Poisson Regression with Error Corrupted High Dimensional Features

The University of California, San Francisco, Pennsylvania State University

Supplementary Material

S.1 Regularity Conditions

We first restate and introduce some new notations to facilitate the theoretic derivations. For a matrix \mathbf{M} , let $\|\mathbf{M}\|_{\max}$ be the matrix maximum norm, $\|\mathbf{M}\|_{\infty}$ be the l_{∞} norm and $\|\mathbf{M}\|_{p}$ be the l_{p} norm. Let $\mathcal{F}(\boldsymbol{\beta})$ be the σ -field generated by $\mathbf{X}_{i}, \boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i}, i = 1, \ldots, n$. Further, let \mathcal{F}_{x} be the sigma-field generated by $\mathbf{X}_{i}, i = 1, \ldots, n$. For a general vector \mathbf{a} , let $\|\mathbf{a}\|_{\infty}$ be the vector sup-norm, $\|\mathbf{a}\|_{p}$ be the vector l_{p} -norm. Let \mathbf{e}_{j} be the unit vector with 1 on its jth entry. For a vector $\mathbf{v} = (v_{1}, \ldots, v_{m})^{\mathrm{T}}$, let $\mathrm{supp}(\mathbf{v})$ be the set of indices with $v_{i} \neq 0$ and $\|\mathbf{v}\|_{0} = |\mathrm{supp}(\mathbf{v})|$, where $|\mathcal{U}|$ stands for the cardinality of the set \mathcal{U} . Let $\mathbb{K}(s) \equiv \{\mathbf{v} \in \mathbb{R}^{p} : \|\mathbf{v}\|_{2} \leqslant 1, \|\mathbf{v}\|_{0} \leqslant s\}$. Let $\alpha_{\min}(\mathbf{M})$ and $\alpha_{\max}(\mathbf{M})$ be the minimal and maximal eigenvalues of the matrix \mathbf{M} ,

respectively. To simplify the notation, we define

$$\alpha_{\min}(\boldsymbol{\beta}) \equiv \alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X})\mathbf{X}\mathbf{X}^{\mathrm{T}}\}],$$

and

$$\alpha_{\text{max}}(\boldsymbol{\beta}) \equiv \alpha_{\text{max}} [E\{\exp(\boldsymbol{\beta}^{\text{T}} \mathbf{X}) \mathbf{X} \mathbf{X}^{\text{T}}\}].$$

Further, we define $||X||_{\psi_1} \equiv \sup_{k \geq 1} k^{-1} E(|X|^k)^{1/k}$, and $||X||_{\psi_2} \equiv \sup_{k \geq 1} k^{-1/2} E(|X|^k)^{1/k}$. For notational convenience, let $A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i) \equiv \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}/2)$ and $g(\mathbf{W}_i, \boldsymbol{\beta}, \mathbf{v}) \equiv \mathbf{v}^{\mathrm{T}} \{ (\mathbf{W}_i - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} \mathbf{v}$.

(C1) For any $\boldsymbol{\beta}$ with $\|\boldsymbol{\beta}\|_2 \leq 2b_0$,

$$D_1 \leqslant \alpha_{\min}(\boldsymbol{\beta}) \leqslant \alpha_{\max}(\boldsymbol{\beta}) \leqslant D_2.$$

Here D_1, D_2 are positive constants.

(C2) For $j = 1, \ldots, p$, define $K_j \equiv ||U_{ij}||_{\psi_2}$

$$K_j = (2\Omega_{jj})^{1/2} \sup_{k \ge 1} k^{-1/2} \pi^{-1/(2k)} \Gamma^{1/k} \{ (k+1)/2 \},$$

where Γ is the Gamma function, then there exist constants m_0, M_0 so that $m_0 < K_j^2 \sum_{i=1}^n Y_i^2/n < M_0$ uniformly for all j almost surely.

(C3) Define

$$K_Y(\mathbf{X}_i) \equiv \sup_{k \ge 1} k^{-1} E[|Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{X}_i)|^k |\mathbf{X}_i]^{1/k}.$$

There exist constants m_1, m_2, M_1, M_2 so that uniformly for all $j = 1, \ldots, p$,

$$m_1 < n^{-1} \sum_{i=1}^n X_{ij}^2 K_Y(\mathbf{X}_i)^2 < M_1$$

and

$$\max_{i} |X_{ij}| K_Y(\mathbf{X}_i) \{ \log(n) \}^{-1} < M_2$$

almost surely.

- (C4) The sample size n and the dimension of covariates p satisfy the relation $\log(n)\sqrt{\log(p)/n} \leqslant C$ for an absolute constant C.
- (C5) For \mathbf{e}_j , $j = 1, \dots, p$, define

$$K_{wij}(\boldsymbol{\beta}_0) \equiv \sup_{k \ge 1} k^{-1/2} E[|(\mathbf{W}_i - \boldsymbol{\Omega} \boldsymbol{\beta}_0)^{\mathrm{T}} \mathbf{e}_j$$
$$-E\{(\mathbf{W}_i - \boldsymbol{\Omega} \boldsymbol{\beta}_0)^{\mathrm{T}} \mathbf{e}_j$$
$$|\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i, \mathbf{X}_i\}|^k |\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i, \mathbf{X}_i]^{1/k},$$

which is the conditional sub-Gaussian norm according to Definition 1 in Section S.4. Then $E\{K_{wij}(\boldsymbol{\beta}_0)^4\} < Q_0$. In addition, there exist constants m_3, M_3 and Q_1 so that (i)

$$m_3 < \sum_{i=1}^n K_{wij}(\boldsymbol{\beta}_0)^2 A(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i)^2 / n < M_3,$$

and (ii)

$$\begin{split} &\left| \sum_{i=1}^{n} \{ n \log(p) \}^{-1/2} E\{ A(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i}) (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta}_{0})^{\mathrm{T}} \mathbf{e}_{j} \right| \\ &\left| \boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i}, \mathbf{X}_{i} \} - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i}^{\mathrm{T}} \mathbf{e}_{j} \right| < Q_{1} \end{split}$$

uniformly for all j = 1, ..., p in probability.

(C6) Let **v** be a unit vector, let $\boldsymbol{\beta}$ satisfy $\|\boldsymbol{\beta}\|_2 \leq 2b_0$, and let

$$K_{gvi}(\boldsymbol{\beta}) \equiv \sup_{k>1} k^{-1} E(|[g(\mathbf{W}_i, \boldsymbol{\beta}, \mathbf{v})$$
$$-E\{g(\mathbf{W}_i, \boldsymbol{\beta}, \mathbf{v})|\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i, \mathbf{X}_i\}]|^k$$

$$|\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i},\mathbf{X}_{i})^{1/k},$$

which is the conditional sub-exponential norm according to Definition

2 in Section S.4. Then $E\{K_{gvi}(\boldsymbol{\beta})^4\} < Q_{01}$, and

$$E[\exp\{A^2(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_i)K_{qvi}^2(\boldsymbol{\beta})\}] < Q_{02}.$$

In addition, for all \mathbf{v} ,

$$m_4 < \sum_{i=1}^n |A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i)|^2 K_{gvi}(\boldsymbol{\beta})^2 / n < M_4,$$
 (S.1)

$$m_5 < \max_i |A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i)| K_{gvi}(\boldsymbol{\beta}) / \log n < M_5,$$
 (S.2)

and

$$\frac{1}{\sqrt{n}} \| \sum_{i=1}^{n} (A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) E[\{(\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega}\}
|\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}, \mathbf{X}_{i}] - E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\})\|_{2} < Q_{2},$$
(S.3)

in probability.

S.2 Examples to justify Regularity Conditions (C5) and (C6)

Example when Condition (C5) holds

When

$$M_{\Omega} \equiv \|\Omega\|_2 = O(1) \tag{S.4}$$

and
$$\|\mathbf{\Sigma}_{\mathbf{X}}\|_2 = O(1),$$
 (S.5)

where let $\Sigma_{\mathbf{X}} = \operatorname{cov}(\mathbf{X})$, and note that $\|\boldsymbol{\beta}_0\|_2 \leqslant b_0$. Then, since $E(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{U}_i) = 0$ and $\operatorname{var}(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{U}_i) = \boldsymbol{\beta}_0^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_0 \leqslant \|\boldsymbol{\beta}_0\|_2^2 \|\boldsymbol{\Omega}\|_2 \leqslant b_0^2 M_{\boldsymbol{\Omega}}$, we get $\boldsymbol{\beta}_0^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_0 = O(1)$ and $\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{U}_i = O_p(1)$. Therefore

$$\exp(2\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{U}_i - \boldsymbol{\beta}_0^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_0) = O_p(1)$$
 (S.6)

by the continuous mapping theorem. Similarly by (S.5), we have $\exp(2\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i) = O_p(1)$, and hence we have $E\{\exp(4\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{W}_i - 2\boldsymbol{\beta}_0^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_0)\} = O(1)$. Hence,

$$\sum_{i=1}^{n} K_{wij}(\boldsymbol{\beta}_0)^2 \exp(2\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0) / n$$

$$\leq \frac{\sum_{i=1}^{n} K_{wij}(\boldsymbol{\beta}_0)^4 / (2n) + \exp(4\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - 2\boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0)}{2n}$$

$$= Q_0 / 2 + E\{\exp(4\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - 2\boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0)\} / 2 + o_p(1).$$

Hence the upper bound condition in the first statement is satisfied. Statement (ii) holds, $E[E\{A(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{W}_i)(\mathbf{W}_i - \boldsymbol{\Omega}\boldsymbol{\beta}_0)^{\mathrm{T}}\mathbf{e}_j | \boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{W}_i, \mathbf{X}_i\} - \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\mathbf{X}_i^{\mathrm{T}}\mathbf{e}_j] = 0$. Further, $E\{A(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{W}_i)(\mathbf{W}_i - \boldsymbol{\Omega}\boldsymbol{\beta}_0)^{\mathrm{T}}\mathbf{e}_j | \boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{W}_i, \mathbf{X}_i\} - \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\mathbf{X}_i^{\mathrm{T}}\mathbf{e}_j = 0$. This is because $A(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{W}_i) = O_p(1)$, $|\mathbf{e}_j^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_0| \leqslant ||\mathbf{e}_j||_2 ||\boldsymbol{\Omega}\boldsymbol{\beta}_0||_2 = 0$. $(||\boldsymbol{\beta}_0||_2^2M_{\boldsymbol{\Omega}}^2)^{1/2} = b_0M_{\boldsymbol{\Omega}}$ by (S.4) and $U_{ij} = O_p(1)$, $X_{ij} = O_p(1)$. Hence

$$n^{-1/2} \sum_{i=1}^{n} [E\{A(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i})(\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta}_{0})^{\mathrm{T}} \mathbf{e}_{j} | \boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i}, \mathbf{X}_{i}\}$$
$$-\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i}^{\mathrm{T}} \mathbf{e}_{j}] = O_{p}(1),$$

which suggests

$$\{n\log(p)\}^{-1/2} \sum_{i=1}^{n} [E\{A(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i})(\mathbf{W}_{i} - \boldsymbol{\Omega}\boldsymbol{\beta}_{0})^{\mathrm{T}}\mathbf{e}_{j} | \boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}, \mathbf{X}_{i}\}$$

$$-\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathrm{T}}\mathbf{e}_{j}] = o_{p}(1),$$

in probability. Hence (ii) holds.

Example when Condition (C6) holds

Under (S.4) and (S.5), using the same arguments as those lead to (S.6), we have $A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})^{4} = O_{p}(1)$. Hence

$$\sum_{i=1}^{n} A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i})^{2} K_{gvi}(\boldsymbol{\beta})^{2} / n$$

$$= E\{A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i})^{4}\} / 2 + E\{K_{gvi}(\boldsymbol{\beta})^{4}\} / 2 + o_{p}(1),$$

which is bounded in probability. Hence the upper bound in (S.1) is satisfied. Further, it is easy to see that

$$\Pr\{\max_{i} A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) K_{gvi}(\boldsymbol{\beta}) / \sqrt{\log n} > \sqrt{2}\}$$

$$\leq \exp\{-2\log(n) + \log(n)\} E[\exp\{A^{2}(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) K_{gvi}^{2}(\boldsymbol{\beta})\}]$$

$$\leq Q_{02}/n,$$

in probability. Hence the upper bound in (S.2) is satisfied. Now recall that $g(\mathbf{W}_i, \boldsymbol{\beta}, \mathbf{v}) \equiv \mathbf{v}^{\mathrm{T}} \{ (\mathbf{W}_i - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega})^{\otimes 2} - \boldsymbol{\Omega} \} \mathbf{v}$. (S.4) and (S.5) together also

implies (S.3). To see this, for any unit vector \mathbf{v} , we have

$$||A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})E\{(\mathbf{W}_{i} - \boldsymbol{\Omega}\boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega}|\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i}, \mathbf{X}_{i}\}$$

$$-E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]||_{2}$$

$$= \sup_{\mathbf{v}} A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})\mathbf{v}^{\mathrm{T}}E\{(\mathbf{W}_{i} - \boldsymbol{\Omega}\boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega}|\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i}, \mathbf{X}_{i}\}\mathbf{v}$$

$$+ \sup_{\mathbf{v}} \mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v}.$$

We can see that in the last line, the terms inside the expectations are functions of $A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})$, $\mathbf{v}^{\mathrm{T}}\Omega\boldsymbol{\beta}$, $\mathbf{v}^{\mathrm{T}}\Omega\mathbf{v}$, $\mathbf{v}^{\mathrm{T}}\mathbf{W}_{i}$, $\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i}$, $\mathbf{v}^{\mathrm{T}}\mathbf{X}_{i}$. We now show the boundedness of each term. $A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i}) = O_{p}(1)$ as we have pointed out in (S.6). Further, $|\mathbf{v}^{\mathrm{T}}\Omega\boldsymbol{\beta}| \leq ||\mathbf{v}||_{2}||\Omega\boldsymbol{\beta}||_{2} \leq ||\mathbf{v}||_{2}\sqrt{\boldsymbol{\beta}^{\mathrm{T}}\Omega\Omega\boldsymbol{\beta}} = 2||\mathbf{v}||_{2}b_{0}M_{\Omega}$. Further, because $\mathrm{var}(\mathbf{v}^{\mathrm{T}}\mathbf{U}_{i}) = \mathbf{v}^{\mathrm{T}}\Omega\mathbf{v} = O(1)$, this leads to $|\mathbf{v}^{\mathrm{T}}\mathbf{U}_{i}| = O_{p}(1)$. Similarly, $||\mathbf{\Sigma}_{\mathbf{X}}||_{2} = O(1)$. Moreover, because also $\mathbf{v}^{\mathrm{T}}\mathbf{\Sigma}_{\mathbf{X}}\mathbf{v} \leq ||\mathbf{\Sigma}_{\mathbf{X}}||_{2} = O(1)$, $||\mathbf{v}^{\mathrm{T}}\mathbf{X}_{i}| = O_{p}(1)$. Therefore, $||\mathbf{v}^{\mathrm{T}}\mathbf{W}_{i}| \leq ||\mathbf{v}^{\mathrm{T}}\mathbf{X}_{i}| + ||\mathbf{v}^{\mathrm{T}}\mathbf{U}_{i}| = O_{p}(1)$. Further, $\mathrm{var}(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i}) = \boldsymbol{\beta}^{\mathrm{T}}\mathbf{\Sigma}_{\mathbf{X}}\boldsymbol{\beta} \leq 4b_{0}^{2}||\mathbf{\Sigma}_{\mathbf{X}}||_{2} = O(1)$. Hence, $\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i} = O_{p}(1)$. By the continuous mapping theorem, we have

$$var[A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})\mathbf{v}^{\mathrm{T}}E\{(\mathbf{W}_{i}-\boldsymbol{\Omega}\boldsymbol{\beta})^{\otimes 2}-\boldsymbol{\Omega}|\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i},\mathbf{X}_{i}\}\mathbf{v}$$
$$-\mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\mathbf{v}]=O(1).$$

Further,

$$E[A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})E\{(\mathbf{W}_{i} - \boldsymbol{\Omega}\boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega}|\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i}, \mathbf{X}_{i}\} - E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}] = \mathbf{0}.$$

Therefore by the weak law of large numbers, (S.3) holds.

S.3 Proofs of the Theorems

Proof of Theorem 1: Define

$$\mathcal{L}(\boldsymbol{\beta}) = \left[-n^{-1} \sum_{i=1}^{n} \{ Y_i \mathbf{W}_i^{\mathrm{T}} \boldsymbol{\beta} - \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \} + \lambda \| \boldsymbol{\beta} \|_1 \right]$$

be the objective function, hence $\mathcal{L}(\hat{\boldsymbol{\beta}}) \leq \mathcal{L}(\boldsymbol{\beta}_0)$, where $\|\hat{\boldsymbol{\beta}}\|_1 \leq b_0 \sqrt{k}$. Define the error vector $\hat{\mathbf{v}} = \hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0$, we expand $n^{-1} \sum_{i=1}^n \{Y_i \mathbf{W}_i^{\mathrm{T}} \hat{\boldsymbol{\beta}} - \exp(\hat{\boldsymbol{\beta}}^{\mathrm{T}} \mathbf{W}_i - \hat{\boldsymbol{\beta}}^{\mathrm{T}} \Omega \hat{\boldsymbol{\beta}}/2)\}$ at $\boldsymbol{\beta}_0$ and obtain

$$0 \geqslant \mathcal{L}(\widehat{\boldsymbol{\beta}}) - \mathcal{L}(\boldsymbol{\beta}_0)$$

$$= n^{-1} \sum_{i=1}^{n} \{ Y_i \widehat{\mathbf{v}}^T \mathbf{W}_i - \exp(\boldsymbol{\beta}_0^T \mathbf{W}_i - \boldsymbol{\beta}_0^T \boldsymbol{\Omega} \boldsymbol{\beta}_0 / 2)$$

$$\times \widehat{\mathbf{v}}^T (\mathbf{W}_i - \boldsymbol{\Omega} \boldsymbol{\beta}_0) \}$$

$$+ n^{-1} 1 / 2 \widehat{\mathbf{v}}^T \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{*^T} \mathbf{W}_i - \boldsymbol{\beta}^{*^T} \boldsymbol{\Omega} \boldsymbol{\beta}^* / 2)$$

$$\times \{ (\mathbf{W}_i - \boldsymbol{\Omega} \boldsymbol{\beta}^*)^{\otimes 2} - \boldsymbol{\Omega} \} \widehat{\mathbf{v}} + \lambda \| \boldsymbol{\beta}_0 + \widehat{\mathbf{v}} \|_1 - \lambda \| \boldsymbol{\beta}_0 \|_1,$$

where $\boldsymbol{\beta}^*$ is on the line connecting $\boldsymbol{\beta}_0$ and $\hat{\boldsymbol{\beta}}$. Hence we have the inequality that

$$n^{-1}1/2\hat{\mathbf{v}}^{\mathrm{T}}\sum_{i=1}^{n}\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{W}_{i}-\boldsymbol{\beta}^{*^{\mathrm{T}}}\boldsymbol{\Omega}\boldsymbol{\beta}^{*}/2)$$
$$\times\{(\mathbf{W}_{i}-\boldsymbol{\Omega}\boldsymbol{\beta}^{*})^{\otimes 2}-\boldsymbol{\Omega}\}\hat{\mathbf{v}}$$

$$\leq -n^{-1} \sum_{i=1}^{n} \{ Y_i \widehat{\mathbf{v}}^{\mathrm{T}} \mathbf{W}_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0 / 2)$$

$$\times \widehat{\mathbf{v}}^{\mathrm{T}} (\mathbf{W}_i - \boldsymbol{\Omega} \boldsymbol{\beta}_0) \} + \lambda \|\boldsymbol{\beta}_0\|_1 - \lambda \|\boldsymbol{\beta}_0 + \widehat{\mathbf{v}}\|_1.$$
(S.1)

We first derive the upper bound of (S.1).

First note that let

$$\phi \geqslant 3 \max\{4e\sqrt{M_1}, 8eM_2C, 2c_{10}M_3Q_1(1+r)/m_3, \sqrt{2}\sqrt{36e^2M_0}, 1\},$$

SO

$$\|n^{-1} \sum_{i=1}^{n} \{Y_{i} \mathbf{W}_{i} - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_{0} / 2)$$

$$\times (\mathbf{W}_{i} - \Omega \boldsymbol{\beta}_{0}) \}\|_{\infty}$$

$$\leq \phi \sqrt{\log(p)/n}$$

$$\leq \phi \{ \log(p)/n \}^{1/4}, \qquad (S.2)$$

with probability at least 1 - 6/p by Lemma 3. Hence

$$|n^{-1} \sum_{i=1}^{n} \{ \widehat{\mathbf{v}}^{\mathrm{T}} Y_{i} \mathbf{W}_{i} - \widehat{\mathbf{v}}^{\mathrm{T}} \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_{0} / 2)$$

$$\times (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta}_{0}) \} |$$

$$\leq \|\widehat{\mathbf{v}}\|_{1} \phi \{ \log(p) / n \}^{1/4}$$

$$= (\|\widehat{\mathbf{v}}_{S}\|_{1} + \|\widehat{\mathbf{v}}_{S^{c}}\|_{1}) \phi \{ \log(p) / n \}^{1/4}$$
(S.3)

with probability at least 1 - 6/p, where S is the index set of the nonzero elements in β_0 . Here for a vector $\mathbf{a} = (a_1, \dots, a_m)^T$, and an index set S,

 $\mathbf{a}_S = \{a_1 I (1 \in S), \dots, a_m I (m \in S)\}^{\mathrm{T}}$. On the other hand, we have

$$\begin{aligned} &\|\boldsymbol{\beta}_0 + \widehat{\mathbf{v}}\|_1 + \|\widehat{\mathbf{v}}_S\|_1 \\ \geqslant &\|\boldsymbol{\beta}_0 + \widehat{\mathbf{v}} - \widehat{\mathbf{v}}_S\|_1 \\ &= &\|\boldsymbol{\beta}_0 + \widehat{\mathbf{v}}_{S^c}\|_1 \\ &= &\|\boldsymbol{\beta}_{0S}\|_1 + \|\widehat{\mathbf{v}}_{S^c}\|_1. \end{aligned}$$

Hence

$$\|\boldsymbol{\beta}_0 + \hat{\mathbf{v}}\|_1 - \|\boldsymbol{\beta}_0\|_1 \tag{S.4}$$

$$\geqslant \{ \|\boldsymbol{\beta}_0\|_1 - \|\hat{\mathbf{v}}_S\|_1 \} + \|\hat{\mathbf{v}}_{S^c}\|_1 - \|\boldsymbol{\beta}_0\|_1$$

$$= \|\hat{\mathbf{v}}_{S^c}\|_1 - \|\hat{\mathbf{v}}_S\|_1.$$
(S.5)

Combine (S.3) and (S.4), and recall that $\lambda > 8/3\phi \{\log(p)/n\}^{1/4}$, we have that the right hand side of (S.1) is upper bounded by

$$(\|\widehat{\mathbf{v}}_{S}\|_{1} + \|\widehat{\mathbf{v}}_{S^{c}}\|_{1})\phi\{\log(p)/n\}^{1/4} + \lambda\|\widehat{\mathbf{v}}_{S}\|_{1} - \lambda\|\widehat{\mathbf{v}}_{S^{c}}\|_{1}$$

$$\leq 11/8\lambda\|\widehat{\mathbf{v}}_{S}\|_{1} - 5/8\lambda\|\widehat{\mathbf{v}}_{S^{c}}\|_{1},$$

i.e.

$$n^{-1}1/2\widehat{\mathbf{v}}^{\mathrm{T}} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{*^{\mathrm{T}}} \mathbf{W}_{i} - \boldsymbol{\beta}^{*^{\mathrm{T}}} \boldsymbol{\Omega} \boldsymbol{\beta}^{*}/2)$$

$$\times \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta}^{*})^{\otimes 2} - \boldsymbol{\Omega} \} \widehat{\mathbf{v}}$$

$$\leq (\|\widehat{\mathbf{v}}_{S}\|_{1} + \|\widehat{\mathbf{v}}_{S^{c}}\|_{1}) \phi \{ \log(p)/n \}^{1/4} + \lambda \|\widehat{\mathbf{v}}_{S}\|_{1} - \lambda \|\widehat{\mathbf{v}}_{S^{c}}\|_{1}$$

$$\leqslant 11/8\lambda \|\widehat{\mathbf{v}}_S\|_1 - 5/8\lambda \|\widehat{\mathbf{v}}_{S^c}\|_1. \tag{S.6}$$

Further, because $\|\boldsymbol{\beta}^*\| \leq \|\widehat{\boldsymbol{\beta}}\|_2 + \|\boldsymbol{\beta}_0\|_2 \leq 2b_0$, Lemma 4 implies that $n^{-1} \sum_{i=1}^n \exp(\boldsymbol{\beta}^{*^{\mathrm{T}}} \mathbf{W}_i - \boldsymbol{\beta}^{*^{\mathrm{T}}} \mathbf{\Omega} \boldsymbol{\beta}^{*/2}) \{ (\mathbf{W}_i - \mathbf{\Omega} \boldsymbol{\beta}^*)^{\otimes 2} - \mathbf{\Omega} \}$ satisfies the lower and upper-RE conditions. Hence,

$$n^{-1} \hat{\mathbf{v}}^{\mathrm{T}} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{*^{\mathrm{T}}} \mathbf{W}_{i} - \boldsymbol{\beta}^{*^{\mathrm{T}}} \boldsymbol{\Omega} \boldsymbol{\beta}^{*} / 2)$$

$$\times \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta}^{*})^{\otimes 2} - \boldsymbol{\Omega} \} \hat{\mathbf{v}}$$

$$\geqslant \alpha_{\min} [E \{ \exp(\boldsymbol{\beta}^{*^{\mathrm{T}}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}] \{ 1 - 1 / (2c) \} \| \hat{\mathbf{v}} \|_{2}^{2}$$

$$-\tau_{1}(n, p) \| \hat{\mathbf{v}} \|_{1}^{2}$$

$$= \alpha_{\min} [E \{ \exp(\boldsymbol{\beta}^{*^{\mathrm{T}}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}] \{ 1 - 1 / (2c) \} \| \hat{\mathbf{v}} \|_{2}^{2}$$

$$-\tau(n, p) \| \hat{\mathbf{v}} \|_{1}^{2}. \tag{S.7}$$

Here $\tau_1(n,p)$ is the $\tau(n,p)$ given in Lemma 4, and $\tau(n,p)$ is defined in the statement of Theorem 1. The above equality holds because first

$$\sup_{\substack{\{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_{2} \leq 2b_{0}\}\\ \{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_{2} \leq 2b_{0}\}}} \alpha_{\min} [E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\}] / \{(2c\sqrt{s})\}$$

$$= \sup_{\substack{\{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_{2} \leq 2b_{0}\}\\ \times \{\log(p)/n\}^{1/4}}} \alpha_{\min} [E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\}] / \{(2c\sqrt{c_{1}})\}$$

$$\leq \phi/b_{0} \{\log(p)/n\}^{1/4},$$

by the definition of ϕ in the statement. Hence

$$\sqrt{s}\tau(n,p)$$

$$= \min \left[\sup_{\{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_{2} \leq 2b_{0}\}} \alpha_{\min} [E\{\exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathsf{T}}\}] \right]$$

$$/\{(2c\sqrt{s})\}, \phi/b_{0}\{\log(p)/n\}^{1/4}]$$

$$= \sup_{\{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_{2} \leq 2b_{0}\}} \alpha_{\min} [E\{\exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathsf{T}}\}] / \{(2c\sqrt{s})\}$$

$$= \sqrt{s}\tau_{1}(n, p).$$

Now combine (S.6) and (S.7), we have

$$-1/2\tau(n,p)\|\widehat{\mathbf{v}}\|_{1}^{2}$$

$$\leq 1/2\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]\{1-1/(2c)\}\|\widehat{\mathbf{v}}\|_{2}^{2}$$

$$-1/2\tau(n,p)\|\widehat{\mathbf{v}}\|_{1}^{2}$$

$$\leq n^{-1}1/2\widehat{\mathbf{v}}^{\mathrm{T}}\sum_{i=1}^{n}\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{W}_{i}-\boldsymbol{\beta}^{*^{\mathrm{T}}}\boldsymbol{\Omega}\boldsymbol{\beta}^{*}/2)$$

$$\times\{(\mathbf{W}_{i}-\boldsymbol{\Omega}\boldsymbol{\beta}^{*})^{\otimes 2}-\boldsymbol{\Omega}\}\widehat{\mathbf{v}}$$

$$\leq 11/8\lambda\|\widehat{\mathbf{v}}_{S}\|_{1}-5/8\lambda\|\widehat{\mathbf{v}}_{S^{c}}\|_{1}$$

as long as 2c > 1. Further $\|\hat{\mathbf{v}}\|_1 \le \|\hat{\boldsymbol{\beta}}\|_1 + \|\boldsymbol{\beta}_0\|_1 \le 2b_0\sqrt{k}$, and $\sqrt{s}\tau(n,p) \le \phi\{\log(p)/n\}^{1/4}/b_0$. Therefore,

$$1/2\tau(n,p)\|\widehat{\mathbf{v}}\|_1^2 \le \phi\{\log(p)/n\}^{1/4}\|\widehat{\mathbf{v}}\|_1 \le 3/8\lambda\|\widehat{\mathbf{v}}\|_1.$$

Combining the above two displays, we have

$$0 \leq 11/8\lambda \|\hat{\mathbf{v}}_{S}\|_{1} - 5/8\lambda \|\hat{\mathbf{v}}_{S^{c}}\|_{1} + 3/8\lambda \|\hat{\mathbf{v}}\|_{1}$$
$$= 11/8\lambda \|\hat{\mathbf{v}}_{S}\|_{1} - 5/8\lambda \|\hat{\mathbf{v}}_{S^{c}}\|_{1} + 3/8\lambda \|\hat{\mathbf{v}}_{S}\|_{1}$$

$$+3/8\lambda \|\widehat{\mathbf{v}}_{S^c}\|_1$$

$$= 7/4\lambda \|\widehat{\mathbf{v}}_{S}\|_1 - 1/4\lambda \|\widehat{\mathbf{v}}_{S^c}\|_1.$$

Hence $\|\widehat{\mathbf{v}}_{S^c}\|_1 \leqslant 7\|\widehat{\mathbf{v}}_S\|_1$ and

$$\|\hat{\mathbf{v}}\|_{1} = \|\hat{\mathbf{v}}_{S}\|_{1} + \|\hat{\mathbf{v}}_{S^{c}}\|_{1} \leq 8\|\hat{\mathbf{v}}_{S}\|_{1}$$

$$\leq 8\sqrt{k}\|\hat{\mathbf{v}}_{S}\|_{2} \leq 8\sqrt{k}\|\hat{\mathbf{v}}\|_{2}. \tag{S.8}$$

By Lemma 4, and recall that c = 128, we have

$$n^{-1}\widehat{\mathbf{v}}^{\mathrm{T}}\sum_{i=1}^{n}\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{W}_{i}-\boldsymbol{\beta}^{*^{\mathrm{T}}}\boldsymbol{\Omega}\boldsymbol{\beta}^{*}/2) \qquad (S.9)$$

$$\times \{(\mathbf{W}_{i}-\boldsymbol{\Omega}\boldsymbol{\beta}^{*})^{\otimes 2}-\boldsymbol{\Omega}\}\widehat{\mathbf{v}}$$

$$\geqslant \alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]\{1-1/(2c)\}\|\widehat{\mathbf{v}}\|_{2}^{2}$$

$$-\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]/(2cs)\|\widehat{\mathbf{v}}\|_{1}^{2}$$

$$\geqslant (\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]\{1-1/(2c)\}$$

$$-\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]/4)\|\widehat{\mathbf{v}}\|_{2}^{2}$$

$$= 191/256\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]\|\widehat{\mathbf{v}}\|_{2}^{2}. \qquad (S.10)$$

Combining with the upper bound (S.6) we have

$$191/256\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{T}\}]\|\hat{\mathbf{v}}\|_{2}^{2}$$

$$\leq 2(\|\hat{\mathbf{v}}_{S}\|_{1} + \|\hat{\mathbf{v}}_{S^{c}}\|_{1})\phi\{\log(p)/n\}^{1/4} + 2\lambda\|\hat{\mathbf{v}}_{S}\|_{1} - 2\lambda\|\hat{\mathbf{v}}_{S^{c}}\|_{1}$$

$$\leq 2\|\hat{\mathbf{v}}\|_{1}\phi\{\log(p)/n\}^{1/4} + 2\lambda\|\hat{\mathbf{v}}\|_{1}$$

$$\leq 4\max\{\phi\{\log(p)/n\}^{1/4}, \lambda\}\|\hat{\mathbf{v}}\|_{1}$$

$$\leq 32\sqrt{k} \max\{\phi\{\log(p)/n\}^{1/4}, \lambda\} \|\hat{\mathbf{v}}\|_2$$
$$= 32\sqrt{k}\lambda \|\hat{\mathbf{v}}\|_2.$$

Hence

$$\|\widehat{\mathbf{v}}\|_{2} \leqslant \frac{2^{13}}{191} \frac{\sqrt{k}\lambda}{\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]}$$

and combine with (S.8)

$$\|\widehat{\mathbf{v}}\|_1 \leqslant \frac{2^{16}}{191} \frac{k\lambda}{\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_i)\mathbf{X}_i\mathbf{X}_i^{\mathrm{T}}\}]}.$$

This proves the results.

Proof of Theorem 2: The conclusion is the same as those in Theorem 2 and (31) in Agarwal et al. (2012), where their optimization problem is

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin}_{\|\boldsymbol{\beta}\|_{1} \leq b_{0}\sqrt{k}} \left[-n^{-1} \sum_{i=1}^{n} \{Y_{i} \mathbf{W}_{i}^{T} \boldsymbol{\beta} - \exp(\boldsymbol{\beta}^{T} \mathbf{W}_{i} - \boldsymbol{\beta}^{T} \boldsymbol{\Omega} \boldsymbol{\beta}/2)\} + \lambda \|\boldsymbol{\beta}\|_{1} \right].$$

And their τ_l, τ_u are $\tau(n, p), \gamma_l, \gamma_u$ are $2a_1, 2a_2, \bar{\rho}$ is $b_0 \sqrt{k}$, and $\mathcal{R}(\Pi_{\mathcal{M}^{\perp}}(\boldsymbol{\theta}^*))$ is $\|\boldsymbol{\beta}_{0S^c}\|_1 = 0$ in this theorem.

Carefully examining the proof of Theorem 2 in Agarwal et al. (2012) reveals that the proof holds when the lower-RE and upper-RE hold for the second derivative of $\mathcal{L}_1(\boldsymbol{\beta})$ at $\boldsymbol{\beta}$ in the feasible set, $\lambda \geq 2\|\partial \mathcal{L}_1(\boldsymbol{\beta}_0)/\partial \boldsymbol{\beta}_0\|_{\infty}$ and $\mathcal{L}_1(\boldsymbol{\beta})$ is convex in the feasible set of $\boldsymbol{\beta}$.

In Lemma 4, we have already shown that the second derivative of $\mathcal{L}_1(\beta)$ at β in the feasible set satisfies the lower- and upper-RE conditions. In

addition, we have shown in (S.9) that the second derivative of $\mathcal{L}_1(\beta)$ at β in the feasible set is positive definite under the conditions in the theorem statement. Further because

$$\lambda \geq 8/3\phi \{\log(p)/n\}^{1/4}$$
$$\geq 2\phi \{\log(p)/n\}^{1/4} \geq 2\|\partial \mathcal{L}_1(\boldsymbol{\beta}_0)/\partial \boldsymbol{\beta}_0\|_{\infty},$$

where the last inequality holds by (S.2), so λ satisfies $\lambda \geq 2\|\partial \mathcal{L}_1(\boldsymbol{\beta}_0)/\partial \boldsymbol{\beta}_0\|_{\infty}$ in Theorem 2 in Agarwal et al. (2012). Hence, the $\mathcal{L}_1(\boldsymbol{\beta})$ is convex on the feasible set and $\lambda \geq 2\|\partial \mathcal{L}_1(\boldsymbol{\beta}_0)/\partial \boldsymbol{\beta}_0\|_{\infty}$ are satisfied simultaneously. Therefore, the result follows by using the same argument as those lead to Theorem 2 in Agarwal et al. (2012).

Proof of Theorem 3: We will show that the theorem holds when the assumptions in Theorem 2 are satisfied, hence we start with verifying the assumptions in Theorem 2. The same argument as in Theorem 2 leads to that $\lambda \geq 8/3 \|\partial \mathcal{L}_1(\boldsymbol{\beta}_0)/\partial \boldsymbol{\beta}_0\|_{\infty}$, and that for any $\boldsymbol{\beta}$ in the feasible set, $\partial^2 \mathcal{L}_1(\boldsymbol{\beta})/\partial \boldsymbol{\beta}\partial \boldsymbol{\beta}^{\mathrm{T}}$ satisfies the lower-RE and upper-RE conditions with parameters $\{a_1, \tau(n, p)\}$ and $\{a_2, \tau(n, p)\}$ as specified. We now verify the remaining assumptions in Theorem 2.

First, by the assumption that $k = o[\{n/\log(p)\}^{1/2}]$ and the fact that

 $\tau(n,p) = O(\sqrt{\log(p)/n}),$ we have

$$\bar{\gamma}_l = O(1),$$

and

$$\frac{64\psi^2(\mathcal{M})\tau(n,p)}{\bar{\gamma}_l} = O\{k\sqrt{\log(p)/n}\} = o(1).$$

When $n, p \to \infty$, this leads to $\xi(\mathcal{M}) \to 1$. Further because $\tau(n, p)\psi^2(\mathcal{M}) = O[\{\log(p)/n\}^{1/2}k] = o(1)$,

$$\bar{\gamma}_l = 2\alpha_{\min} [E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}} \mathbf{X}_i) \mathbf{X}_i \mathbf{X}_i^{\mathrm{T}}\}] \{1 - 1/(2c)\} + o(1).$$

Taking into account that

$$\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]\{1-1/(2c)\}$$

$$< \alpha_{\max}[E\{\exp(\boldsymbol{\beta}^{*^{\mathrm{T}}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]\{1+1/(2c)\},$$

we have $d_1 < \kappa(\mathcal{M}) < 1 - d_1$ for some small positive constant d_1 . Thus the assumption $\kappa(\mathcal{M}) \in [0,1)$ in Theorem 2 holds. Further, we can easily check that

$$\beta(\mathcal{M}) = O\{\sqrt{\log(p)/n}\},\$$

hence

$$\frac{32b_0\sqrt{k}}{1-\kappa(\mathcal{M})}\xi(\mathcal{M})\beta(\mathcal{M}) = o[\{\log(p)/n\}^{1/4}].$$

Now $\tau(n,p)/\lambda^2 = O(1)$, by Theorem 2, we have

$$\|\boldsymbol{\beta}^{t} - \widehat{\boldsymbol{\beta}}\|_{2}^{2} \leq \frac{2\delta^{2}}{\bar{\gamma}_{l}} + \frac{16\delta^{2}\tau(n,p)}{\bar{\gamma}_{l}\lambda^{2}} + \frac{4\tau(n,p)\{6\psi(\mathcal{M})\}^{2}}{\bar{\gamma}_{l}}$$

$$= O_{p}(\delta^{2}) + o(1)$$

$$= o(\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0}\|_{2}^{2}) + o(1).$$

The second last equality holds because $4\tau(n,p)\{6\psi(\mathcal{M})\}^2/\bar{\gamma}_l = 4\tau(n,p)36k/\bar{\gamma}_l = o(1)$, and the last equality holds because we selected $\delta^2 = \epsilon^2(\mathcal{M})/\{1 - \kappa(\mathcal{M})\} = o(\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0\|_2^2)$.

S.4 Definition of sub-Gaussian and sub-Exponential random variables

Proof of Lemma 1: 1. \Longrightarrow 2. Assume property 1 holds. Recall that for every non-negative random variable Z, we have

$$E(Z|\mathcal{F}) = \int_0^\infty \Pr(Z \geqslant u|\mathcal{F}) du$$

Let $Z = |X|^k$ and change of variable $u = t^k$, we obtain

$$E(|X|^{k}|\mathcal{F}) = \int_{0}^{\infty} \Pr(|X| > t|\mathcal{F})kt^{k-1}dt$$

$$\leq \int_{0}^{\infty} e^{1-\{t/K_{1}(\mathcal{F})\}^{2}}kt^{k-1}dt$$

$$= ek/2K_{1}(\mathcal{F})^{k}\Gamma(k/2)$$

$$\leq 2e(k/2)^{k/2}K_{1}(\mathcal{F})^{k}$$

$$\leq (2e)^k (k/2)^{k/2} K_1(\mathcal{F})^k$$

Taking the kth root yields property 2 with $K_2(\mathcal{F}) = \sqrt{2}eK_1(\mathcal{F})$.

2. \Longrightarrow 3. Assume property 2 holds. Let $K_3(\mathcal{F}) = \sqrt{2/(e-1)}eK_2(\mathcal{F})$.

Writing the Taylor series of the exponential function, we obtain

$$E[\exp\{X^2/K_3^2(\mathcal{F})\}|\mathcal{F}] = 1 + \sum_{k=1}^{\infty} \frac{K_3(\mathcal{F})^{-2k}E(X^{2k}|\mathcal{F})}{k!}$$

$$\leq 1 + \sum_{k=1}^{\infty} \frac{(e-1)^k/2^k e^{-2k}K_2^{-2k}(\mathcal{F})E(X^{2k}|\mathcal{F})}{k!}$$

$$\leq 1 + \sum_{k=1}^{\infty} \frac{(e-1)^k/2^k e^{-2k}K_2^{-2k}(\mathcal{F})K_2^{2k}(\mathcal{F})(2k)^k}{k!}$$

$$\leq 1 + \sum_{k=1}^{\infty} \frac{(e-1)^k e^{-2k}k^k}{(k/e)^k} = e.$$

The last inequality holds because $k! \ge (k/e)^k$.

 $3. \implies 1$. Assume property 3 holds. Exponentiating and using Markov's inequality and then the property 3, we have

$$\Pr(|X| > t | \mathcal{F}) = \Pr[\exp\{X^2 / K_3^2(\mathcal{F})\} \ge \exp\{t^2 / K_3^2(\mathcal{F})\} | \mathcal{F}]$$

$$\leqslant e^{-t^2 / K_3^2(\mathcal{F})} E[\exp\{X^2 / K_3^2(\mathcal{F})\} | \mathcal{F}] \leqslant e^{1 - \{t / K_3(\mathcal{F})\}^2}.$$

Hence property 1 holds with $K_1(\mathcal{F}) = K_3(\mathcal{F})$.

2. \Longrightarrow 4. Assume that $E(X|\mathcal{F})=0$ and property 2 holds. We will prove that property 4 holds with an appropriately large absolute constant C such that $K_4(\mathcal{F})=CK_2(\mathcal{F})$. This will follow by estimating Taylor series for the

exponential function

$$E\{\exp(tX)|\mathcal{F}\}\ = 1 + tE(X|\mathcal{F}) + \sum_{k=2}^{\infty} \frac{t^k E(X^k|\mathcal{F})}{k!}$$

$$\leq 1 + \sum_{k=2}^{\infty} \frac{|t|^k k^{k/2} K_2^k(\mathcal{F})}{k!}$$

$$\leq 1 + \sum_{k=1}^{\infty} \left\{\frac{e|t|}{\sqrt{k}} K_2(\mathcal{F})\right\}^k$$

$$= 1 + \sum_{k=1}^{\infty} \left\{\frac{e|t|}{\sqrt{2k}} K_2(\mathcal{F})\right\}^{2k}$$

$$+ \sum_{k=1}^{\infty} \left\{\frac{e|t|}{\sqrt{2k}} K_2(\mathcal{F})\right\}^{2k+1}$$

$$\leq 1 + \sum_{k=1}^{\infty} \left\{\frac{e|t|}{\sqrt{2k}} K_2(\mathcal{F})\right\}^{2k}$$

$$+ \sum_{k=1}^{\infty} \left\{\frac{e|t|}{\sqrt{2k+1}} K_2(\mathcal{F})\right\}^{2k}$$

$$+ \sum_{k=1}^{\infty} \left\{\frac{e|t|}{\sqrt{2k+1}} K_2(\mathcal{F})\right\}^{2k}$$

$$\leq 1 + \sum_{k=1}^{\infty} \left\{\frac{e|t|}{\sqrt{k}} K_2(\mathcal{F})\right\}^{2k}$$

$$\leq 1 + \sum_{k=1}^{\infty} \left\{\frac{e|t|}{\sqrt{k}} K_2(\mathcal{F})\right\}^{2k}$$

$$\leq 1 + \sum_{k=1}^{\infty} 3 \left\{\frac{e|t|}{\sqrt{k}} K_2(\mathcal{F})\right\}^{2k}$$

$$\leq 1 + \sum_{k=1}^{\infty} \left\{\frac{3e|t|}{\sqrt{k}} K_2(\mathcal{F})\right\}^{2k}$$

$$\leq 1 + \sum_{k=1}^{\infty} \left\{\frac{3e|t|}{\sqrt{k}} K_2(\mathcal{F})\right\}^{2k}$$

$$\leq 1 + \sum_{k=1}^{\infty} \left\{\frac{3e|t|}{\sqrt{k}} K_2(\mathcal{F})\right\}^{2k}$$

$$= \exp\{t^2(3e)^2 K_2(\mathcal{F})^2\}.$$

Thus, the property 4 holds with $K_4(\mathcal{F}) = 3eK_2(\mathcal{F})$. In the above derivation, the first inequality holds follows from $E(X|\mathcal{F}) = 0$ and property 2, the second one holds because $k! > (k/e)^k$.

4. \Longrightarrow 1. Assume property 4 holds. Then for $\lambda > 0$, by the exponential Markov inequality, and using the bound on the moment generating function given in property 4, we obtain

$$\Pr(X \ge t | \mathcal{F}) = \Pr\{\exp(\lambda X)$$

$$\ge \exp(\lambda t) | \mathcal{F}\}$$

$$\le \exp(-\lambda t) E\{\exp(\lambda X) | \mathcal{F}\}$$

$$\le \exp\{-\lambda t + \lambda^2 K_4^2(\mathcal{F})\}.$$

Choose $\lambda = t/\{2K_4^2(\mathcal{F})\}$, we conclude that $\Pr(X \ge t|\mathcal{F}) \le \exp[-t^2/\{4K_4^2(\mathcal{F})\}]$. Repeating the argument for -X, we also obtain $\Pr(X < -t|\mathcal{F}) \le \exp[-t^2/\{4K_4^2(\mathcal{F})\}]$. Combining these two bounds we have

$$\Pr(|X| \ge t|\mathcal{F}) \le 2 \exp[-t^2/\{4K_4^2(\mathcal{F})\}] \le \exp[1 - t^2/\{4K_4^2(\mathcal{F})\}].$$

Hence property 1 holds with $K_1(\mathcal{F}) = 2K_4(\mathcal{F})$. Thus, the lemma is proved.

Lemma S.1. Let X be a centered conditional sub-Gaussian random variable

with respect to \mathcal{F} . Then

$$E\{\exp(\lambda X)|\mathcal{F}\} \leqslant \exp\{(3e)^2 \lambda^2 ||X||_{\psi_2(\mathcal{F})}^2\}.$$

Proof: We first note that property 2 in Lemma 1 holds with $K_2(\mathcal{F}) = \|X\|_{\psi_2(\mathcal{F})}$. Following the proof of Lemma 1, this implies that property 4 in Lemma 1 also holds with $K_4(\mathcal{F}) = 3e\|X\|_{\psi_2(\mathcal{F})}$, which proves the result in Lemma S.1.

Proof of Lemma 2: The proof follows the similar argument as that of Lemma 1.

1. \Longrightarrow 2. Assume property 1 holds. Recall that for every non-negative random variable Z, we have

$$E(Z|\mathcal{F}) = \int_0^\infty \Pr(Z \geqslant u|\mathcal{F}) du$$

Let $Z = |X|^k$ and change of variable $u = t^k$, we obtain

$$E(|X|^{k}|\mathcal{F}) = \int_{0}^{\infty} \Pr(|X| > t|\mathcal{F})kt^{k-1}dt$$

$$\leq \int_{0}^{\infty} e^{1-t/K_{1}(\mathcal{F})}kt^{k-1}dt$$

$$= \Gamma(k+1)eK_{1}(\mathcal{F})^{k} \leq k^{k}eK_{1}(\mathcal{F})^{k},$$

where the inequality hold because $k! \leq k^k$. Taking the kth root yields property 2 with $K_2(\mathcal{F}) = eK_1(\mathcal{F})$.

2. \Longrightarrow 3. Assume property 2 holds. Let $K_3(\mathcal{F}) = e^2/(e-1)K_2(\mathcal{F})$. Writing

the Taylor series of the exponential function, we obtain

$$E[\exp\{X/K_3(\mathcal{F})\}|\mathcal{F}]$$
= $1 + \sum_{k=1}^{\infty} \frac{K_3(\mathcal{F})^{-k}E(|X|^k|\mathcal{F})}{k!}$
 $\leq 1 + \sum_{k=1}^{\infty} \frac{K_3(\mathcal{F})^{-k}K_2(\mathcal{F})^kk^k}{k!}$
= $1 + \sum_{k=1}^{\infty} \frac{(e-1)^kk^k/e^{2k}}{k!}$
 $\leq 1 + \sum_{k=1}^{\infty} (e-1)^k/e^k = e.$

The last inequality holds because $k! \ge (k/e)^k$.

 $3. \implies 1$. Assume property 3 holds. Exponentiating and using Markov's inequality and then the property 3, we have

$$\Pr(|X| > t | \mathcal{F}) = \Pr[\exp\{|X|/K_3(\mathcal{F})\}]$$

$$\geqslant \exp\{t/K_3(\mathcal{F})\}|\mathcal{F}]$$

$$\leqslant e^{-t/K_3(\mathcal{F})} E[\exp\{|X|/K_3(\mathcal{F})\}|\mathcal{F}]$$

$$\leqslant e^{1-t/K_3(\mathcal{F})}.$$

Hence property 1 holds with $K_1(\mathcal{F}) = K_3(\mathcal{F})$.

S.5 Properties of Conditional sub-Gaussian and sub-Exponential Random Variables

<u>Lemma</u> S.2. Let X be a centered conditional sub-exponential random variables with respect to \mathcal{F} . Then for λ such that $0 < \lambda \le 1/(2e\|X\|_{\psi_1(\mathcal{F})})$, we have

$$E\{\exp(\lambda X)|\mathcal{F}\} \leqslant \exp(2e^2\lambda^2 ||X||_{\psi_1(\mathcal{F})}^2).$$

Proof: From $E(X|\mathcal{F}) = 0$ and property 2 in Lemma 2, using Taylor expansion, we get

$$E\{\exp(\lambda X)|\mathcal{F}\} = 1 + \lambda E(X|\mathcal{F}) + \sum_{k=2}^{\infty} \frac{\lambda^k E(X^k|\mathcal{F})}{k!}$$

$$\leqslant 1 + \sum_{k=2}^{\infty} \frac{\lambda^k E(|X|^k|\mathcal{F})}{k!}$$

$$\leqslant 1 + \sum_{k=2}^{\infty} \frac{\lambda^k k^k ||X||_{\psi_1(\mathcal{F})}^k}{k!}$$

$$\leqslant 1 + \sum_{k=2}^{\infty} \left\{ e\lambda ||X||_{\psi_1(\mathcal{F})} \right\}^k.$$

The first inequality holds because $E(X|\mathcal{F}) = 0$ and $X^k \leq |X|^k$; The second inequality follows property 2. The third inequality holds because $k! > (k/e)^k$. If $0 < \lambda \leq 1/(2e\|X\|_{\psi_1(\mathcal{F})})$, the right hand side of the above equation is bounded by

$$1 + 2e^2\lambda^2 ||X||_{\psi_1(\mathcal{F})}^2 \leqslant \exp(2e^2\lambda^2 ||X||_{\psi_1(\mathcal{F})}^2).$$

This completes the proof.

Lemma S.3. Let X_1, \ldots, X_n be independent centered sub-Gaussian random variables with respect to the sub-sigma fileds $\mathcal{F}_1, \ldots, \mathcal{F}_n$ respectively. For sequence $a_1(\mathcal{F}), \ldots, a_n(\mathcal{F})$,

$$E\left\{\exp\left(\lambda \sum_{i=1}^{n} a_{i}(\mathcal{F})X_{i}\right) | \mathcal{F}_{i}, i = 1, \dots, n\right\}$$

$$\leqslant \exp\left((3e)^{2} \lambda^{2} \sum_{i=1}^{n} \|a_{i}(\mathcal{F})X_{i}\|_{\psi_{2}(\mathcal{F}_{i})}^{2}\right)$$

Proof: When X_i is centered sub-Gaussian, then a_iX_i is also centered and sub-Gaussian. Hence, from Lemma S.1, we have

$$E\left\{\exp\left(\lambda \sum_{i=1}^{n} a_{i}(\mathcal{F})X_{i}\right) | \mathcal{F}_{i}, i = 1, \dots, n\right\}$$

$$= \prod_{i=1}^{n} E\left\{\exp(\lambda a_{i}(\mathcal{F})X_{i}) | \mathcal{F}_{i}\right\}$$

$$\leqslant \exp\left((3e)^{2} \lambda^{2} \sum_{i=1}^{n} \|a_{i}(\mathcal{F})X_{i}\|_{\psi_{2}(\mathcal{F}_{i})}^{2}\right).$$

<u>Lemma</u> S.4. Let X_1, \ldots, X_n be independent centered sub-exponential random variables with respect to the sub-sigma fileds $\mathcal{F}_1, \ldots, \mathcal{F}_n$ respectively. For any any sequence $a_1(\mathcal{F}), \ldots, a_n(\mathcal{F})$ and λ such that $0 < \lambda \le \min_{i=1,\ldots,n} \{1/(2e\|a_i(\mathcal{F}_i)X_i\|_{\psi_1})\}$,

$$E\left\{\exp\left(\lambda \sum_{i=1}^{n} a_{i}(\mathcal{F})X_{i}\right) | \mathcal{F}_{i}, i = 1, \dots, n\right\}$$

$$\leqslant \exp\left(2e^{2}\lambda^{2} \sum_{i=1}^{n} \|a_{i}(\mathcal{F})X_{i}\|_{\psi_{1}(\mathcal{F}_{i})}^{2}\right).$$

Proof: When X_i is centered sub-exponential, then a_iX_i is also centered and sub-exponential. Hence, from Lemma S.2, we have

$$E\left\{\exp\left(\lambda \sum_{i=1}^{n} a_{i}(\mathcal{F})X_{i}\right) | \mathcal{F}_{i}, i = 1, \dots, n\right\}$$

$$= \prod_{i=1}^{n} E\left\{\exp(\lambda a_{i}(\mathcal{F})X_{i}) | \mathcal{F}_{i}\right\}$$

$$\leq \exp\left(2e^{2}\lambda^{2} \sum_{i=1}^{n} \|a_{i}(\mathcal{F})X_{i}\|_{\psi_{1}(\mathcal{F}_{i})}^{2}\right).$$

S.6 Properties under Regularity Conditions (C1) –
(C6)

Lemma S.5. For r > 0, let $c_{10} \equiv \max[\sqrt{18e^2m_3^2/\{M_3Q_1^2(1+r)r\}}, 1]$. Assume Conditions (C1) – (C4) to hold. Then

$$\Pr\left[n^{-1}\sum_{i=1}^{n}\|Y_{i} - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\}\mathbf{X}_{i}\|_{\infty}\right] > \max(4e\sqrt{M_{1}}, 8eM_{2}C)\sqrt{\log(p)}/\sqrt{n}\right] \leqslant 2p^{-1},$$

$$\Pr\left(n^{-1}\|\sum_{i=1}^{n}\left[\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{\Omega}\right)\right.$$

$$\left. - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\|_{\infty}\right]$$

$$> 2c_{10}M_{3}Q_{1}(1+r)\sqrt{\log(p)/n}/m_{3}\right) \leqslant 2p^{-1},$$

and

$$\Pr\left[n^{-1} \| \sum_{i=1}^{n} Y_i(\mathbf{W}_i - \mathbf{X}_j) \|_{\infty} \right] > \sqrt{2} \sqrt{36e^2 M_0} \sqrt{\log(p)/n} \le 2p^{-1}.$$

Proof of Lemma S.5 Let \mathbf{e}_i be the unit vector with the *i*th element 1 and \mathcal{F}_x be the sigma field generated by $\mathbf{X}_i, i = 1, \dots, n$. By Condition (C1), we can choose sufficiently large $K(\mathbf{X}_i)$, where $K(\mathbf{X}_i) > 1$, so that

$$E[\exp\{|Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)|/K(\mathbf{X}_i)\}|\mathbf{X}_i]$$

$$\leq E(\exp[\{Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\}/K(\mathbf{X}_i)]|\mathbf{X}_i)$$

$$+E(\exp[\{-Y_i + \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\}/K(\mathbf{X}_i)]|\mathbf{X}_i)$$

$$\leq E(\exp[\{Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\}/K(\mathbf{X}_i)]|\mathbf{X}_i)$$

$$+\exp[\{\exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\}/K(\mathbf{X}_i)]$$

$$= \exp(\exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\{\exp\{1/K(\mathbf{X}_i)\} - 1 - 1/K(\mathbf{X}_i)]\}$$

$$+\exp[\{\exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\}/K(\mathbf{X}_i)]$$

$$< e/2 + e/2 = e.$$

Hence, $Y_i - \exp(\boldsymbol{\beta}_0^T \mathbf{X}_i)$ and $-Y_i + \exp(\boldsymbol{\beta}_0^T \mathbf{X}_i)$ given \mathbf{X}_i are conditional sub-exponential random variables following Definition 4. Let $0 < \lambda \le \min_i 1/[2e|\{Y_i - \exp(\boldsymbol{\beta}_0^T \mathbf{X}_i)\}\mathbf{X}_i^T \mathbf{e}_i|_{\psi_1(\mathcal{F}_x)}] = \min_i 1/\{2e|\mathbf{X}_i^T \mathbf{e}_i|K_Y(\mathbf{X}_i)\}$, we

further have

$$\Pr\left[n^{-1}\sum_{i=1}^{n} \{Y_{i} - \exp(\boldsymbol{\beta}_{0}^{T}\mathbf{X}_{i})\}\mathbf{X}_{i}^{T}\mathbf{e}_{j} > t|\mathcal{F}_{x}\right]$$

$$= \Pr\left(\exp\left[\lambda\sum_{i=1}^{n} \{Y_{i} - \exp(\boldsymbol{\beta}_{0}^{T}\mathbf{X}_{i})\}\mathbf{X}_{i}^{T}\mathbf{e}_{j}\right]$$

$$> \exp(\lambda nt)|\mathcal{F}_{x}\rangle$$

$$\leqslant E\left(\exp\left[\lambda\sum_{i=1}^{n} \{Y_{i} - \exp(\boldsymbol{\beta}_{0}^{T}\mathbf{X}_{i})\}\mathbf{X}_{i}^{T}\mathbf{e}_{j}\right]|\mathcal{F}_{x}\right)$$

$$\times \exp(-\lambda nt)$$

$$\leqslant \exp\left(2e^{2}\lambda^{2}\sum_{i=1}^{n} \|\{Y_{i} - \exp(\boldsymbol{\beta}_{0}^{T}\mathbf{X}_{i})\}\mathbf{X}_{i}^{T}\mathbf{e}_{j}\|_{\psi_{1}(\mathcal{F}_{x})}^{2}\right)$$

$$-\lambda nt\rangle$$

$$= \exp\left(-\lambda nt + 2e^{2}\lambda^{2}\sum_{i=1}^{n} (\mathbf{X}_{i}^{T}\mathbf{e}_{j})^{2}\right)$$

$$[\sup_{k\geqslant 1} k^{-1}E\{|Y_{i} - \exp(\boldsymbol{\beta}_{0}^{T}\mathbf{X}_{i})|^{k}|\mathcal{F}_{x}\}^{1/k}]^{2}$$

$$= \exp\left(-\lambda nt + 2e^{2}\lambda^{2}\sum_{i=1}^{n} |\mathbf{X}_{i}^{T}\mathbf{e}_{j}|^{2}K_{Y}(\mathbf{X}_{i})^{2}\right), \quad (S.11)$$

where the first inequality is due to the Markov inequality, the second inequality follows from Lemma S.4, and the last two equalities are due to the definitions of $\|\cdot\|_{\psi_1(\mathcal{F}_i)}$ and $K_Y(\mathbf{X}_i)$. Let

$$\lambda_1 = \frac{nt}{4e^2 \sum_{i=1}^n |\mathbf{X}_i^{\mathrm{T}} \mathbf{e}_j|^2 K_Y(\mathbf{X}_i)^2},$$

$$and \quad \lambda_2 = \frac{1}{2e \max_i |\mathbf{X}_i^{\mathrm{T}} \mathbf{e}_j| K_Y(\mathbf{X}_i)}.$$

If $\lambda_1 < \lambda_2$, letting $\lambda = \lambda_1$ in (S.11), we get

$$\Pr\left\{n^{-1} \sum_{i=1}^{n} \{Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{X}_i)\} \mathbf{X}_i^{\mathrm{T}} \mathbf{e}_j > t | \mathcal{F}_x\right\}$$

$$\leqslant \exp\left[\left\{-\frac{n^2 t^2}{8e^2 \sum_{i=1}^{n} |\mathbf{X}_i^{\mathrm{T}} \mathbf{e}_j|^2 K_Y(\mathbf{X}_i)^2}\right\}\right]$$

$$\leqslant \exp\left(-\frac{nt^2}{8e^2 M_1}\right)$$

almost surely. If $\lambda_2 < \lambda_1$, letting $\lambda = \lambda_2$ in (S.11), we get

$$\Pr\left\{n^{-1}\sum_{i=1}^{n} \{Y_{i} - \exp(\boldsymbol{\beta}_{0}^{T}\mathbf{X}_{i})\}\mathbf{X}_{i}^{T}\mathbf{e}_{j} > t | \mathcal{F}_{x}\right\}$$

$$\leqslant \exp\left\{-\lambda_{2}nt + 2e^{2}\lambda_{2}^{2}nt/(4e^{2}\lambda_{1})\right\}$$

$$\leqslant \exp\left\{-\lambda_{2}nt + 2e^{2}\lambda_{2}nt/(4e^{2})\right\}$$

$$= \exp\left\{-\lambda_{2}nt/2\right\}$$

$$= \exp\left\{\frac{-nt}{4e\max_{i}|\mathbf{X}_{i}^{T}\mathbf{e}_{j}|K_{Y}(\mathbf{X}_{i})}\right\}$$

$$\leqslant \exp\left\{\frac{-nt}{4eM_{2}\log(n)}\right\}$$

almost surely. Thus, combining the above results, we get

$$\Pr\left\{n^{-1} \sum_{i=1}^{n} \{Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{X}_i)\} \mathbf{X}_i^{\mathrm{T}} \mathbf{e}_j > t | \mathcal{F}_x\right\}$$

$$\leqslant \exp\left\{-\min\left(\frac{nt^2}{8e^2 M_1}, \frac{nt}{4e M_2 \log(n)}\right)\right\}$$
(S.12)

almost surely. Now taking expectations on both sides, we get

$$\Pr\left[n^{-1}\sum_{i=1}^{n}\{Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\}\mathbf{X}_i^{\mathrm{T}}\mathbf{e}_j > t\right] \leqslant \exp\left[-\min\left(\frac{nt^2}{8e^2M_1}, \frac{nt}{4eM_2\log(n)}\right)\right].$$

Note that the same derivation in (S.11) and below also applies to $-\{Y_i - \exp(\boldsymbol{\beta}_0^T \mathbf{X}_i)\}\mathbf{X}_i$, hence we also have

$$\Pr\left[n^{-1}\sum_{i=1}^{n}\{-Y_i+\exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\}\mathbf{X}_i^{\mathrm{T}}\mathbf{e}_j>t\right]\leqslant \exp\left[-\min\left(\frac{nt^2}{8e^2M_1},\frac{nt}{4eM_2\mathrm{log}(n)}\right)\right].$$

Hence, we have

we have

$$\Pr\left[n^{-1}\sum_{i=1}^{n}\|Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\}\mathbf{X}_i^{\mathrm{T}}\mathbf{e}_j\|_{\infty} > t\right] \leqslant 2p\exp\left[-\min\left(\frac{nt^2}{8e^2M_1}, \frac{nt}{4eM_2\log(n)}\right)\right].$$

Inserting $t = c_{00}\sqrt{\log(p)}/\sqrt{n}$, we obtain

$$\Pr\left[n^{-1} \sum_{i=1}^{n} \|\{Y_{i} - \exp(\boldsymbol{\beta}_{0}^{T} \mathbf{X}_{i})\} \mathbf{X}_{i}\|_{\infty} > c_{00} \sqrt{\log(p)} / \sqrt{n}\right]$$

$$\leqslant 2p \exp\left[-\min\left(\frac{c_{00}^{2} \log(p)}{8e^{2} M_{1}}, \frac{nc_{00} \sqrt{\log(p)} / \sqrt{n}}{4e M_{2} \log(n)}\right)\right]$$

$$= 2p \exp\left[-\min\left(\frac{c_{00}^{2} \log(p)}{8e^{2} M_{1}}, \frac{c_{00} \log(p)}{4e M_{2} \log(n)} \{\sqrt{\log(p)} / \sqrt{n}\}\right)\right]$$

$$\leqslant 2p \exp\left[-\min\left(\frac{c_{00}^{2} \log(p)}{8e^{2} M_{1}}, \frac{c_{00} \log(p)}{4e M_{2} C}\right)\right].$$

The last equality holds by Condition (C4). Now let $c_{00} = \max(4e\sqrt{M_1}, 8eM_2C)$,

$$\Pr\left[n^{-1} \sum_{i=1}^{n} \|Y_i - \exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{X}_i)\} \mathbf{X}_i\|_{\infty} > \max(4e\sqrt{M_1}, 8eM_2C)\sqrt{\log(p)}/\sqrt{n}\right] \leqslant 2p^{-1}.$$

In addition, let $\mathcal{F}(\boldsymbol{\beta}_0)$ be the sigma field generated by $\mathbf{X}_i, \boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i, i = 1, \dots, n$, since \mathbf{W}_i given \mathbf{X}_i is normal, \mathbf{W}_i given $\mathcal{F}(\boldsymbol{\beta}_0)$ is also normal hence is sub-gaussian. Recall that

$$K_{wij}(\boldsymbol{\beta}_0) = \sup_{k \geq 1} k^{-1/2} E[|(\mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega})^{\mathrm{T}} \mathbf{e}_j - E\{(\mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega})^{\mathrm{T}} \mathbf{e}_j | \boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i, \mathbf{X}_i\}|^k |\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i, \mathbf{X}_i|^{1/k}.$$

Then letting

$$\lambda_j = \frac{nt}{18e^2 \sum_{i=1}^n K_{wij}(\boldsymbol{\beta}_0)^2 |\exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0/2)|^2},$$
 (S.13)

we have

$$\begin{split} & \Pr\left[n^{-1}\sum_{i=1}^{n}\left\{\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega)^{\mathrm{T}}\mathbf{e}_{j}-\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathrm{T}}\mathbf{e}_{j}\right\}>t|\mathcal{F}(\boldsymbol{\beta}_{0})\right]\\ & = \Pr\left(\exp\left[\lambda_{j}\sum_{i=1}^{n}\left\{\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega)^{\mathrm{T}}\mathbf{e}_{j}-\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathrm{T}}\mathbf{e}_{j}\right\}\right]\\ & > \exp(\lambda_{j}nt)|\mathcal{F}(\boldsymbol{\beta}_{0})\right)\\ & \leq \exp(-\lambda_{j}nt)E\left[\exp\left\{\lambda_{j}\sum_{i=1}^{n}\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega)^{\mathrm{T}}\mathbf{e}_{j}\\ & -\lambda_{j}\sum_{i=1}^{n}\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathrm{T}}\mathbf{e}_{j}\right\}|\mathcal{F}(\boldsymbol{\beta}_{0})\right]\\ & = \exp(-\lambda_{j}nt)E\left(\exp\left[\lambda_{j}\sum_{i=1}^{n}\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega)^{\mathrm{T}}\mathbf{e}_{j}|\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i},\mathbf{X}_{i}\right\}|\mathcal{F}(\boldsymbol{\beta}_{0})\right)\\ & \times \exp\left(\lambda_{j}\sum_{i=1}^{n}\left[E\{\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega)^{\mathrm{T}}\mathbf{e}_{j}|\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i},\mathbf{X}_{i}\right\}-\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathrm{T}}\mathbf{e}_{j}\right]\right)\\ & \leq \exp(-\lambda_{j}nt)\exp\left[\left(3e)^{2}\lambda_{j}^{2}\sum_{i=1}^{n}K_{wij}(\boldsymbol{\beta}_{0})^{2}\{\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)\}^{2}\right]\\ & \times \exp\left(\lambda_{j}\sum_{i=1}^{n}\left[E\{\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega)^{\mathrm{T}}\mathbf{e}_{j}|\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i},\mathbf{X}_{i}\right\}-\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathrm{T}}\mathbf{e}_{j}\right)\right)\\ & = \exp\left\{\frac{-n^{2}t^{2}}{18e^{2}\sum_{i=1}^{n}K_{wij}(\boldsymbol{\beta}_{0})^{2}|\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)|^{2}}\right\}\\ & \times \exp\left\{\frac{n^{2}t^{2}}{36e^{2}\sum_{i=1}^{n}K_{wij}(\boldsymbol{\beta}_{0})^{2}|\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathrm{T}}\Omega\boldsymbol{\beta}_{0}/2)|^{2}}\right\}\right\} \end{aligned}$$

$$\times \exp \left[\frac{nt}{18e^2 \sum_{i=1}^n K_{wij}(\boldsymbol{\beta}_0)^2 |\exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0/2)|^2} \right. \\ \times \sum_{i=1}^n \left[E\{\exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0/2) (\mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega})^{\mathrm{T}} \mathbf{e}_j |\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i, \mathbf{X}_i\} - \exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{X}_i) \mathbf{X}_i^{\mathrm{T}} \mathbf{e}_j \right] \right] \\ \leqslant \exp \left\{ \frac{-n^2 t^2}{36e^2 \sum_{i=1}^n K_{wij}(\boldsymbol{\beta}_0)^2 |\exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0/2)|^2} \right\} \\ \times \exp \left[\frac{nt}{18e^2 \sum_{i=1}^n K_{wij}(\boldsymbol{\beta}_0)^2 |\exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0/2)|^2} \right. \\ \times |\sum_{i=1}^n E\{\exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_0/2) (\mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}} \boldsymbol{\Omega})^{\mathrm{T}} \mathbf{e}_j |\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{W}_i, \mathbf{X}_i\} - \exp(\boldsymbol{\beta}_0^{\mathrm{T}} \mathbf{X}_i) \mathbf{X}_i^{\mathrm{T}} \mathbf{e}_j |\right].$$

The first inequality holds by the Markov inequality, and the second inequality holds by Lemma S.3. Letting $t = 2c_{10}M_3Q_1(1+r)\sqrt{\log(p)/n}/m_3$ for some constants $r > 0, c_{10} > 1$, where m_3, M_3, Q_1 are defined in Condition (C5), we get

$$\begin{split} &\Pr\left[n^{-1}\sum_{i=1}^{n}\left\{\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega})^{\mathsf{T}}\mathbf{e}_{j}-\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathsf{T}}\mathbf{e}_{j}\right\}\\ &>2c_{10}Q_{1}M_{3}(1+r)\sqrt{\log(p)/n}/m_{3}|\mathcal{F}(\boldsymbol{\beta}_{0})\right]\\ &\leqslant \exp\left[-\left(\frac{nt^{2}}{36e^{2}M_{3}}\right)\right]\exp\left[\frac{t}{18e^{2}m_{3}}|\sum_{i=1}^{n}E\{\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega})^{\mathsf{T}}\mathbf{e}_{j}|\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{W}_{i},\mathbf{X}_{i}\}\\ &-\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathsf{T}}\mathbf{e}_{j}|\right]\\ &=\exp\left[-\left(\frac{c_{10}^{2}Q_{1}^{2}(1+r)^{2}\log(p)M_{3}}{9e^{2}m_{3}^{2}}\right)\right]\exp\left[\frac{c_{10}M_{3}Q_{1}(1+r)\sqrt{\log(p)/n}}{9e^{2}m_{3}^{2}}\right.\\ &\left.|\sum_{i=1}^{n}E\{\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega})^{\mathsf{T}}\mathbf{e}_{j}|\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{W}_{i},\mathbf{X}_{i}\}-\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathsf{T}}\mathbf{e}_{j}|\right]\\ &\leqslant \exp\left[-\left\{c_{10}^{2}Q_{1}^{2}(1+r)^{2}\log(p)M_{3}/(9e^{2}m_{3}^{2})\right\}\right]\exp\left\{c_{10}Q_{1}^{2}(1+r)\log(p)M_{3}/(9e^{2}m_{3}^{2})\right\} \end{split}$$

$$\leq \exp\left[-\left\{c_{10}^2 Q_1^2 (1+r)^2 \log(p) M_3/(9e^2 m_3^2)\right\}\right] \exp\left\{c_{10}^2 Q_1^2 (1+r) \log(p) M_3/(9e^2 m_3^2)\right\}$$

$$= \exp\left[-\left\{c_{10}^2 Q_1^2 (1+r) r \log(p) M_3/(9e^2 m_3^2)\right\}\right]$$

almost surely, where the second inequality holds by Condition (C5).

Taking expectation on both sides of the above inequality, we have

$$\Pr\left[n^{-1} \sum_{i=1}^{n} \left\{ \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_{0}/2) (\mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega})^{\mathrm{T}} \mathbf{e}_{j} - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i}^{\mathrm{T}} \mathbf{e}_{j} \right\}$$

$$> 2c_{10} M_{3} Q_{1} (1+r) \sqrt{\log(p)/n}/m_{3}$$

$$\leq \exp\left[-\left\{ c_{10}^{2} Q_{1}^{2} (1+r) r \log(p) M_{3}/(9e^{2} m_{3}^{2}) \right\} \right].$$

We can easily check that the same derivation after (S.13) also applies to

$$-\exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_0/2)(\mathbf{W}_i - \boldsymbol{\beta}_0^{\mathrm{T}}\boldsymbol{\Omega})^{\mathrm{T}}\mathbf{e}_i + \exp(\boldsymbol{\beta}_0^{\mathrm{T}}\mathbf{X}_i)\mathbf{X}_i^{\mathrm{T}}\mathbf{e}_i$$

and will lead to

$$\Pr\left[n^{-1}\sum_{i=1}^{n} -\left\{\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{\Omega})^{\mathrm{T}}\mathbf{e}_{j} - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}^{\mathrm{T}}\mathbf{e}_{j}\right\}$$

$$> 2c_{10}M_{3}Q_{1}(1+r)\sqrt{\log(p)/n}/m_{3}$$

$$\leqslant \exp\left[-\left\{c_{10}^{2}Q_{1}^{2}(1+r)r\log(p)M_{3}/(9e^{2}m_{3}^{2})\right\}\right].$$

Thus, letting $c_{10} = \max[\sqrt{2}\sqrt{9e^2m_3^2/\{M_3Q_1^2(1+r)r\}}, 1]$, we have

$$\Pr\left(n^{-1} \| \sum_{i=1}^{n} \left[\exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_{0}/2) (\mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega}) - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \|_{\infty} \right]$$

$$> 2c_{10} M_{3} Q_{1} (1+r) \sqrt{\log(p)/n}/m_{3}$$

$$\leq 2p \exp\left[-\left\{ (c_{10} Q_{1})^{2} (1+r) r \log(p) M_{3}/(9e^{2} m_{3}^{2}) \right\} \right]$$

$$\leq 2p^{-1}$$
.

Let \mathcal{F}_Y be the sigma field generated by $Y_i, i = 1, ..., n$. Because $\mathbf{U}_i = \mathbf{W}_i - \mathbf{X}_i$ is normal and independent with Y_i , using the same argument, we have

$$\Pr\left[n^{-1} \sum_{i=1}^{n} Y_{i}(W_{ij} - X_{ij}) > t | \mathcal{F}_{Y}\right]$$

$$= \Pr\left(\exp\left[\lambda \sum_{i=1}^{n} Y_{i}(W_{ij} - X_{ij})\right] > \exp(\lambda nt)\right)$$

$$\leqslant E\left(\exp\left[\lambda \sum_{i=1}^{n} Y_{i}(W_{ij} - X_{ij})\right]\right) \exp(-\lambda nt)$$

$$\leqslant \exp\left(-\lambda nt + (3e)^{2} \lambda^{2} \sum_{i=1}^{n} \|\{Y_{i}(W_{ij} - X_{ij})\}\|_{\psi_{2}(\mathcal{F}_{Y_{i}})}^{2}\right)$$

$$= \exp\left(-\lambda nt + (3e)^{2} \lambda^{2} \sum_{i=1}^{n} Y_{i}^{2} [\sup_{k \geqslant 1} k^{-1/2} E\{|(W_{ij} - X_{ij})|^{k}\}^{1/k}]^{2}\right)$$

$$= \exp\left(-\lambda nt + (3e)^{2} \lambda^{2} \sum_{i=1}^{n} Y_{i}^{2} K_{j}^{2}\right).$$

The third inequality holds by Lemma S.3. Letting

$$\lambda = \frac{nt}{18e^2 \sum_{i=1}^n Y_i^2 K_i^2}$$

we obtain

$$\Pr\left[n^{-1} \sum_{i=1}^{n} Y_i(W_{ij} - X_{ij}) > t | \mathcal{F}_Y\right]$$

$$\leqslant \exp\left(-\frac{n^2 t^2}{36e^2 \sum_{i=1}^{n} Y_i^2 K_j^2}\right)$$

$$\leqslant \exp\left(-\frac{nt^2}{36e^2 M_0}\right).$$

Take the expectation on both side, we have

$$\Pr\left[n^{-1} \sum_{i=1}^{n} Y_i(W_{ij} - X_{ij}) > t\right]$$

$$\leqslant \exp\left(-\frac{n^2 t^2}{36e^2 \sum_{i=1}^{n} Y_i^2 K_j^2}\right)$$

$$\leqslant \exp\left(-\frac{nt^2}{36e^2 M_0}\right).$$

Using the same derivation on $-n^{-1}\sum_{i=1}^{n}Y_{i}(W_{ij}-X_{ij})$, we can also obtain

$$\Pr\left[n^{-1}\sum_{i=1}^{n} -Y_i(W_{ij} - X_{ij}) > t\right] \le \exp\left(-\frac{nt^2}{36e^2M_0}\right).$$

Hence, selecting $t = \sqrt{2}\sqrt{36e^2M_0}\sqrt{\log(p)/n}$ leads to

$$\Pr\left[n^{-1} \| \sum_{i=1}^{n} Y_i(\mathbf{W}_i - \mathbf{X}_j) \|_{\infty} > \sqrt{2}\sqrt{36e^2 M_0}\sqrt{\log(p)/n}\right]$$

$$\leqslant 2p \exp\left(-\frac{nt^2}{36e^2 M_0}\right)$$

$$= 2p^{-1}.$$

Proof of Lemma 3: By the triangle inequality we have

$$n^{-1} \| \sum_{i=1}^{n} Y_{i} \mathbf{W}_{i} - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_{0} / 2) (\mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega}) \|_{\infty}$$

$$\leq n^{-1} \| \sum_{i=1}^{n} \{ Y_{i} - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{X}_{i}) \} \mathbf{X}_{i} \|_{\infty}$$

$$+ n^{-1} \| \sum_{i=1}^{n} \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}_{0} / 2) (\mathbf{W}_{i} - \boldsymbol{\beta}_{0}^{\mathrm{T}} \boldsymbol{\Omega}) - \exp(\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \|_{\infty}$$

$$+ n^{-1} \| \sum_{i=1}^{n} Y_{i} (\mathbf{W}_{i} - \mathbf{X}_{i}) \|_{\infty},$$

hence by Lemma S.5

$$\Pr\left\{n^{-1}\|\sum_{i=1}^{n}Y_{i}\mathbf{W}_{i}-\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega})\|_{\infty}\right.$$

$$\left.>3\max\{\max(4e\sqrt{M_{1}},8eM_{2}C)\sqrt{\log(p)}/\sqrt{n},\right.$$

$$\left.2c_{10}M_{3}Q_{1}(1+r)\sqrt{\log(p)/n}/m_{3},\sqrt{2}\sqrt{36e^{2}M_{0}}\sqrt{\log(p)/n}\}\right\}$$

$$\leqslant\Pr\left[3\max\left\{n^{-1}\sum_{i=1}^{n}\|Y_{i}-\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{X}_{i})\}\mathbf{X}_{i}\|_{\infty},\right.$$

$$\left.n^{-1}\sum_{i=1}^{n}\|\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega})-\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{X}_{i})\mathbf{X}_{i}\|_{\infty},\right.$$

$$\left.n^{-1}\|\sum_{i=1}^{n}Y_{i}(\mathbf{W}_{i}-\mathbf{X}_{j})\|_{\infty}\right\}>3\max\{\max(4e\sqrt{M_{1}},8eM_{2}C)\sqrt{\log(p)}/\sqrt{n},\right.$$

$$\left.2c_{10}M_{3}Q_{1}(1+r)\sqrt{\log(p)/n}/m_{3},\sqrt{2}\sqrt{36e^{2}M_{0}}\sqrt{\log(p)/n}\right]$$

$$\leqslant\Pr\left[n^{-1}\sum_{i=1}^{n}\|Y_{i}-\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{X}_{i})\}\mathbf{X}_{i}\|_{\infty}>\max(4e\sqrt{M_{1}},8eM_{2}C)\sqrt{\log(p)}/\sqrt{n}\right]$$

$$\left.+\Pr\left(n^{-1}\|\sum_{i=1}^{n}\left[\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega}\boldsymbol{\beta}_{0}/2)(\mathbf{W}_{i}-\boldsymbol{\beta}_{0}^{\mathsf{T}}\boldsymbol{\Omega})-\exp(\boldsymbol{\beta}_{0}^{\mathsf{T}}\mathbf{X}_{i})\mathbf{X}_{i}\|_{\infty}\right]\right.$$

$$\left.>2c_{10}M_{3}Q_{1}(1+r)\sqrt{\log(p)/n}/m_{3}\right)$$

$$\left.+\Pr\left[n^{-1}\|\sum_{i=1}^{n}Y_{i}(\mathbf{W}_{i}-\mathbf{X}_{j})\|_{\infty}>\sqrt{2}\sqrt{36e^{2}M_{0}}\sqrt{\log(p)/n}\right]\right]$$

$$\leqslant6p^{-1},$$

where the last inequality is due to Lemma S.5. This proves the results. \Box

Lemma S.6. Assume that Conditions (C1) and (C6) hold, and the variables U_i, X_i have finite dimension p_1 . Let \mathbf{v} be a p_1 -dimensional vector.

For sufficiently large n, we have

$$\Pr\left(|\sum_{i=1}^{n} A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\} \mathbf{v}| > nt\right)$$

$$\leq 2 \exp\left(-\min\left[\frac{nt^{2}}{16e^{2}M_{4}}, \frac{nt}{8eM_{5}log(n)}\right]\right).$$

Proof: By Lemma 1 statement 3 and Lemma 2 statement 3, we can see that the square of a conditional sub-Gaussian variable is sub-exponential. Now because $\mathbf{v}^{\mathrm{T}}(\mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\Omega})$ given \mathbf{X}_{i} and $\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i}$ is normal, and recall that

$$g(\mathbf{W}_i, \boldsymbol{\beta}, \mathbf{v}) \equiv \mathbf{v}^{\mathrm{T}} \{ (\mathbf{W}_i - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega})^{\otimes 2} - \boldsymbol{\Omega} \} \mathbf{v},$$

we have that

$$g(\mathbf{W}_i, \boldsymbol{\beta}, \mathbf{v}) - E\{g(\mathbf{W}_i, \boldsymbol{\beta}, \mathbf{v}) | \boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i, \mathbf{X}_i\}$$

is centered sub-exponential. Recall also that

$$A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i}) \equiv \exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{\beta}/2),$$

we have

$$\Pr\left(\sum_{i=1}^{n} [A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \} \mathbf{v}] > t | \mathcal{F}(\boldsymbol{\beta})\right)$$

$$= \Pr\left\{\exp\left(\lambda \sum_{i=1}^{n} [A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \} \mathbf{v}]\right) > \exp(\lambda t) | \mathcal{F}(\boldsymbol{\beta})\right\}$$

$$\leq \exp(-\lambda t) E\left\{\exp\left(\lambda \sum_{i=1}^{n} [A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \} \mathbf{v}]\right) | \mathcal{F}(\boldsymbol{\beta})\right\}$$

$$= \exp(-\lambda t) E\left\{\exp\left(\lambda \sum_{i=1}^{n} A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) [g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) - E\{g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) | \boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}, \mathbf{X}_{i} \}]\right) | \mathcal{F}(\boldsymbol{\beta})\right\}$$

$$\times \exp\left(\lambda \sum_{i=1}^{n} [A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) E\{g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) | \boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}, \mathbf{X}_{i}\} - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\} \mathbf{v}]\right)$$

$$\leq \exp(-\lambda t) \exp\left\{2e^{2} \lambda^{2} \sum_{i=1}^{n} A^{2} (\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) K_{gvi}(\boldsymbol{\beta})^{2}\right\}$$

$$\times \exp\left(\lambda \sum_{i=1}^{n} [A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) E\{g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) | \boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}, \mathbf{X}_{i}\} - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\} \mathbf{v}]\right).$$

The second inequality above holds by Lemma S.4. Further, let

$$\lambda_1 = \frac{t}{4e^2 \sum_{i=1}^n K_{gvi}(\boldsymbol{\beta})^2 A^2(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i)}, \quad and \quad \lambda_2 = \frac{1}{2e \max_i K_{gvi}(\boldsymbol{\beta}) |A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i)|}.$$

If $\lambda_1 < \lambda_2$, letting $\lambda = \lambda_1$, we get

$$\exp(-\lambda t) \exp\left\{2e^2\lambda^2 \sum_{i=1}^n A^2(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i) K_{gvi}(\boldsymbol{\beta})^2\right\} = \exp\left[\left\{-\frac{t^2}{8e^2 \sum_{i=1}^n K_{gvi}(\boldsymbol{\beta})^2 A^2(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i)}\right\}\right].$$

If $\lambda_2 < \lambda_1$, letting $\lambda = \lambda_2$, we get

$$\exp(-\lambda t) \exp\left\{2e^{2}\lambda^{2} \sum_{i=1}^{n} A^{2} (\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) K_{gvi}(\boldsymbol{\beta})^{2}\right\}$$

$$= \exp\{-\lambda_{2}t + 2e^{2}\lambda_{2}^{2}t/(4e^{2}\lambda_{1})\}$$

$$\leq \exp\{-\lambda_{2}t + 2e^{2}\lambda_{2}t/(4e^{2})\}$$

$$= \exp(-\lambda_{2}t/2)$$

$$= \exp\left\{\frac{-t}{4e \max_{i} K_{gvi}(\boldsymbol{\beta})|A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i})|}\right\}.$$

Combine the above result and let

$$\lambda = \min \left(\frac{t}{4e^2 \sum_{i=1}^n K_{gvi}(\boldsymbol{\beta})^2 A^2(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i)}, \frac{1}{2e \max_i K_{gvi}(\boldsymbol{\beta}) |A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i)|} \right)$$

we have

$$\begin{split} & \operatorname{Pr}\left(\sum_{i=1}^{n}[A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})g(\mathbf{W}_{i},\boldsymbol{\beta},\mathbf{v}) - \mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v}] > t|\mathcal{F}(\boldsymbol{\beta})\right) \\ \leqslant & \exp\left(-\min\left[\frac{t^{2}}{8e^{2}\sum_{i=1}^{n}K_{gvi}(\boldsymbol{\beta})^{2}A^{2}(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})}, \frac{t}{4e\max_{i}K_{gvi}(\boldsymbol{\beta})|A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})|}\right]\right) \\ & \times \exp\left[\sum_{i=1}^{n}\min\left\{\frac{t}{4e^{2}\sum_{i=1}^{n}K_{gvi}(\boldsymbol{\beta})^{2}A^{2}(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})}, \frac{1}{2e\max_{i}K_{gvi}(\boldsymbol{\beta})A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})}\right\} \right. \\ & \times \left[A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})E\{g(\mathbf{W}_{i},\boldsymbol{\beta},\mathbf{v})|\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i},\mathbf{X}_{i}\} - \mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v}\right]. \end{split}$$

Replacing t with nt, for sufficiently large n and fixed t, we have

$$\Pr\left(\sum_{i=1}^{n} [A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \} \mathbf{v}] > nt | \mathcal{F}(\boldsymbol{\beta})\right)$$

$$\leqslant \exp\left(-\min\left[\frac{n^{2} t^{2}}{8e^{2} \sum_{i=1}^{n} K_{gvi}(\boldsymbol{\beta})^{2} A^{2}(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i})}, \frac{nt}{4e \max_{i} K_{gvi}(\boldsymbol{\beta}) | A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i})|}\right]\right)$$

$$\times \exp\left[\sum_{i=1}^{n} \min\left\{\frac{nt}{4e^{2} \sum_{i=1}^{n} K_{gvi}(\boldsymbol{\beta})^{2} A^{2}(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i})}, \frac{1}{2e \max_{i} K_{gvi}(\boldsymbol{\beta}) A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i})}\right\}\right]$$

$$\times [A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) E\{g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) | \boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}, \mathbf{X}_{i}\} - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\} \mathbf{v}]\right]$$

$$\leqslant \exp\left(-\min\left[\frac{nt^{2}}{8e^{2} M_{4}}, \frac{nt}{4e M_{5} \log(n)}\right]\right)$$

$$\times \exp\left[\min\left\{\frac{t}{4e^{2} m_{4}}, \frac{1}{2e m_{5} \log(n)}\right\} Q_{2} \sqrt{n}\right]$$

$$\leqslant \exp\left(-\min\left[\frac{nt^{2}}{16e^{2} M_{4}}, \frac{nt}{8e M_{5} \log(n)}\right]\right),$$

in probability. The second inequality holds by (S.3).

Taking expectation on both sides of the above display, we have

$$\Pr\left(\sum_{i=1}^{n} [A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i}) g(\mathbf{W}_{i}, \boldsymbol{\beta}, \mathbf{v}) - \mathbf{v}^{\mathrm{T}} E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\} \mathbf{v}] > nt\right)$$

$$\leq \exp\left(-\min\left[\frac{nt^2}{16e^2M_4}, \frac{nt}{8eM_5\log(n)}\right]\right).$$

Repeat the argument with

$$[A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})g(\mathbf{W}_{i},\boldsymbol{\beta},\mathbf{v}) - \mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v}]$$

replaced by

$$-[A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})g(\mathbf{W}_{i},\boldsymbol{\beta},\mathbf{v})-\mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v}],$$

we can obtain the left bound, hence prove the result.

<u>Lemma</u> S.7. Assume that Conditions (C1) and (C6) hold. If $\mathbf{X}_i, \mathbf{U}_i \in \mathbb{R}^p$, then for $s \ge 1$,

$$\begin{split} & pr\left(\sup_{\mathbf{v}\in\mathbb{K}(2s)}|\sum_{i=1}^{n}[A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})g(\mathbf{W}_{i},\boldsymbol{\beta},\mathbf{v})-\mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v}]|>nt\right)\\ \leqslant & 2\exp\left(-\min\left[\frac{nt^{2}}{324e^{2}M_{4}},\frac{nt}{36eM_{5}log(n)}\right]+2slog(9p)\right). \end{split}$$

Proof of Lemma S.7: For each subset $\mathcal{U} \subset (1, \ldots, p)$, we define the set $S_{\mathcal{U}}$ as $S_{\mathcal{U}} = \{ \mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\|_2 \leq 1, \operatorname{supp}(\mathbf{v}) \subseteq \mathcal{U} \}$, and note that $\mathbb{K}(2s) = \cup_{|\mathcal{U}| \leq 2s} S_{\mathcal{U}}$. We define $\mathcal{A} = \{ \mathbf{u}_1, \ldots, \mathbf{u}_m \} \subset S_{\mathcal{U}}$ to be a 1/3-cover of $S_{\mathcal{U}}$, if for every $\mathbf{v} \in S_{\mathcal{U}}$, there is some $\mathbf{u}_i \in \mathcal{A}$ such that $\|\mathbf{v} - \mathbf{u}_i\|_2 \leq 1/3$. Define $\Delta \mathbf{v} = \mathbf{v} - \mathbf{u}_j$ where $\mathbf{u}_j = \arg\min_{\mathbf{u}_i} \|\mathbf{v} - \mathbf{u}_i\|_2$. We have $\|\Delta \mathbf{v}\|_2 \leq 1/3$. The same as those shown in Lemma 15 in Loh & Wainwright (2012), by Ledoux & Talagrand (2013), we can construct \mathcal{A} with $|\mathcal{A}| < 9^{2s}$. Define

$$\Phi(\mathbf{v}_1, \mathbf{v}_2) = \mathbf{v}_1^{\mathrm{T}} \left[\sum_{i=1}^n \frac{A(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_i) \{ (\mathbf{W}_i - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} - E\{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_i) \mathbf{X}_i \mathbf{X}_i^{\mathrm{T}} \}}{n} \right] \mathbf{v}_2.$$

We have

$$\begin{aligned} &|\Phi(\mathbf{v}, \mathbf{v})| \\ &= |\Phi(\Delta \mathbf{v} + \mathbf{u}_j, \Delta \mathbf{v} + \mathbf{u}_j)| \\ &\leqslant & \max_{i} |\Phi(\mathbf{u}_i, \mathbf{u}_i)| + \max_{i} |\Phi(\Delta \mathbf{v}, \mathbf{u}_i)| + \max_{i} |\Phi(\mathbf{u}_i, \Delta \mathbf{v})| + |\Phi(\Delta \mathbf{v}, \Delta \mathbf{v})| \\ &\leqslant & \max_{i} |\Phi(\mathbf{u}_i, \mathbf{u}_i)| + 2 \max_{i} |\Phi(\Delta \mathbf{v}, \mathbf{u}_i)| + |\Phi(\Delta \mathbf{v}, \Delta \mathbf{v})|. \end{aligned}$$

Hence,

$$\sup_{\mathbf{v} \in S_{\mathcal{U}}} |\Phi(\mathbf{v}, \mathbf{v})| \leq \max_{i} |\Phi(\mathbf{u}_{i}, \mathbf{u}_{i})| + 2 \sup_{\mathbf{v} \in S_{\mathcal{U}}} \max_{i} |\Phi(\Delta \mathbf{v}, \mathbf{u}_{i})| + \sup_{\mathbf{v} \in S_{\mathcal{U}}} |\Phi(\Delta \mathbf{v}, \Delta \mathbf{v})|.$$

Since $||3\Delta \mathbf{v}||_2 \leq 1$ and supp $(3\Delta \mathbf{v}) \subseteq \mathcal{U}$, $3\Delta \mathbf{v} \in S_{\mathcal{U}}$. It follows that

$$\sup_{\mathbf{v} \in S_{\mathcal{U}}} |\Phi(\mathbf{v}, \mathbf{v})|$$

$$\leq \max_{i} |\Phi(\mathbf{u}_{i}, \mathbf{u}_{i})| + 2/3 \sup_{\mathbf{v} \in S_{\mathcal{U}}} \max_{i} |\Phi(3\Delta\mathbf{v}, \mathbf{u}_{i})| + 1/9 \sup_{\mathbf{v} \in S_{\mathcal{U}}} |\Phi(3\Delta\mathbf{v}, 3\Delta\mathbf{v})|$$

$$\leq \max_{i} |\Phi(\mathbf{u}_{i}, \mathbf{u}_{i})| + 2/3 \{ \sup_{\mathbf{v} \in S_{\mathcal{U}}} |\Phi(3\Delta\mathbf{v}, 3\Delta\mathbf{v})| \}^{1/2} \{ \max_{i} |\Phi(\mathbf{u}_{i}, \mathbf{u}_{i})| \}^{1/2} + 1/9 \sup_{\mathbf{v} \in S_{\mathcal{U}}} |\Phi(\mathbf{v}, \mathbf{v})|$$

$$\leq \max_{i} |\Phi(\mathbf{u}_{i}, \mathbf{u}_{i})| + \sup_{\mathbf{v} \in S_{\mathcal{U}}} \{ 2/3 |\Phi(\mathbf{v}, \mathbf{v})| + 1/9 |\Phi(\mathbf{v}, \mathbf{v})| \}.$$

Hence, $\sup_{\mathbf{v} \in S_{\mathcal{U}}} |\Phi(\mathbf{v}, \mathbf{v})| \leq 9/2 \max_{i} |\Phi(\mathbf{u}_{i}, \mathbf{u}_{i})|$. By Lemma S.6 and a union

bound, we have

$$\Pr\left(\sup_{\mathbf{v}\in S_{\mathcal{U}}} |\sum_{i=1}^{n} [A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})g(\mathbf{W}_{i},\boldsymbol{\beta},\mathbf{v}) - \mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v}]| > 9/2nt\right)$$

$$\leqslant 9^{2s}2\exp\left(-\min\left[\frac{nt^{2}}{16e^{2}M_{4}},\frac{nt}{8eM_{5}\log(n)}\right]\right).$$

Now replacing t with 2/9t, we have

$$\Pr\left(\sup_{\mathbf{v}\in S_{\mathcal{U}}}\left|\sum_{i=1}^{n}[A(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{W}_{i})g(\mathbf{W}_{i},\boldsymbol{\beta},\mathbf{v})-\mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v}]\right|>nt\right)$$

$$\leqslant 9^{2s}2\exp\left(-\min\left[\frac{nt^{2}}{324e^{2}M_{4}},\frac{nt}{36eM_{5}\log(n)}\right]\right).$$

Finally, taking a union bound over the $\binom{p}{2s}$ choices of \mathcal{U} , and noting that $\binom{p}{2s} \leqslant p^{2s}$, we have

$$\begin{split} & \Pr\left(\sup_{\mathbf{v} \in \mathbb{K}(2s)} |\sum_{i=1}^n [A(\boldsymbol{\beta}^\mathrm{T} \mathbf{W}_i) g(\mathbf{W}_i, \boldsymbol{\beta}, \mathbf{v}) - \mathbf{v}^\mathrm{T} E\{\exp(\boldsymbol{\beta}^\mathrm{T} \mathbf{X}_i) \mathbf{X}_i \mathbf{X}_i^\mathrm{T}\} \mathbf{v}]| > nt\right) \\ \leqslant & 2 \exp\left(-\min\left[\frac{nt^2}{324e^2M_4}, \frac{nt}{36eM_5 \mathrm{log}(n)}\right] + 2s\mathrm{log}(9p)\right). \end{split}$$

Lemma S.8. Assume that Conditions (C1) and (C6) hold. For a fixed matrix $\Gamma \in \mathbb{R}^{p \times p}$, parameter s > 1, and tolerance $\delta > 0$, suppose we have the deviation condition

$$|\mathbf{v}^{\mathrm{T}}\mathbf{\Gamma}\mathbf{v}| \leq \delta, \forall \mathbf{v} \in \mathbb{K}(2s).$$

Then

$$|\mathbf{v}^{\mathrm{T}}\mathbf{\Gamma}\mathbf{v}| \leqslant 27\delta(\|\mathbf{v}\|_{2}^{2} + 1/s\|\mathbf{v}\|_{1}^{2}), \forall \mathbf{v} \in \mathbb{R}^{p}.$$

Proof: This is Lemma 12 in Loh & Wainwright (2012), we omit the proofs here.

S.7 Verification of the Lower and Upper RE Conditions

Lemma S.9. Assume that Conditions (C1) and (C6) hold and $s \ge 1$,

$$n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \}$$

is an estimator for $E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}$, satisfying the deviation condition

$$n^{-1} \sum_{i=1}^{n} \mathbf{v}^{\mathrm{T}} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} \mathbf{v}$$

$$- \mathbf{v}^{\mathrm{T}} E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \} \mathbf{v}$$

$$\leq \frac{\alpha_{\min} [E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}]}{54c}, \forall \mathbf{v} \in \mathbb{K}(2s)$$

for some constant c. Then we have the lower-RE condition. That is, for any $\mathbf{v} \in \mathbb{R}^p$,

$$n^{-1} \sum_{i=1}^{n} \mathbf{v}^{\mathrm{T}} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} \mathbf{v}$$

$$\geq \alpha_{\min} [E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}] \{ 1 - 1 / (2c) \} \| \mathbf{v} \|_{2}^{2}$$

$$- \frac{\alpha_{\min} [E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}]}{2cs} \| \mathbf{v} \|_{1}^{2}.$$

We also have the upper-RE condition. That is, for any $\mathbf{v} \in \mathbb{R}^p$,

$$n^{-1} \sum_{i=1}^{n} \mathbf{v}^{\mathrm{T}} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} \mathbf{v}$$

$$\leq \alpha_{\max} [E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}] \{ 1 + 1 / (2c) \} \| \mathbf{v} \|_{2}^{2}$$

$$+ \frac{\alpha_{\min} [E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}]}{2cs} \| \mathbf{v} \|_{1}^{2},$$

Proof: This result follows easily from Lemma S.8. Setting

$$\Gamma = n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} - E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}.$$

and $\delta = \alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_i)\mathbf{X}_i\mathbf{X}_i^{\mathrm{T}}\}]/(54c)$, we have the bound

$$|\mathbf{v}^{\mathrm{T}}\mathbf{\Gamma}\mathbf{v}| \leqslant \frac{\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]}{2c}(\|\mathbf{v}\|_{2}^{2} + 1/s\|\mathbf{v}\|_{1}^{2}).$$

Then

$$n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \mathbf{v}^{\mathrm{T}} [\{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega}] \mathbf{v}$$

$$\geqslant \mathbf{v}^{\mathrm{T}} E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \} \mathbf{v} - \frac{\alpha_{\min}(E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \})}{2c} (\|\mathbf{v}\|_{2}^{2} + 1/s \|\mathbf{v}\|_{1}^{2})$$

and

$$n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \mathbf{v}^{\mathrm{T}} \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} \mathbf{v}$$

$$\leq \mathbf{v}^{\mathrm{T}} E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \} \mathbf{v} + \frac{\alpha_{\min}(E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \})}{2c} (\|\mathbf{v}\|_{2}^{2} + 1/s \|\mathbf{v}\|_{1}^{2}).$$

Hence the lemma holds because

$$\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]\|\mathbf{v}\|_{2}^{2} \leqslant \mathbf{v}^{\mathrm{T}}E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}\mathbf{v} \leqslant \alpha_{\max}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]\|\mathbf{v}\|_{2}^{2}.$$

Proof of Lemma 4:

Let

$$\Gamma = n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta} / 2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} - E \{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \},$$

$$s = \left\{ 1/\{32C \max(M_4, M_5)\} \sqrt{\frac{n}{\log(p)}} \right.$$

$$\min \left(\left[\frac{\sup_{\{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_2 \leq 2b_0\}} \alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_i) \mathbf{X}_i \mathbf{X}_i^{\mathrm{T}}\}]}{54c} \right]^2 / (81e^2), 1 \right) \right\}$$
(S.14)

where C satisfies Condition (C4). Since $n/\log(p) \to \infty$ under Condition (C4), we always have s > 1 for sufficiently large n.

Let

$$t = \sup_{\{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_2 \leqslant 2b_0\}} \frac{\alpha_{\min} \left[E\{ \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_i) \mathbf{X}_i \mathbf{X}_i^{\mathrm{T}} \} \right]}{54c}$$

For $p \ge 9$, by Lemma S.7, we have

$$\Pr\left(\sup_{\mathbf{v} \in \mathbb{K}(2s)} \mathbf{v}^{\mathsf{T}} [n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\Omega} \boldsymbol{\beta}/2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} \right.$$

$$-E\{\exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathsf{T}} \}] \mathbf{v} \geqslant \sup_{\{\beta: \|\boldsymbol{\beta}\|_{2} \leq 2b_{0}\}} \frac{\alpha_{\min} [E\{\exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathsf{T}} \}]}{54c} \right)$$

$$\leqslant 2 \exp\left(-\min\left[\frac{nt^{2}}{324e^{2}M_{4}}, \frac{nt}{36eM_{5}\log(n)}\right] + 2s\log(9p)\right)$$

$$\leqslant 2 \exp\left(-\min\left[\frac{nt^{2}}{324\log(n)e^{2}\max(M_{4}, M_{5})}, \frac{nt}{36e\max(M_{4}, M_{5})\log(n)}\right] + 2s\log(9p)\right)$$

$$= 2 \exp\left[-n/\{4\log(n)\max(M_{4}, M_{5})\}\min\left(\frac{t^{2}}{81e^{2}}, \frac{t}{9e}\right) + 2s\log(9p)\right]$$

$$\leqslant 2 \exp\left[-n/\{4\log(n)\max(M_{4}, M_{5})\}\min\left(\frac{t^{2}}{81e^{2}}, \frac{t}{9e}\right) + 4s\log(p)\right]$$

$$\leqslant 2 \exp\left[-\sqrt{n\log(p)}1/\{4C\max(M_{4}, M_{5})\}\min\left(\frac{t^{2}}{81e^{2}}, \frac{t}{9e}\right) + 4s\log(p)\right].$$

where the last inequality is because of Condition (C4). If $t^2/(81e^2) > 1$,

then $t^2/(81e^2) > t/(9e) > 1$, hence

$$s = 1/{32C \max(M_4, M_5)} \sqrt{\frac{n}{\log(p)}},$$

and

$$\Pr\left(\sup_{\mathbf{v} \in \mathbb{K}(2s)} \mathbf{v}^{\mathrm{T}} [n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}/2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \}$$

$$-E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}] \mathbf{v} \geqslant \sup_{\{\boldsymbol{\beta} : \|\boldsymbol{\beta}\|_{2} \leqslant 2b_{0} \}} \frac{\alpha_{\min} [E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}} \}]}{54c} \right)$$

$$\leqslant 2 \exp\left[-\sqrt{n \log(p)} 1 / \{ 8C \max(M_{4}, M_{5}) \} \right].$$

On the other hand, if $t^2/(81e^2) \leq 1$, then $t^2/(81e^2) \leq t/(9e) \leq 1$, hence

$$\Pr\left(\sup_{\mathbf{v} \in \mathbb{K}(2s)} \mathbf{v}^{T} [n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{T} \mathbf{W}_{i} - \boldsymbol{\beta}^{T} \boldsymbol{\Omega} \boldsymbol{\beta}/2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \} \right. \\
\left. - E \{ \exp(\boldsymbol{\beta}^{T} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{T} \}] \mathbf{v} \geqslant \sup_{\{\boldsymbol{\beta} : \|\boldsymbol{\beta}\|_{2} \leqslant 2b_{0} \}} \frac{\alpha_{\min} [E \{ \exp(\boldsymbol{\beta}^{T} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{T} \}]}{54c} \right) \\
\leqslant 2 \exp\left[-\sqrt{n \log(p)} 1 / \{ 4C \max(M_{4}, M_{5}) \} \frac{t^{2}}{81e^{2}} + 1 / \{ 8C \max(M_{4}, M_{5}) \} \sqrt{n \log(p)} \frac{t^{2}}{81e^{2}} \right] \\
= 2 \exp\left[-\sqrt{n \log(p)} 1 / \{ 8C \max(M_{4}, M_{5}) \} \frac{t^{2}}{81e^{2}} \right].$$

Combining the above results, we get

$$\Pr\left(\sup_{\mathbf{v} \in \mathbb{K}(2s)} \mathbf{v}^{\mathrm{T}} [n^{-1} \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{W}_{i} - \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\beta}/2) \{ (\mathbf{W}_{i} - \boldsymbol{\Omega} \boldsymbol{\beta})^{\otimes 2} - \boldsymbol{\Omega} \}$$

$$-E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}] \mathbf{v} \geqslant \sup_{\{\boldsymbol{\beta} : \|\boldsymbol{\beta}\|_{2} \leqslant 2b_{0}\}} \frac{\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}_{i}) \mathbf{X}_{i} \mathbf{X}_{i}^{\mathrm{T}}\}]}{54c} \right)$$

$$\leqslant 2 \exp\left[-\sqrt{n \log(p)} 1/\{8C \max(M_{4}, M_{5})\} \min\left\{\frac{t^{2}}{81e^{2}}, 1\right\}\right].$$

Hence by Lemma S.9, the lemma holds by selecting

$$\tau(n,p) = \sup_{\{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_{2} \leq 2b_{0}\}} \left(\alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]/(2c)\right) \left\{1/\{32C\max(M_{4}, M_{5})\}\sqrt{\frac{n}{\log(p)}}\right\}$$

$$\min \left(\left[\frac{\sup_{\{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_{2} \leq 2b_{0}\}} \alpha_{\min}[E\{\exp(\boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}_{i})\mathbf{X}_{i}\mathbf{X}_{i}^{\mathrm{T}}\}]}{54c}\right]^{2}/(81e^{2}), 1\right)^{-1}.$$

S.8 A Useful Topological Result

Lemma S.10. For any constant s > 1, we have

$$\mathbb{B}_1(\sqrt{s}) \cap \mathbb{B}_2(1) \subseteq \operatorname{cl}\{\operatorname{conv}\{\mathbb{B}_0(s) \cap \mathbb{B}_2(3)\}\}\$$

where the l_k balls with radius r, $\mathbb{B}_k(r)$, k = 0, 1, 2, are taken in p-dimensional space, and $\operatorname{cl}(\cdot)$ and $\operatorname{conv}(\cdot)$ denote the topological closure and convex hull, respectively.

Proof: From Lemma 11 in Loh & Wainwright (2012), we get

$$\mathbb{B}_1(\sqrt{s}) \cap \mathbb{B}_2(1) \subseteq 3cl\{conv\{\mathbb{B}_0(s) \cap \mathbb{B}_2(1)\}\}.$$

Here for a set A, 3A is defined as the set that satisfies $\sup_{\theta \in 3A} < \theta, \mathbf{z} > = 3 \sup_{\theta \in A} < \theta, \mathbf{z} >$ for any z. Let U be a subset of $\{1, \ldots, p\}$ and \mathbf{z}_U be the subvector of \mathbf{z} with only the elements whose indices in U retained. Now when $A = \operatorname{cl}\{\operatorname{conv}\{\mathbb{B}_0(s) \cap \mathbb{B}_2(1)\}\}$, we get $\sup_{\theta \in 3A} < \theta, \mathbf{z} > = 3 \max_{|U| = \lfloor s \rfloor} \sup_{\|\theta_U\|_2 \leq 1} < \|\mathbf{z}\|_2$

 $\boldsymbol{\theta}_{U}, \mathbf{z}_{U} >= \max_{|U|=\lfloor s \rfloor} \sup_{\|\boldsymbol{\theta}_{U}\|_{2} \leq 3} \langle \boldsymbol{\theta}_{U}, \mathbf{z}_{U} \rangle = 3\|\mathbf{z}_{S}\|_{2}, \text{ hence } 3\text{cl}\{\text{conv}\{\mathbb{B}_{0}(s) \cap \mathbb{B}_{2}(1)\}\} = \text{cl}\{\text{conv}\{\mathbb{B}_{0}(s) \cap \mathbb{B}_{2}(3)\}\}. \text{ Thus the results hold.}$

Lemma S.10 implies that if a vector \mathbf{v} satisfies $\|\mathbf{v}\|_1/\|\mathbf{v}\|_2 \leq \sqrt{s}$, then it automatically satisfies $\|\mathbf{v}\|_0 \leq s$.

Bibliography

Agarwal, A., Negahban, S., Wainwright, M. J. et al. (2012), 'Fast global convergence of gradient methods for high-dimensional statistical recovery', *The Annals of Statistics* **40**(5), 2452–2482.

Ledoux, M. & Talagrand, M. (2013), Probability in Banach Spaces: isoperimetry and processes, Springer Science & Business Media.

Loh, P.-L. & Wainwright, M. J. (2012), 'High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity', *The Annals of Statistics* pp. 1637–1664.