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Abstract: Features extracted from aggregated data are often contaminated with

errors. Errors in these features are usually difficult to handle, especially when

the feature dimension is high. We construct an estimator of the feature effects in

the context of a Poisson regression with a high dimensional feature and additive

measurement errors. The procedure penalizes a target function that is specially

designed to handle measurement errors. We perform optimization within a bounded

region. Benefiting from the convexity of the constructed target function in this

region, we establish the theoretical properties of the new estimator in terms of

algorithmic convergence and statistical consistency. The numerical performance

is demonstrated using simulation studies. We apply the method to analyze the

possible effect of weather on the number of COVID-19 cases.

Key words and phrases: Composite gradient descent, COVID-19, non-convex opti-

mization, Poisson regression, measurement error.

1. Introduction

Measurement errors frequently occur to features extracted from aggregated

data sets, such as average temperatures from multiple sensors, owing to the loss

of raw data information after the data aggregation. The measurement error issue

for count outcome prediction has gained great attention in infectious disease stud-

ies where numerous data are collected to predict disease spread. For example,

with the recent outbreak of the COVID-19 pandemic, there is some hope that the

pandemic will ease when the weather becomes warmer. However, conclusions on

the association between climate and COVID-19 infection are varied and contro-

versial. For example, Tosepu et al. (2020) showed that temperature has a positive

association with COVID-19 cases, whereas Jüni et al. (2020) showed that there

is no significant association between climate and COVID-19 cases. Nevertheless,

none of these studies considered the potential error contamination of the climate

data. For example, weather components such as temperature and precipitation

vary within a county, whereas the COVID-19 cases are usually summarized at
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the county-level. Therefore, a natural approach is to aggregate the covariates at

different locations into a county level summary weather covariate, and then to

study the relation between the number of COVID-19 cases and the weather in

the previous several days to account for the virus incubation period. Thus, to

study the relation between the number of COVID-19 cases and the weather, we

face errors in the covariate due to the aggregation.

Although the issue of measurement error has been acknowledged, when the

covariate dimension is high, it is handled only in linear models. In infection dis-

ease studies, counts are the most frequently collected outcomes, and the Poisson

model is widely used to model these data. Hence, there is an urgent need to

develop statistically valid methods to handle measurement error models in high-

dimensional covariate Poisson models. The potential obstacles are as follows. (I)

The Poisson regression function is nonlinear, and hence it is not straightforward

to construct a legitimate loss function that approximates the error-free objective

function or its second derivative. In a linear model Y “ XTβ ` ε, where ε is

a regression error independent of X, the least squares estimator is the solution

of minimizing the loss function n´1
řn
i“1pYi ´ XT

i βq
2. When W “ X ` U is

observed instead of X, under the assumption U X and U ε, an approxi-

mation to the loss function is n´1
řn
i“1pYi ´ WT

i βq
2 ´ βpn´1

řn
i“1 UiU

T
i qβ «

n´1
řn
i“1pYi ´WT

i βq
2 ´ βTvarpUqβ. Similarly, an approximation to the second

derivative of the loss function is varpWq´varpUq. Thus, we can use the new loss

function n´1
řn
i“1pYi ´WT

i βq
2 ´ βTvarpUqβ to obtain an estimator. However,

in a Poisson model, the relation between the response Y and the covariate X is

prpY “ y | Xq “ expp´eX
TβqeyX

Tβ{y!, for y “ 0, 1, . . . , which is nonlinear. A

loglikelihood based loss function is
řn
i“1pe

XT
i β´yiX

T
i βq. It is not obvious how to

correct this loss function when Xi is replaced by Wi, owing to the term ex
T
i β. (II)

As derived in detail in Section 3, the second derivative of the loss function con-

tains random quantities with heavy tailed distributions. Therefore the standard

Poisson Lasso regression, which requires a bounded regression function (Shi et al.

(2019)), cannot guarantee recovering the true parameters. In fact, the second

derivative turns out to be n´1
řn
i“1 e

WT
i β´β

TvarpUqβrtWivarpUqβub2´varpUqu,

which has a heavy tail because W is not bounded. (III) In a Poisson regression,

the conditional mean of the outcome is eX
T
i β. Thus, the conditional mean in-

creases much faster than the linear predictor XT
i β and will easily explode, even if

XT
i β is moderately large. This issue is more prominent in Poisson measurement

error models, owing to the wider range of Wi than Xi and the term involving

varpUq. In fact, even when all Xi are zero, the term βTvarpUqβ can explode,

which leads to a nearly singular second derivative. Hence, controlling the mag-
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nitude of the linear predictor and β is crucial for the algorithm to converge.

Therefore, to study count outcomes with error-corrupted covariates with an

unknown distribution, we develop a novel optimization procedure to address the

three complications raised from the high-dimensional Poisson measurement error

models, and evaluate its theoretical guarantee. These techniques provide foun-

dations on which to study the statistical and numerical properties of estimation

procedures that involve nonlinear regression functions under high-dimensional

measurement error settings. For problem (I), we construct an objective function,

the expectation of which reduces to that in the canonical Poisson regression.

Furthermore, this objective function is shown to nonconvex; hence we propose

a restricted l1 penalty procedure and use the composite gradient descent algo-

ritm to handle the high-dimensional case under the sparsity assumption. For

problem (II), we discover that, conditional on the error prone covariates, the

first and second derivatives of the objective function can be sub-Gaussian and

sub-exponential, respectively. Hence, we define the conditional sub-Gaussian

and sub-exponential distributions, and derive their tail properties. Furthermore,

we separate the response variable from the regression function, and the error

contaminated covariates from the unobservable error-free covariates using these

conditional arguments. Then we show that the conditional exponential decline

implies the marginal exponential decline of the probability measures under weak

conditions. For problem (III), we restrict the parameter searching space to an l2
ball so that the regression function and the eigenvalues of the Hessian matrix do

not explode in this set.

Benefiting from the conditional exponentially decayed tail and the constraints

imposed by the feasible set, the Hessian matrix of the objective function is locally

positive definite. This, with a specific choice of the penalty term, satisfies the

restricted eigenvalue conditions introduced in Section 4, and eventually leads to

the consistency of the estimators.

We rigorously establish the theoretical properties of the new estimator. This

includes showing the statistical properties of the ideal optimizer in Section 4,

and showing the algorithmic convergence of the numerical optimizer to the ideal

optimizer in Section 5. We demonstrate the numerical performance of the new

estimator using extensive simulations. In Section 6, we apply the algorithm to

analyze a COVID19 data set. We conclude the paper in Section 7. Necessary

conditions for the theoretical guarantees are presented in an Appendix. Owing to

space limitations, we provide only intuitive explanations about the lemmas and

theorems. Detailed proofs are included in the supplementary material.
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2. Related Works

Measurement error models are notoriously difficult to handle. The only mea-

surement error model that has received in-depth studies in both low and high-

dimensional feature cases is the linear model. Methods in low-dimensional co-

variate case are well documented in Fuller (1987). Recently, many works have

appeared for the high-dimensional case (Loh and Wainwright (2012); Belloni and

Rosenbaum (2016); Datta and Zou (2017)) as well. However, to the best of our

knowledge, no existing work handles high-dimensional features with measure-

ment errors in nonlinear models. For example, when the response is count data,

although consistent estimators exist separately for the low-dimensional case (Car-

roll et al. (2006)) and for the error-free case Negahban et al. (2009), no research

considers both simultaneously.

In the measurement error-free case, many recommendation system algorithms

have been proposed to explore the feature effects on outcomes, where linear (Sre-

bro, Rennie and Jaakkola (2004); Van den Oord, Dieleman and Schrauwen (2013);

Volkovs, Yu and Poutanen (2017)) and logistic (Dziugaite and Roy (2015); Wang

et al. (2016); He et al. (2017b)) relations are often used to model the mean

structure of the continuous and binary responses, respectively. To handle count

outcomes, Poisson factorization models have been studied (Gopalan, Hofman and

Blei (2013); Gopalan, Charlin and Blei (2014)). Here to avoid the difficulties re-

lated to nonlinear regression, the mean structure of the count response is assumed

to be linear in the feature, while the coefficients are forced to be positive. This

is quite awkward because not all features have positive effects, and the nature of

the positive count data is basically ignored.

Low-dimensional measurement error models are studied extensively in the

statistical community. Measurement error treatments of the Poisson model are

either approximate, such as the regression calibration methods (Carroll et al.

(2006)) and simulation extrapolation methods (Cook and Stefanski (1994)), or

based on estimating equations, such as the efficient score and conditional score

estimators (Stefanski and Carroll (1987)). Most treatments to high dimensional

covariate models are based on penalizing a convex target function, the optimiza-

tion of which in the low dimensional case yields a consistent estimator. This

raises difficulties in transporting the existing estimators to the corresponding

high-dimensional case for Poisson measurement error models, because we can no

longer guarantee the convexity of the objective functions.
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3. Model and Estimator

Let Yi be a count random variable following a Poisson distribution, and

let EpYi | Xiq “ exppβT
0 Xiq, where β0 is the true covariate effect. Here, Xi

is a p-dimensional covariate subject to measurement error, the distribution of

which is unspecified. Let Wi “ Xi ` Ui, where Ui is a normally distributed

measurement error with covariance matrix Ω. Following the common practice in

the measurement error literature, we assume that Ω is known or can be estimated

externally. Without loss of generality, assume EpXiq “ 0. We consider the case

where p ąą n, and assume that the p dimensional parameter β0 has at most

k nonzero entries. Let k ăă n. The observations are written as pWi, Yiq for

i “ 1, . . . , n.

When Xi is observable, β0 can be estimated easily using a maximum likeli-

hood estimation (MLE), that is by minimizing ´n´1
řn
i“1tYiX

T
i β´exppβTXiqu.

Note that for a normally distributed error Ui, it holds that

E

"

exp

ˆ

βTWi ´
βTΩβ

2

˙

ˇ

ˇ

ˇ
Xi

*

“ exppβTXiq. (3.1)

Taking advantage of these relations, we get

E

"

YiW
T
i β ´ exp

ˆ

βTWi ´
βTΩβ

2

˙

ˇ

ˇ

ˇ
Xi, Yi

*

“ YiX
T
i β ´ exppβTXiq.

Motivated by this relation, to handle the high-dimensional covariate issue, we

propose estimating β0 by solving the following constrained minimization problem:

pβ “ argmin
}β}1ďB0

?
K,}β}2ďB0

tL1pβq ` λ}β}1u , (3.2)

at suitable constants B0,K0, where

L1pβq “ ´n
´1

n
ÿ

i“1

#

YiW
T
i β ´ exp

˜

βTWi ´
βTΩβ

2

¸+

.

Note that }β}1 ď B0

?
K is imposed to guarantee that the objective function

satisfies the restricted eigenvalue condition defined in Section 4; }β}2 ď B0 is

stressed to avoid the explosion of the regression function. If we could perform

the optimization with the restriction }β}0 ď K, then the constraint }β}1 ď

B0

?
K would be redundant, given the constraint }β}2 ď B0. However, using

}β}0 ď K as an active constraint is infeasible computationally. The method

(3.2) is closely linked to Loh and Wainwright (2012), with the difference that we
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have the additional constraint on the l2 norm of β.

To solve for pβ in (3.2), we first choose a large value B0 that is guaranteed

to satisfy }β0}2 ď B0. We also set K to be a sufficiently large value. We then

obtain pβ using the composite gradient descent method. Specifically, we update

β recursively through

βt`1 “ argmin
}β}1ďB0

?
K,}β}2ďB0

"

BL1pβ
tq

BβT
pβ ´ βtq `

η

2
}β ´ βt}22 ` λ}β}1

*

, (3.3)

where η ą 0 is a stepsize parameter. To solve (3.3), it is easy to see that, ignoring

the constraints on the norms of β, (3.3) is a typical quadratic function plus a

Lasso penalty. Thus, taking into account the restrictions, we can use existing

algorithms to first obtain

rβt`1 ” argmin
β

"

BL1pβ
tq

BβT
pβ ´ βtq `

η

2
}β ´ βt}22 ` λ}β}1

*

. (3.4)

We then project rβt`1 onto the l1 ball with radius B0

?
K to obtain qβt`1 using the

simplex projection method discussed in Duchi et al. (2008). Finally, if }qβt`1}2 ą

B0, we shrink it to get βt`1 “ qβt`1B0{}qβ
t`1}2. Otherwise, we let βt`1 “ qβt`1.

In the above algorithm, the bound B0 restricts the total search range of

the optimization procedure. One can perform a naive analysis treating W as

X, and use c times the l2 norm of the naive Poisson Lasso regression estimator

as B0. In practice, choosing c ě 2 is a secure practice that we recommend.

Of course, if empirical knowledge is available on B0, one can use it as well.

Similarly, K serves as a sparsity restriction. Note that the upper bound of the

true sparseness is in the order of
a

n{logppq, as assumed in Theorem 1. Therefore,

we set K “ tn{logppqu1{2`ε, where ε ą 0, which is guaranteed to be greater than

the true sparseness asymptotically. In (3.4), the stepsize η is usually chosen in

an ad hoc way (Girshick (2015); He et al. (2017a)). Here, we choose η so that

the l2 norm of the consecutive two outputs is less than 0.01 within the first 100

iterations. Finally, the tuning parameter λ in (3.4) can be chosen using cross-

validation (Friedman, Hastie and Tibshirani (2010)) using
řn
i“1tYi´expppβTWi´

pβTΩpβ{2qu2 as the loss function. We summarize the algorithm as follows, where

the initial value pβ0 can also be the regression calibration estimator.

We point out two key properties of the proposed estimator (3.2). First, the

derivative of L1pβq has mean zero at β0. Second, the mean of L1pβq has the

form of a convex function and, hence, the optimization procedure has statistical

and algorithmic convergence guaranteed asymptotically. These two properties
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Algorithm 1 Algorithm

Inputs: Given pWi, Yiq, i “ 1, . . . , n,Ω, η, λ,M , tol.

Obtain pβ0 from the naive Poisson Lasso regression.
Set B0 “ c}pβ0}2 and K “ tn{logppqu1{2`ε.
for t in 0 to M do

1. Obtain rβt`1 from solving (3.4).

2. Project rβt`1 to the l1 ball with radius B0

?
k to get qβt`1.

3. βt`1 “ qβt`1 minpB0, }qβ
t`1}2q{}qβ

t`1}2.
if }βt`1 ´ βt}2 ď tol, stop.

end for

jointly lead to the consistency property of our estimator under suitable sparsity

and other regularity conditions, as we establish below.

4. Statistical Properties

4.1. Definition and regularity conditions

To prepare for analyzing the theoretical properties of the proposed estimator
pβ in (3.2), we first introduce some notation. We name the set of all β that satisfy

}β}1 ď b0
?
k, }β}2 ď b0 the feasible set, where b0 is a constant. For a matrix M,

let }M}max be the matrix maximum norm, }M}8 be the l8 norm, and }M}p be

the lp norm. For a general vector a, let }a}8 be the vector sup-norm, and }a}p
be the vector lp-norm. Let αminpMq and αmaxpMq be the minimal and maximal

eigenvalues of the matrix M, respectively. To simplify the notation, we define

αminpβq ” αminrEtexppβTXqXXTus,

and

αmaxpβq ” αmaxrEtexppβTXqXXTus.

We use the following restricted eigenvalue (RE) conditions to show the con-

sistency of the estimators, whose various versions are introduced in Bickel, Ritov

and Tsybakov (2009); Van De Geer and Bühlmann (2009), and Loh and Wain-

wright (2012).

Definition 1. (Lower-RE condition). A matrix Γ satisfies a lower RE condition

with curvature a1 ą 0 and tolerance τpn, pq ą 0 if

βTΓβ ě a1}β}
2
2 ´ τpn, pq}β}

2
1, @β P Rp.

Definition 2. (Upper-RE condition). A matrix Γ satisfies an upper RE condition
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with smoothness a2 ą 0 and tolerance τpn, pq ą 0 if

βTΓβ ď a2}β}
2
2 ` τpn, pq}β}

2
1, @β P Rp.

Consider the situation when Γ is the second derivative of the loss function

L1pβq. When the features are correctly measured, Wi “ Xi, Ω “ 0, and

Γ “ n´1
řn
i“1 exppβTXiqXiX

T
i . Thus, Γ is positive definite. However, when

measurement errors occur, the second deriviate of the loss function becomes

Γ “ n´1
řn
i“1 exppβTWi ´ βTΩβ{2qtpWi ´ Ωβqb2 ´ Ωu, which is no longer

guaranteed to be positive definite. In this case, the lower-RE condition ensures

that Γ, even though it may not be positive definite globally, can still be shown to

achieve positive definite properties in the feasible set. The upper-RE condition,

together with lower-RE condition, guarantees the computational convergency of

the composite gradient descent algorithm.

The theoretical properties of our estimator pβ are based on the mild Con-

ditions (C1)–(C6) in the Supplementary Material. To save space, we provide a

brief discussion on the conditions here. Condition (C1) guarantees the bound-

edness and the invertibility of the Hessian matrix EtexppβTqXXTu for β in the

feasible set, that is the second derivative of the log likelihood without a mea-

surement error. Condition (C2) bounds the total variability of both the response

Y and the measurement error U marginally. Condition (C3) essentially controls

the order of |Xij |. A similar requirement is also assumed in Loh and Wainwright

(2012). Condition (C4) constrains the dimensionality in relation to the sample

size. Conditions (C5) and (C6) are not very stringent, and we provide examples

that satisfy the conditions in Section S.2. The lower bounds in (i) of Condition

(C5) and in (S.1) and (S.2) of Condition (C6) are assumed to avoid zero denom-

inators. In the Supplementary Material, we show that all other requirements in

both conditions are satisfied when, for example, }Ω}2 “ Op1q, }covpXq}2 “ Op1q,

and the moments of the conditional sub-Gaussian and sub-exponential norms are

uniformly bounded.

4.2. Statistical consistency

In this section, we establish the main theorem on the statistical consistency

of pβ. To control the error between pβ and β0, we use the optimality of the loss

function that Lppβq ´ Lpβ0q ď 0, for any β ‰ pβ. Writing pv ” pβ ´ β0, by the

Taylor expansion, this leads to

´pvT BL1pβ0q

Bβ
ě

1

2
pvT B

2L1pβ
˚q

BβBβ
pv ` λ}β0 ` pv}1 ´ λ}β0}1, (4.1)
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where β˚ is the point on the line connecting pβ and β0. The inequality in (4.1)

serves as the foundation for all the following derivations. To show the convergence

of pv to zero, we must establish the upper bound for the left-hand side and the

lower bound for the right-hand side of (4.1). However, the marginal distribution

of Wi is unknown, because the distribution of Xi is unspecified. Furthermore, the

distribution of exppβTWiq could be heavy tail even when Wi has a multivariate

Gaussian distribution. Hence, we cannot apply the commonly used joint analysis

of Yi,Wi,β
TWi to establish the consistency. To overcome these difficulties, we

discuss the tail property of }BL1pβ0q{Bβ}8, conditioning on Wi, for i “ 1, . . . , n,

and the tail property of }B2L1pβq{BβBβ
T}2, conditional on βTWi, for i “ 1, . . . , n

and }β}2 ď 2b0. The conditional tail properties are defined based Lemma 1,

3 and on 2, 4 for the conditional sub-Gaussian and sub-exponential variables,

respectively.

Lemma 1. Let F be a sub-field of the sigma-field generated by X. Let KjpFq ą
0, j “ 1, . . . , 4 be functions of random variables in F . Then, the following

properties 1, 2, and 3 are equivalent, and when EpX|Fq “ 0, they are further

equivalent to property 4. In addition, KjpFq can be chosen to satisfy 0 ă c ă

KjpFq{KkpFq ă C ă 8, for all k, j P t1, 2, 3, 4u, where c, C are absolute con-

stants.

1. Tail: There exists K1pFq such that Prp|X| ą t|Fq ď expt1´ t2{K2
1 pFqu;

2. Moments: There exists K2pFq such that Ep|X|k|Fq1{k ď K2pFq
?
k, for all

k ě 1;

3. Super-exponential moment: There exists K3pFq such that ErexptX2{K2
3 pF

qu|Fs ď e;

4. Let EpX|Fq “ 0. There exists K4pFq such that EtexpptXq|Fu ď exptt2

K2
4 pFqu.

Definition 3. A random variable X that satisfies one of the equivalent properties

in Lemma 1 is named a conditional sub-Gaussian random variable with respect

to the sub-sigma field F . The conditional sub-gaussian norm of X with respect

to F , denoted by }X}ψ2pFq, is defined as the smallest K2pFq in property 2. That

is,

}X}ψ2pFq “ sup
kě1

k´1{2Ep|X|k|Fq1{k.
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Lemma 2. Let F be a sub-field of the sigma-field generated by X. Let KjpFq ą
0, j “ 1, 2, 3 be functions of the random variables in F . Then, the following

properties 1, 2, and 3 are equivalent. In addition, KjpFq can be chosen to satisfy

0 ă c ă KjpFq{KkpFq ă C ă 8, for all k, j P t1, 2, 3u, where c, C are absolute

constants.

1. Tail: There exists K1pFq such that Prp|X| ą t|Fq ď expt1´ t{K1pFqu;

2. Moments: There exists K2pFq such that Ep|X|k|Fq1{k ď K2pFqk, for all

k ě 1;

3. Super-exponential moment: There exists K3pFq such that Erexpt|X|{K3pF
qu|Fs ď e;

Definition 4. A random variable X that satisfies one of the equivalent properties

in Lemma 2 is named a conditional sub-exponential random variable with respect

to sub-sigma field F . The conditional sub-exponential norm of X with respect

to F , denoted by }X}ψ1pFq, is defined as the smallest K2pFq in property 2. That

is,

}X}ψ1pFq “ sup
kě1

k´1Ep|X|k|Fq1{k.

Specifically, based on the above definitions and properties, we first establish

the upper bound of the left side of (4.1). It is easy to see that the left side of

(4.1) can be split into three terms:

n´1
n
ÿ

i“1

tYi ´ exppβT
0 Xiqupv

TXi, n
´1

n
ÿ

i“1

Yipv
TpWi ´Xjq,

n´1
n
ÿ

i“1

exp

ˆ

βT
0 Wi ´

βT
0 Ωβ0

2

˙

pvTpWi ´ βT
0 Ωq ´ exppβT

0 Xiqpv
TXi.

The three terms are conditional sub-exponential, conditional sub-Gaussian and

conditional sub-Gaussian respectively. Note that to show the third term is con-

ditional sub-Gaussian, we use the property that Wi, given βTWi and Xi, is still

a Gaussian variable with mean linearly in βTWi, which is crucial to deriving the

tail properties.

Following the properties of the conditional sub-Gaussian and sub-exponential

distributions, the sup-norms of these terms are bounded in the order of Opt
a

n{logppqu, as shown in Lemma S.5 in the Supplementary Material. The bounds

of the three terms combined lead to the sup-norm bound in Lemma 3, which

allows us to bound the left side of (4.1) by the product of an Opt
a

n{logppqu

term and }v}1.
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Lemma 3. Under Conditions (C1)–(C4),

Pr

„

›

›

›

BL1pβ0q

Bβ

›

›

›

8
ą 3 max

"

4e
a

M1, 8eM2C,

2c10M3Q1p1` rq

m3
,
a

72e2M0, 1

*

c

logppq

n



ď 6p´1.

Next, we show that the quadratic form on the right side of (4.1) satisfies the

lower-RE condition by using the fact that it is sub-exponential conditioning on

β˚
T

Wi,Xi, for i “ 1, . . . , n. Although exppβ˚
T

Wi´β˚
T

Ωβ˚{2q, for i “ 1, . . . , n,

can be treated as constant weights, it is necessary to consider their growth under

the high-dimensional setting. We first show the tail property of the Hessian ma-

trix under the finite dimensional settings. Then, using the covering argument, we

show in Lemma S.7 that for growing dimensions, B2L1pβ
˚q{BβBβT still converges

to Etexppβ˚TXiqXiX
T
i u for β˚ in the feasible set in the l2 distance. This rela-

tion, together with the positive-definite property of EtexppβTXiqXiX
T
i u, helps

to establish the lower-RE condition in Lemma 4.

Lemma 4. Assume that Conditions (C1), (C4), and (C6) hold. Then, for suffi-

ciently large n and p, with probability going to one and }β}2 ď 2b0, B2L1pβq{BβBβ
T

satisfies the lower and upper-RE conditions with

a1 “ αminpβq

"

1´
1

2c

*

, a2 “ αmaxpβq

"

1`
1

2c

*

and

τpn, pq “ sup
tβ:}β}2ď2b0u

"

αminpβq

2c

*„

1

32C maxpM4,M5q

c

n

logppq

min

$

&

%

˜

sup
tβ:}β}2ď2b0u

αminpβq

486ce

¸2

, 1

,

.

-

fi

fl

´1

.

Here, c is a constant.

The detailed statement of the above results and their proofs are presented in

the Supplementary Material Sections S.6 and S.7. The above derivations allow us

to bound from above the left-hand side of (4.1) by expressions containing }v}1,

and to bound from below the right-hand side of (4.1) by expressions containing

}v}1 and }v}2. Combining these results and using the sparsity properties of }β0}

and the feasible set property, we further obtain the convergence of v to zero in

both the l1 and l2 norms in Theorem 1.



2034 JIANG AND MA

Theorem 1. Assume that Conditions (C1)–(C6) hold. Define

φ ” 3 max

"

4e
a

M1, 8eM2C,
2c10M3Q1p1` rq

m3
,

a

72e2M0, sup
tβ:}β}2ď2b0u

αminpβqb0
2c
?
c1

, 1

*

,

where c “ 128,

c10 “ max

«

d

18e2m2
3

M3Q2
1p1` rqr

, 1

ff

,

and

c1 “ min

$

&

%

˜

sup
tβ:}β}2ď2b0u

αminpβq

486ce

¸2

, 1

,

.

-

{32C maxpM4,M5q,

C is the constant defined in Condition (C4), M0 is the constant defined in Condi-

tion (C2), M1 and M2 are the constants defined in Condition (C3), m3, M3, and

Q1 are the constants defined in Condition (C5), M4 and M5 are the constants

defined in Condition (C6), and r is an arbitrary positive constant. Further let

λ ě 8{3φtlogppq{nu1{4 and let

?
sτpn, pq “ min

«

sup
tβ:}β}2ď2b0u

αminpβq

p2c
?
sq
,
φ

b0

"

logppq

n

*1{4
ff

,

where s “ c1
a

n{logppq Then, fora vector β0 with sparsity at most k, k ď s,

}β0}2 ď b0, the global minimizer pβ of (3.2) satisfies the bounds

}pβ ´ β0}2 ď
213
?
kλ

191αminpβ˚q
and }pβ ´ β0}1 ď

216kλ

191αminpβ˚q

where β˚ is a point on the line connecting pβ and β0.

A detailed proof of Theorem 1 is provided in the Appendix. We can set

λ “ 8{3φtlogppq{nu1{4 in Theorem 1. Because φ is of order Opp1q, we can see

that when k “ oprtn{logppqu1{2s, pβ is consistent to β0 in the l2 norm, and when

k “ oprtn{logppqu1{4s, pβ is consistent in the l1 norm. Here, we have a larger

penalty than the usual requirement that λ ě 2}BL1pβ0q{Bβ}8, where the latter is

of order Oprtn{logppqu1{2s (Agarwal, Negahban and Wainwright (2012); Loh and

Wainwright (2012)), and the convergence rate is slower than that of the linear

model. This is because the maximum term, such as maxi |Apβ
TWiq|Kgvipβq in
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(S.2), grows at a logpnq rate, while the corresponding quantity in the linear model

is bounded, owning to the property of the sub-Gaussian feature.

5. Algorithmic Convergence

The composite gradient descent algorithm was first proposed to solve convex

optimization problems (Agarwal, Negahban and Wainwright (2012)). Carefully

examining Theorem 2 in Agarwal, Negahban and Wainwright (2012), we found

that the algorithm converges when the loss function is convex in the feasible set,

which holds naturally following the lower-RE condition and the definition of the

feasible set in our problem. Hence, in Theorem 2, we relax the global convexity

required in Agarwal, Negahban and Wainwright (2012). Further, in Theorem

3, we establish the numerical convergence with specific choices of the contract

factors. Note again that the choice of λ is more stringent than the one in the

linear model, because τpn, pq approaches zero more slowly so that a larger penalty

is required to establish convexity in the feasible set.

Now, define M as the subspace of all vectors with support contained within

the support of β0. Recall that the support of a vector is defined as the set

that contains the indices of the nonzero elements of the vector. Let ψpMq ”

supβ:βPM,β‰0 }β}1{}β}2 “
?
k, β˚ be the point between pβ and β0,

γ̄l ” 2αminpβ
˚q

"

1´
1

2c

*

´ 64τpn, pqψ2pMq,

and the contraction coefficients be

κpMq ” ξpMq

"

1´
γ̄l

8αmaxpβ˚qt1` p1{2cqu
`

64ψ2pMqτpn, pq

γ̄l

*

,

where τpn, pq is defined in Definition 1, ξpMq ” t1 ´ 64ψ2pMqτpn, pq{γ̄lu
´1.

Define

βpMq ” 2τpn, pq

ˆ

γ̄l
8αmaxpβ˚qt1` p1{2cqu

`
128τpn, pqψ2pMq

γ̄l

˙

` 10τpn, pq,

and ε2pMq ” 8ξpMqβpMqt6ψpMq}pβ ´ β0}2u
2.

Theorem 2. Assume that Conditions (C1)–(C6) hold. Consider the optimiza-

tion problem (3.2) with the regularization parameter λ ě 8{3}BL1pβ0q{Bβ0}8, and

suppose that for any β in the feasible set, B2L1pβq{BβBβ
T satisfies the lower-RE

and upper-RE conditions with parameters ta1, τpn, pqu and ta2, τpn, pqu, respec-

tively, where
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a1 “ αminpβ
˚q

"

1´
1

2c

*

, a2 “ αmaxpβ
˚q

"

1`
1

2c

*

,

τpn, pq is defined in Definition 1 and β˚ is a point on the line connecting pβ and

β0. Assume κpMq P r0, 1q and

λ ě
32b0

?
k

1´ κpMq
ξpMqβpMq.

Then, for any δ2 ě ε2pMq{p1´ κpMqq, when

t ě
2logrtL1pβ

0q ` λ}β0}1 ´ L1ppβq ´ λ}pβ}1u{δ
2s

logt1{κpMqu

`

ˆ

1`
logp2q

logt1{κpMqu

˙

log2log2

ˆ

b0
?
kλ

δ2

˙

,

we have

}βt ´ pβ}22 ď
2δ2

γ̄l
`

16δ2τpn, pq

γ̄lλ2
`

4τpn, pqt6ψpMqu2

γ̄l
. (5.1)

Theorem 3. Assume that Conditions (C1)–(C6) hold and k “ ortn{logppqu1{2s.

Let

a1 “ αminpβ
˚q

"

1´
1

2c

*

, a2 “ αmaxpβ
˚q

"

1`
1

2c

*

in Definitions 1 and 2, respectively. Let τpn, pq be as defined in Theorem 1. Let

λ ě
8

3
φ

"

logppq

n

*1{4

, λ “ O

„"

logppq

n

*1{4

.

Then, for δ2 “ ε2pMq{p1´ κpMqq and

t ě
2logrtL1pβ

0q ` λ}β0}1 ´ L1ppβq ´ λ}pβ}1u{δ
2s

logt1{κpMqu

`

ˆ

1`
logp2q

logt1{κpMqu

˙

log2log2

˜

b0
?
kλ

δ2

¸

,

we have

}βt ´ pβ}22 “ op}pβ ´ β0}
2
2q `Opkλ

2q. (5.2)

Here, we impose the condition that λ “ Ortlogppq{nu1{4s so that λ2 “

Otτpn, pqu, and hence the last term in (5.1) has order Opkλ2q as shown in (5.2).
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The results in (5.2) shows that the error between βt and pβ consists of two terms:

one term has smaller order than the statistical error, and the other term has

order
?
kλ. Further, by Theorem 1, the l2 norm of the statistical error is upper

bounded by a quantity of order Op
?
kλq. Hence, the algorithmic convergence and

the statistical consistency are achieved simultaneously when
?
kλÑ 0.

Remark 1. Unsurprisingly, the number of iterations needed, t, depends on the

initial value β0. When β0 satisfies

log2

˜

b0
?
kλ

δ2

¸

“ Op

„

L1pβ
0q ` λ}β0}1 ´ L1ppβq ´ λ}pβ}1

δ2



,

then we can stop the iteration and declare convergence when

t ě
d1logrtL1pβ

0q ` λ}β0}1 ´ L1ppβq ´ λ}pβ}1u{δ
2s

logt1{κpMqu
,

for some positive constant d1. On the other hand, if β0 satisfies

L1pβ
0q ` λ}β0}1 ´ L1ppβq ´ λ}pβ}1

δ2
“ op

#

log2

˜

b0
?
kλ

δ2

¸+

,

the convergence is achieved when

t ě d2log2log2

˜

b0
?
kλ

δ2

¸

,

for some positive constant d2.

6. Numerical Performance

6.1. Simulations

We evaluate the proposed estimator for the measurement error Poisson re-

gression model (MPR). We simulated X from the uniform distribution in the

interval p1, 2q. Further, the measurement error U was simulated from the multi-

variate Gaussian with variance Ω, where the pi, jq element of Ω is 0.04ˆ 0.5|i´j|.

We selected Ω so that the variance of U is 1{2 of the variance of X. The num-

ber of nonzero β0 are 4, 6, . . . , 18. The nonzero elements in β0 are k values

equally spaced in the interval r1, 2s. We then simulated Y from the Poisson

distribution with mean exppβT
0 X ´ αq, where α is selected to keep the vari-

ance of Y at 500 to avoid too many zero values. In all estimations, we choose
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Table 1. Performance of the estimators over 100 simulation runs. The result is calculated
as the mean of }pβ ´ β0}2 over 100 simulation times. Naive, Regcal stand for the naive
and regression calibration estimator, respectively.

k “ 6 k “ 10

n p Naive Regcal MPR Naive Regcal MPR

100 64 2.165 1.901 1.268 3.427 3.224 2.598

128 2.261 1.994 1.403 3.489 3.309 2.801

256 2.451 2.184 1.612 3.628 3.415 3.071

200 64 1.837 1.404 0.775 2.939 2.549 1.771

128 1.983 1.611 0.905 2.933 2.584 1.803

256 2.092 1.727 1.013 3.034 2.700 1.978

Table 2. Performance of the estimators over 100 simulation runs for sample size n “ 200.
The result is calculated as the mean of }pβ ´ β0}2 over 100 simulation times.

k p “ 64 p “ 128 p “ 256

18 3.443 3.574 3.736

16 2.914 3.008 3.459

14 2.516 2.932 2.899

12 1.955 2.351 2.544

10 1.771 1.803 1.978

8 1.115 1.387 1.474

6 0.775 0.905 1.013

B0 “ b0tn{logppqu1{4`0.01 and K “ 0.25ktn{logppqu1{2`0.02, where b0, and k are

the l2 and l0 norms, respectively, of the initial estimator. Furthermore, we set

λ “ 20tn{logppqu1{4 and η “ 2e4, 4e4, 8e4 for p “ 64, 128, 256, respectively. We

present results with different choices of n, p, c in Table 1, Table 2, and Figure 1.

Clearly, when
a

n{logppq{k increases, the mean l2 error decreases. Furthermore,

increasing n{logppq also reduces the estimation error.

We compare the MPR with the naive and regression calibration methods,

described as follows. In the naive method, we treat W as the measurement error

free covariate and obtain the estimators through the Poisson regression. For the

regression calibration method, we replace W by EpX|Wq in the Poisson regres-

sion to obtain the estimators, where the true distribution of X is used to obtain

EpX|Wq. We impose the Lasso penalty in both procedures, where the corre-

sponding regularization parameters are chosen using 10-fold cross-validation. It

can be seen that the MPR and the regression calibration methods outperform the

naive estimator, and the MPR always performs best among all three estimators

in terms of generating the smallest mean l2 errors.
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Figure 1. Comparison of the MPR, naive (Naive), and regression calibration (Regcal)
estimators.

Next, we study the statistical convergency in Theorem 1 by examining the

relation between the empirical average of }pβ´β0}2, the sample sizes, and the order

of k´1λ´2, that is,
a

n{logppq{k in Figure 2. In this simulation, we choose k “
?
p

and vary n, p values. As we show in Theorem 1, }pβ´β0}2 converges in the order of

Op
?
kλq. Hence, it is expected that }pβ´β0}2 will decrease along with an increase

in both
?
n and

a

n{logppq{k. When we plot }pβ´β0}
2
2 versus

?
n, the estimation

error curves corresponding to different p values are well separated, with curves

corresponding to larger p values below those corresponding to smaller p values,

reflecting the obvious fact that a smaller parameter dimension leads to a better

estimation. On the other hand, when we plot }pβ ´ β0}
2
2 versus

a

n{logppq{k,

the curves corresponding to different p values align very close to each other,

reflecting the results in Theorem 1 that the convergence rate is
a

n{logppq{k and

the dependence of the convergence on p is fully captured by
a

n{logppq{k.

We further investigate how the MPR performs when U is not multivariate

normal. To reflect the heavy-tailed errors and the nonsymmetric errors, we gen-

erate U from a Student’s t distribution with 2 degrees of freedom and from a

gamma distribution with both the shape and the scale parameters equal to two,

respectively. We then standardize U to have mean zero and variance Ω, identical
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Figure 2. The convergence of the MSE, the average of }pβ ´ β0}
2
2 over 100 simulations.

to that in the normal error case. We compare }pβ ´ β0}2 from the naive, regres-

sion calibration, and the MPR methods. The results in Table 3 suggest that

although the MPR is proposed under the assumption that U has multivariate

normal distribution, it still outperforms the naive and the regression calibration

method when the normal assumption is violated.

6.2. Analysis of COVID-19 data

The COVID-19 pandemic has significantly impacted our lives, with some

people hoping that the situation will improve when summer arrives. Thus, we use

the proposed method to study the association between COVID-19 occurrences

and climate in n “ 119 U.S. counties, roughly consisting of the top three to

five counties in each state for COVID-19 cases, with sufficient climate records

in March. The outcome Yi is the number of cumulative cases per thousand

people on April 1st from the ith county. The corresponding covariate Xi has

dimension 94, with its first component 1 to account for the intercept effect, and

the remaining components are 93 climate variables. Specifically, in the period

2020/03/01 to 2020/03/31, we use Xi2, . . . , Xi32 to denote daily precipitation,

Xi33, . . . , Xi63 to denote daily average temperature (the mean of the minimal and

maximal daily temperatures), and X64, . . . , X94 to denote the daily temperature

change (the difference between the maximal and minimal temperatures). The

true Xi is usually not available. Based on information from the National Climatic

Data Center (http://www.ncdc.noaa.gov), we collect data from multiple sensors

in each county at different locations. Denote the reading of the sensor at the

jth location in county i as Zij . We assume Zij “ Xi ` Uij , where Uij is a

measurement error. Let Wi “
řnj

j“1 Zij{ni “ Xi `Ui be the observed climate

data, where Ui “
řni

j“1 Uij{ni and ni is the number of sensors in county i.

We use the duplicated measurements Zij to estimate the covariance of Ui as

http://www.ncdc.noaa.gov
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Table 3. Performance of the estimators over 100 simulation runs when the distributions
of U are, respectively Student’s t and gamma distributions. The result is calculated as
the mean of }pβ ´ β0}2 over 100 simulation times. Naive and Regcal stand for the naive
and regression calibration estimators, respectively.

k “ 6 k “ 10

n p Naive Regcal MPR Naive Regcal MPR

Student t distribution

100 64 3.102 2.313 1.901 4.398 3.483 3.021

128 3.294 2.577 2.041 4.609 3.949 3.492

256 3.412 2.732 2.290 4.696 4.155 4.198

200 64 3.169 2.281 1.690 4.050 3.024 2.421

128 3.048 2.082 1.402 4.173 3.032 2.380

256 3.249 2.289 1.698 4.458 3.314 2.705

Gamma distribution

100 64 2.162 1.811 1.194 3.108 2.883 2.111

128 2.390 1.996 1.424 3.374 3.083 2.499

256 2.541 2.194 1.611 3.693 3.372 2.866

200 64 2.072 1.568 0.872 2.746 2.252 1.516

128 1.989 1.525 0.871 3.098 2.659 1.876

256 2.137 1.667 0.945 2.982 2.560 1.811

pΩ “
řn
i“1

řni

j“1 n
´2
i tZij ´

řnj

j“1 Zij{niu
b2{n.

We first compare the prediction performance of the MPR method and the

naive method (Poisson Lasso regression) using three-fold cross-validation with

70% training data and 30% testing data. For the naive method, we use expprβTWiq

as a predictor for Yi in the testing sample, where rβ is the Poisson Lasso regres-

sion estimator based on the training sample. For the MPR method, we use

expppβTWi ´ pβT
pΩpβ{2q as a predictor for Yi in the testing sample, where pβ is

the MPR estimator based on the training sample. The tuning parameters are

selected based on the strategies described in Section 3.

We plot the box plots of the mean absolute errors of the two methods from

100 cross-validations in Figure 3. Figure 3 shows that the MPR method outper-

forms the naive method, with a significantly smaller prediction error. We further

show the parameter estimators from the two methods and the corresponding 90%

confidence intervals from 1,000 bootstraps in Figures 4 and 5. Figure 5 shows

that the naive method picks up the average temperature on March 30th and

the temperature changes on March 15th and 30th as important predictors for

Yi. The estimated effects and the 90% confidence intervals are -0.102 (-0.003,

-0.216), -0.063 (-0.006, 0.125), and -0.056 (-0.001, -0.114), respectively. However,
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Figure 3. Mean prediction errors from 100 cross validations.
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Figure 4. Estimated effect from the MPR method for the average temperature (top left),
temperature change (top right), and precipitation (bottom). The error bars represent
90% confidence intervals. No significance is detected.
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Figure 5. Estimated effect from the naive method for the average temperature (top left),
temperature change (top right), and precipitation (bottom). The error bars represent
90% confidence intervals. Blue represents negative significance.

after adjusting the measurement errors, the MPR method suggests that neither

the precipitation nor the temperatures have any significant effect on the number

of cases on April 1st. Because the significance captured by the naive method may

attribute to the measurement error, there is no strong evidence to support that

climate changes will mitigate the spread of COVID-19.

To show the robustness of the MPR method, we implement the MPR and the

naive methods on a set of error-perturbed artificial data. To generate the artificial

data, we simulate the noise from mean zero multivariate normal distributions

with covariance matrix γ pΩ, where γ “ 0.7, 1.1, 1.5. Then, we add the noise to

the orignal design matrix to form the new design matrices with increased error
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Figure 6. Mean prediction errors from 100 cross-validations for γ “ 0.7, 1.1, 1.5 from left
to the right.

corruption. Figure 6 contains the prediction errors from the three-fold cross-

validations, which suggests that the MPR is consistently better than the naive

method, producing smaller prediction errors. In addition, the MPR is robust to

the error corruptions with consistently low prediction errors, while the prediction

errors for the naive method increase with the noise levels. Furthermore, we show

the estimated covariate effects and their confidence intervals under each setting

in Figure 7 and Figure 8, respectively. Figure 7 shows that the results from the

MPR are coherent across all settings, suggesting there is no significant association

between the outcome and the covariates. On the other hand, Figure 8 shows that

the naive method leads to different conclusions when γ changes. These results

further justify that the MPR is protected from the covariate error contamination.

On the other hand, the naive estimator generates a large deviation from the truth

by ignoring the error corruptions.

7. Conclusion

Count outcomes are one of the most frequently used endpoint results in infec-

tious disease studies and are attracting increasing attention in epidemiology. The

corresponding regression models often naturally have high-dimensional features,

and measurement errors in these features are often unavoidable. However, the

Poisson regression model, which is the standard model used to handle count data

responses, is not studied in this context, owing to its difficulties.

To fill this gap, we study the Poisson regression under the high-dimensional

covariate setting with errors in the features. We construct an explicit objective

function and devise a computational algorithm under the sparseness assumption

of the parameters. By adding the measurement error structure, the proposed

model corrects the erroneous results obtained from the naive error-free treatment.
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Figure 7. Estimated effect from the MPR method for the average temperature (left),
temperature change (middle), and precipitation (right), and for γ “ 0.7 (top), γ “ 1.1
(middle), and γ “ 1.5 (bottom). The error bars represent 90% confidence intervals.
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Figure 8. Estimated effect from the naive method for the average temperature (left),
temperature change (middle), and precipitation (right), and for γ “ 0.7 (top), γ “ 1.1
(middle), and γ “ 1.5 (bottom). The error bars represent 90% confidence intervals.
Green and blue represent the positive and negative significances, respectively.

We hope further research will extend our work to other regression models and

more complex measurement error structures.
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Supplementary Material

The online Supplementary Material includes the comprehensive proofs of all

theoretical results.
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