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S1 Proofs

S1.1 Proof of Proposition 1

Since Co
D(·) is symmetric, Co

ij,D(·) = Co
ji,D(·), i, j = 1, . . . , p. Now consider any

two locations s,u ∈ G. The covariance between Yi(s) and Yj(u) is given by

Cij,G(s,u) = Co
ij,D(f(s)− f(u)) = Co

ji,D(f(s)− f(u)) = Cji,G(s,u),

for i, j = 1, . . . , p, and therefore CG(· , ·) is symmetric.

S1.2 Proof of Proposition 2

Consider any two locations s,u in G. The covariance between Yi(s) and Yj(u),

i, j = 1, . . . , p, is

cov(Yi(s), Yj(u)) = Cij,G(s,u) = Co
ij,D(fi(s)− fj(u)),
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while the covariance between Yj(s) and Yi(u) is

cov(Yj(s), Yi(u)) = Cji,G(s,u) = Co
ji,D(fj(s)− fi(u))

= Co
ij,D(fj(s)− fi(u)),

since Co
D(·) is symmetric. Now, for i 6= j, there are many examples where

fi(s) − fj(u) 6= fj(s) − fi(u), and hence cov(Yi(s), Yj(u)) 6= cov(Yj(s), Yi(u)) for

i 6= j. That is, the cross-covariance matrix function CG(·, ·) constructed through

(3.2) is not necessarily symmetric.

S1.3 Proof of Proposition 3

By (3.2), we have that for k = 1, . . . , ni, l = 1, . . . , nj, and i, j = 1, . . . , p,

Cij,G(sik, sjl) = Co
ij,D(fi(sik)− fj(sjl)). Therefore, for i, j = 1, . . . , p, we have

that Σij,G = (Co
ij,D(fi(sik)− fj(sjl)) : k = 1, . . . , ni, l = 1, . . . , nj). Since Co

D(·)

is valid, we have that for any a ∈ RN , a 6= 0, a′(Co
ij,D(fi(sik) − fj(sjl)) : k =

1, . . . , ni; l = 1, . . . , nj; i, j = 1, . . . , p)a ≥ 0, and hence a′ΣGa ≥ 0. That is,

ΣG is nonnegative-definite.
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S1.4 Proof of Proposition 4

Since f(·) is the identity map,

Cij,G(s,u) = Co
ij,D(gi(s)− gj(u)); i, j 6= k,

Ckk,G(s,u) = Co
kk,D(gk(s)− gk(u)),

Cik,G(s,u) = Co
ik,D(gi(s)− gk(u)); i 6= k,

where k ∈ {2, . . . , p}. Write the affine transformation as gk(s) = Ãs + d̃, where

Ã is a d× d matrix that is not generally equal to the identity matrix. Then,

Cij,G(s,u) = Co
ij,D(s− u); i, j 6= k,

Ckk,G(s,u) = Co
kk,D(Ãs− Ãu) = Co

kk,D(Ã(s− u)),

Cik,G(s,u) = Co
ik,D(s− Ãu− d̃); i 6= k.

As Co
D(·) is stationary, it follows that Cij,G(s,u), i, j 6= k and Ckk,G(s,u) are sta-

tionary, while Cik,G(s,u), i 6= k, is nonstationary unless Ã is the identity matrix.

That is, the cross-covariance function Cik,G(·, ·) is not necessarily stationary.

S1.5 Proof of Theorem 1 and Corollary 1

Proof of Theorem 1:

By assumption, C
(1)
G (s,u) = C

(2)
G (s,u), for all s,u ∈ G, and hence by def-

inition, C̃o
ij,D(

∥∥f (1)(s)− f (1)(u)
∥∥; a

(1)
ij ) = C̃o

ij,D(
∥∥f (2)(s)− f (2)(u)

∥∥; a
(2)
ij ), for all

s,u ∈ G and i, j = 1, . . . , p. That is, for each s,u ∈ G and i, j =
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1, . . . , p, we have that a
(1)
ij

∥∥f (1)(s)− f (1)(u)
∥∥ = a

(2)
ij

∥∥f (2)(s)− f (2)(u)
∥∥, and hence

a
(1)
ij

∥∥f (1)(sl)− f (1)(sk)
∥∥ = a

(2)
ij

∥∥f (2)(sl)− f (2)(sk)
∥∥, for sl and sk two distinct

points in G.

Hence, from the definition of b1(·) in Section 3.3,

∥∥b1 ◦ f (1)(s)− b1 ◦ f (1)(u)
∥∥ =

∥∥b1 ◦ f (2)(s)− b1 ◦ f (2)(u)
∥∥,

for all s,u ∈ G. Since b2(·) and b3(·) are distance-preserving transformations,

we then have that

∥∥b0 ◦ f (1)(s)− b0 ◦ f (1)(u)
∥∥ =

∥∥b0 ◦ f (2)(s)− b0 ◦ f (2)(u)
∥∥.

Recall that three locations sk, sl, and sm are chosen in G ⊂ R2 such that

f (r)(sk), f (r)(sl), and f (r)(sm) are not colinear; and b0 ◦ f (r)(sk) = (0, 0)′,

b0 ◦ f (r)(sl) = (1, 0)′, and b0,2 ◦ f (r)(sm) > 0, for r = 1, 2. Now, we have

that for any two points s,u ∈ G, the distance
∥∥b0 ◦ f (r)(s)− b0 ◦ f (r)(u)

∥∥
does not depend on r. Because the two points b0 ◦ f (r)(sk) and b0 ◦ f (r)(sl)

are fixed in D3, it follows that the distances
∥∥b0 ◦ f (r)(sm)− b0 ◦ f (r)(sk)

∥∥ and∥∥b0 ◦ f (r)(sm)− b0 ◦ f (r)(sl)
∥∥ are also fixed. In R2, when the distances from a

point b0 ◦ f (r)(sm) to two fixed points (0, 0)′ and (1, 0)′ are constant, there exist

two possible points sm, assuming f (r)(sm) is not colinear with f (r)(sk) and f (r)(sl):

one where b0,2 ◦ f (r)(sm) > 0 and one where b0,2 ◦ f (r)(sm) < 0. However, as we

constrain b0,2 ◦ f (r)(sm) > 0, b0 ◦ f (r)(sm) is unique. Since we have three fixed

points b0 ◦ f (r)(sk), b0 ◦ f (r)(sl), and b0 ◦ f (r)(sm), and a fixed set of distances
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∥∥ for any two points s,u, then b0◦f (1)(s) = b0◦f (2)(s),

for all s ∈ G.

For the converse part of the proof, assume that b0 ◦ f (1)(s) = b0 ◦ f (2)(s), for

all s ∈ G. Then,

∥∥b1 ◦ f (1)(s)− b1 ◦ f (1)(u)
∥∥ =

∥∥b1 ◦ f (2)(s)− b1 ◦ f (2)(u)
∥∥,

for all s,u ∈ G, and therefore∥∥f (1)(s)− f (1)(u)
∥∥

‖f (1)(sl)− f (1)(sk)‖
=

∥∥f (2)(s)− f (2)(u)
∥∥

‖f (2)(sl)− f (2)(sk)‖
.

Because a
(1)
ij

∥∥f (1)(sl)− f (1)(sk)
∥∥ = a

(2)
ij

∥∥f (2)(sl)− f (2)(sk)
∥∥, for i, j = 1, . . . , p, it

follows that a
(1)
ij

∥∥f (1)(s)− f (1)(u)
∥∥ = a

(2)
ij

∥∥f (2)(s)− f (2)(u)
∥∥, for all s,u ∈ G and

i, j = 1, . . . , p. Therefore, C
(1)
G (s,u) = C

(2)
G (s,u), for all s,u ∈ G.

Proof of Corollary 1:

Note that the Gaussian process model (3.5) is fully specified by its mean func-

tion and covariance function. Hence, its finite-dimensional distributions are

solely a function of the mean and covariance-function parameters. Therefore,

the log restricted likelihood function in (S2.1) where the mean-function param-

eters are profiled out, solely depends on covariance-function parameters and

the data Z. Now, suppose that two different sets each comprising a warp-

ing function and scale parameters, {f (1)(·), {a(1)
ij }} and {f (2)(·), {a(2)

ij }}, yield

the same log restricted likelihood function, for any set of measurement loca-
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tions {sik : k = 1, ..., ni; i = 1, ..., p} ⊂ G. Then, this necessarily means that

C
(1)
G (s,u) = C

(2)
G (s,u), for all s,u ∈ G and, from the proof of Theorem 1

above, we see that this implies that b0 ◦ f (1)(s) = b0 ◦ f (2)(s), for all s ∈ G,

and that a
(1)
ij

∥∥f (1)(sl)− f (1)(sk)
∥∥ = a

(2)
ij

∥∥f (2)(sl)− f (2)(sk)
∥∥, for i, j = 1, . . . , p.

This in turn implies that the sets comprising the corresponding homogenized

warping functions and transformed scale parameters, {b0 ◦ f (1)(·), {ã(1)
ij }} and

{b0 ◦ f (2)(·), {ã(2)
ij }}, where ã

(r)
ij = a

(r)
ij

∥∥f (r)(sl)− f (r)(sk)
∥∥, r = 1, 2, are identical.

Further, since Theorem 1 establishes an if-and-only-if relation, there is no other

set, {b0 ◦ f (3)(·), {ã(3)
ij }} say, that yields the same log restricted likelihood func-

tion, for any set of measurement locations {sik : k = 1, ..., ni; i = 1, ..., p} ⊂ G.

This is because such a set would correspond to a different covariance function,

C
(3)
G (s,u) say, where C

(3)
G (s,u) 6= C

(1)
G (s,u) for some s,u ∈ G. Therefore, the

set comprising a homogenized warping function and the transformed scale pa-

rameters, {b0 ◦ f(·), {ãij}}, where ãij ≡ aij‖f(sl)− f(sk)‖ for i, j = 1, . . . , p, has

a unique log restricted likelihood function associated with it; this set is thus

identifiable (see Kadane, 1974, for more discussion on identifiability).
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S2 Log Restricted Likelihood and Prediction Formulas

The log restricted likelihood for our model under the assumption of Gaussianity

for Y can be written as (Cressie and Lahiri, 1993),

L(θ; Z) = −N − pq
2

log(2π)+
1

2
log |X′X|−1

2
log |ΣZ |−

1

2
log
∣∣X′Σ−1

Z X
∣∣−1

2
Z′ΠZ,

(S2.1)

where N =
∑p

i=1 ni, and Π = Σ−1
Z −Σ−1

Z X(X′Σ−1
Z X)−1X′Σ−1

Z .

The estimate of β, β̂, is given by

β̂ = (X′Σ̂−1
Z X)−1X′Σ̂−1

Z Z, (S2.2)

where Σ̂Z denotes ΣZ evaluated at θ = θ̂.

Treating the plug-in REML estimates as known parameters, the joint dis-

tribution of the data Z and the process Ỹi(·) evaluated at s∗ is Z

Ỹi(s
∗)

 ∼ Gau


X

x∗
′
i

β,

 ΣZ σ∗(s∗)

σ∗(s∗)′ Cii,G(s∗, s∗)


 , (S2.3)

where x∗i = (x(s∗)′I(j = i) : j = 1, . . . , p)′, and σ∗(s∗) = (C1i,G(s11, s
∗),

. . . , C1i,G(s1n1 , s
∗), . . . , Cpi,G(sp1, s

∗), . . . , Cpi,G(spnp , s
∗))′. From (S2.3), Gaussian

conditioning yields

E(Ỹi(s
∗) | Z) = x∗

′

i β + σ∗(s∗)′Σ−1
Z (Z−Xβ),

var(Ỹi(s
∗) | Z) = Cii,G(s∗, s∗)− σ∗(s∗)′Σ−1

Z σ∗(s∗).

(S2.4)

From (S2.4), it is also straightforward to make a probabilistic prediction of an

observation at s∗, say Z∗i , since E(Z∗i | Z) = E(Ỹi(s
∗) | Z), and var(Z∗i | Z) =
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var(Ỹi(s
∗) | Z) + τ 2

i .

S3 Additional Tables and Figures

Algorithm 1: Parameter bootstrapping for uncertainty quantification

1 Find the REML estimate θ̂ by maximizing L in (S2.1).

2 Find the REML estimate β̂ using (S2.2).

3 Find the Cholesky factor L of Σ̂Z , that is, find L such that LL′ = Σ̂Z .

4 Decorrelate the data: Z0 = L−1(Z−Xβ̂).

5 Generate an uncorrelated bootstrap sample Z0,b by sampling Z0 with replacement.

6 Create the correlated bootstrap sample Zb = LZ0,b + Xβ̂.

7 Find the bootstrap estimate θ̂b and β̂b from Zb.

8 Repeat from step 5 for B times to create a bootstrap sample of size B. (For most

problems, B ≈ 1000 should suffice.)
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Table S1: Summary of the warping units. In each row, a warping unit is described. Parameters

appearing in the functions composing the units are denoted using θ.

Type of

deformation

function

Functional form Usage Visualization

Axial warping

f̃(s) =

f̃(s1)

s2

 or

 s1

f̃(s2)

, where

f̃(s) =
∑r
i=1 wiφi(s), and where

φ1(s) = s;

φi(s) = 1
1+exp{−θ1(s−θ2)} , i = 2, . . . , r.

warp space along one of

the axes

Radial basis

function
f̃(s) = s+w exp

{
−θ2‖s− θ1‖2

}
(s−θ1)

expand or contract space

locally around the center

of the basis function

Möbius

transformation

f̃(s) =

Re(φ(s))

Im(φ(s))

, where

φ(s) = θ1z(s)+θ2
θ3z(s)+θ4

;

z(s) = s1 + is2; θ1, θ2, θ3, θ4 ∈ C

move points around fixed

points (usually in circular

paths)

Affine

transformation
g̃(s) = As + d

align processes with

respect to the first

process (using shifts and

rotations)
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Figure S1: Illustration of the homogenizing function b0(·). Top left: A set of locations on

the warped domain D, with the red, yellow, and green dots denoting f(sk), f(sl), and f(sm),

respectively. Top right: The locations on the scaled and shifted domain D1. Bottom left: The

locations on the scaled, shifted, and rotated domain D2. Bottom right: The locations on the

scaled, shifted, rotated, and reflected, domain D3. This is the fixed frame of reference defined

in Section 3.3.
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Figure S2: Boxplots of RMSPE and CRPS for both models across 30 simulations in Section 4.1. The left

two panels correspond to Ỹ1(·), and the right two panels to Ỹ2(·).

Table S2: True values, estimates, and 95% bootstrap confidence intervals (CI), of the model

parameters for the simulation study in Section 4.1, where the measurement locations are

randomly sampled from G.

Parameters True values REML estimates 95% bootstrap CI

ν11 0.500 0.528 (0.235, 0.634)

ν22 1.500 1.226 (0.929, 1.664)

σ1 1.000 1.040 (0.775, 1.329)

σ2 0.900 0.932 (0.763, 1.388)

ρ12 0.450 0.392 (0.321, 0.537)

1/ã 0.329 0.412 (0.274, 0.556)

τ1 0.200 0.252 (0.178, 0.265)

τ2 0.100 0.097 (0.092, 0.108)

β11 0.000 -0.232 (-0.947, 0.415)

β21 0.000 0.047 (-0.762, 0.741)



12

Table S3: Five-fold cross-validation results, AIC, and the time required to fit, for the ocean

temperatures at depths 0.5 meters and 318.1 meters for the study in Section 4.2, where data

were missing at random.

T0.5 T318.1

RMSPE CRPS RMSPE CRPS AIC Time (s)

Model 4.2.1 0.0661 0.0306 0.0265 0.0129 -4791.1 1338.8

Model 4.2.2 0.0584 0.0188 0.0280 0.0136 -6246.4 2545.8

Model 4.2.3 0.0666 0.0198 0.0241 0.0123 -6403.4 4455.2

Figure S3: Measurement locations under the estimated aligning function (left panel) and the homogenized

warping function (right panel) for the ocean-temperatures data set in Section 4.2, where data are missing in a

block.
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Figure S4: Contours illustrating the estimated covariance functions evaluated at a set of locations (black

dots) for the data set in Section 4.2. Blue and red contours denote covariances equal to 0.4 and 0.8 times of

σ̂2
ij , where σ̂2

ij = σ̂2
i , for i = j, and σ̂2

ij = ρ̂ij σ̂iσ̂j , for i 6= j, respectively. Top row: Marginal covariances

of the first process, C11,G(·, ·) (left) and second process, C22,G(·, ·) (right). Bottom row: Cross-covariances

of the first process with the second process, C12,G(·, ·) (left) and of the second process with the first process,

C21,G(·, ·) (right). We see the estimated cross-covariances are asymmetric.
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S4 Additional Data Illustrations

S4.1 Simulated Symmetric Nonstationary Data With A Missing

Block

Following the simulation study in Section 4.1, we considered the case where

the symmetric nonstationary data are missing in a block. This situation occurs

often when observing environmental variables (for example, clouds could prevent

a remote sensing instrument from collecting data over a large region). As in the

study in Section 4.1, we sampled 1000 measurement locations at random 30

times, but this time on G\G0, where G0 ≡ [−0.28,−0.08]× [−0.48,−0.28] (i.e.,

the block of data was omitted for both processes). Model 4.1.1 and Model

4.1.2 were then fitted to the data. Figure S5 shows the true simulated fields,

the predictions, and the prediction standard errors from the two models. From

Figure S5, we see that the predictions from the DCSM recover the salient features

in the true fields despite the relatively large gap. The DCSM also produces

relatively lower prediction standard errors in the unobserved region than the

stationary parsimonious Matérn model. Table S4 shows the RMSPE and CRPS

from the two models when predicting the latent process at the grid locations in

G0 and, again, it illustrates the improvement in RMSPE and CRPS that can be

achieved when accounting for complex nonstationary properties of the process,

even when the data have large gaps.
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Figure S5: Same as Figure 1, but where the measurement locations are randomly sampled

from G\G0, and where the hold-out region G0 is enclosed by the black square.



S4.2 Simulated Asymmetric Nonstationary Data 16

Table S4: Average hold-out validation results, AIC, and the time required to fit, for the

simulation study in Section S4.1, where the measurement locations are randomly sampled 30

times from G\G0.

Ỹ1(·) Ỹ2(·)

RMSPE CRPS RMSPE CRPS AIC Time (s)

Model 4.1.1 1.137 0.675 0.453 0.274 833.2 816.9

Model 4.1.2 0.713 0.424 0.261 0.167 310.4 1533.0

S4.2 Simulated Asymmetric Nonstationary Data

We now demonstrate inference for a bivariate DCSM from simulated asymmet-

ric nonstationary data. We simulated bivariate data from a bivariate Gaussian

DCSM Ỹ(·) with constant mean (i.e., q = 1 and x(·) = x(·) = 1) in (3.5), and

cross-covariance matrix function as in (3.3). The data were simulated on the

101 × 101 grid defined on the geographic domain G. Now the shared warping

function f(·) is a composition of axial warping units, a single resolution radial

basis function unit, and a Möbius transformation unit, while the aligning func-

tion g2(·) is an affine transformation. (Recall from Section 3.1 that we fix g1(·)

to be the identity map.) On the warped domain, we use a stationary bivariate

parsimonious Matérn model. As in Section 4.1, we randomly sampled with-

out replacement 1000 locations from the grid and used them as measurement

locations.

We compared the predictive performance of the following five models on the
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101× 101 grid on G.

� Model S4.2.1: A bivariate, stationary, symmetric, parsimonious Matérn

model.

� Model S4.2.2: A bivariate, marginally stationary, asymmetric model with

f(·) the identity map and the aligning function g2(·) an affine transfor-

mation (as described in Proposition 4), with Model S4.2.1 on the warped

domain.

� Model S4.2.3: A univariate DCSM for each of the processes, with the warp-

ing function f(·) a composition of axial warping units, a single-resolution

radial basis function, and a Möbius transformation unit, with the Matérn

covariance model on the warped domain.

� Model S4.2.4: A bivariate symmetric DCSM, with the warping function as

in Model S4.2.3, with Model S4.2.1 on the warped domain.

� Model S4.2.5: A bivariate asymmetric DCSM, with the aligning function

g2(·) as in Model S4.2.2, the warping function as in Model S4.2.3, and

Model S4.2.1 on the warped domain. This is the model from which the

data were simulated.

Figure S6 shows the true simulated fields and the predicted fields from Model

S4.2.2, Model S4.2.4, and Model S4.2.5. From Figure S6, we can see that Model

S4.2.2 smooths out certain features (similar to the symmetric case), while Model



S4.2 Simulated Asymmetric Nonstationary Data 18

S4.2.5 is able to reproduce sharper features than Model S4.2.3, illustrating that

both nonstationarity and asymmetry could be important when modeling mul-

tivariate spatial processes. Figure S6 also shows the prediction standard errors

for Model S4.2.2, Model S4.2.4, and Model S4.2.5. As in Section 4.1, we see

that while there is no pattern in the prediction-standard-error map for Model

S4.2.2, the DCSMs produce prediction standard errors that are reflective of the

processes’ local anisotropies and scales.

We can also compare, respectively, the estimated aligning function and the

estimated warping function in Model S4.2.5 to the true aligning function and

the true warping function in Model S4.2.5. Figure S7 shows the measurement

locations under the true aligning and warping functions, and the measurement

locations under the estimated aligning and warping functions. We see that

the estimated aligning function generates a shift towards the east direction,

which is similar to the true aligning function, which generates a shift towards

the southeast direction. One can interpret that the second process needs to

be shifted eastwards to align with the first process. The estimated warping

function also retains important features of the true warping function, such as

the contraction in the middle part of the domain. This can be interpreted that

on the original domain G, the scale parameter in the middle region is smaller

than the scale parameter in the boundary region.

In a similar manner to Section 4.1, we repeated the procedure of randomly
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Figure S6: Comparison of predictions and prediction standard errors when using an asym-

metric, stationary, parsimonious Matérn model (Model S4.2.2); a symmetric DCSM (Model

S4.2.4); and an asymmetric DCSM (Model S4.2.5) in the study of Section S4.2, where mea-

surement locations were randomly sampled without replacement from G. First row: The

process Ỹ1(·) (first panel); predictions obtained using Model S4.2.2 (second panel), Model

S4.2.4 (third panel) and Model S4.2.5 (fourth panel). Second row: Locations of the mea-

surement of Ỹ1(·) (first panel); prediction standard errors obtained when using Model S4.2.2

(second panel), Model S4.2.4 (third panel) and Model S4.2.5 (fourth panel). Third and fourth

rows: Analogous to the first and second rows, respectively, for the process Ỹ2(·).
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Figure S7: Measurement locations under the aligning functions and the homogenized warping functions for

the data set in Section S4.2. Top row: Measurement locations under the true aligning function (left panel) and

the true warping function (right panel). Bottom row: Measurement locations under the estimated aligning

function (left panel) and the estimated warping function (right panel) using Model S4.2.5.

sampling 1000 locations 30 times from G and computing predictive diagnos-

tics. Table S5 displays the results from the cross-validation study, and Figure

S8 shows the boxplots of the RMSPE and CRPS for the models across the 30

simulations. Model S4.2.5, which considers both nonstationarity and asymme-

try, produces the best predictions in terms of lowest RMSPE and CRPS, while

the symmetric nonstationary model (Model S4.2.4) as well as the asymmetric

stationary model (Model S4.2.2) are seen to yield slight improvements over the

conventional symmetric, stationary model (Model S4.2.1). Surprisingly, even
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Table S5: Average hold-out validation results, AIC, and the time required to fit, for the

simulation study in Section S4.2, where the measurement locations are randomly sampled 30

times from G.

Ỹ1(·) Ỹ2(·)

RMSPE CRPS RMSPE CRPS AIC Time (s)

Model S4.2.1 0.304 0.169 0.091 0.048 386.3 815.3

Model S4.2.2 0.291 0.162 0.086 0.046 195.4 1188.6

Model S4.2.3 0.314 0.177 0.088 0.046 44.2 2025.7

Model S4.2.4 0.287 0.159 0.087 0.045 -3.8 1530.5

Model S4.2.5 0.269 0.149 0.080 0.041 -242.5 2654.1

when accounting for nonstationarity in each process, the decoupled univariate

model (Model S4.2.3) yields the worst predictions, showing the importance of a

multivariate model.

S4.3 Simulated Data with Misspecified Warping Functions

In this section, we consider cases where the deformations are misspecified.

Specifically, we present two cases: First, we consider data simulated from a

bivariate, symmetric, stationary covariance function. Second, we consider data

simulated from a bivariate, asymmetric, nonstationary covariance function with

a misspecified warping function.
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Figure S8: Boxplots of RMSPE and CRPS for the five models across 30 simulations in Section S4.2. The

top row corresponds to Ỹ1(·), and the bottom row to Ỹ2(·).

S4.3.1 Simulated Symmetric Stationary Data

In this section, we demonstrate the use of a bivariate DCSM with simulated

symmetric stationary data. We simulated bivariate data from a bivariate, sta-

tionary, symmetric, parsimonious Matérn model. The data were simulated on

a 101 × 101 grid defined on the geographic domain G. We randomly sampled

without replacement 1000 locations from the grid and used them as measurement

locations.

We first examined the ability of the DCSM to retrieve the true warping

function (in this case, the identity function). We used the same architecture in
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Figure S9: Measurement locations under the aligning functions and the homogenized warping functions for

the data set in Section S4.3.1. Top row: Measurement locations under the true aligning function (left panel)

and the true warping function (right panel). Bottom row: Measurement locations under the estimated aligning

function (left panel) and the estimated warping function (right panel).

the DCSM as in Model S4.2.5 in Section S4.2. Figure S9 shows the measurement

locations under the true aligning and warping function, and the measurement

locations under the estimated aligning and warping function. We observe that

both the aligning function and the warping function have been correctly esti-

mated to be approximately the identity functions.

We also compared the predictive performance of the DCSM with the true

model.

� Model S4.3.1.1: The bivariate, stationary, symmetric, parsimonious Matérn
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Table S6: Hold-out validation results, AIC, and the time required to fit, for the simulation

study in Section S4.3.1, where the measurement locations are randomly sampled from G.

Ỹ1(·) Ỹ2(·)

RMSPE CRPS RMSPE CRPS AIC Time (s)

Model S4.3.1.1 0.334 0.188 0.097 0.054 304.1 840.6

Model S4.3.1.2 0.346 0.195 0.108 0.060 437.1 2714.9

model. This is the model from which the data were simulated.

� Model S4.3.1.2: The same bivariate DCSM as Model S4.2.5 in Section S4.2.

Table S6 shows the cross-validation results of the simulation study. As ex-

pected, Model S4.3.1.2 produces worse RMSPE and CRPS than Model S4.3.1.1,

but it does not perform much worse. Given that we use very complex deforma-

tions in Model S4.3.1.2, this shows that the DCSM is quite robust to overfitting.

S4.3.2 Simuated Asymmetric Nonstationary Data with a Misspecified Warping

Function

In this section, we demonstrate the use of a DCSM with simulated asymmetric

nonstationary data with a misspecified warping function. We simulated bivariate

data from a bivariate Gaussian DCSM in a manner similar to Section S4.2, but

now we use a different warping function, f(s) = o+(s−o)‖s− o‖ (Fouedjio et al.,

2015), where o = (0, 0)′. The data were simulated on a 101 × 101 grid defined

on the geographic domain G. We randomly sampled without replacement 1000
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Figure S10: Measurement locations under the aligning functions and the homogenized warping functions for

the data set in Section S4.3.2. Top row: Measurement locations under the true aligning function (left panel)

and the true warping function (right panel). Bottom row: Measurement locations under the estimated aligning

function (left panel) and the estimated warping function (right panel).

locations from G and used them as measurement locations.

As in Section S4.3.1, we examined the ability of the DCSM to retrieve the

true warping function using the same model as Model S4.2.5 in Section S4.2.

Figure S10 shows the measurement locations under the true aligning and warp-

ing function, and the measurement locations under the estimated aligning and

warping function. We observe that the DCSM has correctly estimated the south-

eastern shift in the aligning function, and the contraction in the middle region

of the warped domain.
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S4.4 Simulated Trivariate Symmetric Nonstationary Data

In the previous data illustrations, we considered bivariate spatial data. In

this section, we consider trivariate spatial data. We simulated trivariate data

from a Gaussian DCSM, Ỹ(·), with constant mean. The data were simu-

lated on an equally spaced 51 × 51 grid of the geographic domain, G ≡

[−0.5, 0.5] × [−0.5, 0.5] resulting in 2601 data. The warping function we used

was a composition of axial warping units, followed by a single-resolution radial

basis function unit, followed by a Möbius transformation unit. On the warped

domain, we modeled the covariances using a trivariate stationary, isotropic parsi-

monious Matérn model. As in Section 4.1, we randomly sampled 1000 locations

from the grid and used these as measurement locations.

We compared the predictive performance of the trivariate stationary parsi-

monious Matérn model (Model S4.4.1) to those of the trivariate DCSM (Model

S4.4.2) by calculating the cross-validated predictive performance at the remain-

ing 1601 locations using the RMSPE and the CRPS. Table S7 summarizes the

results from this study. From this table, it is clear that, similar to the bivariate

case in Section 4.1, there is a large improvement in RMSPE and CRPS when

using the DCSM (Model S4.4.2) over the stationary parsimonious Matérn model

(Model S4.4.1). The visualization of the estimated warping function is given in

Figure S11. We can see that, similar to the bivariate case, the estimated warping

function has retrieved important features such as the contraction in the middle
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Table S7: Hold-out validation results, AIC, and the time required to fit, for the simulation

study in Section S4.4, where the measurement locations are randomly sampled from G =

[−0.5, 0.5]× [−0.5, 0.5].

Ỹ1(·) Ỹ2(·) Ỹ3(·)

RMSPE CRPS RMSPE CRPS RMSPE CRPS AIC Time (s)

Model S4.4.1 0.309 0.171 0.099 0.053 0.035 0.019 -1924.0 1385.4

Model S4.4.2 0.276 0.148 0.077 0.040 0.027 0.015 -2865.0 9047.0

Figure S11: Measurement locations under the true (left panel) and estimated (right panel) homogenized

warping functions for the data set in Section S4.4.

part of the domain. However, we find that more iterations are needed, thus

more computing time, to train the DCSM in the trivariate-data example.

S4.5 Modeling Maximum and Minimum Temperatures in South-

western United States

In this section, we consider monthly maximum and minimum temperatures

(which are calculated by averaging daily maximum and minimum temperatures
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over the month) in July 2018 at 909 weather stations over four southwestern

states in the United States: Utah, Colorado, Arizona, and New Mexico. The

data were extracted from the Global Summary of the Month data set of the

National Oceanic and Atmospheric Administration1.

We compared the performance of the bivariate DCSMs to that of bivariate

stationary Matérn models. Elevation is a potential covariate when modeling

temperature. We considered two trend models, namely one with only an in-

tercept (in which case Y1(·) and Y2(·) are highly nonstationary) and one with

an intercept and elevation as a covariate (in which case Y1(·) and Y2(·) can be

expected to be nonstationary but less so). Also, the maximum and minimum

temperatures in a given month (here July 2018) can be treated as symmetric

spatial processes since their interaction can be expected to be highly co-located.

Thus, asymmetry of the cross-covariance matrices was not modeled in this data

illustration. We considered the following four models:

� Model S4.5.1: A bivariate, stationary, parsimonious Matérn covariance

model, and with only an intercept in the trend.

� Model S4.5.2: A bivariate, symmetric DCSM with the parsimonious bivari-

ate Matérn covariance on the warped domain, and with only an intercept

in the trend

� Model S4.5.3: A bivariate, stationary, parsimonious Matérn covariance
1https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00946

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00946
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model, and with an intercept and elevation as trend.

� Model S4.5.4: A bivariate, symmetric DCSM with the parsimonious bivari-

ate Matérn covariance on the warped domain, and with an intercept and

elevation as trend.

We used the same general architecture for the warping function of the bivariate

DCSM as was used in the simulation study in Section 4.1.

We first examined the predictive performance of the four models when the

data were missing at random by performing a five-fold cross-validation. We

randomly chose 905 stations from the 909 stations for the study, and randomly

divided the 905 stations into five groups of 181 stations each in order to carry

out a five-fold cross-validation. Table S8 shows the results of this five-fold cross-

validation study. We see a slight improvement in the predictive performance of

the DCSMs over the corresponding stationary covariance models, on the order

of 3–5% for RMSPE and CRPS. We also see a substantial improvement when

elevation is included in the trend model, showing that addressing nonstationarity

in the mean function is helpful in this application.

We next considered hold-out validation, where the data are missing in a

block, and we held out 131 stations lying between 36◦N–39◦N and 104◦W–108◦W

from all the 909 stations. The western part of the hold-out region is a mountain-

ous area that extends into the non-hold-out region, while the eastern part of the

hold-out region is an area with lower elevation. We then fitted the four models



S4.5 Modeling Maximum and Minimum Temperatures in Southwestern United States 30

Table S8: Five-fold cross-validation results, AIC, and the time required to fit, for the maximum

and minimum temperature data in the southwestern USA for the study in Section S4.5, where

data were missing at random.

Tmax Tmin

RMSPE CRPS RMSPE CRPS AIC Time (s)

Model S4.5.1 3.17 1.74 2.44 1.33 7140.8 359.4

Model S4.5.2 3.09 1.69 2.31 1.26 7003.5 791.8

Model S4.5.3 1.07 0.58 2.02 1.14 5475.5 413.2

Model S4.5.4 1.04 0.57 1.98 1.11 5398.5 766.3

to the remaining 778 stations. Table S9 displays the hold-out validation results

for predicting the maximum and minimum temperatures at the 131 hold-out

stations, and Figure S12 shows the maps of predictions and prediction standard

errors for Model S4.5.1 and Model S4.5.2.

From Table S9, the predictive performances of the bivariate DCSMs show a

huge improvement in RMSPE and CRPS, on the order of 30% over those of the

bivariate stationary covariance models when predicting maximum temperature.

The visualization in Figure S12 further illustrates the utility of using DCSMs:

With the intercept-only structure (i.e., constant mean) in the mean, the bivariate

DCSM can predict lower temperatures on the western part of the hold-out region

(that is, the mountainous areas), whereas the stationary model reverts to the

constant mean. The DCSM also produces lower prediction standard errors over
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Table S9: Hold-out validation results, AIC, and the time required to fit, for the maximum

and minimum temperature data in the southwestern USA for the study in Section S4.5, where

data were missing in a block shown in Figure S12.

Tmax Tmin

RMSPE CRPS RMSPE CRPS AIC Time (s)

Model S4.5.1 4.66 2.59 3.90 2.20 7610.1 418.7

Model S4.5.2 3.84 2.19 2.57 1.51 7474.6 915.0

Model S4.5.3 1.54 0.87 2.11 1.22 5858.4 475.0

Model S4.5.4 1.06 0.59 1.99 1.16 5787.2 898.5

the hold-out region than the stationary model. These results corroborate those

from the simulation study in Section 4.1, which showed that bivariate DCSMs

can be useful even when data are missing over a large region. Figure S13 shows

the estimated warping function in Model S4.5.2.
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Figure S12: Comparison of predictions and prediction standard errors when using a bivariate

symmetric, stationary, parsimonious Matérn model with constant mean (Model S4.5.1), and

a bivariate symmetric DCSM with constant mean (Model S4.5.2). Data were left out of the

region enclosed by the black rectangle. First row: Maximum temperature observations, Z1

(left panel); predictions obtained using Model S4.5.1 (center panel), and Model S4.5.2 (right

panel). Second row: Locations of the measurement of Z1 (left panel); prediction standard

errors obtained when using Model S4.5.1 (center panel), and Model S4.5.2 (right panel).

Third and fourth rows: Analogous to the first and second rows, respectively, for the minimum

temperature, Z2.
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Figure S13: Measurement locations on the geographical domain and under the estimated homogenized

warping function for the data set in Section S4.5.
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