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Abstract: Under the high-dimensional setting that the data dimension and sample
size tend to infinity proportionally, we derive the limiting spectral distribution and
establish the central limit theorem of the eigenvalue statistics of rescaled sample
correlation matrices. In contrast to the existing literature, our proposed spectral
properties do not require the Gaussian distribution assumption or the assumption
that the population correlation matrix is equal to an identity matrix. The asymp-
totic mean and variance-covariance in our proposed central limit theorem can be
expressed as one-dimensional or two-dimensional contour integrals on a unit circle
centered at the origin. Not only is the established central limit theorem of the eigen-
value statistics of the rescaled sample correlation matrices very different to that of
sample covariance matrices, it also differs from that of sample correlation matrices
with a population correlation matrix equal to an identity matrix. Moreover, to
illustrate the spectral properties, we propose three test statistics for the hypothesis
testing problem of whether the population correlation matrix is equal to a given
matrix. Furthermore, we conduct extensive simulation studies to investigate the
performance of our proposed testing procedures.

Key words and phrases: Central limit theorem, limiting spectral distribution, ran-

dom matrix theory, rescaled sample correlation matrix.

1. Introduction

With the rapid development of computer science, it is possible to collect,
store, and analyze high-dimensional data sets. However, the classical statistical
tools often are invalid when presented with such data. The high-dimensional
sample correlation matrix is an important random matrix for principal component
analysis, factor analysis, and human brain image analysis, among others. Let the
sample y1, ...,y of size n be from a p-dimensional population y with unknown
mean p, covariance matrix 3, and correlation matrix

R = [diag(%)]"/*Sdiag(£)]""/?,
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where diag(X) is a diagonal matrix formed by the diagonal elements of ¥. The
sample covariance matrix and sample correlation matrix are defined respectively
as

n

Sp = (”_1)71 Z(Yi_}_’)(Yi_S’)Ta R, = [diag(sn)]ilﬂsn[diag(sn)]ilﬂa (1.1)
=1

with the sample mean y =n"! > | y;.
1.1. Existing literature

Many works have studied the spectral properties of the high-dimensional
sample covariance matrix S,; see, for example, Marcenko and Pastur (1967)), Sil-
verstein and Choi (1995), Bai and Silverstein| (2004)), and |Zheng, Bai and Yao
(2015). However, |Gao et al| (2017)) showed that the central limit theorem (CLT)
of the eigenvalue statistics of the sample correlation matrix f{n differ from those
of the sample covariance matrix S,,, although for R = I,. Kullback! (1967) found
that the CLTs of the eigenvalue statistics of rescaled sample correlation matrices
ﬁnR_l are also very different for R = I, and R # I,. Moreover, [Fan, Guo
and Zheng (2020) showed that using a sample correlation matrix leads to signifi-
cant advantages over using a sample covariance matrix in some statistical cases.
These facts show that studying high-dimensional sample correlation matrices is
important and necessary for random matrix theory.

Under the high—dimensional setting that p/n — p € (0,00), for sample cor-
relation matrices Rn, researchers are often interested in studying the limiting
spectral distribution (LSD) of F},(x) and the CLT of the eigenvalue statistics Ly,
as follows:

P P
F,(x) :pflzé()\R" < x) Zg
j=1 j=1
where {)\JR", j=1,...,p} are the eigenvalues of R,, 6 (+) is an indicator function,

and ¢(-) is an analytic function. For the LSD of ﬁn, Jiang (2004a)) obtained
the M—P law of R,, under the assumption that R = I,. [Karoui (2009)) derived
the LSD of f{n under the elliptical population assumption. For the CLT of f{n,
Gao et al.| (2017) derived the CLT of the linear spectral statistics for R = I,,.
Mestre and Vallet| (2017) derived the CLT of the linear spectral statistics under
a Gaussian population with a zero mean vector. |[Jiang| (2019) derived the CLT
of 378 log( ") under Gaussian populations.

Recently, Morales—Jimenez et al. (2019)) investigated the asymptotics of the
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eigenstructure of sample correlation matrices under high-dimensional spiked mod-
els; see|Aitkin! (1969), Jiang (2004b), Li, Liu and Rosalsky| (2010)), Xiao and Zhou
(2010)), |Cai and Jiang| (2011), Cai and Jiang (2012)), Shao and Zhou| (2014), and
the references therein. Research under R # I, and non-Gaussian distributions
is more challenging. In fact, Jiang| (2019)) showed that research under R # I, is
more difficult than that under R = I,.

1.2. Our contributions

The existing literature for high-dimensional correlation matrices imposes
more restrictive conditions, such as the Gaussian assumption or R = I,. As
a result, these existing results cannot solve the problem with a non-Gaussian
population and R # I,. Thus, the aim of this study is to examine the spectral
properties of high-dimensional rescaled sample correlation matrices f{nR_l.
Our contributions to the existing literature are as follows:

(I) This study derives the Stieltjes equation of the LSD of high-dimensional
rescaled sample correlation matrices f{nR_l under the convergence regime
p/n — p € (0,00). The assumption R = I, and spherical distributions are
not required. It is interesting that the LSD of R,R! is just the standard
Marcéenko—Pastur law with the index p.

(IT) This study establishes the CLT of the eigenvalue statistics of high-dimensional
rescaled sample correlation matrices f{nR_l under the convergence regime
p/n — p € (0,00). Although our proposed CLT closely depends on the
population correlation matrix R, the asymptotic mean and asymptotic vari-
ance of our proposed CLT have explicit forms that can be expressed as
one-dimensional or two-dimensional contour integrals on a unit circle {£ =
r +iv : 2? + 2 = 1}. In particular, under the assumption R = I,, the
asymptotic mean and asymptotic variance of our proposed CLT have much
simpler explicit forms, which are independent of the population kurtosis.

The reminder of the paper proceeds as follows. Section 2 presents the limit-
ing spectral distribution of high-dimensional rescaled sample correlation matrices.
Section 3 establishes the CLT of the linear spectral statistics of high-dimensional
rescaled sample correlation matrices. To illustrate our proposed limiting theo-
rems, Section 4 provides an application to test whether the population correlation
matrix is equal to a given matrix. Extensive simulation studies are also presented
in Section 4. Then, Section 5 concludes the paper. Proofs are included in the
online Supplementary Material.
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2. Limiting Spectral Distribution

Before studying high-dimensional rescaled sample correlation matrices, we
first provide three assumptions.

Assumption 1. Samples satisfy the following independent component structure:
yl:H—’_FX’H izl)"')”v
where By; = p, T = [diag(Z)]"?RY? and x; = (214, .., 2pi)" .

Assumption 2. Assume that {z;;,j = 1,...,p,i = 1,...,n} are independent
and identically distributed (i.i.d.), with

Exzj; = 0,Ex3 = 1, E(jzji|*(log(|z;i]))*™) < oo,
for a small positive number € > 0.

Assumption 3. The convergence regime is p, = p/n — p € (0,4+00).

In fact, if there is an 0 < ¢ < 1 such that the (44¢) th moment of 1 ; exists,
then Assumption B is satisfied. Assumption C requires that the dimension p and
the sample size n diverge proportionally.

For simplicity, let {)\;,j = 1,...,p} be the eigenvalues of R-'R,. The
empirical spectral distribution (ESD) of R!R,, is defined as

p

Fu(z)=p ') 6(\ <a).

j=1
The following theorem provides the form of the LSD of F,(z).
Theorem 1. Under Assumptions 1-3, the empirical spectral distribution F,(x)

of R_lﬁn converges almost surely to the Marcenko—Pastur law with the index p,
as follows:

1
f (x) _ o2 pa \/(bp - l’)(l‘ - ap)v Zf Gp <z< bp,
P =

0, otherwise,

(2.1)

where a, = (1 — /p)?, and b, = (1 + \/p)>.
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3. CLT

Let {\;,j =1,...,p} be the eigenvalues of Rflﬁn. Define the linear spectral
statistic (LSS) of R™!R,, as

p
Le=Y _g()), (3.1)
j=1

where ¢(-) is a given analytic function. We are now interested in the fluctuation of
L,. We study the LSS because many commonly used statistics can be expressed
as the LSS. For illustration, we provide three examples:

Example 1. When g(z) = z*, we have L, = ?:1 )\f = tr[(R™IR,)F);
Example 2. When g(z) = (z—1)2, we have L, = D (N 12 = tr[(R'R,, —
Ip)2]§

Example 3. When g(x) = logz, we have Ly, = 25:1 log \j = log |R_1f{n|.

To establish the CLT of the LSS of R_lﬁn, for fixed K and known functions
g1, ---, 9K, we consider the K-dimensional random vector (W (g1), ..., W(gk)),
where

Wig) = 0i0) = p [ 9ol (2)do. =L K,
j=1

and f,._, () is defined in (2.1) with p,—1 = p/(n —1). We also impose the
following assumptions for our results concerning the CLT of the LSS of R™'R,,:

Assumption 4. The functions ¢1,...,9x are analytic functions in a domain
containing the support set [a,,b,] of the Marcenko—Pastur law in (2.1)).

Assumption 5. Assume that {xj,j=1,...,p,i=1,...,n} are i.i.d. with
Exj; =0, Ea}; = 1, Eaj; = B, + 3+ o(1), E(|zji|* (log(|z;i])*+*)) < oo.

Assumption 6. Assume

p P P
ag = lim p ! ZZgzhezRflpek, ar = lim p~! Z e%RflegT’;%g,
pP—00 p—0
k=1 h=1 k=1
p p
cg = lim p~* ZZg,%h, dr = lim p~'tr(R?),
p—00 p—00
k=1 h=1
P P
he = lim p™' Y e R 'eirwe > _ 9704
R p_)oop k AN 9en9khs

ks
~
Il

1 h=1
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where RY? = (gi1), R = (rgn) and e; is the jth column of the p x p identity
matriz, for j =1,...,p.

Remark 1. Here, two examples are given to show that Assumption F can be
satisfied. (i). When R = I,,, it is easy to see that R/2 = R™1/2 = R™! = I,,.
Thus, we have a, = ar = ¢, = dg = hg = 1. (ii). When R = (1 — 7)I, + 7117,
with 7 € (=1, 1), we have

1 T
I, - (1—7)1+(p—1)7)

RY2 = 111, + V1+p—-Dr— /(1 - T)llT’

p
—1)

R !=

1—71

-1/2 _ 1 _\/1+ \/(1_7') T
Y et ey, ey rpg s iy e sl

IfT:C/\/f),thenag:aR:cg:thlanddR:1+C’2.

The following theorem states our main results concerning the CLT of the
LSS of R™'R,.

Theorem 2. Under Assumptions 1 and 3-6, the random vector (W (g1), ..., W(gx))

converges weakly to a multivariate Gaussian random vector (Xg,, ..., Xg,) with
1
EX,, = ~3 ng(z)EM(z) dz
and

1
Cov(Xy, Xo,) = =gz §, g0 (200 (22)Cov (M (21), M (22) don o,

for £,01,0 € {1,..., K}, where C,Cy1, and Co are three non-overlapping contours
including [a,, b,), C1, and Ca, the contour integral f is anticlockwise, and EM (z)
and Cov(M (z1), M (z2)) are calculated as follows:

_ pP () +s(2) Beps(2)s'(2)
EM(z) = [1— ps2(2)(1 —|—§(z))—2]2 + 1+ s(2)3
s'(z)  [10 —2ar + Bx(4ag + cg — hr)lp

T+ s(2)]? 4 (3:2)
4 s'(z)  [6—2ar + Bu(dag — cg — hr)]p
[1+5(2)] 2 ’

and
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s'(21)8'(22) 1
Cov(M , M 2 3.3
v(M(z1), M(22)) = (o) — s (=) (3.3)

s'(21)8'(22)
+2(d 2
R D ) 20+ s(2)?
where ' is the derivative notation, and s(z) is the unique solution to z = —§_1(z)+
52

s2(2)/{1 = ps*(2)[1 + 5(2)] 7}

To simplify the mean and the covariance, we derive the following corollary,

p(1+5(2))7 L, which leads to s'(z) =

where the contour becomes a unit circle centered at the origin.

Corollary 1. Under Assumptions 1 and 3-6, the random vector (W(¢g1),...,
W(gKk)) converges weakly to a multivariate Gaussian random vector (Xg,, ...,
Xgi), with

EXy, = lim L j’{ 9e(1+/p€ + /P +p) <§2_5T_2—2> de

r—1+ 271
ll€l=1
+4aR — 12+ B.(4 — 8ay + 2¢, + 2hR) f{ ge(1+ /pE+ /pE 1 +p) g
& €3
ll€l=1
[2ar — 2 + Bz(—4ay + 3¢y + hr)]\/P 9e(L+ /€ + /P +p)
+ . 5 dg,
8mi ¢
ll€l=1

and

Cov(ngl X%

ge, (11 + /PEN1?)ge, (11 + /PEII?)
rligl"'ﬁ 7{ 7{ (& —1&2)? A2y
l€: =1 [[€2]1=1
o [ e B sl )
l€: =1 l€21=1

for €41,y € {1,..., K}, where the integral § is anticlockwise, and |1+ /p€||* =
L+ /p€ 4+ /P~ + p, for & satisfying ||€] = 1.

We provide some examples to illustrate the application of Theorem 2.

Example 4. When R =1, it is easy to see that a; = ar =cy = dr = hg = 1.
Then, EX,, and Cov(X,, , X, ) can be further simplified as
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BX, = lim o § a4 Vi Vi o) (gt ) 46

r—1+ 27l £ &
lgll=1
-1 ge, (11 + /EN1*)ge, (11 + /PENI?)
X, , X =1 —
Cov(Xy,,, Xg,.,) Jim o & — 1622 d&ad&,
=1 1&]I=1
1 (1 + LI+
Ll f ge, (]| 2\/ﬁ§1H i, % e, (|l \f&”)d@,
2T &
&]=1 llg2ll=1

where ¢, 01,0, € {1,...,K}.

Example 5. Letting g,(z) = 2¢ for £ = 1,2,3,4 and g5(z) = log z, we have the
centering terms:

/ G1(2)fy_ (2)dz = 1, / 02(@)fy, (@)dz = 1+ pu_y,
93(x) fp,_, (x)dx = 1+ 3pn_1 + piy_1,

94(2) fo, , (¥)dz =1+ 6pp_1 +6pp_1 + pi_1,

—— —

n—1 — 1
95(@) f ()de = 2L log(1 =y, 1) = 1, p0 1 < 1,

Pn—1

the mean

EX, = (=0.5+0.5ar)p + Bz(—ay + 0.75¢, + 0.25hR ) p,

EX,, = (=3 +2ar)p + (=1 4+ ar)p?® + Bu(1 — 4a, + 2¢, + hr)p
+Be(—2ag + 0.5k + 1.5¢,)p?,

EX,, = 1.5(—1+ar)p® + 1.5(=7 + 5ar)p* + 1.5(—5 + 3ar)p
+8:[0.75(—4ag + 3¢y + hr)p® + (3 — 15a4 + 8.25¢, + 3.75hR ) p?]
+8:(3 — 9a, + 3.75¢, + 2.25hR)p,

EXy, = (=2 + 2ar)p(1 + p)* + 6(—=3 + 2ar)p(1 + p)? — 2arp” + 6(1 — ar)p
+8:[(—4ag + 3¢y + hr)p(1 + p)® + 3(2 — day + ¢y + hr)p(1 + p)?]
+B:[3(—4ag + 3¢, + hr)p* (1 + p) + 2(2 — dag + ¢4 + hr)p?],

EX,, =0.5log(1 —p) + p+ 0.58,(cg — 1)p,

and the variance-covariance

Var(X,,) = 2p(dr — 1), Var(X,,) = 49° + 8o (14 p)* (dr — 1),
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Var(Xg,) = 6p° + 369 (1 + p)* + 9p[(1 + p)* + p]*[2(dr — 1)],
Var(Xg,) = 80" +96p°(1 + p)* + 16p*[2p + 3(1 + p)*)?

+16p(1 + p)*[3p + (1 + p)*P*[2(dr — 1)),

Var(X,,) = ~2log(1 - p) — 20 + p[2(ds — 1)),
Cov(Xgr, Xp,) = 20(1 + p)[2(dr — 1),

Cov(Xy,, Xg,) = 3pl(1+ p)* + p)[2(dr — 1),

Cov(Xy,, Xg,) = 4p[3(1 + p)p+ (14 p)*I[2(dr — 1)),

Cov(Xg,, Xg,) = 1297 (1 + p) +6p (1 + p) [(1 + p)* + pl[2(dr — 1)],
Cov(Xy,, Xg,) = 8p%[2p + 3(1 + p)?]

(
+8p(L+p)[3(1+ p)p + (1 + p)°][2(dr — 1)),
Cov(Xg,, Xg,) = 24(1 + p)p° + 24p%(1 4 p)[2p + 3(1 + p)?]
+120[3(1+ p)p + (1 + p)°][(1 + p)* + pl[2(dr — 1)),

Cov(Xy,, Xg,) = p[2(dr — 1)},

Cov(Xy,, Xy,) = —2p +2p(1+ p)[2(dr — 1)),

Cov(Xg,, Xg,) = 2p° = 6p* (1L + p) +3p (1 + p)* + p) [2(dr — 1)),
Cov(Xy,, Xg,) = —2p +8(14p)p* —4p” (20 +3(1 + p)?)

+4p(1+p) 3p + (14 p)*) [2(dr — 1)).

2015

Example 6. Let g/(z) = 2¢ for £ = 1,2,3,4, and g5(z) = logz. When R = I,

we have the mean

EX, =0, EX,, = —p, EX, = —-3p>—3p,
EX,, = —6p(1 + p)? — 2p%, EX,, = 0.5log(1 — p) + p,

and the covariance

Var(X,,) =0, Var(X,,)=14p% Var(X,,)=6p>+ 36p°(1 + p)?,

)

Var(X,,) = 8p* + 96p3(1 + p) + 16p%[2p + 3(1 + p)*?,

Var(X,,) = —2log(1 — p) —2p, Cov(X,,,X,) =0, j=2,3,4,5
Cov(Xy,, Xg,) = 12p°(1+p),  Cov(Xy,, Xy,) = 80%[2p + 3(1 + p)?),
Cov(Xy,, Xg;) = —2p?, Cov(Xy,, Xg,) = 2p° — 6p(1 + p),
Cov(Xg,, Xg,) = 24(1 + p)p° + 2497 (1 + p)[2p + 3(1 + p)?],

Cov(Xg,, Xg) = —2p" +8(1 4 p)?p® — 4p* (20 + 3(1 + p)?) .
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4. An Application and Simulation Studies
4.1. An application

We apply our proposed CLT of eigenvalue statistics of high-dimensional
rescaled sample correlation matrices, to study the hypothesis testing problem

that the population correlation matrix is equal to a given matrix:
H()ZR:R() vV.S. H1 :R#Ro, (41)

where Ry is a prespecified matrix. Let f{n be the sample correlation matrix.
Under the null hypothesis Hy, [Kullback| (1967) showed

T = (n — D{tr(Ry'Ry) — log(Ry'Ran) — p} = X2(,_1) 2

Based on the different distance between ﬁn and Ry, our three proposed test
statistics are as follows:

Ty = tr[(Ry 'R, — 1,)Y], To = tr[(Ry 'Ry, — L)%, T3 = log Ry 'Ry

By Example 5, asymptotic distributions of 77, T5, and T3 are derived in the
following theorem.

Theorem 3. Under Assumptions 1 and 3—6 and under Hy, we have

oy H(T1 = ) = N(0,1), 0< py1,
02_1(T2—M2)—>N(O, 1), O<pn_1,
0371(T3*M3)*>N(07 1)’ O<pn71 < 17

where

= ppi_ + 2pp2_1 + EX,, — 4EX,, + 6EX,, — 4EX,,

p2 = ppn—1 + EXg, — 2EXg,,

p3 = p(pn-1 = 1)(pp-1)""log(1 — pu_1) — p + EXy,,

o} = Var(X,,) + 16 Var(X,,) + 36 Var(X,,) + 16 Var(X,,) — 8Cov(X,,, X,,)
+12Cov(Xy,, Xg4,) — 8Cov(Xy,, X4,) — 48Cov(Xy,, Xy, )
+32Cov(Xg,, Xg,) — 48Cov(Xy,, Xy, ),

03 = Var(X,,) — 4Cov(X,,, X,,) + 4 Var(X,,), o3 = Var(X,,),

5

where p,—1 = p/(n—1), EX,,, Var(Xy,), Cov(X,, , Xy, ) with €, 01,0y € {1,2,3,4,

5} are as in Example 5, where p can be replaced by pp—1.
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Then, the rejection region of the test statistic T; at the test level 5% is

{x1,. ., %n 1 0 | Ti — il > qo.oms},
for i = 1,2, 3, where qg.975 is the 97.5% quantile of N(0,1).

4.2. Simulation studies

In this subsection, the results from extensive simulation studies are presented
to evaluate the performance of our three proposed test statistics. Without loss of
generality, assume that the sample (y1,...,yy) is drawn from a population with
mean zero and covariance matrix 3. The dimension is taken as p = 100, 200, 400,
and p = p/n is taken as 0.1,0.5,0.8. We consider two models:

Model 1: ¥ = U(I, + D)UT + Glglp, where 1, is the p-dimensional vector
with all elements being one, U is the eigenvector matrix of ZTZ with
all the elements of Z = (z;j);j=1,.p being ii.d. from N(0,1), and D =
diag(di1,...,dpp) is a diagonal matrix with dii,...,dp, being i.i.d. from
the uniform distribution U (0, 1);

Model 2: X = (s;9)pxp, Where
sijo = 2(1—p /2=l 4 9P71/25{i:j}7
with d7y being an indicator function, for 7,5 =1,...,p.

In both models, we set § = 0 to evaluate the empirical size, set § = 0.01,0.02
to examine the empirical power. The nominal test size is a = 5%. Tables 1 and
4 present the empirical sizes for Gaussian and non-Gaussian distributions under
Model 1 and Model 2. Tables 2-3 and Tables 5—6 present the empirical power of
the Gaussian and non-Gaussian distributions when 6 = 0.01 and ¢ = 0.02 under
Model 1 and Model 2, respectively. Our proposed tests 11,715, T3 are compared
with Tk proposed in Kullback (1967) and T (T is a special case of T, with
R = 1I) proposed in (Gao et al.|(2017). For each setting, we run the simulation
10,000 times.

The simulation results show that for Models 1-2, Tk becomes invalid for
large p because Tk is proposed for fixed p. T is invalid for R # I because T
is proposed for R = I. T3, T5, and T3 have empirical sizes close to the nominal
test size of 5% for small or large dimension p. In particular, 77 may have slightly
higher empirical test sizes, because T contains the sums of the fourth powers of
the sample eigenvalues of f{nRg 1 Then, if there are some large top eigenvalues,
the variance of 77 may be large, which will influence the finite-sample performance
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Table 1. Percentages for the empirical size for Gaussian and Non-Gaussian populations
under Model 1.

Empirical sizes for 8 = 0 under Model 1

Population Normal Gamma

p p Ty T, T3 Tk Ta Ty Ty T3 Tk Tg
100 4.58 4.81 5.01 56.0 0.00 4.90 5.04 5.45 56.1  0.00

0.1 200 491 5.01 5.06 96.7 0.00 524 498 4.78 96.8  0.00
400 5.14 5.00 5.14 100 0.00 480 5.03 4.92 100 0.00
100 443 4.67 5.02 100 0.00 4.72 551 545 100 0.00

0.5 200 498 4.78 4.76 100 0.00 493 518 524 100 0.00
400  4.74 4.62 4.98 100 0.00 492 5.06 4.93 100 0.00
100 444 477 516 100 0.00 443 4.88 5.43 100 0.00

0.8 200 4.77 4.84 498 100 0.00 479 525 544 100 0.00
400 491 488 5.10 100 0.00 496 5.03 5.56 100 0.00

Table 2. Percentages for the empirical power for Gaussian and Non-Gaussian populations
with # = 0.01 under Model 1.

Empirical powers for # = 0.01 under Model 1

Population Normal Gamma

P P T Ty T3 Tk Tg Ty Ty T3 Tk  1g
100 93.6 58.5 15.3 95.0 0 93.6 58.3 14.6 94.8 0

0.1 200 100 100 92.3 100 98.6 100 100 92.2 100 98.4
400 100 100 100 100 100 100 100 100 100 100
100 11.24 8.52 5.71 100 0 11.42 8.40 5.52 100 0

0.5 200 84.2 45.7 11.6 100 0 83.8 45.3 11.8 100 0
400 100 99.9 53.9 100 12.4 100 100 53.6 100 13.5
100 8.45 6.86 5.99 100 0 8.41 6.80 5.73 100 0

0.8 200 40.0 20.4 6.88 100 0 42.1 21.4 6.86 100 0
400 100 97.9 18.1 100 0 100 97.8 18.8 100 0

Table 3. Percentages for the empirical power for Gaussian and Non-Gaussian populations
0 = 0.02 under Model 1.

Empirical powers for # = 0.02 under Model 1

Population Normal Gamma,

p p T Ty T3 Tk Tg T T T3 Tk g
100 100 100 91.4 100 94.6 100 100 91.5 100 94.5

0.1 200 100 100 100 100 100 100 100 100 100 100
400 100 100 100 100 100 100 100 100 100 100
100 78.1 47.7 11.0 100 0 77.5 470 10.8 100 0

0.5 200 100 99.9 51.2 100 14.9 100 99.9 b51.5 100 15
400 100 100 99 100 100 100 100 99.9 100 100
100 479 278 7.09 100 0 48.3 27.6 6.91 100 0

0.8 200 99.9 96.3 17.3 100 0.05 99.9 96.2 17.2 100 0.01
400 100 100 73.2 100 99.9 100 100 73.4 100  99.9
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Table 4. Percentages for the empirical size for Gaussian and Non-Gaussian populations
under Model 2.

Empirical sizes for § = 0 under Model 2

Population Normal Gamma

p D T, 15 T3 Tk Te Ty 15 T3 Tk Ta
100 6.10 5.72 4.89 80.1 0.09 6.21 5.88 491 85.9 0.10

0.1 200 5.58 5.61 4.99 99.6 0.19 5.78 5.62 5.18 99.9 0.31
400  5.57 5.23 5.01 100 0.39 5.24 5.14 4.72 100 0.64
100 7.12 6.11 5.16 100 1.34 733 6.14 5.72 100 1.34

0.5 200 597 542 5.04 100 2.30 6.23 5.68 5.27 100 2.69
400 5.71 540 5.13 100 3.13 5.47 5.19 5.06 100 3.66
100  8.60 6.79 5.18 100 1.94 762 6.31 546 100 1.68

0.8 200 6.63 5.76 5.27 100 3.16 6.22 5.72 524 100 3.10
400 6.14 5.53 5.00 100 6.43 5.87 529 492 100 6.41

Table 5. Percentages for the empirical power for Gaussian and Non-Gaussian populations
with # = 0.01 under Model 2.

Empirical powers for § = 0.01 under Model 2

Population Normal Gamma

p p Iy T Tk Te Iy T T3 Tk Tc
100  31.0 270 259 85.7 2.67 30.3 25.3 25.9 89.4  3.07

0.1 200 622 584 614 99.8 21.3 61.1 574 599 99.9 234
400 96.3 954 96.89 100 84.4 96.7 96.0 97.0 100 87.9
100 15.8 12.7 890 100 4.86 153 123 9.07 100 4.36

0.5 200 22,5 19.7 159 100 154 223 19.8 16.9 100 16.1
400 455 44.1 40.7 100 50.2 449 425 39.8 100 50.6
100 149 11.2 7.13 100 4.66 14.7 11.2 7.86 100 4.54

0.8 200 183 156 119 100 13.4 17.6 15.0 11.7 100 13.1
400 32,7 30.7 26.6 100 39.2 323 30.3 264 100 39.9

Table 6. Percentages for the empirical power for Gaussian and Non-Gaussian populations
f = 0.02 under Model 2.

Empirical powers for § = 0.02 under Model 2

Population Normal Gamma

P P Ty 15 T3 Tk Tq Ty Ty 13 Tk Tq
100 75.9 71.0 732 944 231 760 704 729 956 25.6

0.1 200 99.4 99.0 993 999 909 99.5 99.2 994 100 92.9
400 100 100 100 100 100 100 100 100 100 100
100 31.8 274 20.1 100 13.0 314 26.5 20.6 100 12.7

0.5 200 57.7 54.6  49.1 100 47.9 587 55.1 49.5 100 49.4
400 93.7 933 91.6 100 95.1 93.2 929 91.2 100 95.1
100 26.2 209 14.0 100 11.0 252 20.2 13.7 100 10.5

0.8 200 44.7 404  32.0 100 37.6 433 395 322 100 36.6
400 81.2 79.7 745 100 86.1 80.1 789 73.8 100 85.7
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Figure 1. ROC cures for Models 1-2 with p = 400, p = 0.5,60 = 0.005.

of T1 when n and p are not large enough. In fact, the empirical sizes of T} are
close to 5% as n and p become large.

For detailed comparisons, we plot the receiver operating characteristic (ROC)
curve for four tests 11,715, T3, Tx when p = 400, p = 0.5, and 6 = 0.02 in Figure
1 for Model 1 and Model 2. From the ROC curve, 77 and T5 perform better than
other tests for Model 1, and T} performs better than other tests for Model 2.

5. Conclusion and Discussion

We have investigated the spectral properties of high-dimensional rescaled
sample correlation matrices. Under the framework that the dimension and the
sample size tend to infinity proportionally, we proved that the LSS of Rflf{n
have Gaussian fluctuations under some mild assumptions. By multiplying R1,
we relaxed the commonly used assumption in random matrix theory that the
spectral norm of R is bounded in p. Furthermore, in contrast to the existing
literature, we do not need to assume that R = I, or Gaussian populations. We
also provided some useful examples of the LSS for rescaled sample correlation
matrices. An application was proposed for hypothesis testing on population cor-
relation matrices, and simulations were conducted to investigate the performance

of the proposed test statistics. Future work will focus on the spectral properties
of f{n
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Supplementary Material

The online Supplementary Material contains detailed proofs of Theorem 1,
Theorem 2, Corollary 1, and Example 5.
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