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Abstract: Experimental designs for generalized linear models often depend on the

specification of the model, including the link function, predictors, and unknown

parameters, such as the regression coefficients. To deal with the uncertainties of

these model specifications, it is important to construct optimal designs with high ef-

ficiency under such uncertainties. Existing methods, such as Bayesian experimental

designs, often use prior distributions of model specifications to incorporate model

uncertainties into the design criterion. Alternatively, one can obtain the design

by optimizing the worst-case design efficiency with respect to the uncertainties of

the model specifications. In this work, we propose a new Maximin Φp-Efficient (or

Mm-Φp for short) design that aims to maximize the minimum Φp-efficiency under

model uncertainties. Based on the theoretical properties of the proposed criterion,

we develop an efficient algorithm with sound convergence properties to construct

the Mm-Φp design. The performance of the proposed Mm-Φp design is assessed

using several numerical examples.

Key words and phrases: Φp-criterion, dsesign efficiency, efficient algorithm, model

uncertainty, optimal design.

1. Introduction

Optimal design for generalized linear models (GLMs) (Khuri et al. (2006);

Fedorov and Leonov (2013)) is an important topic in the design of experiments.

Here, recent theoretical and algorithmic developments include the works of Woods

and Lewis (2011), Yang, Zhang and Huang (2011), Burghaus and Dette (2014),

Wu and Stufken (2014), and Wong, Yin and Zhou (2019), among many others. A

key challenge of the optimal design for a GLM is that the design criterion often

depends on the regression model assumption, including the specification of the

link function, the linear predictor, and the values of the unknown regression co-

efficients. Many existing works focus on locally optimal designs, given a certain

model specification, as in Yang and Stufken (2009), Li and Majumdar (2009),
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Wu and Stufken (2014), and Li and Deng (2020). In contrast to the locally

optimal design, one type of global optimal design considers the parameter uncer-

tainty under two directions. One direction is to consider a prior distribution of

the unknown parameters, when constructing the so-called Bayesian optimal de-

sign (Khuri et al. (2006); Woods et al. (2017)). The design criterion is typically

the integral of the local design criterion or efficiency with respect to the prior of

the parameters. When such integration is not analytically available, a standard

solution is to sample from the prior distribution, and to use the weighted aver-

age of local design criteria or efficiencies as the objective function (Atkinson and

Woods (2015)). Another direction is to use the minimax/maximin approach to

minimize the design criterion or to maximize the efficiency under the “worst-case”

scenario. Sitter (1992) introduced a minimax procedure for obtaining a design

to deal with parameter uncertainty. King and Wong (2000) proposed an efficient

algorithm to construct a maximin design for the logistic regression model under

D-optimality. Imhof and Wong (2000) developed an algorithm to maximize the

minimum efficiency under two competing optimality criteria using a graphical

method. Note that existing studies on maximin/minimax designs often focus on

D-optimality and the uncertainty of the unknown parameters. The biggest chal-

lenge in maximin/minimax designs is that the design construction can be quite

difficult (Atkinson and Woods (2015)).

In addition to the unknown parameters, there could be other uncertainties

involved in a GLM, such as the specification of the link function and the linear

predictor. However, the literature on GLM designs that deal with such model

uncertainty is relatively scarce. Woods et al. (2006) proposed a compromise

design that minimizes the weighted average of the criteria, and each criterion is

based on a potential model. Later, Dror and Steinberg (2006) proposed using

clustered locally optimal designs, and showed the resulting design had comparable

performance with the compromise design through numerical examples.

In this work, we propose a new maximin Φp-efficient design (denoted as Mm-

Φp) criterion for GLMs using the Φp-efficiency (Kiefer (1974)), and develop an

efficient algorithm to construct the design. The proposed design, the Mm-Φp

design, can accommodate several types of uncertainty, including (i) uncertainty

over the unknown parameter values, (ii) uncertainty over the linear predictor,

and (ii) uncertainty over the link function. Here, we focus on an approximate

design (Atkinson (2014)), which describes the design as a probability measure on

a group of support points. This provides a framework for us to investigate the

theoretical properties of the proposed design criterion, as well as a theoretical

foundation from which to develop an efficient algorithm with desirable conver-
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gence properties.

The key idea of this work is to adopt a continuous and convex relaxation

(i.e., the “log-sum-exp” approximation) as a tight approximation of the worst-

case Φp-efficiency with respect to the uncertainty of the model specifications.

With this relaxation, we arrive at a tractable design criterion that facilitates

the theoretical investigation for developing an efficient algorithm to construct

the corresponding design. The merits of this idea are not restricted to the Φp

criterion, even though Φp is already a quite general criterion that includes the A-,

D-, E-, and I-optimality criteria as special cases. A demonstration of the proposed

approach based on the Φp-criterion reveals that this convex and smooth relaxation

idea can be applied to other maximin designs, as long as the criterion is convex in

the design. The proposed framework, including the general equivalence theorem

and the design construction algorithm and its convergence, can be extended to

other maximin designs as well.

Other main contributions of this work are summarized as follows. First,

the proposed Mm-Φp design criterion is very general, covering various design

criteria, such as D-, A-, E-optimality for estimation accuracy and I- and EI-

optimality for prediction accuracy (Li and Deng (2020)). Second, in contrast to

the Bayesian optimal design, the proposed Mm-Φp design is a maximin design,

which avoids having to choose prior distributions on the model specifications.

Third, the proposed Mm-Φp design can flexibly accommodate the aforementioned

three types of model uncertainty in a GLM. Finally, the proposed algorithm has

impressive computational efficiency with sound theoretical properties, and can be

easily modified to construct compromise designs and Bayesian optimal designs.

The rest of the paper is organized as follows. Section 2 describes the Mm-Φp

design criterion and investigates its theoretical properties. In Section 3, an effi-

cient algorithm is developed. Numerical examples are conducted in Section 4 to

examine the performance of the proposed method. We summarize the work with

a discussion in Section 5. All technical proofs are relegated to the Supplementary

Material.

2. The Mm-Φp Design Criterion and Its Properties

Consider an experiment with d design variables, x = [x1, . . . , xd], and xj ∈
Ωj , where Ωj is a measurable domain of all possible values for xj . The ex-

perimental region, Ω, is a certain measurable subset of Ω1 × · · · × Ωd. For a

GLM, the response Y (x) is assumed to follow a distribution in the exponen-

tial family. The link function, h : R → R, provides the relationship between
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the linear predictor, η = β>g(x), and the mean of the response Y (x), µ(x),

as µ(x) = E[Y (x)] = h−1
(
β>g(x)

)
, where g = [g1, . . . , gl]

> are the known ba-

sis functions of the design variables, β = [β1, β2, . . . , βl]
> are the corresponding

regression coefficient parameters, and h−1 is the inverse function of h. The ap-

proximate design ξ is defined as ξ =

{
x1, . . . , xn
λ1, . . . , λn

}
, where x1, . . .xn are the

support points, and 0 < λi < 1 represents the probability mass allocated to the

corresponding support point xi. We use M = (h, g,β) to denote the model spec-

ification of a GLM with link function h, the basis functions g, and the vector of

the regression coefficients β. The Fisher information matrix of the GLM, M , is

I(ξ;M) =

n∑
i=1

λig(xi)w(xi;M)g>(xi), (2.1)

where w(xi;M) =
[
var(Y (xi))[h

′
(µ(xi))]

2
]−1

. Clearly, I(ξ;M) depends on all

three components of M = (h, g,β). Various locally optimal design criteria in the

literature are based on the Fisher information with a specified M .

2.1. The Mm-Φp design criterion

To represent the uncertainties of a GLM, we denote the set of candidate

link functions, set of the candidate basis functions, and domain of the regression

coefficients as H, (G|H), and (B|H,G), respectively. The notation of conditioning

represents the dependence of the basis functions g on the choice of the link

function h, and the dependence of the regression coefficients β on the choice of

both h and g. The set M = {M = (h, g,β) : h ∈ H, g ∈ (G|H),β ∈ (B|H,G)}
contains all model specifications of interest.

In optimal design theory, efficiency is a popular and scale-free performance

measurement used to compare designs for a given criterion. Specifically, for a

generic design criterion Ψ(ξ;M), which is to be minimized, the efficiency of a

design ξ relative to another design ξ′ is defined as (Atkinson, Donev and Tobias

(2007))

effΨ(ξ, ξ′;M) =
Ψ(ξ′;M)

Ψ(ξ;M)
. (2.2)

Using this definition of efficiency, the design ξ is more efficient than the

design ξ′ as long as the efficiency in (2.2) is larger than one. When a single

model specification is considered, that is, M = {M}, the criterion Ψ becomes a

locally optimal design criterion. When multiple specifications are considered, the

criterion Ψ corresponds to a global optimal design criterion, such as the Bayesian
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optimality, compromise design optimality, minimax/maximin optimality, and so

on.

Throughout this work, for a specified model M , we use the generalized Φp-

optimality introduced in Kiefer (1974), which is

Φp(ξ;M) =

(
q−1 tr

[
∂f(β)

∂β>
I(ξ;M)−1

(
∂f(β)

∂β>

)>]p)1/p

, 0 < p <∞, (2.3)

where f(β) = [f1(β), . . . , fq(β)]> are some functions of β. Common examples

are linear contrasts of the coefficients, such as βk and βj − βj′ . Note that the

Φp-optimality is essentially D-optimality as p → 0 and E-optimality as p → ∞.

We denote ξopt
M to be the locally optimal design that minimizes the Φp-criterion

for the model M . According to (2.2), the Φp-efficiency of any design ξ relative to

a locally optimal design ξopt
M , given a specific M = (h, g,β), is

effΦp
(ξ, ξopt

M ;M) =
Φp(ξ

opt
M ;M)

Φp(ξ;M)
. (2.4)

It is obvious that 0 ≤ effΦp
(ξ, ξopt

M ;M) ≤ 1 for any ξ, and a larger Φp-efficiency

represents a more efficient design ξ. Under the idea of a global maximin design, we

consider the maximin Φp-efficient design, which maximizes the smallest possible

effΦp
(ξ, ξopt

M ;M) over all M ∈ M. That is, we consider the following maximin

design:

ξ∗ = argmaxξ inf
M∈M

effΦp
(ξ, ξopt

M ;M). (2.5)

In the optimization problem (2.5), the infimum is used instead of the mini-

mum, because it is not certain whether the minimum is attainable. To simplify

the problem, we take a closer look at the model setM. In practice, H usually con-

tains several candidate link functions. For example, the link function of a GLM

for binary data could be the logistic function h(µ(x)) = ln(µ(x)/(1− µ(x))), pro-

bit function h(µ(x)) = Φ−1(µ(x)), or complementary log-log function h(µ(x)) =

ln(− ln(1 − µ(x))). The link function of a GLM for counting data could be the

log function h(µ(x)) = ln(µ(x)) or the power function h(µ(x)) = (µ(x))α, with a

proper choice of α. The set of candidate basis functions (G|H) is often also finite.

The typical basis functions used in GLMs are linear and/or higher-order polyno-

mials of x. Note that (B|H,G), the domain of β, is often uncountable when β

is considered to be continuous. Consequently, the set M is an uncountable set,

which may not ensure an attainable minimum. A common remedy (Dror and

Steinberg (2006); Woods et al. (2006); Atkinson and Woods (2015); Woods et al.
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(2017)) is to discretize (B|H,G) and create a finite subset (B′|H,G). The corre-

sponding surrogate set M′ = {M = (h, g,β) : h ∈ H, g ∈ (G|H),β ∈ (B′|H,G)}
is also a subset of the original M. Replacing M by M′ in (2.5), the solution of

ξ∗ = argmaxξ min
M∈M′

[
effΦp

(ξ, ξopt
M ;M)

]
(2.6)

is a sub-optimal solution of (2.5). When the discretization is adequate to form

a close approximation of M, the sub-optimal solution is expected to be close to

the original optimal solution.

The design criterion in (2.6) is still a challenging optimization, owing to the

nonsmooth objective function minM∈M′ [effΦp
(ξ, ξopt

M ;M)] (Wong (1992); King

and Wong (1998); Atkinson and Woods (2015)). We use “Log-Sum-Exp” as a

tight and smooth approximation to the minimum function, which is widely used

in machine learning (Calafiore and El Ghaoui (2014)). With “Log-Sum-Exp,”

one hasln

 m∑
j=1

exp

(
1

effΦp
(ξ, ξopt

Mj
;Mj)

)−1

≤ min
M∈M′

effΦp
(ξ, ξopt

M ;M)

≤

ln

 m∑
j=1

exp

(
1

effΦp
(ξ, ξopt

Mj
;Mj)

)− ln(m)

−1

, (2.7)

where m is the cardinality ofM′, that is, the number of potential model specifica-

tions inM′. The equality in the first inequality is obtained when m = 1, and the

equality in the second inequality holds when effΦp
(ξ, ξopt

Mj
;Mj) remains the same

for all Mj ∈ M′. Thus, maximizing [ln(
∑m

j=1 exp(1/effΦp
(ξ, ξopt

Mj
;Mj)))]

−1 leads

to maximizing both the lower and the upper bound of the worst (or the smallest)

Φp-efficiency. Therefore, instead of solving (2.6), which involves an inner min-

imization of Φp-efficiency, we propose using the “Log-Sum-Exp” approximation

of the worst-case Φp-efficiency as the design criterion, thus minimizing

LEA(ξ;M′) , ln

 m∑
j=1

exp

(
1

effΦp
(ξ, ξopt

Mj
;Mj)

) . (2.8)

Minimizing LEA(ξ;M′) is the same as maximizing [ln(
∑m

j=1 exp(1/ effΦp
(ξ, ξopt

Mj
;

Mj)))]
−1 because ln(

∑m
j=1 exp(1/effΦp

(ξ, ξopt
Mj

;Mj))) > 0. We call LEA(ξ;M′),
which aims at maximizing the minimal Φp-efficiency, the Mm-Φp criterion. The

design that minimizes LEA(ξ;M′) is called the Mm-Φp design for the surrogate
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model set M′, denoted by ξMm
M′ .

It is obvious that minimizing LEA(ξ;M′) is equivalent to minimizing

EA(ξ;M′) ,
m∑
j=1

exp

(
1

effΦp
(ξ, ξopt

Mj
;Mj)

)
=

m∑
j=1

exp

(
Φp(ξ;Mj)

Φp(ξ
opt
Mj

;Mj)

)
. (2.9)

That is, ξMm
M′ = argminξ EA(ξ;M′) = argminξ LEA(ξ;M′).

In Section 2.2, we show the convexity of EA(ξ;M′) with respect to ξ, as well

as the necessary and sufficient conditions of the Mm-Φp design ξMm
M′ .

2.2. General equivalence theorem

To develop an efficient algorithm to construct the Mm-Φp design, we study

the convexity of the objective function EA(ξ;M′) with respect to ξ, and summa-

rize the necessary and sufficient conditions of the Mm-Φp design ξMm
M′ in a General

Equivalence Theorem. To keep this section concise, we present the major results

here and place the lemmas and proofs in the Supplementary Material S1.

For a model specification Mj ∈ M′, we simplify the notation of the in-

formation matrix I(ξ;Mj) to Ij(ξ), the weight function w(x;Mj) in (2.1) to

wj(x), the Φp-criterion value of a design Φp(ξ;Mj) to Φj
p(ξ), and the Φp-criterion

value Φp(ξ
opt
Mj

;Mj) of the locally optimal design to Φ
optj
p . Then, we can rewrite

EA(ξ;M′) as EA(ξ;M′) =
∑m

j=1 exp(Φj
p(ξ)/Φ

optj
p ). Lemma 1 in the Supplemen-

tary Material proves the convexity of EA(·;M′) with respect to ξ. Given two

designs ξ and ξ′, the directional derivative of EA(ξ;M′) in the direction of ξ′ is

defined as follows:

∇ξ′ EA(ξ;M′) := φ(ξ′, ξ)

= lim
α→0+

EA((1− α)ξ + αξ′;M′)− EA(ξ;M′)
α

, α ∈ [0, 1]. (2.10)

Lemma 2 in the Supplementary Material derives the specific formula for φ(ξ′, ξ).

If ξ′ contains only a single support point x with corresponding weight λ = 1,

the directional derivative of EA(ξ;M′) in the direction of ξ′ is a special case of

Lemma 2. We denote this directional derivative as φ(x, ξ), and give its formula

in Lemma 3 in the Supplementary Material. Following Lemma 3, we also provide

specific formulae for φ(x, ξ) for D-, A-, and EI-optimality. Using these results,

we obtain General Equivalence Theorem 1 for the Mm-Φp design that minimizes

LEA(ξ;M′) or, equivalently, minimizes EA(ξ;M′).

Theorem 1 (General Equivalence Theorem). The following two conditions of a



2054 LI, KANG AND DENG

design ξMm
M′ are equivalent:

1. The design ξMm
M′ minimizes LEA(ξ;M′) and EA(ξ;M′).

2. φ(x, ξMm
M′ ) ≥ 0 holds for any x ∈ Ω, and the inequality becomes an equality

if x is a support point of the design ξMm
M′ .

The General Equivalence Theorem 1 for the LEA criterion in (2.8) provides

important guidelines on how the support points of the Mm-Φp design should be

added sequentially. The proposed algorithm for the Mm-Φp design (detailed in

Section 3) iterates between adding the support point and updating the weights λi,

which can be considered a Fedorov–Wynn-type of algorithm (Dean et al. (2015)).

In each iteration, to achieve the maximum reduction of EA(ξ;M′), the design

point x∗ = argminx φ(x, ξ) < 0 is added into the current design.

After the design point x∗ is added, the weights of all design points in the

current design are optimized. Thus, it is important to investigate the property

of the optimal weights when the design points are given. Given design points

x1,x2, . . . ,xn, the weight vector λ = [λ1, λ2, . . . , λn]> is the only variable for

the design. We emphasize this by adding a superscript λ in the notation of the

design, and denote it as ξλ =
{x1, . . . , xn
λ1, . . . , λn

}
. Consider EA(ξλ;M′) as a function

of λ; that is,

EA(·;M′) : {λ = (λ1, . . . , λn) : λi > 0,
∑

λi = 1} 7→
m∑
j=1

exp

(
Φp(ξ

λ;Mj)

Φ
optj
p

)
.

(2.11)

The optimal weight vector λ∗ should be the one that minimizes EA(ξλ;M′) with

the given support points x1, . . . ,xn. Lemma 4 in the Supplementary Material

proves the convexity of EA(ξλ;M′) with respect to λ. Corollary 1 provides a

sufficient and necessary condition on the optimal weights for a design with fixed

support points. A special case of Theorem 1 is when the experimental region is

restricted to the set Ω = {x1, . . . ,xn}.

Corollary 1 (Conditions of Optimal Weights). Given a set of design points

x1, . . . ,xn, the following two conditions on the weight vector λ∗ = [λ∗1, . . . , λ
∗
n]>

are equivalent:

1. The weight vector λ∗ minimizes LEA(ξλ;M′) and EA(ξλ;M′).

2. For all xi, with λ∗i > 0, φ(xi, ξ
λ∗) = 0; for all xi, with λ∗i = 0, φ(xi, ξ

λ∗) ≥
0.
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3. Efficient Algorithm of Constructing Mm-Φp Design

This section details the proposed sequential algorithm, the Mm-Φp Algo-

rithm, used to construct the Mm-Φp design ξMm
M′ . The proposed algorithm has

a sound theoretical rationale and an efficient computation. Following a similar

spirit to the sequential Wynn–Fedorov-type algorithm, in each sequential itera-

tion, a new design point x∗ with the smallest negative value of directional deriva-

tive x∗ = argminx φ(x, ξ) < 0 is added to the current design. Then, the Optimal-

Weight Procedure (detailed in Section 3.2) is used to optimize the weights of the

current design points. Theoretically, the algorithm will terminate when the di-

rectional derivatives of all candidate design points in the experimental region are

nonnegative. However, this stopping rule is not very practical, because it may

require many iterations to make all the directional derivative values strictly pos-

itive (numerically, it is unlikely to have exactly zero cases). A common practice

is to terminate the algorithm when the directional derivative minx∈Ω φ(x, ξ) > ε,

with a small negative ε. Alternatively, one can use the design efficiency as the

stopping rule, which terminates the algorithm when the design efficiency is large

enough, say close to one. In this work, we adopt the latter rule, because the

design efficiency directly reflects the quality of the constructed design.

Following the general definition of design efficiency in (2.2), we denote the

efficiency of a design ξ relative to the Mm-Φp design ξMm
M′ that minimizes the

Mm-Φp criterion LEA as

EffLEA(ξ, ξMm
M′ ;M′) =

LEA(ξMm
M′ ;M′)

LEA(ξ;M′)
. (3.1)

Because EffLEA(ξ, ξMm
M′ ;M′) involves ξMm

M′ , which is unknown, we derive a lower

bound for it in Theorem 2. Instead of using EffLEA(ξ, ξMm
M′ ;M′) as the stopping

rule, we can use this lower bound.

Theorem 2 (A Lower Bound of LEA-Efficiency). Design ξMm
M′ is the Mm-Φp

design that minimizes the LEA criterion in (2.8). The LEA-efficiency defined in

(3.1) of any design ξ relative to ξMm
M′ is bounded below by

EffLEA(ξ, ξMm
M′ ;M′) ≥ 1 + 2

minx∈Ω φ(x, ξ)

EA(ξ;M′)
.

Using the lower bound of LEA-efficiency in Theorem 2 as the stopping crite-

rion, the proposed algorithm terminates when the lower bound 1+2(minx∈Ω φ(x, ξ)

/EA(ξ;M′)) exceeds a user-specified value, Toleff. Here, Toleff should be set close

to one, say Toleff = 0.99, or equivalently minx∈Ω φ(x, ξ)/EA(ξ;M′) ≥ −0.005.
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Note that Toleff is chosen to be 0.99 in all the numerical examples presented

here. With this stopping rule, the sequential algorithm used to construct the

Mm-Φp design is described in Algorithm 1. Here, MaxIter1 is the maximum

number of iterations allowed of adding design points, and we set it to be 200.

To avoid including design points with almost zero weights in the constructed de-

sign, in each iteration of Algorithm 1, one can exclude these design points (say,

weight < 10−15), and then obtain the optimal weights for the updated set of

design points. The candidate pool C could be evenly spaced grid points or some

space-filling designs. Because the directional derivatives of all points in C are

evaluated in each iteration of Algorithm 1, the computational time relies heavily

on the size of C. When the grid points are adopted, the size of the candidate pool

C increases dramatically as the dimension d of the design variables x increases.

Thus, we suggest using the grid points when the dimension d of the design vari-

ables is small, and choosing the Sobol sequence (Sobol (1967)) as the candidate

pool when the dimension d is large. The Sobol sequence is a space-filling design

(Santner et al. (2003)) that covers the experimental region Ω well, and can be

generated efficiently when the dimension d is large.

In Section 3.1, we provide some theoretical properties on the convergence of

the Mm-Φp Algorithm. Note that the Mm-Φp Algorithm requires optimizing

the weights λ(r) of the current design points in each sequential iteration. Section

3.2 describes the procedure on how to optimize the weights given the design

points.

3.1. Convergence of the Mm-Φp algorithm

The sequential nature of the proposed Mm-Φp Algorithm (i.e., Algorithm

1) makes it computationally efficient because it adds one design point in each

iteration. Moreover, we can establish the theoretical convergence of Algorithm 1,

which is stated as follows.

Theorem 3 (Convergence of Algorithm 1(Mm-Φp Algorithm)). Assume the can-

didate pool C contains all the support points of the Mm-Φp design ξMm
M′ . The design

constructed by Algorithm 1 converges to ξMm
M′ that minimizes LEA(ξ;M′); that

is,

lim
r→∞

LEA(ξ(r);M′) = LEA(ξMm
M′ ;M′).

In addition to its theoretically guaranteed convergence property, Algorithm 1

also converges fast, within about 50 iterations in all numerical examples, although

the maximal number of iterations is set to be 200. More details about the speed

of convergence and computational time are reported in Section 4.
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Algorithm 1 (Mm-Φp Algorithm) The Sequential Algorithm for Mm-Φp Design.

1: For each model specification Mj ∈ M′, construct the locally optimal design and

calculate the corresponding optimality criterion value Φ
optj
p .

2: Generate a candidate pool C of N points using a grid or Sobol sequence from exper-
imental region Ω.

3: Choose an initial design points set X (0) = {x1, . . . ,xl+1} containing l + 1 points.
4: Obtain optimal weights λ(0) of initial design points set X (0) using Algorithm 2

(Optimal-Weight Procedure) and form the initial design ξ(0) =

{
X (0)

λ(0)

}
.

5: Calculate the lower bound of LEA-efficiency of ξ(0):

eff.low = 1 + 2
minx∈C φ(x, ξ(0))

EA(ξ(0);M′)
.

6: Set r = 1.
7: while eff.low < Toleff and r < MaxIter1 do
8: Add the point x∗r = argminx∈C φ(x, ξ(r−1)) to the current design points set, i.e.,
X (r) = X (r−1) ∪ {x∗r}, where φ(x, ξ(r)) is given in Lemma 3.

9: Obtain optimal weights λ(r) of the current design points set X (r) using Algorithm

2 (Optimal-Weight Procedure) and form the current design ξ(r) =

{
X (r)

λ(r)

}
.

10: Calculate the lower bound of LEA-efficiency of ξ(r),

eff.low = 1 + 2
minx∈C φ(x, ξ(r))

EA(ξ(r);M′)
.

11: r = r + 1.
12: end while

Note that, at the beginning of Algorithm 1, the locally optimal design and

the corresponding optimality criterion value Φ
optj
p need to be calculated for each

model specification Mj ∈ M′. This is because they are involved in EA(ξ;M′)
and all its derivatives. However, we only need to compute them once. Using the

algorithm proposed by Li and Deng (2020), we can construct local Φp-optimal

designs for GLMs efficiently with guaranteed convergence.

3.2. An optimal-weight procedure given design points

Based on Corollary 1, with a given set of design points x1, . . . ,xn, a sufficient

condition that λ∗ minimizes EA(ξλ;M′) is φ(xi, ξ
λ∗) = 0, for i = 1, . . . , n or,

equivalently (based on Lemma 3),
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q
∑m

j=1 Φ̃j
0(ξλ

∗
)

=
∑m

j=1 Φ̃j
0(ξλ

∗
)wj(xi)g

>
j (xi)Mj(ξ

λ∗)gj(xi)
, p = 0;

q1/p
∑m

j=1 Φ̃j
p(ξλ

∗
)Φj

p(ξλ
∗
)

=
∑m

j=1 Φ̃j
p(ξλ

∗
)wj(xi)

(
tr
(
Fj(ξ

λ∗)
)p)1/p−1

g>j (xi)Mj(ξ
λ∗)gj(xi)

, p > 0;

(3.2)

where Φ̃j
p(ξ)=[Φ

optj
p ]−1 exp(Φj

p(ξ)/Φ
optj
p ) and Mj(ξ)= Ij(ξ)

−1B>j Fj(ξ)
p−1Bj Ij(ξ)

−1

with Bj = (∂f(β)/∂β>)|β=βj
and Fj(ξ) = Bj Ij(ξ)

−1B>j . For convenience, we de-

note the right side of (3.2) as dp(xi, ξ
λ∗). For any weight vector λ = [λ1, . . . , λn]>,

simple linear algebra yields{
q
∑m

j=1 Φ̃j
0(ξλ) =

∑n
i=1 λid0(xi, ξ

λ), p = 0;

q1/p
∑m

j=1 Φ̃j
p(ξλ)Φj

p(ξλ) =
∑n

i=1 λidp(xi, ξ
λ), p > 0.

(3.3)

Combining (3.2) and (3.3), the sufficient condition of the optimal weights is equiv-

alent to
n∑
s=1

λ∗sdp(xs, ξ
λ∗) = dp(xi, ξ

λ∗), p ≥ 0, (3.4)

for all design points x1, . . . ,xn. To obtain the optimal weight λ∗ that minimizes

EA(ξλ;M′), the current weights of the design points are adjusted according to

the two sides of (3.4). For a design point xi, if dp(xi, ξ
λ) >

∑n
s=1 λsdp(xs, ξ

λ),

then the weight of point xi is increased based on (3.4). However, if dp(xi, ξ
λ) <∑n

s=1 λsdp(xs, ξ
λ), the weight of point xi is decreased based on (3.4). Thus, fol-

lowing the similar idea in classic multiplicative algorithms (Silvey, Titterington

and Torsney (1978); Yu (2010)), the ratio
(
dp(xi, ξ

λ)
/∑n

s=1 λsdp(xs, ξ
λ)
)δ

is a

good adjustment for the weight of design point xi. Because this weight updating

scheme is inspired by the classic multiplicative algorithm, we call it the modi-

fied multiplicative procedure, and describe it in Algorithm 2 in Supplementary

Material S2.

Note that Yu (2010) proved the convergence of the classical multiplicative

algorithm (Silvey, Titterington and Torsney (1978)) used to construct a locally

optimal design for a class of optimality tr(I(ξλ;M)p), p < 0, and Li and Deng

(2020) extended the results to a more general class of Φp-optimality. However,

the proof in Yu (2010) cannot be extended easily to prove the convergence of

Algorithm 2, because the derivative of EA(ξλ;M′) to λi cannot be reformulated

into the general form in Equation (2) in Yu (2010), where only one model is

involved. Nevertheless, Lemma 4 shows that the optimization problem solved by

Algorithm 2 is a convex optimization,
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min
λ

EA(ξλ;M′) =
∑m

j=1 exp
(

Φj
p(ξλ)

Φ
optj
p

)
,

s.t. 1>λ = 1, λ ≥ 0
(3.5)

with linear constraints. Some existing optimization tools are available to solve

such an optimization. Based on our empirical study, Algorithm 2 converges to a

solution as good as those of the commonly used optimization tools, but with a

much faster computational speed. Example 1 is relegated to the Supplementary

Material S2 owing to space limitations.

4. Numerical Examples

In this section, we conduct several numerical examples to evaluate the per-

formance of the proposed Mm-Φp design under different types of model uncer-

tainty. Woods et al. (2006) proposed a compromise design that optimizes the

weighted average of certain criteria, where each criterion is based on a poten-

tial model from some prior distribution p(M). There are two ways to define a

compromise design. The first way aims at maximizing a weighted average of the

local Φp-efficiencies. That is, ξeff-com
M′ = argmaxξ

∑m
j=1 p(Mj) effΦp

(ξ, ξopt
Mj

;Mj),

which is henceforth called the eff-compromise design. Another type of com-

promise design minimizes the weighted average of a local Φp-criterion. That

is, ξ
Φp-com
M′ = argminξ

∑m
j=1 p(Mj)Φp(ξ;Mj), which is henceforth called the Φp-

compromise design. The Φp-compromise design coincides with the Bayesian op-

timal design when considering only the uncertainty from unknown regression

coefficients. The performance of the proposed Mm-Φp design is compared to that

of the eff-compromise and Φp-compromise designs. A detailed discussion about

the connection between the proposed Mm-Φp design and the compromise designs

is relegated to the Supplementary Material S3.

For all the designs in the examples, the candidate pool C is constructed using

grid points, and each dimension of x has 51 equally spaced grid points. We use the

default uniform prior distribution on the model specification for the compromise

designs. All algorithms are programmed using Matlab and run on a MacBook

Pro with a 2.4 GHz Intel Core i5 processor. For f(β) = [f1(β), . . . , fq(β)]> in

Φp(ξ,M) in (2.3), we set fj(β) = βj .

4.1. Model uncertainty

In Example 2, we investigate the performance of the Mm-Φp design and

algorithm when there is uncertainty in both the link functions and the basis

functions in the model space M.
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Table 1. Minimum and Median of the Worst-Case A- and D-Efficiency across 100 Ran-
domly Generated Model Spaces for Comparison of Designs.

Worst-Case A-Efficiency Worst-Case D-Efficiency
min median min median

Mm-Φp Design 0.46 0.69 0.70 0.85
Eff-Compromise Design 0.25 0.66 0.55 0.83
Φp-Compromise Design 0.14 0.61 0.63 0.80

Example 2. For an experiment with d = 2 input variables and one binary

response, consider three link functions: logit link (h1), probit link (h2), and com-

plementary log-log link (h3). Consider possible polynomial basis functions up to

degree two, that is, G = {g1 = (1, x1, x2)>, g2 = (1, x1, x2, x1x2)>, g3 = (1, x1, x2,

x1x2, x
2
1, x

2
2)>}. For the basis g3, the regression coefficients β3 = [β3,1, . . . , β3,6]>

are drawn randomly from a standard multivariate normal distribution. For

the basis g2, the regression coefficients β2 = [β2,1, . . . , β2,4]> are drawn in-

dependently with β2,j ∼ N(β3,j , (0.5β3,j)
2), for j = 1, 2, 3, 4. The variance

(0.5β3,j)
2 that depends on the regression coefficient β3,j allows a larger per-

turbation for β2,j when the corresponding β3,j is large. This accommodates

the situation in which the values of the regression coefficients could change

when the quadratic terms are not included in the model. For the basis g1,

the regression coefficients β1 = [β1,1, β1,2, β1,3]> are drawn independently with

β1,i ∼ N(β3,i, (0.5β3,i)
2), for i = 1, 2, 3. Thus, the model space M consists of

nine models: M =
{
M = (hi, gj ,βj)

3,3
i=1,j=1

}
. We generate 100 parameter sets

B = {β1,β2,β3} to form 100 model spaces. For each generated model space, we

construct the Mm-Φp design, eff-compromise design, and Φp-compromise design.

To compare the designs, we use the Φp-efficiency defined in (2.4) as a larger-

the-better performance measure. In particular, we consider Φ0(ξ;M) (i.e., limp→0

Φp(ξ;M)) and Φ1(ξ;M), which are the D- and A-optimality, respectively. For

each model space, we compute the Φp-efficiency in (2.4) of all three designs rela-

tive to the corresponding locally optimal design. The locally optimal design ξopt
M

is obtained using the algorithm of Li and Deng (2020). For each model space, we

calculate the worst-case efficiency as minMi∈M effΦp
(ξ, ξopt

Mi
;Mi).

Figure 1 shows the box plots of the worst-case A- and D-efficiency of the

Mm-Φp design, eff-compromise design, and Φp-compromise design across 100 dif-

ferent model spaces. The red asterisks “∗” in the box plots denote the minimum

worst-case A- and D-efficiency, and the larger the minimum, the better the de-

sign. Table 1 summarizes the minimum and median of the worst-case A- and

D-efficiency of the three designs. The results show that the Mm-Φp design gives
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Figure 1. Box Plots of Worst-Case A- and D-Efficiency of Mm-Φp Design, Eff-
Compromise Design, and Φp-Compromise Design across 100 Randomly Generated Model
Spaces.

the largest values on the minimum and median of the worst-case efficiency. In

terms of the worst-case A- and D-efficiency, the Mm-Φp design outperforms the

eff-compromise design for 98% and 94% of the 100 model spaces, respectively.

Note too that the eff-compromise design often gives the highest mean efficiency

for a given model space, which is expected because it is designated to achieve the

maximum mean efficiency. However, the mean A- and D-efficiency of all three

designs are comparable, on average, over the 100 model sets. The computational

times of Algorithm 1 to construct the Mm-Φp design, eff-compromise design, and

Φp-compromise design are about 8.57 seconds, 8.59 seconds, and 6.48 seconds,

respectively, for A-optimality, and 6.03 seconds, 7.98 seconds, and 3.30 seconds,

respectively, for D-optimality.

4.2. Uncertain regression coefficients

In Example 3, we further illustrate the advantages of the Mm-Φp design by

considering uncertain regression coefficients with the specified link function h and

basis functions g. Note that when the regression coefficient space B is continuous,

a discretization is needed. In Example 3, we investigate the performance of

the proposed design and algorithm over the unsampled values of the regression

coefficient β.

Example 3. For a univariate logistic regression model with experimental domain

Ω = [−1, 1] and a quadratic basis, that is, g(x) = [1, x, x2]>, consider a regression

coefficient space B = {β1 ∈ [0, 6], β2 ∈ [−6, 0], β3 ∈ [5, 11]}. Because B is contin-

uous, we choose a Sobol sample of size 26 and the centroid βc = [3,−3, 8]> of B,

that is, m = 27, to form the surrogate coefficient set B′. The Sobol sample is a
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low discrepancy sequence that converges to a uniform distribution on a bounded

set, and is widely used in Monte Carlo methods (Sobol (1967)). The surrogate

model set is M′ = {M = (h, g,β) : h, g,β ∈ B′}, where h is the link function of

the logistic regression. Four designs are considered: (1) an Mm-Φp design ξMm
M′ ;

(2) an eff-compromise design ξeff-com
M′ ; (3) a locally optimal design ξcenter of the

centroid of B, that is, βc = [3,−3, 8]>, which can be viewed as either an Mm-Φp

or a compromise design with m = 1; and (4) a Bayesian optimal design ξBayesian
M′

with a uniform prior, which is also the Φp-compromise design. The constructed

designs under D- and A-optimality are shown in Figure 1 in the Supplementary

Material S4.

To compare the four designs, we use the Φp-efficiency defined in (2.4) as a

performance measure. Specifically, we generate a Sobol sample of size 10,000 from

the original continuous region B. For each element of the sample, we compute

the Φp-efficiency in (2.4) of all four designs relative to the corresponding locally

optimal design, and the locally optimal design ξopt
M is obtained in the same way

as in Example 1. Figure 2 shows box plots of the A- and D-efficiency of ξMm
M′ ,

ξeff-com
M′ , ξcenter, and ξBayesian

M′ over 10,000 randomly sampled β values. The red

asterisks “∗” in the box plots denote the worst-case A- and D-efficiency, where

a larger value is better. Table 2 summarizes the minimum and median A- and

D-efficiency of the four designs.

The results show that the Mm-Φp design ξMm
M′ outperforms the other three

designs in terms of the worst-case design efficiency, especially for A-optimality.

Specifically, the worst-case A-efficiency of the Mm-Φp design is 0.41, and is much

larger than those of the other three designs. The worst-case D-efficiency of the

Mm-Φp design is 0.86, and is only slightly larger than those of other designs.

As shown in Figure 2, the Mm-Φp design has the lowest maximum efficiency

among the four designs over 10,000 values of β. This is because the Mm-Φp

design criterion, as a smooth approximation of the reciprocal of the minimum Φp-

efficiency, aims at regulating the minimum efficiency rather than the maximum

efficiency.

To illustrate the computational efficiency of the proposed Algorithm 1, Fig-

ure 2 in the Supplementary Material S4 shows how the Mm-Φp design criterion

LEA(ξ(r);M′) decreases with respect to the number of iterations. The algorithm

converges in 12 and 6 iterations to construct ξMm
M′ for A- and D-optimality, re-

spectively. The computation times are 1.68 seconds and 1.47 seconds for A- and

D-optimality, respectively.

When the regression coefficient space B is continuous and uncountable, a
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Table 2. Minimum and Median of A- and D- Efficiency across 10,000 Sampled β for
Comparison of Four Designs.

A-Efficiency D-Efficiency
min median min median

Mm-Φp Design 0.42 0.70 0.86 0.98
Eff-Compromise Design 0.21 0.71 0.83 0.98
Centroid Optimal Design 0.15 0.71 0.81 0.98
Bayesian Optimal Design 0.30 0.69 0.83 0.98
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Figure 2. Box Plots of A- and D-Efficiency of Four Designs at 10,000 Sampled β.

discretization is needed to form the finite surrogate coefficient space B′. Here, we

investigate how the discretization size affects the performance of the constructed

Mm-Φp design. Figure 3 shows a box plot of the A-efficiency of the Mm-Φp

design constructed with m = 8, 27, 64, and 125 sampled β from B. When the

discretization size m = 8 is too small, not enough information about B is included

in the surrogate coefficient space B′. As a result, the constructed Mm-Φp design

achieves a smaller minimum A-efficiency. For the other three discretization sizes,

m = 27, 64, and 125, the performance of the constructed Mm-Φp design is rel-

atively similar in terms of the minimum and median A-efficiency, because the

surrogate coefficient space B′ captures enough information about the continuous

coefficient space B.

4.3. Potato packing example

We consider a real-world example, the potato packing example in Woods et al.

(2006), to further evaluate the proposed Mm-Φp design. The experiment contains

d = 3 quantitative variables: vitamin concentration in the prepackaging dip, and

the amounts of two kinds of gas in the packing atmosphere. The response is

binary, representing the presence or absence of liquid in the pack after seven days.
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Figure 3. Box Plot of A-Efficiency of Mm-Φp Design with Various Sample Sizes m from
Regression Coefficient Space B.

Table 3. I-Efficiency of Mm-Φp Design, Eff-Compromise Design, and I-Compromise
Design.

M1 M2 M3

Mm-Φp Design 0.64 0.71 0.82
Eff-Compromise Design 0.52 0.78 0.92
I-Compromise Design 0.49 0.80 0.92

The basis functions of the logistic regression model always include the linear and

quadratic terms of the input variables. However, one set of the basis functions

contains the interaction terms, and the other one does not. The estimates of

the regression coefficients from the preliminary study in Woods et al. (2006)

are given in Table 2 in the Supplementary Material S4. Because enhancing the

prediction accuracy is a major goal of the experiment, we use the prediction-

oriented I-optimality (Atkinson (2014)) to evaluate the design efficiency. Note

that I-optimality shares the same mathematical structure as Φ1-optimality. The

design points of the designs are shown in Figure 3 in the Supplementary Material

S4. Table 3 summarizes the I-efficiency of the Mm-Φp design, eff-compromise

design, and I-compromise design for the three potential model specifications. In

terms of worst-case efficiency (i.e., smallest value of I-efficiency among M1, M2,

and M3), the proposed Mm-Φp design outperforms the other two designs by a

large margin.

We explore how the initial design points X (0) in Algorithm 1 affect the per-

formance of the algorithm. We generate 100 sets of X (0), each of which consists

of eight randomly chosen points from the candidate pool C. The computational

time, LEA-criterion value, and lower bound of the efficiency (“eff.low”) of the

constructed designs are presented in Figure 4. For 100 different initial design

point sets X (0), the computational time of Algorithm 1 ranges from 59 seconds
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Figure 4. Performance of Algorithm 1 for 100 Randomly Generated X (0).

to 93 seconds, with a median of 78 seconds. Although the convergence of Algo-

rithm 1 is theoretically guaranteed regardless of X (0), the computational time of

the algorithm could vary to some extent with different X (0). Figure 4 shows that

the algorithm converges within MaxIter1 = 200 iterations for all 100 generated

X (0), and the LEA-criterion values fall between 2.501 and 2.503. This indicates

that the quality of the constructed Mm-Φp design is quite robust against the

initial design points set X (0).

4.4. Comparison with maximin design

The proposed Mm-Φp design is based on a smooth approximation (2.7) of the

minimum Φp-efficiency. Although the corresponding Mm-Φp design maximizes

both the lower and the upper bounds of the minimum Φp-efficiency, there could

be a gap between the Mm-Φp design and the true maximin design that maximizes

the minimum Φp-efficiency. In this section, using the nonlinear model example

in Braess and Dette (2007), we compare the performance of the Mm-Φp design

(ξMm) with that of the true maximin design (ξmaximin).

Consider Example 3.2 in Braess and Dette (2007) of a univariate exponential

growth model

y = e−βx + ε, β ∈ [1, B], x ∈ [0, 1],

where B is the upper bound of the regression coefficient β, and ε ∼ N(0, σ2) is

the normally distributed homoscedastic error. The locally D-optimal design is

then a single-point design at x = 1/β, and the corresponding D-optimality cri-

terion value is Φ0(ξopt
β ;β)= ln[(eβ)2]. For various values of B, Braess and Dette

(2007) provided standardized maximin D-optimal designs, which are those that

maximize the minimum D-efficiency without taking the natural log of the deter-
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(c) B = 100

Figure 5. Box Plots of Standardized D-Efficiency of Mm-Φp Designs and Standardized
Maximin D-Optimal Design at 10,000 Sampled β.

Table 4. Minimum and Median Standardized D-Efficiency across 10,000 Sampled β for
Comparison of Mm-Φp Design, Eff-Compromise Design, and Standardized Maximin D-
Optimal Design.

B = 10 B = 40 B = 100
min median min median min median

Mm-Φp Design 0.42 0.60 0.27 0.47 0.22 0.44
Eff-Compromise Design 0.14 0.88 0.01 0.86 0.003 0.79
Maximin Design 0.48 0.53 0.35 0.38 0.30 0.31

minants; that is,

ξmaximin
B = argmaxξ inf

β∈[1,B]
(eβ)2|I(ξ;β)|, (4.1)

where (eβ)2|I(ξ;β)| is the standardized D-efficiency of design ξ relative to the

locally standardized D-optimal design. The standardized maximin D-optimal

designs ξmaximin
B for different values of B in Braess and Dette (2007) are presented

in Table 3 in the Supplementary Material S4.

To construct the Mm-Φp and eff-compromise designs, for each value of B =

10, 40, and 100, evenly spaced grid samples of size m = B/2 for β ∈ [1, B] are

used. The standardized D-efficiency of the Mm-Φp design ξMm
B , eff-compromise

design ξeff-com
B , and standardized maximin D-optimal design ξmaximin

B are calcu-

lated over a 10,000 grid sample from [1, B]. Figure 5 shows box plots of the

standardized D-efficiency of the Mm-Φp design, eff-compromise design ξeff-com
B ,

and standardized maximin D-optimal design at 10,000 sampled β, and Table 4

summarizes the minimum and median standardized D-efficiency of these designs.

The results show that, although the Mm-Φp design has a smaller worst-case

D-efficiency than that of the true maximin D-optimal design for all scenarios, it

achieves a much larger median and maximum D-efficiency. The eff-compromise
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design has the largest median and maximum D-efficiency, but the corresponding

minimum D-efficiency may be very close to zero.

5. Discussion

There are several directions for further research to enhance the proposed

Mm-Φp design and algorithm. First, to construct the Mm-Φp design, one needs

to form a set of possible model specifications. An interesting direction is how

to extend the proposed design when such information is limited or unavailable.

Second, it would be interesting to rigorously establish the convergence property

of the optimal-weight procedure (Algorithm 2), which requires developing some

other mathematical results. Third, the numerical study shows that the lower

bound of the LEA-efficiency, 1 + 2minx∈Ω φ(x, ξ(r))/EA(ξ(r);M′), may decrease

for some iterations. Thus, it would be of interest to further investigate this

lower bound theoretically. Lastly, the use of log-sum-exp approximation can

be applied to other maximin designs with a convex design criterion, and the

theoretical and algorithmic developments can be adapted similarly. We plan to

extend the framework to a more general setting for other maximin designs with

convex criteria.

Supplementary Material

The online Supplementary Material contains a proof of the convexity of

EA(ξλ;M′), a derivation of the directional derivatives φ(ξ′, ξ) and φ(x, ξ), proofs

of Theorems 1,2, and 3, a detailed description of the modified multiplicative al-

gorithm (Algorithm 2), a discussion on the connection and comparison between

the proposed Mm-Φp design and the compromise design, and additional tables

and figures for the numerical examples in Section 4.
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