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S.1 Regularity Conditions

We first restate and introduce some new notations to facilitate the theoretic
derivations. For a matrix M, let |M||ax be the matrix maximum norm,
IM|, be the I, norm and | M|, be the [, norm. Let F(3) be the o-field
generated by X;, 3"W,,i = 1,...,n. Further, let F, be the sigma-field
generated by X;,7 = 1,...,n. For a general vector a, let ||all,, be the vector
sup-norm, |al|, be the vector [,-norm. Let e; be the unit vector with 1 on its
jth entry. For a vector v = (vy,...,v,)7T, let supp(v) be the set of indices
with v; # 0 and |v|op = [supp(v)|, where || stands for the cardinality
of the set U. Let K(s) = {v e R? : |v|s < 1,|v]o < s}. Let apm(M)

and umax(M) be the minimal and maximal eigenvalues of the matrix M,
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respectively. To simplify the notation, we define
Omin (B) = omin[E{exp (8T X) XX},

and
Omax(B) = Omax[ E{exp(BTX)XXT}].

Further, we define | X |y, = sup;-; K E(| X |*)V*, and | X |y, = supysq k™ V2E(|X[F)VE.
For notational convenience, let A(B"W;) = exp(8*W,; — 87Q3/2) and
g(W;,8,v) =vH{(W,; — Q8)%? — Qlv.

(C1) For any 8 with ||3]]2 < 2bo,

D1 < amin(B) < amax(8) < Ds.

Here Dy, D, are positive constants.
(C2) For j =1,...,p, define K; = ||Uij y,

K; = (29;;)sup k=2 VRO TYE(k 4 1) /2},

k=1
where I' is the Gamma function, then there exist constants mg, My so

that mg < KJZ > Y2 /n < My uniformly for all j almost surely.

(C3) Define

Ky (X;) =supk “E[|Y; — exp(81 X,)|"|X,] "%

k=1
There exist constants mq, mg, M7, My so that uniformly for all j =
1,...,p,

n
mi<n”' Y XGKy(Xi)? < M
i=1
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and

miax |X17 |Ky (Xl){log(n)}_l < Mo

almost surely.

(C4) The sample size n and the dimension of covariates p satisfy the relation
log(n)4/log(p)/n < C for an absolute constant C'.

(C5) For e;, j =1,...,p, define

Kuij(By) = supk E[(W:—QB,)"e;

k=1
—E{(W; - Q8,)"e;

180 Wi, X }*(8) Wi, X'/,

which is the conditional sub-Gaussian norm according to Definition

1 in Section S.4. Then E{K,:;(8y)*} < Qo. In addition, there exist
constants mg, M3 and Q)1 so that (i)

ms < > Kuij(Bo) A(BYW:)? /n < Ms,

1=1

and (ii)

2. {nlog(p)} ' 2E{A(B; Wi) (Wi — Q8,)"e;
i—1
180 Wi, Xi} — exp(By X)X ej| < Q
uniformly for all j = 1,...,p in probability.
(C6) Let v be a unit vector, let 3 satisfy |32 < 2by, and let

ngi(ﬂ) = supk_lE(|[g(Wi,,8,v)

k>1
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1BTW,, X))k,

which is the conditional sub-exponential norm according to Definition

2 in Section S.4. Then E{K,,(8)*} < Qo1, and

Blexp{A*(B"W;)K7,,(8)}] < Qoa-
In addition, for all v,

ma < N ABTW LK, (B /n < M, 8.1)

i=1

ms < max |A(B"W,)|Kgui(B)/logn < Ms, (5.2)
and

| i(A(ﬁTWi)E[{(Wi _ap® _q)

IB"W i, X;] — E{exp(8"X:)X:Xi })|2 < Qo,

in probability.

S.2 Examples to justify Regularity Conditions (C5)
and (C6)
Example when Condition (C5) holds
When
Mg = [Q]2 = O(1) (5.4)

and  |Ex]s = O(1), (S.5)



S.2. EXAMPLES TO JUSTIFY REGULARITY CONDITIONS (C5) AND (C6)

where let ©x = cov(X), and note that |32 < by. Then, since E(3; U;) =
0 and var(By Ui) = By 28 < B3z < b5Ma, we get 8y 28, = O(1)

and By U; = O,(1). Therefore

exp(28, Ui — B 2By) = 0,(1) (5.6)

by the continuous mapping theorem. Similarly by (S.5), we have exp(28; X;) =

0,(1), and hence we have E{exp(48; W; — 28, 28,)} = O(1). Hence,

> Kuii (Bo)* exp(285 Wi — B3 28,) /n
=1

i) Kuij(By)*/(2n) + exp(48; Wi — 28, 028,)
2n

= Qo/2 + E{exp(48y Wi — 28, Q08,)}/2 + 0,(1).

Hence the upper bound condition in the first statement is satisfied. State-
ment (ii) holds, E[E{A(8B; W,)(W,—Q8)Te;|B) Wi, X;}—exp(8; X;) X[ e;] =
0. Further, E{A(8; W,)(W, — Q8,)"e;|8y Wi, Xi} — exp(8, X;)X]e; =
Op(1). This is because A(ByW,) = Op(1), [e]QBy| < |ejf2[ 28] =
(BT98,) < (I8,3M3)"2 = byMa by (S4) and Uy = O,(1), X =

O,(1). Hence

Y2 Zn:[E{A( s W) (W, — Q8,)"e;|8; Wi, X}
i=1

—exp(8; Xi) X e;] = O,(1),
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which suggests

n

{nlog(p)}fm Z[E{A(ﬁng) (W; — Qﬁo)Tej ’ngia X}

=1

— exp(By X)X e;] = 0,(1),

in probability. Hence (ii) holds.

Example when Condition (C6) holds
Under (S.4) and (S.5), using the same arguments as those lead to (S.6), we

have A(B"W;)* = O,(1). Hence

D TAB W) Kyui(B)* /0

i=1

= E{A(B"W)*}/2 + E{K,.i(8)*}/2 + 0,(1),

which is bounded in probability. Hence the upper bound in (S.1) is satisfied.

Further, it is easy to see that

Pr{m?XA(,BTWi)Kgm(,B)/«/logn > 1/2}
< exp{—2log(n) + log(n)} Elexp{A*(8" W) K7,.(8)}]

< Qoo/n,

in probability. Hence the upper bound in (S.2) is satisfied. Now recall

that g(W, 8,v) = vV {(W; — 87Q)®2 — Qlv. (S.4) and (S.5) together also
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implies (S.3). To see this, for any unit vector v, we have
|ABTW,) E{(W; — Q8)% — Q|8"W,, X}
—Blexp(8" X)) XiX; ]2
= sup A(B"Wi)VIE{(W; — Q8)% — Q|8"W,, X, }v
+sup v E{exp(87X;)X; X }v.
We can see that in the last line, the terms inside the expectations are
functions of A(8"W,), vTQa, vIQv, vIW,, 87X, vTX;. We now show
the boundedness of each term. A(BTW,) = O,(1) as we have pointed out
in (3.6). Further, vTQB| < |[v]|28]> < [v[2v/BTQQB = 2|v]sboMa.
Further, because var(vIU;) = vIQv = O(1), this leads to [v'U;| = O,(1).
Similarly, [Xx |2 = O(1). Moreover, because also vI¥Xxv < |[Ex[s = O(1),
vIX;| = Oy(1). Therefore, |[Vv*W;| < |v'X;| + [vIU;| = O,(1). Further,
var(87X;) = B7ExB < 48| Ex s = O(1). Hence, B'X; = O,(1). By the
continuous mapping theorem, we have
var[A(BTW,) VI E{(W, — QB)%* — Q|"W,, X,}v
—vIE{exp(BTX;)X;X]v] = O(1).
Further,
E[A(B"W) E{(W; — Q)%

—Q|3"W;, X;} — E{exp(87X,;)X; X }] = 0.
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Therefore by the weak law of large numbers, (S.3) holds.

S.3 Proofs of the Theorems

Proof of Theorem 1: Define
LE) = |- YNywis
i=1
~exp(8TW, - 728/2)} + Aol |

be the objective function, hence £(8) < L£(8,), where |B]; < byv/k. Define
P 0 - AT

the error vector v = 8 — 3, we expand n=' > {;W/!B —exp(B8 W, —

BTQ@/Q)} at B3, and obtain

A~

0 > L(B)— L(By)
= YW, exp(BIWL — B108,/2)
i=1
xVH(W; — QB8,)}
+n /297 i exp(8* W, — 8 QB*/2)
i=1
<{(Wi = QB")%* — Qv + \|By + V[ — AlB|1,
where 3% is on the line connecting 3, and ,@ Hence we have the inequality

that

W12y exp(BT W - B8
i=1

x{(W; — QB*)®* - Q}v
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< —n DY YW, - exp(B) Wi — 87 Q8,/2)

i=1

xVHW; = QB)} + AlBolh — AlBy + V][ (5.1)

We first derive the upper bound of (S.1).

First note that let
¢ = 3max{4e\/ Ml, 8€MQC, 2610]\/[3@1(1 + T)/mg,
V/24/36€2 My, 1},

SO

n

[ > {YiW; — exp(B Wi — 85 Q8,/2)
=1
X (Wi = QB)}H e
< ¢y/log(p)/n

< oflog(p)/n}*, (5.2)

with probability at least 1 — 6/p by Lemma 3. Hence

= Y (VT W, — 9T exp (B Wi — 87 28,/2)

i=1

x (Wi —QB)}|
< [¥]i{log(p)/n}*/!
= (sl + [scll)g{log(p)/n}'* (5.3)

with probability at least 1 — 6/p, where S is the index set of the nonzero

T

elements in 3,. Here for a vector a = (ai,...,a,)", and an index set S,
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ag={al(1€85),...,a,I(me S)}T. On the other hand, we have

180 + Vi + Vsl

= By +V—vsl

= B + Vsl

= [Boslr + [Vselh-

Hence

180 + Vil = Bollx (S4)

1= 180l (S.5)

= {Bolh = Vst + Vs

= [Vselr = [vs]h.

Combine (S.3) and (S.4), and recall that A\ > 8/3¢{log(p)/n}"*, we have

that the right hand side of (S.1) is upper bounded by

(sl + [9se ) e{log(p)/m}"* + A¥s]y = A¥se s

< 11/8A|[Vs|1 — 5/8A[Vse]s,
i.e.
n1/297 i exp(8* W, — 8* QB*/2)
x{(W; — glﬁ*)@ - Qv
< ([Vslh + [se[1)o{log(p)/n}* + A¥sl — Al¥se s
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< 11/8)\[Vs]i — 5/8\|9se

N (S.6)

Further, because ||8*| < |B]a+]8/2 < 2bo, Lemma 4 implies that n ' 37 exp(8* W,;—
B* QB*/2){(W,—Q3")%2—Q} satisfies the lower and upper-RE conditions.

Hence,

WY exp(8 W, - 808 2)
=1

<{(W; — Q8% — Q%

\%

amin[ E{exp(8* X)X XTH{1 - 1/(20)}[9]5

—7i(n,p) [V

= [ Blexp(8" X) XX {1 - 1/(20)} 95

—7(n,p) V|- (5.7)

Here 71(n,p) is the 7(n,p) given in Lemma 4, and 7(n, p) is defined in the

statement of Theorem 1. The above equality holds because first

sup [ E{exp(8° X)X X[ }]/1(2¢v/5)}
{B:]Bl2<2bo}

— sup | Efexp(8° Xi) X XTH/{(2ev/c1)}
{B:1Bl2<2bo}
x {log(p)/n}"*

< ¢/boflog(p)/n}'*,

by the definition of ¢ in the statement. Hence

Vs7(n, p)
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= min sup Q'min [E {eXp(ﬂTXz‘)Xz‘Xz’T} ]
{B:(1Bl2<2b0}

/{(2c+/5)}, &/boflog(p) /n}"/"]
—  sup [ E{exp(8 XXX }]/{(20v/5)}
{B:1Bl2<2b0}

= Vs7i(n,p).

Now combine (S.6) and (S.7), we have

—1/27(n, )|V

N

1/20min[ E{exp(8* X)X XT {1 — 1/(20)}|9]3
~1/27(n. )|V

< nl1/297 i exp(8* W, — 8 QB*/2)

x{(W; — g,la*)@ - QW

< 11/8M|¥s]y — 5/8M[¥s.

1

as long as 2¢ > 1. Further |[V]1 < |B]1 + |Bo]1 < 2b0vk, and \/s7(n, p) <

d{log(p)/n}/* /by. Therefore,
1/27(n, p)[V[} < ¢{log(p)/n}*[¥]1 < 3/8A[%]:.
Combining the above two displays, we have

0 < 11/8X[Vslh = 5/8A[Vse |1 + 3/8A]v ]

= 11/8\[s] — 5/80| 9.

1+ 3/8A[[Vs|s
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+3/8\|[Vse

1

= T/AA[Vsly — 1/4A[Vse]s.

Hence [[Vse|; < 7|vg|1 and

IVIi = Vsl + [Vselh < 8]vs]h
< 8VE[Vs]2 < 8VE[V]2. (S.8)
By Lemma 4, and recall that ¢ = 128, we have

n vt Zn: exp(B8* W, — 8 QB*/2) (S.9)
i=1

<{(W; — Q8" - Qv

\Y

amin [ E{exp(8* X)X X[ H{1 = 1/(20)}|93
—amin[E{exp(8 X)X X[ }]/(2e5) |97

(cmin[Efexp(8* X)X XT {1 — 1/(2¢)}

\%

— o[ E{exp(B8* X)X X[ }]/4) |93
= 191/2560mim [ E{exp(8* X)X XT1|V]32. (S.10)
Combining with the upper bound (S.6) we have
191/2560min Efexp(8* X)X, X[ 1] [9]3

< 2(|9s| + [9selh)d{log(p)/m}" + 2A|[Vs i — 27|V

1

< 2|¥ioflog(p)/n}t + 2%

< dmax{g{log(p)/n}"", \}|¥]:
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< 32Vkmax{¢{log(p)/n}"/*, \}|¥]2
= 32VEA|V ..

Hence

913 \/EA

IVll2 < =57 T T
191 qvpin [ E{exp(B* X)X X

and combine with (S.8)

216 k;)\
191 a0 [Efexp(8* X)X, XTI}

IVl <

This proves the results. [
Proof of Theorem 2: The conclusion is the same as those in Theorem 2

and (31) in Agarwal et al. (2012), where their optimization problem is

A~

B = argming o i —n_IZ{YiWiT,@

i=1

—exp(BTW, - 87Q8/2)} + \|B1] -

And their 7, 7, are 7(n, p), 11, Yu are 2ay, 2as, p is bov'k, and R(ITy.(6%))

is | Bogel1 = 0 in this theorem.

Carefully examining the proof of Theorem 2 in Agarwal et al. (2012)
reveals that the proof holds when the lower-RE and upper-RE hold for the
second derivative of £1(8) at B in the feasible set, A = 2|[0L1(8y)/B|»
and £1(8) is convex in the feasible set of 3.

In Lemma 4, we have already shown that the second derivative of £1(3)

at B in the feasible set satisfies the lower- and upper-RE conditions. In
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addition, we have shown in (S.9) that the second derivative of £1(3) at 3
in the feasible set is positive definite under the conditions in the theorem

statement. Further because

A = 8/3¢{log(p)/n}"*

> 2¢{log(p)/n}"* = 2|0L1(By)/0B o0,

where the last inequality holds by (S.2), so A satisfies A = 2||0L£1(8,)/08|»
in Theorem 2 in Agarwal et al. (2012). Hence, the £;(3) is convex on the
feasible set and A = 2||0L1(8,)/08 | are satisfied simultaneously. There-
fore, the result follows by using the same argument as those lead to Theorem
2 in Agarwal et al. (2012). O
Proof of Theorem 3: We will show that the theorem holds when the
assumptions in Theorem 2 are satisfied, hence we start with verifying the
assumptions in Theorem 2. The same argument as in Theorem 2 leads
to that A > 8/3|0L1(8,)/0Bllw, and that for any 8 in the feasible set,
L1(8)/0B08" satisfies the lower-RE and upper-RE conditions with pa-
rameters {a1,7(n,p)} and {ay, 7(n,p)} as specified. We now verify the re-
maining assumptions in Theorem 2.

First, by the assumption that & = o[{n/log(p)}"/?] and the fact that
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7(n,p) = O{+/log(p)/n}, we have

and

64¢2(A/_l)7(n,p) = O{k+/Tog(p)/n} = o(1).

i
When n, p — o0, this leads to (M) — 1. Further because 7(n, p)i)*(M) =

Ol {log(p)/n}2k] = o(1),
5t = 20 Efexp(8* X)X XI)]{1 — 1/(20)} + o(1).
Taking into account that
s E{exp(8* X)X, XTY]{1 — 1/(20)})
< O Eoxp(8" X)X X1+ 1/(20)),

we have d; < k(M) < 1 — d; for some small positive constant d;. Thus
the assumption k(M) € [0, 1) in Theorem 2 holds. Further, we can easily

check that

BM) = O{y/log(p)/n},

hence

3200V k

T ) S MIBM) = ol log(p)/n} ']
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Now 7(n,p)/A?* = O(1), by Theorem 2, we have

262 166%r(n,p)  47(n, p){6¢(M)}?
— + - + =

ol A2 gl

= 0,(6*) + o(1)

18" - B3

N

= o(|B = Bol3) + o(1).
The second last equality holds because 47(n, p){6¢(M)}?/3; = 47(n, p)36k/y, =

o(1), and the last equality holds because we selected §* = €*(M)/{1 —

K(M)} = o118 - By [3). O

S.4 Definition of sub-Gaussian and sub-Exponential

random variables

Proof of Lemma 1: 1. = 2. Assume property 1 holds. Recall that for

every non-negative random variable Z, we have

0
E(Z|F) = J Pr(Z = u|F)du
0
Let Z = |X|¥ and change of variable u = t*, we obtain

Q0
E(X|MF) = J Pr(|X| > t|F)kt*tat
0

< fo !~ (WELFN k=1 gy
0
= ek/2K,(F)T(k/2)

< 2e(k/2)F 2Ky (F)k
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< (20)F(k/2)M2 K, (F)F

Taking the kth root yields property 2 with Ky(F) = v/2eK;(F).
2. = 3. Assume property 2 holds. Let K3(F) = +/2/(e — 1)eKy(F).

Writing the Taylor series of the exponential function, we obtain

F)E(XH|F)

Blexp{X*/K2(F)}F] =1+ 3 2L

k!
k=1
< 143 Eo VTR B F)
= Pt k!
< 14+ i (e — 1)F/2ke R KM (F) K3*(F) (2k)*
= “= k!
@ — 1)ke2kLk
< 1+Z(e )l Tk = e.

(k/e)®

el
Il
—

The last inequality holds because k! > (k/e)*.
3. = 1. Assume property 3 holds. Exponentiating and using Markov’s

inequality and then the property 3, we have

Pr(|X[ > |F) = Prlexp{X?/K;(F)} > exp{t*/ K3 (F)}|F]

e IR Elexp X2/ (F))|F] < ! WP,

Hence property 1 holds with K;(F) = K3(F).
2. = 4. Assume that F(X|F) = 0 and property 2 holds. We will prove
that property 4 holds with an appropriately large absolute constant C' such

that K4(F) = CKy(F). This will follow by estimating Taylor series for the
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exponential function

E{exp(tX)|F}

O tRE(XF|F)
= 1+tE(X|]—“)+kZ;T
O [tk I ()

k!

K2(f)}k
<f>}2k
<f>}2k+1

<f>}2k

N

1+

T
[N}

T
[N}

N
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sy
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= exp{t’(3e)"Ka(F)*}.

Thus, the property 4 holds with K4(F) = 3eK3(F). In the above derivation,
the first inequality holds follows from E(X|F) = 0 and property 2, the
second one holds because k! > (k/e)".

4. = 1. Assume property 4 holds. Then for A > 0, by the exponential
Markov inequality, and using the bound on the moment generating function

given in property 4, we obtain

Pr(X > t|F) = Pr{exp(AX)

WV

exp(\t)|F}

N

exp(—At) E{exp(A\X)|F}

< exp{—M + N K3 (F)}.

Choose A = t/{2K3(F)}, we conclude that Pr(X > t|F) < exp[—t?/{4K3(F)}].
Repeating the argument for — X, we also obtain Pr(X < —t|F) < exp[—t?/{4K2(F)}].

Combining these two bounds we have
Pr(|X| = t|F) < 2exp[—t*/{4K; (F)}] < exp[l — £*/{4K; (F)}].

Hence property 1 holds with K (F) = 2K4(F). Thus, the lemma is proved.

]

Lemma S.1. Let X be a centered conditional sub-Gaussian random variable
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with respect to F. Then
E{exp(AX)|F} < exp{(3¢)*N*| X7, 7 }-

Proof: We first note that property 2 in Lemma 1 holds with Ky(F) =
| X ||y (7). Following the proof of Lemma 1, this implies that property 4 in
Lemma 1 also holds with K4(F) = 3e|X|y,(#), which proves the result in
Lemma S.1. [
Proof of Lemma 2: The proof follows the similar argument as that of
Lemma 1.

1. = 2. Assume property 1 holds. Recall that for every non-negative

random variable Z, we have

E@Vﬁ{jﬁ@>MHw

Let Z = | X|¥ and change of variable u = t*, we obtain

0¢]
E(IX|*|F) = J Pr(|X| > t|F)kt*'dt
000
< f el—t/Kl(]:) ktk_ldt
0
= D(k+ ek (F)" < kFeK, (F)F,
where the inequality hold because k! < k*. Taking the kth root yields
property 2 with Ky(F) = eK;(F).

2. = 3. Assume property 2 holds. Let K3(F) = e*/(e—1)Ky(F). Writing
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the Taylor series of the exponential function, we obtain

Elexp{X/K5(F)}|F]

— K3(F)"E(|X|*|F
S ()k!(| 1)

k=1
o0 —
K3(F) " Ky(F)kk*
< 1+4) o
k=1
0
(e — 1)kkk /e2k
= 1+ Z T
k=1
e ¢]
< 1+ Z(e— 1F/ek = e.

el
Il
—

The last inequality holds because k! > (k/e)*.
3. = 1. Assume property 3 holds. Exponentiating and using Markov’s

inequality and then the property 3, we have

Pr(| X[ > #F) = Prlexp{|X|/K5(F)}

WV

exp{t/K3(F)}F]

N

e~ Elexp{ | X|/K3(F)}|F]

N

Hence property 1 holds with K;(F) = K3(F). O
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SUB-EXPONENTIAL RANDOM VARIABLES

S.5 Properties of Conditional sub-Gaussian and sub-

Exponential Random Variables

Lemma S.2. Let X be a centered conditional sub-exponential random vari-
ables with respect to F. Then for X\ such that 0 < A < 1/(2¢| X |y, (7)), we

have
Efexp(AX)|F} < exp(2e2 XX 2, )

Proof: From F(X|F) = 0 and property 2 in Lemma 2, using Taylor expan-
sion, we get
o NE (X “F)
E{exp(AX)|F} = 1+ ME(X|F)+ Z ARan i A

Ly S VB P

A

= k!
0 k:kk X
- Z H Hw
;
< Z {eA| Xy )

The first inequality holds because E(X|F) = 0 and X* < |X|¥; The second
inequality follows property 2. The third inequality holds because k! >
(k/e)k. TE0 < X < 1/(2€| X |y (7)), the right hand side of the above equation

is bounded by

1+ 262)\2“)(‘@1(]_-) < exp(262)\2||XHil(f)).
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This completes the proof. n

Lemma S.3. Let X4, ..., X, be independent centered sub-Gaussian random
variables with respect to the sub-sigma fileds Fi,...,F, respectively. For

sequence ay(F), ..., an(F),

{exp( 2 .)‘]—“Z.,i:l,...,n}
< exp ( (3¢) AQZ Ja(F Xi\im)

Proof: When X; is centered sub-Gaussian, then a;X; is also centered and

sub-Gaussian. Hence, from Lemma S.1, we have

o (000 1)

= HE exp(Aa; (F)X;)| Fi}

( 36 Y, o7 Xz-li2m>> |

3

O
Lemma S.4. Let Xq,...,X, be independent centered sub-exponential ran-
dom wvariables with respect to the sub-sigma fileds F, ..., F, respectively.

For any any sequence ay(F), ..., an(F) and X such that 0 < X\ < min;—;

E {exp ()\Eai(}"))(}) |Fiyi=1,... ,n}
i=1

< exp (262)\22 Hai(F)Xi‘?pl(]-})> :

i=1

..... n{1/(2¢]ai(F,

)X},
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Proof: When X is centered sub-exponential, then a;.X; is also centered and

sub-exponential. Hence, from Lemma S.2, we have

o g )]

ﬁ {exp(Aa;(F)X,)|Fi}

E{
< exp (262)‘22 lai(F Xi‘il@i)) ‘

S.6 Properties under Regularity Conditions (C1) —

(C6)

Lemma S.5. Forr > 0, let cjp = max[+/18e2m3/{MzQ3(1 + r)r}, 1]. As-

sume Conditions (C1) — (C4) to hold. Then

P [nZ Y; — exp(BIX)Xi.
> max(;\/ﬁl, 8eMLC)/log(p) v/ | < 27!

P (n Z [exp(BLW, — BIQB,/2)(W, — B
—~ exp(BoT;(i)Xdoo]

> 2010M3Q1(1 + r)+/log(p /n/mg,)\ p !
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and

Pr{n~'| ), Yi(W; = X;)|

1=1

> \/5\/3662M0\/log(p)/n] <2pL.

Proof of Lemma S.5 Let e; be the unit vector with the ith element 1 and
F. be the sigma field generated by X;,7 = 1,...,n. By Condition (C1), we

can choose sufficiently large K (X;), where K(X;) > 1, so that

Elexp{]Y; — exp(8y Xi)|/K (X)}Xi]

< E(exp[{Y; — exp(8y X4)} /K (X;)]1X5)
+E(exp[{~Y; + exp(By X:)} /K (X;)]|X)
< E(exp[{Y; — exp(8) Xy)}/K (X:)]|X;)

+exp[{exp(B; X,)}/K (X,)]
= exp (exp(By X)[exp{1/K (X;)} — 1 = 1/K(X,)])
+ exp[{exp(8y X;)}/K (X:)]

< e/24+e/2=ce.

Hence, Y; — exp(By X;) and —Y; + exp(B; X;) given X; are conditional
sub-exponential random variables following Definition 4. Let 0 < A <

min; 1/[2e]{Y; — exp(8; Xi)} X7 e; |y ()] = min; 1/{2e|XTe;| Ky (X;)}, we
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further have

Pr [n‘l i{Y; —exp(By Xi)} X e; > t|]-"$]

i=1

. <expp S ¥ — explBEX0) )X Te,)

i=1

> exp(Ant)|F)

N

E (expu Vv - exp(ﬂgxn}x?ej]ia)

=1

x exp(—Ant)

N

exp <2e2/\2 DY — exp(B5 X)X €2, (7,

=1

—Ant)

= exp <—)\nt + 2e2\? Z(XZ»Tej)2

i=1

[sup k= E{JY; - exp(ﬁoTxam}”'fP)

k=1

= exp (—)\nt + 22\ Z ]XiTej|2Ky(Xi)2) , (S.11)

i=1

where the first inequality is due to the Markov inequality, the second in-
equality follows from Lemma S.4, and the last two equalities are due to the

definitions of | - |, (#) and Ky (X;). Let

A = nt
' 4Ry X e PRy (X0)?
1

and Mg =

2e max; | XTe;| Ky (X;)
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If Ay < Mg, letting A = A; in (S.11), we get

Pr {n_l znl{Y, —exp(B; X;)} X e; > t|.7-"x}

i=1

n2t?
< - n
P H 823 [XTe,PKy (X;)2 H

nt?
< exp| — —8€2M1

almost surely. If Ay < Ay, letting A = Ay in (S.11), we get

Pr {n‘lZm — exp(By X,)} X e; > tlfx}

i=1

N

exp{—Aant + 2e*\int/(4e’\;)}

N

exp{—Aant + 2e*Xynt/(4e®)}

= exp(—Aant/2)

—nt
= P {46 max; |X;Fe]|Ky(Xl) }

< o —nt
S X Y ESARY
P 4e Mslog(n)

almost surely. Thus, combining the above results, we get

Pr {n_l zn:{Yi — exp(B Xi)} X/ e; > t|]:x}

i=1

_ , nt? nt
< exp<{ —min :
P 8e2 M, " 4eMslog(n)

almost surely. Now taking expectations on both sides, we get

(S.12)

nt

Pr [nl Z{Yz —exp(By X,)} X e; > t] < exp {— min (Sn

i=1

e2 M, 4eMslog(n)

)]
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Note that the same derivation in (S.11) and below also applies to —{Y; —

exp(B; X;)}X;, hence we also have

n t2 nt
-1 —Y; IXNXTe, > t| < — mi o :
A [n ;{ Yi +exp(By Xi)}X; e; > OXp | 8e2 M, deM,log(n)

Hence, we have

-1 N T T . nt? nt
Pr [n DI el BT X)X > t] < Zpexp [— min (SGQMI, 4€M210g(n>>] |

Inserting ¢ = cgor/10g(p)/+/n, we obtain
Pr [”_1 Z [{Yi — exp(By Xi)} X o0 > Coovlog(p)/\/ﬁ]
oloz(p) nCoox/log(P)/\/ﬁ>]

8e2M, = 4eMslog(n)
— 9pexp | — min <Cgolog(l?) coolog(p) )]

< 2pexp —min<

8e2M; " deMslog(n){~/log(p)/v/n}
[ (Cgolog(p) Coolog(P))] .

< 2 ,
PER 8e2M,  4eM>C

The last equality holds by Condition (C4). Now let ¢yp = max(4e+/ M, 8eMsC'),

we have

n

Pr|n! 2 1Y; — exp(Bg Xi)} X oo > max(der/ M, 86M20)«/10g(p)/\/ﬁ] <2p

i=1

In addition, let F(B,) be the sigma field generated by X;, B3 W, i =
1,...,n, since W; given X, is normal, W, given F(3,) is also normal hence

is sub-gaussian. Recall that

Kuij(Bo) = sup k™ 2E[|(W; — By ) Te; — E{(W,; — By Q)"e;|8s W, X, }F18s W, X,]V*.

k=1
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Then letting

N = n , S.13
D182 Y Kuii(By)?] exp(By Wi — By 23y/2)|2 (5.13)

we have

Pr [n_l Z {exp(By Wi — By 28,/2)(W; — By Q)"e; — exp(B) X;) X/ e} > W:(ﬁo)]
=1

i=1

- Pr (exp [Aj Z {exp(By W, — B 28,/2)(W; — B;2)"e; — exp(ﬁgxi)X?e]}]

. exp(Ajnmf(ﬁU))

A | 3, S, - i W - e

=1

N

=) exp(ﬁgx»x}ej} u—wa]

= exp(—\nt)E <eXp [Aj D exp(By W, — B1QB,/2)(W; — B1 Q) e;

=1

\f(ﬁo))

~NEL  exp(B3 Wi — B328,/2) (W, — B3 92)"e;| 85 Wi, X}

i=1
XeXp( A D [E{exp(B5 Wi — B708,/2)(W; — B7€) "e; |85 Wi, Xy} — eXp(ﬁOTXi)X;Fej]>

i=1

A

exp(—A;nt) exp [(36)2/\? Z Kuyij (ﬁo)Q{eXP(ﬁoTWi - BOTQﬂo/Q)}ZI
i=1

X exp <)\j DE{exp(By W — B7QBy/2)(Wi — B12) "e;|B; Wi, X} — eXP(ﬁng')XiTej]>

1=1 _n2t2
- { 1862 Y7, Kouii (B0)%] exp(BT W, — BIQB,/2)] }

2t2
e {36e2 S Ko (Bo)2| exp(BTW, — BTQB,/2)2 }
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nt
P [18e2 S Kouii (B0)?] exp(BTW, — BLQB,/2) 2

< SE0B}W, - AT, 2)W, - B0 8T W, X, - expmgx»x?ej]]
=1

N

—n*t
P {36e2 S0 Ko (Bo)2 exp(BTW, — BIOB,/2)? }
X ex |: nt
P18, Koy (Bo)?] exp(BTW, — BIOB,/2)

x| Y Efexp(B; Wi — 85 Q8,/2)(W; — B3 2) e, |87 W, X} — exp(ﬂoTXz‘)X;reH] :

i=1

The first inequality holds by the Markov inequality, and the second inequal-
ity holds by Lemma S.3. Letting t = 2¢10M3Q1(1 + r)+/log(p)/n/ms for
some constants r > 0,c¢y9 > 1, where mg, M3, ()1 are defined in Condition
(C5), we get

b [ 3 {esplBIW, — BIOG,2)(W, - BI)Te, — exp(BX)Xe,)

=1

> 2610Q1M3(1 + T)\/W/m:%‘}_(ﬁo)]

N

2
oo |~ () | o [1862 ZE{@XP (BYW. — BT98,/2)(W, - B79) e, BT W, X}

—exp(ﬂgxnxfej\]

= e | (@i 4 r)?og(p) My \ ] | cioMa@u(1 + r)y/log(p)/n
o[ )|

9e2m? 9e2m?

| Z E{exp(8; Wi — 85 28,/2)(W; — 8,Q)"e;|8; Wi, X;} — exp(8y X;) X e

N

exp [— {clpQi(1 + )*log(p) M/ (9e*m;3) }| exp {e10@7i (1 + r)log(p) Ms/(9e*m3) §
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< exp [ {cQT(1 + r)log(p) Ms/(9e*m3) } | exp {5, Q1 (1 + r)log(p) Ms/(9e*m3) }
= exp [— {chQf(l + r)rlog(p)Mg/(9e2m§)}]

almost surely, where the second inequality holds by Condition (C5).

Taking expectation on both sides of the above inequality, we have

Prn=' ) {exp(B) W, — B3 28,/2)(W: — B1Q2)"e; — exp(B) X:) X[ e; }

> 2c10M30Q1(1 + r)«/log(p)/n/mg]

< exp [~ {201 + )rlog(p) My/ (9 md) ]
We can easily check that the same derivation after (S.13) also applies to
—exp(BYW, — BLQB,/2)(W; — BLQ)Te; + exp(BL X)X e,
and will lead to

Pr [ 3~ {exp(BTW, — B108,/2)(W, — BT Te; — exp(1X,)XTe, }

> 2c10M3Q1(1 + r)«/log(p)/n/mg,]

< exp [~ {¢}Qi(1 + r)rlog(p) Mz/(9e*m3) }|

Thus, letting c19 = max[v/24/9e2m3/{MzQ3(1 + r)r}, 1], we have
Pr (n_l 2. [exp(B5 Wi — B5280/2)(W; — 85 2) — exp (B85 X)Xl
i—1

> 2c10M3Q1(1 + r)«/log(p)/n/mg,)

< 2pexp [~ {(c10Q1)*(1 + r)rlog(p) M3/(9¢’m3) } |
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Let Fy be the sigma field generated by Y;,7 = 1,...,n. Because U; =

W, — X, is normal and independent with Y;, using the same argument, we

have
[n IZYZ Wi; — Xi5) >t|]:y]
=1

= <eXp Y:(Wi; — Xi5)] > exp(Ant))

< (exp )\ZY Wij — XZ])]) exp(—Ant)

< exp | —Ant + (36)2)\22 {Y:(Wi; — Xij)}prg(in))
i=1

= exp | —Ant + (3e) )\QZY2 sup k™ 1/2E{|( Z~j)|’“}1/’“]2)
=1 k=1

= exp | —Ant+ (36)2)\223/;21(]2) :

i=1
The third inequality holds by Lemma S.3. Letting

nt

A fr—
18 YT, VIR

we obtain
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Take the expectation on both side, we have

Pr [nlzm(mj - X;) > t]

i=1

- n2t?
D2 YR e

nt?
S P\ 360 )

Using the same derivation on —n~' " | Y;(W;; — X;;), we can also obtain

= nt?
Pr|n 'Y Y, (W, — X;;) >t| <exp (— ) .
[ ; (W i) ] 36e2 M,

Hence, selecting t = 1/21/36e2My+/log(p)/n leads to

Pr [n‘lll D IVAW; = X)) > ﬁV%e?MMog(p)/n]
=1
< 2 nt”
RS exX e ——
PEEPA T 36e2,
= 2 L

Proof of Lemma 3: By the triangle inequality we have

n D YW, — exp(By Wi — B3 28/2) (Wi — 87 Q)|
=1

< 7Y DY — exp(B5 X)X

=1

+n7 | D exp(By Wi — 87 28y/2) (Wi — By Q) — exp(85 Xi)Xi o

=1

07 Y Yi(Wi = X5) oe,

=1
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hence by Lemma S.5

P {n*u SIVW, — exp(BIW, - B0B,/)(W, ~ B0
> 3max{max(4der/ M, 8eM,C)+/log(p)//n,
2¢10M35Q1(1 + r)+/log(p)/n/ms, \/5\/3662M0\/10g(p)/n}}

N

i=1

Pr [3 max {n_l Z |Y; — exp(By Xi) } X oo,

n~ > exp(By Wi — By Q8,/2)(W; — B ) — exp(B) X) Xi o

n7! Z Vi(W; — Xj)oo} > 3max{max(4der/M;, 8eMyC)+/log(p) /v/n,
210 M3Q1 (1 + 1) /Tog(p) /n/ma, v/2+/362 Myr/log () /n]
Pr [n Z |V; — exp (87 X:)} X; o > max(der/ M, 8eM20>\/1og<p>/¢ﬁ]

i=1

VAN

+ Pr (n‘1| Z [exp(By W, — B3 28/2)(W; — B ) — exp(8; X)X |

i=1

> 2c10M3Q1(1 + r)«/log(p)/n/m;z,)
+Pr [n_l| Zn] Yi(W; — X,)|loo > v/24/36€2Mg/log(p) /n]

=1

< 6p ',

where the last inequality is due to Lemma S.5. This proves the results. [J

Lemma S.6. Assume that Conditions (C1) and (C6) hold, and the vari-

ables U;, X; have finite dimension py. Let v be a p-dimensional vector.
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For sufficiently large n, we have

Pr <| Zn:A(ﬁTWi)g(Wnﬁ, v) — v E{exp(8" X)X, X[ }v| > nt)
i—1

< 9 ) nt? nt
< 2exp [ —min : :
P 16e2M," 8eMslog(n)

Proof: By Lemma 1 statement 3 and Lemma 2 statement 3, we can see that
the square of a conditional sub-Gaussian variable is sub-exponential. Now

because vI(W; — B7Q) given X; and B"W;, is normal, and recall that
g(Wi, B,v) = vH{(W, - gT)%* — Q}v,
we have that
9(Wi,B,v) — E{g(W,, B, v)|B"W;, X;}
is centered sub-exponential. Recall also that
A(B™W,) = exp(8"W, — 81Q5/2),
we have

Pr (Zn:[A(BTWi)g(WZ-, B,v) —v' E{exp(8" X)) X; X[ }v] > t]—“(ﬁ))

= Pr {exp )\an[A(ﬁTWi)g(Wi,ﬁ,v) — VTE{eXp(,BTXi)XiX;F}V]> > exp()\t)|]-"(ﬁ)}

) !F(ﬁ)}

A ABTW(W. B.v) ~ Blg(W,, 8,v)8"W, X@-}]) |f<ﬂ>}
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X exp (AZ BYW,)E{g(W,, 8, >|ﬂTWi,Xi}—vTE{exprXi)Xz-X?}v])

i=1

< exp(—At) exp {262/\2 Z AQ(,@TWi)KgU’i(/@)2}
<exp (AZ (B"W.)E{g(Wi,B.v) W, X, - TE{exprXi)XiX?}v]).

The second inequality above holds by Lemma S.4. Further, let

t 1
A\ = , and Ay =

4622 Kgm( >2A2(6TW1‘) - 2e max; gm( )|A( )|

If A\{ < A9, letting A = A\q, we get

1=1

exp(—At) exp {2&2 Zn] AQ(BTWi)Kgm(ﬁ)Z} = exp [{—862 S ngiz;)2A2(ﬁTW¢) H .

If Ao < Ay, letting A = A, we get

exp(—At) exp {262)\2 Z A2(,8Twi)ngi(/8)2}
i—1
= exp{—Xot + 2e2N\2t/(4€*\1)}

< exp{—Xat + 2e*\ot/(4e?)}

= exp(—Aat/2)

B eXp{zlemaxz gm<_t>|A< >|}‘

Combine the above result and let

A = min ( t , L )
4e? Z?:l ngi(ﬁ)2A2(ﬁTWi) 2e max; Kyui(08 )‘A( W)
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we have

b (Zn:[A(ﬁTWi)g(Wi,ﬁ, V)~ V' E{exp(8"X)X X v] > t\ﬂm)

g

) 2 t
s o (‘ i [Sez S Koi(8)2A2(8TW,) demax; K, m(ﬁ)lA(BTWi)ID

- t 1
e [Z " {462 S KB A2 (BTW,) 2 mix, Kyny(B)A(B™W)) }

x[A(B"W)E{g(W;,3,v)|BTW,;, X;} — VTE{eXp(ﬂTXi)XZ-X;r}V]] .

Replacing t with nt, for sufficiently large n and fixed ¢, we have

i=1

Pr (Zn:[A(ﬂTWi)g(Wi,ﬂ, v) — v E{exp(87 X)X, X }v] > nt]f(ﬁ))

< ex (—min[ n’t’ nt ])
S e 82T K,0i(B)2A2(BTW,) de max; K,ui(B)| A(BTW,)|

g

y Zn: . { nt 1 }
o i=1mm 46237 Kgoi(B)2A2(B"W,) " 2e max; K (B)A(BTW,)

g

x[A(BYW,)E{g(W;,3,v)|8"W,,X;} — VTE{exp(ﬁTXi)XiX;F}V]]

_ , nt? nt
< exp | —min ,
P 8e2M, " 4eMslog(n)
t 1
X exp [min { } Qg\/ﬁ]

4e2my’ 2emslog(n)
_ , nt? nt
< exp | —min , ,
P 16e2M, " 8eMslog(n)

in probability. The second inequality holds by (S.3).

Taking expectation on both sides of the above display, we have

i=1

Pr (i[A(ﬁTWi)g(Wi,ﬁ,v) — v E{exp(BTX)X;XT}v] > nt)
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< exp [ —min i nt

s o 16e2M,’ 8eMslog(n) | )

Repeat the argument with

[A(B"W.)g(W;, B,v) — v E{exp(B"X;) X, X[ }v]
replaced by
—[A(B"Wi)g(Wi, B,v) — v E{exp(8"X:) Xi X[ }v],

we can obtain the left bound, hence prove the result. O
Lemma S.7. Assume that Conditions (C1) and (C6) hold. If X;,U; € RP,

then for s = 1,

pr( sup |Zn][A(ﬁTWi)g(Wi,ﬁ,v) — vTE{exp(BX)X;XT}v]| > nt>

veK(2s) ;3

nt? nt

< 2 — mi 2sl :
xp ( i [32462]\44’ 366M5log(n)] e 0g(9p))

Proof of Lemma S.7: For each subset U < (1,...,p), we define the set Sy

as Sy = {v e RP,|[v|2 < 1,supp(v) < U}, and note that K(2s) = Ujy<2s5u-
We define A = {uy,...,u,} < Sy to be a 1/3-cover of Sy, if for every
v € Sy, there is some u; € A such that |[v —u;||2 < 1/3. Define Av = v—u;
where u; = argminy, [|[v — u;|2. We have |Av|y < 1/3. The same as those
shown in Lemma 15 in Loh & Wainwright (2012), by Ledoux & Talagrand

(2013), we can construct A with |A| < 9%°. Define

n T . L ®2 o ox T~ ~T
B(vi,va) = v7 ZA(ﬂ W {(W: - 98)% - Q) - B{exp(8"X)X.XT} |

=1

2.
n
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We have

[®(v, V)|

= |P(Av + u;, Av + u;j)|

< max |[P(u;, w;)| + max |[P(Av, u;)| + max |[P(u;, Av)| + |P(Av, Av)|
< max |[®(u;, w)| + 2max [B(Av, u;)| + [P(Av, Av)].
Hence,

sup |®(v,v)| < max|<1>(uz,ul)| + 2 sup max |®(Av, u;)| + sup |P(Av, Av)|.

VESM VESM v VESM

Since |3Av|y < 1 and supp(3Av) € U, 3Av € Sy. It follows that

sup [®(v, v)|
VESM
< max |®(u;,w;)| +2/3 sup max |P(3Av,u;)| + 1/9 sup |P(3Av, 3AV)|
vESY vESY
< max]@(ul,ul)] + 2/3{sup |P(3AV, 3AV)\}1/2{maX|<I>(ul,ul)|}1/2 +1/9 sup |®(v,v)|
vES, U VESM
< max|(I>(uZ,uZ)| + sup{2/3|®(v,v)| + 1/9|P(v, v)|}.
VES(,{

Hence, sup,g, |®(v, v)| < 9/2 max; |®(u;, u;)|. By Lemma S.6 and a union

bound, we have

(sup ]Z g(Wi, 8,v) — v E{exp(87 X)) X, X v]| > 9/2nt)

VESM i=1

< 9%2e min nt” nt
X X — .
P 16e2M,’ 8eMslog(n)
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Now replacing ¢t with 2/9¢, we have

Pr (sup ’i[A(,BTWi)g(Wi,,B,V) — vTE{exp(B8T X)) X;XT}v]| > nt)

VESL{ i=1
nt

2 nt
324e2M,’ 36eMslog(n) | )

< 9%2exp <— min [

p

23) choices of U, and noting that

Finally, taking a union bound over the (

(2’;) < p?, we have

Pr ( sup ]Zn:[A(ﬁTWi)g(Wi,ﬂ,v) — v E{exp(BTX))X;XT}v]| > nt)

VEK(zS) i=1

nt? nt

324e2M,’ 36e Mslog(n)

< 2oxp (- min |+ 2etoe(90).

Lemma S.8. Assume that Conditions (C1) and (C6) hold. For a fized
matriz T' € RP*P, parameter s > 1, and tolerance 6 > 0, suppose we have

the deviation condition
[vITv| < 6,Vv e K(2s).
Then
IvITv| < 276(|v]3 + 1/s|v|?), Vv € RP.

Proof: This is Lemma 12 in Loh & Wainwright (2012), we omit the proofs

here.
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S.7 Verification of the Lower and Upper RE Condi-

tions

Lemma S.9. Assume that Conditions (C1) and (C6) hold and s > 1,
n~ Y exp(BTW, — BTQB/2){(W; — Q8)%” - Q}
i=1
is an estimator for E{exp(8TX;)X,XT}, satisfying the deviation condition

nt i v@iexp(B'W, — 8TQB/2){(W,; — Q8)% — Q}v

i=1

—VTE{eXp(,BTXi)XiX;F}V

Omin [E{GXP(BTXJXZX;F }]
d4ce

< , Vv e K(2s)

for some constant c. Then we have the lower-RE condition. That is, for

any v € RP,

n! Zn: v@iexp(B'W, — 8TQB/2){(W; — Q8)%* — Q}v

> o[ B{exp(B8 X)X X {1 — 1/(20)}|v]3

i [ E{exp(8' X)X XT}]

2
2 vz

We also have the upper-RE condition. That is, for any v € RP,

n! Zn] vlexp(BTW,; — B8TQ8/2){(W, — QB)%* — Qlv

=1

< omax[E{exp(B" X)X X {1 + 1/(20)}|v3

min[ E{exp(B87X;) X, X[}
+
2cs

[vI5,
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Proof: This result follows easily from Lemma S.8. Setting

r=n"'! Zn] exp(BTW,; — BTQB/2){(W; — QB)®? — Q} — E{exp(87X;)X; X}

i=1

and 0 = o [E{exp(87 X)X, XT1]/(54¢), we have the bound

tmin[E{exp(8" X)X, XT}]

T
I'v| <
v I'v| < 5

(Iv]2 + 1/svIE).

Then

n! Z exp(BTW,; — 8TQ8/2)vT [{(W, — Q8)®? — Q]v

Otmin (E{exp (8T X)X X[ })
2c

> v E{exp(8' X)X X }v — (Iv]3 + 1/s[v]5)

and

nt i exp(BTW; — BTQB/2)vT{(W; — Q3)%% — Q}v
=1
O‘min(E{eXp(ﬁTXi)XiXiT})

< vIE{exp(8T X)X, X[}V + 5
C

(Iv13 + 1/s0v[3)-

Hence the lemma holds because
min[E{exp(8" X)X, X HV]3 < v E{exp(87X) XX} < amax[E{exp(87 X)X, X ]| v 3.

O]
Proof of Lemma 4:

Let

r=n"! i exp(BTW; — BTQB/2){(W; — QB)%? — Q} — E{exp(8'X,)X; X},

i=1
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s = {1/{320maX(M4,M5)} log?(p)
1Bla<zbny Cmin E{exp(BTX) XX} |°
in SUDP{B:|B]2<2b0} & [54{exp(,3 ) z}]] /(8162),1>
c

(S.14)

where C' satisfies Condition (C4). Since n/log(p) — oo under Condition
(C4), we always have s > 1 for sufficiently large n.

Let

minE TXZ' XZXT
o ConlPlen(BTX)X XY
{B:]|1B)2<2bo} 54c

For p > 9, by Lemma S.7, we have

Pr ( sup vi[n~! Zn: exp(BTW; — BTQB/2){(W; — Q3)%* — Q}

VEK(zS) i=1

~Elexp(8"X)XX[}v>  sup “min[E{eXPWTXz-)XiX?}])

(881> <2b0) 5dc
nt? nt
S 2exp | ~mi , 25log(9
eXp( mln[324€2]\/[4 36eM5log(n)] + 2slog( P))

nt? nt

5 o
P ( — [324log(n)62 max(My, Ms)’ 36e max(M,, Ms)log(n)

— 2exp _—n/{410g(n) max(M4,M5)}min( e t>+2slog<9p)}
(

N

81e2’ 9e

N

2 exp | —n/{4log(n) max(My, M5)} min

N

2exp | —4/nlog(p)1/{4C max(M,, M;)} min (@, é) + 4slog(p)] :

where the last inequality is because of Condition (C4). If #*/(81€?) > 1,

] + 2310g(9p))
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then ¢2/(81e?) > t/(9¢) > 1, hence

s = 1/{320 max(M,, Mm\/@’

and

Pr ( sup vi[n! 2”3 exp(BTW; — BTQB/2){(W; — Q3)%% — Q}

VGK(QS) i=1

min E TXZ' X1XT
B{exp(BTX XX v 5 sup  CmnlBlexp(B X) XX/}
{B:]Bl2<2b0} H54c

< 2exp [—«/nlog(p)l/{é%C max( My, M5)}] .

On the other hand, if t?/(81¢?) < 1, then t?/(81¢?) < t/(9¢) < 1, hence

veK(2s) im1

Pr ( sup VT[n_lieXp(ﬂTWi - B8TQ8/2){(W; — QB3)%* — Q}

min E TXi X,LXT
B{exp(B X)X X v > sup ol ELOR(8 XXX/ ]
{B:1Bl2<2bo} 54c

2 exp [—«/nlog(p)l/{éLCmaX(MAL,M5)}8§€2 - 1/{8C max(My, Ms)}/nlog(p)— ]

N

81le2
t2
8le? |-

_ 2exp l_ml/{scmax<M4,M5>}

Combining the above results, we get

=1

Pr ( sup vi[n~* Zn: exp(BTW,; — B8TQB/2){(W, — Q3)%* — Q}
veK(2s)

_E{exp(/BTXZ)XzX;F]V > sup Oémln[E{eXp<IB XZ)XZXz }]
{B:1Bl2<2bo} 54c

< 2exp [—M1/{8C max (M, Ms)} min {Si—; 1}] .
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Hence by Lemma S.9, the lemma holds by selecting

n

T(n,p) = sup (Ozmin[E{eXP(BTXz')Xz‘Xz’T}]/<2C)) {1/{32Cmax(M4,M5)} log(p)

{B:1Bl2<2bo}
2 —1
SUpg. Qi [ E{exp(B7X;) X, X T
min P{B:|18]2<2b0} [54{ p(ﬁ ) }]] /(8162),1
C

]

S.8 A Useful Topological Result
Lemma S.10. For any constant s > 1, we have
By (v/s) N By(1) S cl{conv{By(s) n By(3)}}

where the ly; balls with radius r, By (r), k = 0, 1,2, are taken in p-dimensional
space, and cl(-) and conv(-) denote the topological closure and convex hull,

respectively.

Proof: From Lemma 11 in Loh & Wainwright (2012), we get
B (v/s) N Bay(1) < 3cl{conv{By(s) N By(1)}}.

Here for a set A, 3A is defined as the set that satisfies supgesy < 0,z >=
3supgey < 0,z > for any z. Let U be a subset of {1,...,p} and zy be the
subvector of z with only the elements whose indices in U retained. Now

when A = cl{conv{By(s)nBa(1)}}, we get supges4 < 6,2 >= 3maxy|=|s| SUP|g, |,<1 <
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Ov, zy >= maxy|=|s| SUP|g, |,<3 < Ov,Zv >= 3|2zs]2, hence 3cl{conv{By(s)n
Bo(1)}} = cl{conv{By(s) N Bo(3)}}. Thus the results hold. O
Lemma S.10 implies that if a vector v satisfies |v||1/[v]s < +/s, then it

automatically satisfies |vo < s.
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