5, and βj = 0, for j = 4, . . . , 10000. PMS
incorporates the prior selection knowledge for β1 and β3 and thus obtains better screen-
ing statistics. PMS also improves the screening statistics for β2 compared to HOLP.

statistics using PMS and HOLP; see Figure 1. For the active predictors 1 and 3,

for which the prior selection information is incorporated, the screening statistics

by PMS are clearly away from zero, whereas those by HOLP are concentrated at

zero. For the active predictor 2, for which no prior selection information is incor-

porated, the PMS and the HOLP screening statistics are both much smaller than

those for predictors 1 and 3. However, the PMS screening statistic is still clearly

larger than zero, with probability one, while the lower tail of the HOLP screening

statistic touches zero. This result clearly indicates that PMS is slightly better.

For all other predictors (j = 4, . . . , 10000), the distributions of both screening

statistics are concentrated around zero (See the third column of Figure 1 for the
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mixtures of all the distributions), but the PMS screening statistic has a smaller

variance. In summary, the normal prior can effectively incorporate prior selection

knowledge and improve the screening accuracy. In this paper, we primarily dis-

cuss how to incorporate two types of prior knowledge: the prior selection, and the

prior group structure. With a non-informative prior specification, PMS is equiv-

alent to HOLP (Wang and Leng (2016)). We study the theoretical foundations

of the proposed method. We discuss the technical conditions of the formulations

of the prior knowledge to establish the screening consistency property. We show

that our proposed feature screening method is very robust to prior misspecifica-

tion. When the prior knowledge is consistent with the true parameter setting,

the proposed method outperforms HOLP and other existing methods.

The remainder of this paper is organized as follows. In Section 2, we propose

the unified framework of Bayesian feature screening for a linear regression model

and establish the theoretical properties. In Section 3, we develop constructions

of the prior mean and covariance information under specific cases, with their

theoretical properties. In Section 4, we propose PMS variable screening-based

ensemble learning to combine different types of prior knowledge. In Section 5,

we evaluate the performance of the proposed method using a series of simulation

studies. We apply the PMS method by analyzing neuroimaging data in Section 6.

Section 7 concludes the paper. The Supplementary Material contains all technical

proofs.

2. Posterior Mean Variable Screening

2.1. Notation and model specification

Let Rd be a d-dimensional vector space of real numbers, where 1d and 0d
are d-dimensional vectors of all ones and all zeros, respectively. Denote by Symd

+

the space of d × d symmetric positive-definite matrices with identity matrix Id.

Nd(µ,Σ) represents a d-dimensional normal distribution with mean µ ∈ Rd and

covariance matrix Σ ∈ Symd
+. In addition, I(A) : F → {0, 1} refers to an event

indicator, where I(A) = 1 if event A occurs, and I(A) = 0 otherwise. Notation

‖ · ‖ denotes the Euclidean norm. To any set A, |A| represents the cardinal

number of A. For sequences of numbers xn and yn, xn = o(yn) implies that

limn→∞ xn/yn = 0, and xn = O(yn) denotes that xn/yn is bounded.

Suppose the data set includes n observations of an outcome, along with p

predictors. We consider the linear regression model

Y = Xβ + ε, (2.1)
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where Y = (y1, . . . , yn)T ∈ Rn denotes the outcome variable, X = (x1, . . . ,xp) ∈
Rn×p is a design matrix with rank min{n, p}, ε ∈ Rn denotes independent and

identically distributed (i.i.d.) errors with marginal distribution N(0, σ2), and σ2

is an unknown nuisance parameter. In addition, β = (β1, . . . , βp)
T ∈ Rp is a

vector of coefficients for the predictors {xj}pj=1.

2.2. PMS statistics

We assign a multivariate normal prior to β:

β ∼ Np(µ, τ
2Λ), (2.2)

where µ = (µ1, . . . , µp)
T ∈ Rp, Λ = (λj,k) ∈ Symp

+ with Var(βj) = τ2λj,j ,

and Cov(βj , βk) = τ2λj,k. It is obvious that the parameter τ2 > 0 controls

the overall prior variability of β. Because the prior (2.2) is a conjugate prior,

the posterior distribution of β given the other parameters is also a multivariate

normal distribution: (β | µ,Λ, •) ∼ Np(ν,K), where • = {σ2, τ2,X,y}, ν =

(θΛ−1 + XTX)−1(θΛ−1µ + XTy) and K = (θΛ−1 + XTX)−1σ2. Here, θ =

σ2/τ2 > 0 reflects the precision of the prior knowledge on the structure of the

predictors.

We propose using the posterior mean ν as the variable screening statistics,

which incorporates prior knowledge µ and Λ. This method is referred to as

posterior mean screening (PMS) in the rest of this paper, and is represented as

β̂PMS = (θΛ−1 + XTX)−1(θΛ−1µ+ XTy). (2.3)

However, computing the screening statistics from (2.3) is not possible when p is

on the scale of millions. From Proposition 1 in the Supplementary Material, we

know that the PMS statistic is equivalent to:

β̂PMS = µ+ ΛXTΩ(Y −Xµ), (2.4)

where Ω = (XΛXT + θIn)−1. Because the inverse of Ω is an n × n matrix,

the computation can be simplified to a large degree, even though p � n. From

equation (2.4), we observe that PMS reduces to the HOLP when µ = 0p, Λ = Ip,

and θ = 0. Thus, the HOLP is a special case of PMS with an uninformative

prior.

In practise, we compute the PMS statistic using a fast algorithm, which

includes the following three steps: (1) compute X̃ = XΛ; (2) compute b = Ω(y−
Xµ) by solving (X̃XT + θIn)b = (y−Xµ); and (3) compute β̂PMS = µ+ X̃Tb.
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Then, we obtain output β̂PMS. Given a thresholding parameter α, the selected

index set can be expressed as M̂α = {j : |β̂PMS
j | > α}.

For a general case, when p� n, the time complexity to obtain M̂α is O(np2).

The main computing bottleneck is in the matrix multiplication between Λ and

X. Existing matrix parallel computing methods can be applied directly to this

step, thus reducing the computational time. When Λ is specified as sparse,

the computational cost can be further reduced. For example, if the number of

nonzero elements in Λ is O(p), the computational complexity can be reduced

to O(n2p), which is the same as that of the HOLP (Wang and Leng (2016)).

In many applications, a sparse specification on Λ is common and sensible for

two reasons. First, in many high-dimensional problems, it is common to assume

that the number of true features is much smaller than the number of candidate

features. This assumption implies that the true values of β are sparse. Thus,

one may specify the nonzero prior covariance on a small set of predictors that are

considered to be the most likely possible candidates on the true features. This

specification leads to sparse Λ. Second, the sufficient prior knowledge on the

dependence between all pairs of βj is usually limited. It is common to specify

only a few connected region pairs. Note that Λ is the prior covariance on β and

does not have a true value. Thus, simple and sparse specifications are preferred.

2.3. Screening consistency

In this section, we establish the theoretical properties of the proposed PMS

variable screening method. Denote β = (β1, . . . , βp)
T as the true parameter

vector of interest, and M0 = {j : βj 6= 0} as the index set composed of nonzero

coefficients. Throughout this paper, xn = op(yn) indicates that xn/yn converges

to zero in probability as n→∞, and xn = Op(yn) means that xn/yn is bounded

in probability.

We need some regularity conditions to establish the theoretical property,

where Conditions A1–A3 are similar to those introduced by the HOLP (Wang

and Leng (2016)) and are listed in the Supplementary Material. We list a few

other conditions that are related to prior specifications.

A4. For some c7 > 0 and γ ≥ 0, maxj∈{1,...,p}

∣∣∣eT
j Λ−1 (µ− β)

∣∣∣ ≤ c7n
γ/p.

A5. For the matrix Λ, let λij be the element in the ith row and the jth col-

umn. Then, there exists ν > 0, such that maxi∈{1,...,p} λii = O(nν), and∑p
j=1 |λij | = O

(
nν−2τ3−2τ4−2γ/

√
log n

)
, for j 6= i; i, j = 1, . . . , p. For

some c8 > 1, minj∈M0
|βj | ≥ c8n

1−(τ3+τ4)−γ+ν/p. In addition, denote the

ith row of matrix Λ1/2 as λ̄i =
(
λ̄i1, . . . , λ̄ip

)T
, for i = 1, . . . , p. Then,
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u=1

∑
v 6=u

∣∣λ̄iuλ̄jv∣∣ = O (nν), and
∑p

u=1

∣∣λ̄iuλ̄ju∣∣ = O(n1−(τ3+τ4)−2γ+ν/√
log n), for j 6= i; i, j = 1, . . . , p. Here, p > cn1+ν , for some c > 1.

A6. Assume log p=o[min{n1−ξ1/ log n, q(C̃n1/2−ξ2/
√

log n)}], for some 0<ξ1<1,

0<ξ2<1/2, and C̃ > 0, and there exists αn, such that
√
pαn/n

1−(τ3+τ4)−γ+ν

→ 0 and αn
√
p log n/n1−(τ3+τ4)−γ+ν →∞.

Condition A4 provides an upper bound on the difference between the prior

mean parameter and the true values of the regression coefficients. This con-

dition implies that PMS may still enjoy screening consistency, even when the

prior mean deviates slightly from the true settings. Condition A5 imposes some

upper bound constraints on the diagonal elements and off-diagonal elements of

Λ, which are related to the prior variance and prior correlations of the predic-

tor effects β, respectively. This condition implies that, to ensure the screening

consistency, neither the prior variance nor the correlation can increase too fast

as the sample size n increases. This condition can be straightforwardly verified

when Λ is an identity matrix, where the predictor effects are assumed to be prior

independent. When Λ is a sparse matrix, such as a band matrix or a block diag-

onal matrix, condition A5 can be simplified and converted to conditions related

to the upper bounds of the bandwidth or the block size, providing insights on

prior specifications in practice. For example, in the scalar-on-image regression for

the neuroimaging application, sparse block diagonal covariance structures can be

adopted based on the brain function and anatomical region partitions. Condition

A5 provides insights on upper bounds of the number of brain regions, number of

voxels within regions, and maximum correlation within each region in the order

of the sample size.

Theorem 1 (Screening Consistency). Under Conditions A1–A6, we have

P

(
min
j∈M0

∣∣∣β̂PMS
j

∣∣∣ > αn > max
j 6∈M0

∣∣∣β̂PMS
j

∣∣∣)
= 1−O

[
exp

(
−Cn1−ξ1

2 log n

)
+ exp

{
1− 1

2
q

(
C̃n1/2−ξ2
√

log n

)}]
,

for some constants C, C̃ > 0.

Theorem 1 indicates that, under some mild regularity conditions, PMS can

perfectly separate the important and unimportant variables with probability

tending to one. The HOLP has a similar result, but the order of the conver-

gence rate is different to that of PMS.
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2.4. Choice of thresholding parameters

The thresholding parameter α is critical to the performance of the vari-

able screening procedure. Overestimating α inflates the false positive rate, while

underestimating α hinders sure screening. We adopt the random decoupling

method (Barut, Fan and Verhasselt (2016)) to select the thresholding parameter

α.

To ensure the stability of α, we replicate the decoupling procedure K times.

Given the data {(xi, Yi)}ni=1, we allow a (1 − τr)100% proportion (τr ∈ [0, 1]) of

inactive variables to be included in the model when X and Y are not related,

which corresponds to the null model. We randomly permute the rows of the

design matrix X and obtain the pseudo data {(x̃(k)
i , Yi)}ni=1, with x̃

(k)
i = xπk(i),

where πk(i) is a permutation of index i, for i = 1, . . . , n, and k = 1, . . . ,K. Based

on the above expression, we obtain the values of the PMS statistics

{|β̂PMS(k)
j |, j = 1, . . . , p; k = 1, . . . ,K},

where α∗k is the τr-quantile of {|β̂PMS(k)
j |, j = 1, . . . , p}. Finally, we choose α∗ =

max1≤k≤K α
∗
k as the thresholding parameter.

3. Incorporating Prior Knowledge

When specific information on µ and Λ is available, we can straightforwardly

carry out PMS by computing β̂PMS based on (2.4). However, in many cases, the

prior knowledge is relatively vague, which means it is not trivial to specify the

values of µ and Λ. In this section, we discuss how to construct different types of

prior knowledge systematically based on the PMS framework.

3.1. Priors on selection

Suppose we are interested in incorporating prior knowledge on which features

should be selected into the PMS framework. For instance, in a functional neu-

roimaging study, we are interested in selecting important brain locations that are

highly associated with the intelligence quotient (IQ). According to some studies,

we may know some brain regions are more likely to be selected than the other

regions. This type of information can be used to classify all features into two

groups: prior-selected and prior-unselected.

In general, denote by S the indices of the prior-selected features, where

q = |S| is the number of elements in S. Assume that µj = 0 for feature j 6∈ S
and µS = (µj : j ∈ S). Introducing a hyper-prior normal distribution to µS , the
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sampling distribution of Y given the prior-selected features is Nn(XSµS ,Ω
−1
S ),

where XS = (xj , j ∈ S), ΩS = (XSΛSX
T
S + θIn)−1, and ΛS is the prior corre-

lation matrix of coefficients for the features in S. When q ≤ n, we can assign

µS the uninformative hyper-prior, that is, π(µS) ∝ 1. When q > n, we assign

µS a normal prior, that is, µS ∼ N(0q, τ̃
2Iq) for τ̃2 > 0. We construct the PMS

selection statistics, β̂PMS
S , in Proposition 1.

Proposition 1. The PMS selection statistic is

β̂PMS
S = µ̃+ ΛXTΩ(Y −Xµ̃), (3.1)

where µ̃ = (µ̃1, . . . , µ̃p)
T with µ̃j = 0, for j /∈ S, and (µ̃j : j ∈ S) = µ̃S with

µ̃S = E(µS | Λ, •) =

{
(XT
SΩSXS)−1XT

SΩSY q ≤ n
(XT
SΩSXS + τ̃−2Iq)

−1XT
SΩSY q > n.

Given Ω, the complexity of computing β̂PMS
S is no more than O(nq2). This

additional computational cost is moderate. When q ≤ n, we can establish the

screening consistency property for β̂PMS
S . Let S3 = Sc ∩M0 be a set composed

of all nonselected features. The following is an essential regularization condition

for the screening consistency of β̂PMS
S .

B1. There exists a constant γ̄1 > 0, such that ‖XS3βS3‖ = O (nγ̄1), where XS3 =

(Xj , j ∈ S3) and βS3 = (βj , j ∈ S3).

Condition B1 indicates that the number of prior-not-selected features should not

be too large. At the same time, the signal strength of those features cannot be

too strong and the upper bound is on the polynomial order of n. Other regularity

conditions, including B2 and B3, are listed in the Supplementary Material. B2

imposes restrictions on the eigenvalues of the matrix ΛS , and B3 makes assump-

tions on the structure of a sub-matrix of Λ−1, a matrix composed of elements in

Λ−1, the rows and columns of which are in S.

Theorem 2 (Screening Consistency for β̂PMS
S ). Under Conditions B1–B3, when

q ≤ n, the PMS statistic (3.1) enjoys the screening consistency property.

When q > n, additional assumptions on τ̃2 are needed to ensure screening con-

sistency. For example, if we assume τ̃2 → 0 as n → ∞, then µ̃ → 0p with

probability one. In this case, the prior selection information vanishes when the

sample size increases. However, we can verify Condition A4 by making other

mild assumptions, and use Theorem1 to establish the screening consistency. For

more general and weaker assumptions, a rigorous proof is nontrivial. Thus we
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leave this to future research. In practice, with a choice of τ̃−2 = 10−3, in which

case the prior selection information plays an important role, we show that PMS

performs very well in simulations and data applications. See Sections 5.2 and 6.

3.2. Priors on group-level importance

For some applications, prior knowledge can be straightforwardly used to de-

termine the groups of features, but within each group, the importance of features

may be difficult to distinguish. For example, in the analysis of brain imaging

data, the whole brain region can be partitioned into a set of exclusive regions ac-

cording to brain anatomical structures. The commonly used brain atlas includes

the automated anatomical labeling (Tzourio-Mazoyer et al. (2002, AAL)) system,

consisting of 90 regions. A standard brain template with a single voxel size of 2

mm3 contains more than 180,000 voxels in AAL 116 regions. The goal is to select

voxel-level features by incorporating region-level information. It is reasonable to

assume that within the same region, voxels have a prior with the same level of

importance.

In general, suppose the prior knowledge can partition all the features into

m groups. For many applications, we can assume m < n. Let B = (bg,j) be an

m × p group indicator matrix with bg,j ∈ {0, 1}, where bg,j = 1 indicates that

feature j belongs to group g, and bg,j = 0 otherwise. Note that the column sum

of B is equal to one, that is, 1T
mB = 1p, which indicates that feature j has to be

uniquely assigned to one group. Let µ̄g represent the level of importance for group

g, and write µ̄ = (µ̄1, . . . , µ̄m)T. We assume that within-group features have the

same levels of importance, that is, µ = BTµ̄. Then, the sampling distribution

of Y given X and the prior selected group structure is Nn(XBTµ̄,Ω−1
B ), where

ΩB = (XBTΛBBXT + θIn)−1 and ΛB is the prior correlation matrix for Bβ.

Under this setting, we obtain the PMS group statistics (β̂PMS
B ) from the following

Proposition 2.

Proposition 2. Under the non-informative prior assumption π(µ̄) ∝ 1, the

posterior mean of µ̄ is µ̃ = E(µ̄ | Λ, •) = (BXTΩBXBT)−1BXTΩBY. Then

the PMS group statistics can be expressed as

β̂PMS
B = BTµ̃+ ΛXTΩ(Y −XBTµ̃). (3.2)

To establish the screening consistency for β̂PMS
B , we impose several regularity

conditions. In particular, we need the following condition.

C2. Let B∗ be the true group indicator matrix. Then, there exists some constant

γ̄2 > 0, such that ‖(B−B∗)β̄‖ = O(nγ̄2/
√
p).
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Condition C2 indicates that the group structure B for active features should not

be too far away from the truth. Furthermore, the PMS group statistics tolerate a

certain extent of false negative rate. Other conditions, including C1, C3 and C4,

are listed in the Supplementary Material. C1 and C3 impose assumptions on the

eigenvalues of the matrix BBT and ΛB; C4 adds constraints on the structure of

the matrix BΛ−1BT.

Theorem 3 (Screening Consistency for β̂PMS
B ). Under Conditions C1–C4, the

PMS group statistics (3.2) enjoy the screening consistency property.

Theorems 1, 2, and 3 indicate that our proposed PMS method is robust to

prior knowledge. Even though the prior knowledge is not exactly correct, as long

as it is not too far away from the truth, the screening results are still consistent.

We also demonstrate this property in our simulations in Section 5.

4. PMS Screening-Based Ensemble Learning

In many applications, multiple sources of prior knowledge may be available,

but none is clearly better than the others. We propose tackling this issue by

combining PMS screening (CPMS), the screening statistics that integrate prior

knowledge from different sources simultaneously. Assume that we have K(K <

∞) types of prior knowledge, and denote by β̂(1), . . . , β̂(K) the corresponding PMS

statistics. We introduce each entry of the CPMS statistics (β̂CPMS) as β̂CPMS
j =

max{|β̂(1)
j |, . . . , |β̂

(K)
j |}, for j = 1, . . . , p. Given a thresholding parameter α, the

selected feature set can be expressed as M̃α = {j : β̂CPMS
j > α}. For CPMS,

the thresholding parameter α can also be selected using the random decoupling

method. Similarly to PMS, we demonstrate the theoretical properties of CPMS

in the following Theorem 4.

Theorem 4 (Screening Consistency for CPMS). If Conditions A1–A5 hold for

all k, k = 1, . . . ,K, there exist αKn , C
′ and C̃ ′ > 0, such that

P

(
min
j∈M0

∣∣∣β̂CPMS
j

∣∣∣ > αKn > max
j 6∈M0

∣∣∣β̂CPMS
j

∣∣∣)
= 1−O

[
exp

(
−C ′n1−ξ̃1

2 log n

)
+ exp

{
1− 1

2
q

(
C̃ ′n1/2−ξ̃2
√

log n

)}]
,

for some 0 < ξ̃1 < 1 and 0 < ξ̃2 < 1/2.
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5. Simulation Studies

We compared the performance of the proposed PMS method with that of

existing variable screening methods, such as the SIS, HOLP, CIS, and PartS

methods, using a series of simulation studies. We assigned two settings to a

p-dimensional linear regression model (2.1): a group structure, and an image

regression case. All simulation results are based on 200 replicates and a signal-

to-noise ratio R2 = 0.5 and 0.9. We evaluate the screening accuracy using three

criteria: the false positive rate (FPR) when the power of detecting the true

signals is 80%, the false negative rate (FNR) when the FPR is controlled at 10%,

and the median number of variables needed to include all true signals (Model

Size). In all the tables, we report the FPR and the FNR multiplied by 1,000,

with the standard deviations in the parentheses, and the model size, with the

corresponding 25% and 75% quantile intervals in parentheses. The R package

PMS ( https://github.com/kangjian2016/PMS.git) is available.

5.1. Group structure case

Similarly to a scenario in Zou and Hastie (2005), we introduced a group

structure to all covariates in this setting. The specific distribution information

is summarized as xj+3m = zj + N(0, δ2), where zj ∼ N(0, 1), for j = 1, 2, 3

are independent, δ2 = 0.01, and m = 0, . . . , 4. In addition, xj ∼ N(0, δ2), for

j = 16, . . . , p, are independent. Thus, the first 15 features are divided into three

groups, denoted as G0
k = {xk+3m,m = 0, . . . , 4}, for k = 1, 2, 3, and the regression

coefficients are set as βG0
1

= 0.5, βG0
2

= 3, βG0
3

= 5, and βj = 0, for j = 16, . . . , p.

Assume we have another group series Gk = {xk+3m : m = 0, . . . , 9}, for

k = 1, 2, 3. Obviously, half of the elements in Gk are active features, whereas

the others are inactive. For each Gk, we exchanged two active features with two

active ones from the next group, and obtained new group series {G̃k}3k=1. We

constructed the prior covariance information of PMS based on {G̃k}3k=1. Let-

ting G̃4 = {xj , j = 31, . . . , p} and L be the normalized graph Laplacian matrix

for {G̃k}4k=1, we introduced a network structure to the prior covariance matrix,

of the form Λ = (L + εIp)
−1, with ε = 10−3. Because {G̃k}3k=1 are inconsis-

tent with {Gk}3k=1, the matrix Λ is misspecified. For PMS with prior selec-

tion (“PMS-selection”), the pre-selected set is S =
⋃3
k=1 G̃k. For PMS with

prior group information (“PMS-group”), {G̃k}4k=1 is chosen as the group par-

tition. We considered two PartS methods with different partition structures.

One is based on the true group structure {G0
k}4k=1, and referred to as “PartS-

I.” The other structure, called “PartS-II,” is obtained by randomly partition-

https://github.com/kangjian2016/PMS.git
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Table 1. Screening accuracy for predictors, with group structure.

R2 = 0.5 R2 = 0.9

(n, p) Method FPR FNR Model Size FPR FNR Model Size

(100, 10000)

SIS 430(286) 294(128) 5108(2270,7931) 429(300) 268(126) 5271(1543,8190)

HOLP 434(283) 298(120) 5043(2550,8093) 430(298) 272(122) 5361(1599,8265)

CIS 38(6) 0(0) 412(385,429) 24(7) 0(0) 287(257,309)

PartS-I 296(236) 273(110) 8209(5809,9421) 242(206) 244(119) 7654(5525,8875)

PartS-II 345(208) 314(106) 8212(5917,9422) 330(0.216) 285(0.082) 7675(5538,8878)

PMS-selection 0(0) 0(5) 24(20,28) 0(0) 1(7) 24(20,27)

PMS-group 11(58) 22(63) 30(29,30) 2(13) 16(46) 30(30,30)

(100, 20000)

SIS 434(278) 287(120) 10813(5088,16144) 421(291) 277(121) 9516(4181,16428)

HOLP 442(280) 190(116) 10877(5119,16330) 424(288) 277(121) 9707(4113,16189)

CIS 22(3) 0(0) 458(434,478) 15(3) 0(0) 332(299,351)

PartS-I 290(186) 328(97) 17266(14546,18544) 249(183) 270(87) 17229(14198,18725)

PartS-II 347(161) 368(96) 17395(14569,18546) 310(177) 300(67) 17293(14270,18729)

PMS-selection 0(0) 0(5) 24(19,28) 0(0) 1(8) 24(20,28)

PMS-group 6(38) 10(45) 30(29,30) 2(20) 10(37) 30(30,30)

(200, 20000)

SIS 363(292) 248(140) 7912(2675,14709) 305(284) 225(151) 5948(1668,11813)

HOLP 370(285) 256(133) 8074(3082,14809) 301(0.274) 227(151) 5574(1803,12178)

CIS 29(5) 0(0) 636(615,654) 13(7) 0(0) 404(290,433)

PartS-I 219(213) 230(119) 15588(8152,18236) 183(201) 201(125) 13689(6148,17489)

PartS-II 305(224) 269(97) 15611(8159,18239) 249(215) 247(112) 13745(6161,17497)

PMS-selection 0(0) 2(10) 25(19,28) 0(0) 1(8) 23(18,27)

PMS-group 5(34) 22(58) 30(30,30) 1(0) 10(30) 30(30,31)

ing all features into 357 groups and assigning features in {G̃k}3k=1 into the first

three groups. We considered three combinations of sample sizes and dimensions

(n, p) = (100, 10000), (100, 20000), (200, 20000). The screening accuracy is sum-

marized in Table 1, indicating that PMS-selection and PMS-group outperformed

all other methods in terms of all criteria. We report the computation times of

the different methods with varied sample sizes and dimensions in Figure 2, where

both PMS methods are comparable to SIS and HOLP, but much faster than

PartS and CIS.

5.2. Scalar-on-image regression

Here, we apply PMS to a scalar-on-image regression model. Two different

scenarios were considered. The first scenario is a real data-based simulation study.

We applied the local functional connectivity density (LFCD) in the ABIDE data

set as covariates. The sample size is n = 441, and the dimension of all features

is 38,547, which can be partitioned into 90 different regions based on the AAL

partition criterion. We assumed that regions “Postcentral L,”“Precuneus R,”

and “Cuneus L” were selected regions, with number of active features 99, 107,

and 90, respectively. We generated the effects of region “Postcentral L” from
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Figure 2. Comparisons of computational times with varied sample sizes and dimensions.
The computations were performed on a Macbook Pro with a 2.3 GHz Quad-Core CPU
and 16 GB memory.

Table 2. Screening accuracy based on the simulated data from the ABIDE study.

R2 = 0.5 R2 = 0.9

Method FPR FNR Model Size FPR FNR Model Size

SIS 798(43) 735(15) 37860(37307,38396) 814(16) 727(5) 37729(37535,37974)

HOLP 809(26) 944(17) 38475(38391,38515) 800(26) 933(19) 38459(38378,38510)

CIS 836(3) 958(16) 38471(38470,38473) 816(13) 893(19) 38473(38471,38475)

PartS 800(26) 930(18) 38364(38277,38423) 826(22) 971(9) 38398(38315,38427)

PMS 7(0) 2(2) 1331(620,9112) 7(0) 2(2) 1370(619,7120)

uniform distribution U[4, 5], those of region “Precuneus R” from U[−1,−0.5],

and those of region “Cuneus L” from U[0, 0.5]. We chose the union set of a small

neighborhood of each feature as a preselected feature set, and finished the variable

screening procedure using the proposed PMS method. The screening accuracy

results for the various methods are summarized in Table 2.

To further understand the performance of the different methods, we con-

ducted another simulation study for the scalar-on-image regression. We gen-

erated p-dimensional features from Gaussian processes on equally spaced grids

{sj}pj=1 in [−1, 1]2. The covariance function of x takes the form Cov(xi, xj) =

exp(−0.5‖si − sj‖2), for i, j ∈ {1, . . . , p}, i 6= j. We assumed that the true signal

is concentrated at one circle and one equal-sized triangle, as shown in Case II in

Figure 4. The true signal from the circle region is generated from U[−0.5, 0], and

the true signal in the triangle region followes U[0, 0.5]. The true size is 217. To

apply the proposed PMS method, we introduced the sparsity spatial structure

Λ1(i, j) = exp(−ρ‖si − sj‖2)I{‖si − sj‖2 ≤ 0.4} to the prior covariance matrix,

with ρ = 0.3.
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Table 3. Screening accuracy for a scalar-on-image regression with simulated data from
different activation shapes.

R2 = 0.5 R2 = 0.9

Method FPR FNR Model Size FPR FNR Model Size

SIS 345(53) 951(76) 4529(4020,5104) 313(23) 985(38) 4394(4153,4651)

HOLP 312(67) 951(82) 4091(3718,4817) 269(37) 919(45) 3785(3548,4075)

CIS 784(9) 994(28) 8313(8270,8377) 786(5) 1(0) 8343(8315,8372)

PartS 752(0) 976(11) 8029(8028,8029) 752(0) 976(11) 8029(8028,8029)

PMS-spatial 189(62) 189(134) 3080(2483,3766) 137(23) 135(97) 2356(2103,2652)

PMS-group 24(114) 16(87) 268(263,270) 10(57) 7(59) 269(266,271)

-0.5 0.0 0.5-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5
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Figure 3. Rankings of screening statistics obtained from different methods for a scalar-on-image
regression with signal-to-noise ratio R2 = 0.1.

To implement PMS with prior group information, that is, PMS-group, we de-

signed a circle region and a triangle region, each of which covered 125% of the cor-

responding true region. See Case III in Figure 4. We considered all features in the

union of the two regions as one group, and the others as another group. We also

considered PMS incorporating only a prior covariance matrix without selection

and group information, as “PMS-spatial.” All results with (n, p) = (200, 10000)

are summarized in Table 3. To provide more intuitive comparisons of the meth-

ods, in Figure 3, we also visualize the rankings of all imaging predictors based on

the screening statistics.

5.3. Sensitivity analysis

We performed a sensitivity analysis for PMS. The true signal is the same

as that in Section 5.2. We varied the prior specifications and evaluated the

screening accuracy. For the prior covariance matrix Λ, we attempted the norms

Λ1 and Λ2(i, j) = exp(−ρ‖si − sj‖22)I{‖si − sj‖2 ≤ 0.4}. We also considered

Λ with different values of ρ. Because the results were quite similar with each

other, only results for ρ = 0.3 are reported. For prior selection S, we designed

three cases, summarized in Figure 4. According to the prior selection set S and

true active feature set M0, all features were partitioned into four categories:
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Figure 4. Prior selection regions and the true signal regions for the three cases in the
sensitivity analysis.

Table 4. Sensitivity analysis on prior specifications for PMS.

R2 = 0.5 R2 = 0.9

Λ Method S FPR FNR Model Size FPR FNR Model Size

Λ1 PMS-spatial N/A 189(62) 189(134) 3080(2483,3766) 137(23) 135(97) 2356(2103,2652)

PMS-selection I 20(4) 122(8) 3018(2608,3625) 19(1) 125(2) 3090(2902,3349)

II 0(0) 1(2) 217(217,217) 0(0) 1(2) 217(217,270)

III 5(0) 1(2) 272(272,272) 5(0) 2(4) 272(272,1180)

PMS-group I 76(166) 155(85) 5533(4021,6970) 29(64) 131(51) 4933(3788,6602)

II 0(0) 0(0) 217(217,217) 0(0) 0(0) 217(217,217)

III 24(114) 16(87) 268(263,270) 10(57) 7(59) 269(266,271)

Λ2 PMS-spatial N/A 188(63) 188(135) 3068(2479,3762) 134(23) 134(99) 2351(2097,2642)

PMS-selection I 20(6) 122(10) 3061(2773,3378) 19(1) 125(3) 3049(2911,3216)

II 0(0) 1(2) 217(217,217) 0(0) 1(2) 217(217,217)

III 5(0) 1(3) 272(272,272) 5(1) 2(4) 272(272,1286)

PMS-group I 76(166) 155(84) 5515(4006,6943) 29(65) 130(51) 4916(3771,6581)

II 0(0) 0(0) 217(217,217) 0(0) 0(0) 217(217,217)

III 24(114) 16(87) 270(265,272) 10(57) 7(59) 269(266,271)

prior true positive (PTP), prior true negative (PTN), prior false positive (PFP),

and prior false negative (PFN). In Case I, the prior selection set has both false

positives and false negatives, where the PTP rate is |M0 ∩ S|/|M0| ≈ 75%, and

the PFP rate is |Mc
0 ∩ S|/|M0| ≈ 25%. Case II is the ideal case in which the

prior information is consistent with the true signal, that is, M0 = S. In Case

III, M0 ⊂ S, with |Mc
0 ∩ S|/|M0| ≈ 25%. With the prior selected set, we used

the method in Section 5.2 to specify prior group information for the PMS-group.

The sensitivity analysis results are summarized in Table 4. “PMS-spatial” refers

to PMS incorporating prior spatial covariance, without using prior selection and

prior group information.

The results shown in the Tables 1- 4 indicate that the PMS method performs
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well under all settings; the advantages become more obvious when the signal

is weak, which is a relatively difficult scenario. Under the case that the prior

selected set contains all active features, PMS can select all important variables

with very small model size, as well as nearly zero false positive and false negative

rates. Furthermore, PMS is robust to prior mis-specification, as mentioned in

Section 2. Even though the prior selection information is inconsistent with the

true signals, PMS still performs very well. Moreover, even when the block struc-

ture for the covariance is misspecified, PMS still outperforms the other methods.

In contrast, the performance of PartS highly depends on the accuracy of the prior

partition structure, as shown in Figure 3 and the additional results in the Supple-

mentary Material. From the sensitivity analysis, the PMS results are robust to

a mild change of the prior knowledge. These results indicate that incorporating

appropriate prior knowledge can substantially improve screening accuracy.

Some additional simulation studies are reported in the Supplementary Mate-

rial, including a linear regression with a compound symmetry covariance matrix,

applications of random decoupling in thresholding, and the CPMS results.

6. Data Application

We applied the proposed PMS method to resting-state fMRI (R-fMRI) data

from the Autism Brain Imaging Data Exchange (ABIDE) Study (Di Martino

et al. (2014)). The fMRI measures the blood oxygen level signal linked to neural

activities, whereas the R-fMRI measures brain activity in a resting state. The

ABIDE study comprises 20 resting-state functional magnetic resonance data sets

from 17 experiment sites. The human brain is registered into the 3 mm standard

Montreal Neurological Institute space composed of 38,547 voxels, which can be

partitioned into 90 regions according to the AAL brain atlas. Removing all indi-

viduals with missing values, there are 441 healthy subjects. For each subject, the

R-fMRI signal is recorded for each voxel over some time points. The intelligence

quotient (IQ) and other demographic information, such as age and gender, are

also collected.

Our main question of interest was to identify brain regions that are highly

associated with IQ for healthy individuals, adjusted for age and gender. To

select active imaging biomarkers for IQ prediction, we compared two types of

imaging measures derived from the R-fMRI data: the fractional amplitude of

low-frequency fluctuations (fALFF) and the local functional connectivity density

(LFCD). In particular, the fALFF measures the spontaneous fluctuations in the

fMRI signal intensity and reflects local brain activity. The LFCD mapping finds
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Figure 5. Selected 1,000 features that are shown on five axial slices.

200

220

240

800 850 950 1,000900
Number of features

Pr
ed

ic
te

d 
M

SE Method
CPMS
HOLP
PartS
PMS
SIS

fALFF

220

240

260

280

800 850 950 1,000900
Number of features

Pr
ed

ic
te

d 
M

SE Method
CPMS
HOLP
PartS
PMS
SIS

LFCD

Figure 6. Predicted MSE for different methods in the fALFF and the LFCD data set.

the given neighbors and neighbors’ neighbors until the edges become weaker than

a given threshold value.

Using the AAL partition criterion, we constructed a block diagonal structure

for the prior correlation matrix Λ. Each block corresponds to one region with

a sparsity spatial structure exp(−0.5‖si − sj‖22), where sj represents the three-

dimensional standardized coordinate of voxel j, for j = 1, . . . , 38547. To add

prior selected information, we chose the features in the brain regions in Table 7

of Li et al. (2009) as preselected features. For further comparison, we also applied

CPMS, which was obtained by combining all prior selected information provided

by SIS, HOLP, and PartS, and the preselected features. Because all parameter

estimations by the CIS method are zero for these two data sets, we did not con-

sider this method in this study. Table 5 summarizes the regions with more than

40 voxels when choosing the first 1,000 features by CPMS. The corresponding

selected features are also shown on five axial slices in Figure 5.

We adopted 10-fold cross-validation to compare the performance of the dif-

ferent methods in terms of IQ prediction. We randomly split all data into 10
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Table 5. Automated anatomical labeling of regions selected in the fALFF and the LFCD
data set with more than 40 voxels selected by the CPMS selection method when choosing
the first 1,000 features.

Dataset Selected region Voxel counts Median rank Selected region Voxel counts Median rank

fALFF Frontal Mid R 72 454 Parietal Inf L 48 299

Precentral L 69 405 ParaHippocampal L 45 360

Frontal Mid L 63 551 Occipital Mid L 42 565

Temporal Sup L 49 336 Fusiform R 42 429

Supp Motor Area R 48 140

LFCD Frontal Mid R 88 526 Frontal Inf Tri R 45 341

Occipital Mid R 60 474 Temporal Mid R 41 601

Insula L 59 203 Occipital Sup R 40 803

Precuneus R 52 337

subsets with approximately equal size. Each time, we chose one subset as the

testing data, and the others as the training data. For the PartS method, we used

the AAL partition criterion as the group partition. Predictions were performed

using a ridge regression; the corresponding results are summarized in Figure 6.

Figure 6 shows that the prior knowledge provided by Li et al. (2009) seems not

to be consistent with the fALFF measure case; thus, the predicted MSE of PMS

is relatively higher than those of PartS and SIS. However, we improved the pre-

diction accuracy by using the CPMS method. Using all four sources of prior

information simultaneously, the predicted MSE decreases significantly. In addi-

tion, under the LFCD measure, the predicted MSE of PMS is significantly smaller

than those of other methods, indicating that PMS can select important features

with higher accuracy if the prior knowledge is reasonable.

7. Discussion

We have proposed a prior knowledge-guided variable screening method for

the linear regression model. We gave constructions of the proposed screening

statistics under specific applications, and demonstrated the theoretical properties

of PMS. We tested the performance of our method using a series of simulation

studies, and applied it to the analysis of the ABIDE data. Being applicable to the

linear regression model, PMS can be extended to the framework of generalized

linear models. In recent years, variable screening methods based on model-free

frameworks have been widely studied. Exploring an efficient way of incorporating

prior knowledge into the variable screening procedure under the model-free setting

is also an interesting topic, which we will explore in future work.
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Supplementary Material

The online Supplementary Material includes Proposition 1 with its proof, the

conditions and proofs of Theorems 1–4, and some additional simulation studies.
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