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Abstract: Under the high-dimensional setting that the data dimension and sample

size tend to infinity proportionally, we derive the limiting spectral distribution and

establish the central limit theorem of the eigenvalue statistics of rescaled sample

correlation matrices. In contrast to the existing literature, our proposed spectral

properties do not require the Gaussian distribution assumption or the assumption

that the population correlation matrix is equal to an identity matrix. The asymp-

totic mean and variance-covariance in our proposed central limit theorem can be

expressed as one-dimensional or two-dimensional contour integrals on a unit circle

centered at the origin. Not only is the established central limit theorem of the eigen-

value statistics of the rescaled sample correlation matrices very different to that of

sample covariance matrices, it also differs from that of sample correlation matrices

with a population correlation matrix equal to an identity matrix. Moreover, to

illustrate the spectral properties, we propose three test statistics for the hypothesis

testing problem of whether the population correlation matrix is equal to a given

matrix. Furthermore, we conduct extensive simulation studies to investigate the

performance of our proposed testing procedures.

Key words and phrases: Central limit theorem, limiting spectral distribution, ran-

dom matrix theory, rescaled sample correlation matrix.

1. Introduction

With the rapid development of computer science, it is possible to collect,

store, and analyze high-dimensional data sets. However, the classical statistical

tools often are invalid when presented with such data. The high-dimensional

sample correlation matrix is an important random matrix for principal component

analysis, factor analysis, and human brain image analysis, among others. Let the

sample y1, . . . ,yn of size n be from a p-dimensional population y with unknown

mean µ, covariance matrix Σ, and correlation matrix

R = [diag(Σ)]−1/2Σ[diag(Σ)]−1/2,
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where diag(Σ) is a diagonal matrix formed by the diagonal elements of Σ. The

sample covariance matrix and sample correlation matrix are defined respectively

as

Sn = (n−1)−1
n∑
i=1

(yi−ȳ)(yi−ȳ)T , R̂n = [diag(Sn)]−1/2Sn[diag(Sn)]−1/2, (1.1)

with the sample mean ȳ = n−1
∑n

i=1 yi.

1.1. Existing literature

Many works have studied the spectral properties of the high-dimensional

sample covariance matrix Sn; see, for example, Marcenko and Pastur (1967), Sil-

verstein and Choi (1995), Bai and Silverstein (2004), and Zheng, Bai and Yao

(2015). However, Gao et al. (2017) showed that the central limit theorem (CLT)

of the eigenvalue statistics of the sample correlation matrix R̂n differ from those

of the sample covariance matrix Sn, although for R = Ip. Kullback (1967) found

that the CLTs of the eigenvalue statistics of rescaled sample correlation matrices

R̂nR
−1 are also very different for R = Ip and R 6= Ip. Moreover, Fan, Guo

and Zheng (2020) showed that using a sample correlation matrix leads to signifi-

cant advantages over using a sample covariance matrix in some statistical cases.

These facts show that studying high-dimensional sample correlation matrices is

important and necessary for random matrix theory.

Under the high-dimensional setting that p/n → ρ ∈ (0,∞), for sample cor-

relation matrices R̂n, researchers are often interested in studying the limiting

spectral distribution (LSD) of F̂n(x) and the CLT of the eigenvalue statistics L̂g,

as follows:

F̂n(x) = p−1
p∑
j=1

δ(λR̂n

j ≤ x), L̂g =

p∑
j=1

g(λR̂n

j ),

where {λR̂n

j , j = 1, . . . , p} are the eigenvalues of R̂n, δ(·) is an indicator function,

and g(·) is an analytic function. For the LSD of R̂n, Jiang (2004a) obtained

the M–P law of R̂n under the assumption that R = Ip. Karoui (2009) derived

the LSD of R̂n under the elliptical population assumption. For the CLT of R̂n,

Gao et al. (2017) derived the CLT of the linear spectral statistics for R = Ip.

Mestre and Vallet (2017) derived the CLT of the linear spectral statistics under

a Gaussian population with a zero mean vector. Jiang (2019) derived the CLT

of
∑p

j=1 log(λR̂n

j ) under Gaussian populations.

Recently, Morales-Jimenez et al. (2019) investigated the asymptotics of the
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eigenstructure of sample correlation matrices under high-dimensional spiked mod-

els; see Aitkin (1969), Jiang (2004b), Li, Liu and Rosalsky (2010), Xiao and Zhou

(2010), Cai and Jiang (2011), Cai and Jiang (2012), Shao and Zhou (2014), and

the references therein. Research under R 6= Ip and non-Gaussian distributions

is more challenging. In fact, Jiang (2019) showed that research under R 6= Ip is

more difficult than that under R = Ip.

1.2. Our contributions

The existing literature for high-dimensional correlation matrices imposes

more restrictive conditions, such as the Gaussian assumption or R = Ip. As

a result, these existing results cannot solve the problem with a non-Gaussian

population and R 6= Ip. Thus, the aim of this study is to examine the spectral

properties of high-dimensional rescaled sample correlation matrices R̂nR
−1.

Our contributions to the existing literature are as follows:

(I) This study derives the Stieltjes equation of the LSD of high-dimensional

rescaled sample correlation matrices R̂nR
−1 under the convergence regime

p/n → ρ ∈ (0,∞). The assumption R = Ip and spherical distributions are

not required. It is interesting that the LSD of R̂nR
−1 is just the standard

Marčenko–Pastur law with the index ρ.

(II) This study establishes the CLT of the eigenvalue statistics of high-dimensional

rescaled sample correlation matrices R̂nR
−1 under the convergence regime

p/n → ρ ∈ (0,∞). Although our proposed CLT closely depends on the

population correlation matrix R, the asymptotic mean and asymptotic vari-

ance of our proposed CLT have explicit forms that can be expressed as

one-dimensional or two-dimensional contour integrals on a unit circle {ξ =

x + iν : x2 + ν2 = 1}. In particular, under the assumption R = Ip, the

asymptotic mean and asymptotic variance of our proposed CLT have much

simpler explicit forms, which are independent of the population kurtosis.

The reminder of the paper proceeds as follows. Section 2 presents the limit-

ing spectral distribution of high-dimensional rescaled sample correlation matrices.

Section 3 establishes the CLT of the linear spectral statistics of high-dimensional

rescaled sample correlation matrices. To illustrate our proposed limiting theo-

rems, Section 4 provides an application to test whether the population correlation

matrix is equal to a given matrix. Extensive simulation studies are also presented

in Section 4. Then, Section 5 concludes the paper. Proofs are included in the

online Supplementary Material.
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2. Limiting Spectral Distribution

Before studying high-dimensional rescaled sample correlation matrices, we

first provide three assumptions.

Assumption 1. Samples satisfy the following independent component structure:

yi = µ + Γxi, i = 1, . . . , n,

where Eyi = µ, Γ = [diag(Σ)]1/2R1/2 and xi = (x1i, . . . , xpi)
T .

Assumption 2. Assume that {xji, j = 1, . . . , p, i = 1, . . . , n} are independent

and identically distributed (i.i.d.), with

Exji = 0,Ex2ji = 1, E(|xji|4(log(|xji|))2+2ε) <∞,

for a small positive number ε > 0.

Assumption 3. The convergence regime is ρn = p/n→ ρ ∈ (0,+∞).

In fact, if there is an 0 < ε < 1 such that the (4+ε) th moment of x1,1 exists,

then Assumption B is satisfied. Assumption C requires that the dimension p and

the sample size n diverge proportionally.

For simplicity, let {λj , j = 1, . . . , p} be the eigenvalues of R−1R̂n. The

empirical spectral distribution (ESD) of R−1R̂n is defined as

Fn(x) = p−1
p∑
j=1

δ(λj ≤ x).

The following theorem provides the form of the LSD of Fn(x).

Theorem 1. Under Assumptions 1–3, the empirical spectral distribution Fn(x)

of R−1R̂n converges almost surely to the Marčenko–Pastur law with the index ρ,

as follows:

fρ(x) =


1

2πρx

√
(bρ − x)(x− aρ), if aρ ≤ x ≤ bρ,

0, otherwise,
(2.1)

where aρ = (1−√ρ)2, and bρ = (1 +
√
ρ)2.
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3. CLT

Let {λj , j = 1, . . . , p} be the eigenvalues of R−1R̂n. Define the linear spectral

statistic (LSS) of R−1R̂n as

Lg =

p∑
j=1

g(λj), (3.1)

where g(·) is a given analytic function. We are now interested in the fluctuation of

Lg. We study the LSS because many commonly used statistics can be expressed

as the LSS. For illustration, we provide three examples:

Example 1. When g(x) = xk, we have Lg =
∑p

j=1 λ
k
j = tr[(R−1R̂n)k];

Example 2. When g(x) = (x−1)2, we have Lg =
∑p

j=1(λj−1)2 = tr[(R−1R̂n−
Ip)

2];

Example 3. When g(x) = log x, we have Lg =
∑p

j=1 log λj = log |R−1R̂n|.

To establish the CLT of the LSS of R−1R̂n, for fixed K and known functions

g1, . . . , gK , we consider the K-dimensional random vector (W (g1), . . ., W (gK)),

where

W (g`) =

p∑
j=1

g`(λj)− p
∫
g`(x)fρn−1

(x)dx, ` = 1, . . . ,K,

and fρn−1
(x) is defined in (2.1) with ρn−1 = p/(n − 1). We also impose the

following assumptions for our results concerning the CLT of the LSS of R−1R̂n:

Assumption 4. The functions g1, . . . , gK are analytic functions in a domain

containing the support set [aρ, bρ] of the Marčenko–Pastur law in (2.1).

Assumption 5. Assume that {xji, j = 1, . . . , p, i = 1, . . . , n} are i.i.d. with

Exji = 0, Ex2ji = 1, Ex4ji = βx + 3 + o(1), E(|xji|4(log(|xji|)2+2ε)) <∞.

Assumption 6. Assume

ag = lim
p→∞

p−1
p∑

k=1

p∑
h=1

g3khe
T
hR−1/2ek, aR = lim

p→∞
p−1

p∑
k,`=1

eTkR−1e`r
3
k`,

cg = lim
p→∞

p−1
p∑

k=1

p∑
h=1

g4kh, dR = lim
p→∞

p−1tr(R2),

hR = lim
p→∞

p−1
p∑

k,`=1

eTkR−1e`rk`

p∑
h=1

g2`hg
2
kh,
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where R1/2 = (gkh), R = (rkh) and ej is the jth column of the p × p identity

matrix, for j = 1, . . . , p.

Remark 1. Here, two examples are given to show that Assumption F can be

satisfied. (i). When R = Ip, it is easy to see that R1/2 = R−1/2 = R−1 = Ip.

Thus, we have ag = aR = cg = dR = hR = 1. (ii). When R = (1− τ)Ip + τ11T ,

with τ ∈ (−1, 1), we have

R−1 =
1

1− τ
Ip −

τ

(1− τ)(1 + (p− 1)τ)
11T ,

R1/2 =
√

1− τIp +

√
1 + (p− 1)τ −

√
(1− τ)

p
11T ,

R−1/2 =
1√

1− τ
Ip −

√
1 + (p− 1)τ −

√
(1− τ)

p
√

1 + (p− 1)τ
√

(1− τ)
11T .

If τ = C/
√
p, then ag = aR = cg = hR = 1 and dR = 1 + C2.

The following theorem states our main results concerning the CLT of the

LSS of R−1R̂n.

Theorem 2. Under Assumptions 1 and 3–6, the random vector (W (g1), . . . ,W (gK))

converges weakly to a multivariate Gaussian random vector (Xg1 , . . . , XgK ) with

EXg` = − 1

2πi

∮
C
g`(z)EM(z) dz

and

Cov(Xg`1
, Xg`2

) = − 1

4π2

∮
C1

∮
C2
g`1(z1)g`2(z2)Cov(M(z1),M(z2)) dz2 dz1,

for `, `1, `2 ∈ {1, . . . ,K}, where C, C1, and C2 are three non-overlapping contours

including [aρ, bρ], C1, and C2, the contour integral
∮

is anticlockwise, and EM(z)

and Cov(M(z1),M(z2)) are calculated as follows:

EM(z) =
ρs3(z)[1 + s(z)]−3

[1− ρs2(z)(1 + s(z))−2]2
+
βxρs(z)s

′(z)

[1 + s(z)]3

− s′(z)

[1 + s(z)]2
[10− 2aR + βx(4ag + cg − hR)]ρ

4

+
s′(z)

[1 + s(z)]3
[6− 2aR + βx(4ag − cg − hR)]ρ

2
,

(3.2)

and
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Cov(M(z1),M(z2)) = 2

[
s′(z1)s

′(z2)

(s(z2)− s(z1))2
− 1

(z2 − z1)2

]
(3.3)

+2(dR − 2)ρ
s′(z1)s

′(z2)

(1 + s(z1))2(1 + s(z2))2
,

where ′ is the derivative notation, and s(z) is the unique solution to z = −s−1(z)+
ρ(1 + s(z))−1, which leads to s′(z) = s2(z)/{1− ρs2(z)[1 + s(z)]−2}.

To simplify the mean and the covariance, we derive the following corollary,

where the contour becomes a unit circle centered at the origin.

Corollary 1. Under Assumptions 1 and 3–6, the random vector (W (g1), . . . ,

W (gK)) converges weakly to a multivariate Gaussian random vector (Xg1 , . . . ,

XgK ), with

EXg` = lim
r→1+

1

2πi

∮
‖ξ‖=1

g`(1 +
√
ρξ +

√
ρξ−1 + ρ)

(
ξ

ξ2 − r−2
− 1

ξ

)
dξ

+
4aR − 12 + βx(4− 8ag + 2cg + 2hR)

8πi

∮
‖ξ‖=1

g`(1 +
√
ρξ +

√
ρξ−1 + ρ)

ξ3
dξ

+
[2aR − 2 + βx(−4ag + 3cg + hR)]

√
ρ

8πi

∮
‖ξ‖=1

g`(1 +
√
ρξ +

√
ρξ−1 + ρ)

ξ2
dξ,

and

Cov(Xg`1
, Xg`2

)

= lim
r→1+

−1

2π2

∮
‖ξ1‖=1

∮
‖ξ2‖=1

g`1(‖1 +
√
ρξ‖2)g`2(‖1 +

√
ρξ‖2)

(ξ1 − rξ2)2
dξ2dξ1

− (dR − 2)

2π2

∮
‖ξ1‖=1

g`1(‖1 +
√
ρξ1‖2)

ξ21
dξ1

∮
‖ξ2‖=1

g`2(‖1 +
√
ρξ2‖2)

ξ22
dξ2,

for `, `1, `2 ∈ {1, . . . ,K}, where the integral
∮

is anticlockwise, and ‖1+
√
ρξ‖2 =

1 +
√
ρξ +

√
ρξ−1 + ρ, for ξ satisfying ‖ξ‖ = 1.

We provide some examples to illustrate the application of Theorem 2.

Example 4. When R = Ip, it is easy to see that ag = aR = cg = dR = hR = 1.

Then, EXg` and Cov(Xg`1
, Xg`2

) can be further simplified as
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EXg` = lim
r→1+

1

2πi

∮
‖ξ‖=1

g`(1 +
√
ρξ +

√
ρξ−1 + ρ)

(
ξ

ξ2 − r−2
− 1

ξ
− 2

ξ3

)
dξ,

Cov(Xg`1
, Xg`2

) = lim
r→1+

−1

2π2

∮
‖ξ1‖=1

∮
‖ξ2‖=1

g`1(‖1 +
√
ρξ‖2)g`2(‖1 +

√
ρξ‖2)

(ξ1 − rξ2)2
dξ2dξ1

+
1

2π2

∮
‖ξ1‖=1

g`1(‖1 +
√
ρξ1‖2)

ξ21
dξ1

∮
‖ξ2‖=1

g`2(‖1 +
√
ρξ2‖2)

ξ22
dξ2,

where `, `1, `2 ∈ {1, . . . ,K}.

Example 5. Letting g`(x) = x` for ` = 1, 2, 3, 4 and g5(x) = log x, we have the

centering terms:∫
g1(x)fρn−1

(x)dx = 1,

∫
g2(x)fρn−1

(x)dx = 1 + ρn−1,∫
g3(x)fρn−1

(x)dx = 1 + 3ρn−1 + ρ2n−1,∫
g4(x)fρn−1

(x)dx = 1 + 6ρn−1 + 6ρ2n−1 + ρ3n−1,∫
g5(x)fρn−1

(x)dx =
ρn−1 − 1

ρn−1
log(1− yn−1)− 1, ρn−1 < 1,

the mean

EXg1 = (−0.5 + 0.5aR)ρ+ βx(−ag + 0.75cg + 0.25hR)ρ,

EXg2 = (−3 + 2aR)ρ+ (−1 + aR)ρ2 + βx(1− 4ag + 2cg + hR)ρ

+βx(−2ag + 0.5hR + 1.5cg)ρ
2,

EXg3 = 1.5(−1 + aR)ρ3 + 1.5(−7 + 5aR)ρ2 + 1.5(−5 + 3aR)ρ

+βx[0.75(−4ag + 3cg + hR)ρ3 + (3− 15ag + 8.25cg + 3.75hR)ρ2]

+βx(3− 9ag + 3.75cg + 2.25hR)ρ,

EXg4 = (−2 + 2aR)ρ(1 + ρ)3 + 6(−3 + 2aR)ρ(1 + ρ)2 − 2aRρ
2 + 6(1− aR)ρ

+βx[(−4ag + 3cg + hR)ρ(1 + ρ)3 + 3(2− 4ag + cg + hR)ρ(1 + ρ)2]

+βx[3(−4ag + 3cg + hR)ρ2(1 + ρ) + 2(2− 4ag + cg + hR)ρ2],

EXg5 = 0.5 log(1− ρ) + ρ+ 0.5βx(cg − 1)ρ,

and the variance-covariance

Var(Xg1) = 2ρ(dR − 1), Var(Xg2) = 4ρ2 + 8ρ (1 + ρ)2 (dR − 1),
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Var(Xg3) = 6ρ3 + 36ρ2(1 + ρ)2 + 9ρ[(1 + ρ)2 + ρ]2[2(dR − 1)],

Var(Xg4) = 8ρ4 + 96ρ3(1 + ρ)2 + 16ρ2[2ρ+ 3(1 + ρ)2]2

+16ρ(1 + ρ)2[3ρ+ (1 + ρ)2]2[2(dR − 1)],

Var(Xg5) = −2 log(1− ρ)− 2ρ+ ρ[2(dR − 1)],

Cov(Xg1 , Xg2) = 2ρ(1 + ρ)[2(dR − 1)],

Cov(Xg1 , Xg3) = 3ρ[(1 + ρ)2 + ρ][2(dR − 1)],

Cov(Xg1 , Xg4) = 4ρ[3(1 + ρ)ρ+ (1 + ρ)3][2(dR − 1)],

Cov(Xg2 , Xg3) = 12ρ2(1 + ρ) + 6ρ (1 + ρ) [(1 + ρ)2 + ρ][2(dR − 1)],

Cov(Xg2 , Xg4) = 8ρ2[2ρ+ 3(1 + ρ)2]

+8ρ(1 + ρ)[3(1 + ρ)ρ+ (1 + ρ)3][2(dR − 1)],

Cov(Xg3 , Xg4) = 24(1 + ρ)ρ3 + 24ρ2(1 + ρ)[2ρ+ 3(1 + ρ)2]

+12ρ[3(1 + ρ)ρ+ (1 + ρ)3][(1 + ρ)2 + ρ][2(dR − 1)],

Cov(Xg1 , Xg5) = ρ[2(dR − 1)],

Cov(Xg2 , Xg5) = −2ρ2 + 2ρ(1 + ρ)[2(dR − 1)],

Cov(Xg3 , Xg5) = 2ρ3 − 6ρ2(1 + ρ) + 3ρ
(
(1 + ρ)2 + ρ

)
[2(dR − 1)],

Cov(Xg4 , Xg5) = −2ρ4 + 8(1 + ρ)2ρ3 − 4ρ2
(
2ρ+ 3(1 + ρ)2

)
+4ρ(1 + ρ)

(
3ρ+ (1 + ρ)2

)
[2(dR − 1)].

Example 6. Let g`(x) = x` for ` = 1, 2, 3, 4, and g5(x) = log x. When R = Ip,

we have the mean

EXg1 = 0, EXg2 = −ρ, EXg3 = −3ρ2 − 3ρ,

EXg4 = −6ρ(1 + ρ)2 − 2ρ2, EXg5 = 0.5 log(1− ρ) + ρ,

and the covariance

Var(Xg1) = 0, Var(Xg2) = 4ρ2, Var(Xg3) = 6ρ3 + 36ρ2(1 + ρ)2,

Var(Xg4) = 8ρ4 + 96ρ3(1 + ρ)2 + 16ρ2[2ρ+ 3(1 + ρ)2]2,

Var(Xg5) = −2 log(1− ρ)− 2ρ, Cov(Xg1 , Xgj ) = 0, j = 2, 3, 4, 5

Cov(Xg2 , Xg3) = 12ρ2(1 + ρ), Cov(Xg2 , Xg4) = 8ρ2[2ρ+ 3(1 + ρ)2],

Cov(Xg2 , Xg5) = −2ρ2, Cov(Xg3 , Xg5) = 2ρ3 − 6ρ2(1 + ρ),

Cov(Xg3 , Xg4) = 24(1 + ρ)ρ3 + 24ρ2(1 + ρ)[2ρ+ 3(1 + ρ)2],

Cov(Xg4 , Xg5) = −2ρ4 + 8(1 + ρ)2ρ3 − 4ρ2
(
2ρ+ 3(1 + ρ)2

)
.
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4. An Application and Simulation Studies

4.1. An application

We apply our proposed CLT of eigenvalue statistics of high-dimensional

rescaled sample correlation matrices, to study the hypothesis testing problem

that the population correlation matrix is equal to a given matrix:

H0 : R = R0 v.s. H1 : R 6= R0, (4.1)

where R0 is a prespecified matrix. Let R̂n be the sample correlation matrix.

Under the null hypothesis H0, Kullback (1967) showed

TK = (n− 1){tr(R−10 R̂n)− log(R−10 R̂n)− p} → χ2
p(p−1)/2.

Based on the different distance between R̂n and R0, our three proposed test

statistics are as follows:

T1 = tr[(R−10 R̂n − Ip)
4], T2 = tr[(R−10 R̂n − Ip)

2], T3 = log |R−10 R̂n|.

By Example 5, asymptotic distributions of T1, T2, and T3 are derived in the

following theorem.

Theorem 3. Under Assumptions 1 and 3–6 and under H0, we have

σ−11 (T1 − µ1)→ N(0, 1), 0 < ρn−1,

σ−12 (T2 − µ2)→ N(0, 1), 0 < ρn−1,

σ−13 (T3 − µ3)→ N(0, 1), 0 < ρn−1 < 1,

where

µ1 = pρ3n−1 + 2pρ2n−1 + EXg4 − 4EXg3 + 6EXg2 − 4EXg1 ,

µ2 = pρn−1 + EXg2 − 2EXg1 ,

µ3 = p(ρn−1 − 1)(ρn−1)
−1 log(1− ρn−1)− p+ EXg5 ,

σ21 = Var(Xg4) + 16 Var(Xg3) + 36 Var(Xg2) + 16 Var(Xg1)− 8Cov(Xg3 , Xg4)

+12Cov(Xg2 , Xg4)− 8Cov(Xg1 , Xg4)− 48Cov(Xg2 , Xg3)

+32Cov(Xg1 , Xg3)− 48Cov(Xg1 , Xg2),

σ22 = Var(Xg2)− 4Cov(Xg1 , Xg2) + 4 Var(Xg1), σ23 = Var(Xg5),

where ρn−1 = p/(n−1), EXg`, Var(Xg`), Cov(Xg`1
, Xg`2

) with `, `1, `2 ∈ {1, 2, 3, 4,
5} are as in Example 5, where ρ can be replaced by ρn−1.
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Then, the rejection region of the test statistic Ti at the test level 5% is

{x1, . . . ,xn : σ−1i |Ti − µi| > q0.975},

for i = 1, 2, 3, where q0.975 is the 97.5% quantile of N(0, 1).

4.2. Simulation studies

In this subsection, the results from extensive simulation studies are presented

to evaluate the performance of our three proposed test statistics. Without loss of

generality, assume that the sample (y1, . . . ,yn) is drawn from a population with

mean zero and covariance matrix Σ. The dimension is taken as p = 100, 200, 400,

and ρ = p/n is taken as 0.1, 0.5, 0.8. We consider two models:

Model 1: Σ = U(Ip + D)UT + θ1Tp 1p, where 1p is the p-dimensional vector

with all elements being one, U is the eigenvector matrix of ZTZ with

all the elements of Z = (zij)i,j=1,...,p being i.i.d. from N(0, 1), and D =

diag(d11, . . . , dpp) is a diagonal matrix with d11, . . . , dpp being i.i.d. from

the uniform distribution U(0, 1);

Model 2: Σ = (si,j,θ)p×p, where

si,j,θ = 2(1− p−1/2)|i−j| + θp−1/2δ{i=j},

with δ{·} being an indicator function, for i, j = 1, . . . , p.

In both models, we set θ = 0 to evaluate the empirical size, set θ = 0.01, 0.02

to examine the empirical power. The nominal test size is α = 5%. Tables 1 and

4 present the empirical sizes for Gaussian and non-Gaussian distributions under

Model 1 and Model 2. Tables 2–3 and Tables 5–6 present the empirical power of

the Gaussian and non-Gaussian distributions when θ = 0.01 and θ = 0.02 under

Model 1 and Model 2, respectively. Our proposed tests T1, T2, T3 are compared

with TK proposed in Kullback (1967) and TG (TG is a special case of T2 with

R = I) proposed in Gao et al. (2017). For each setting, we run the simulation

10,000 times.

The simulation results show that for Models 1–2, TK becomes invalid for

large p because TK is proposed for fixed p. TG is invalid for R 6= I because TG
is proposed for R = I. T1, T2, and T3 have empirical sizes close to the nominal

test size of 5% for small or large dimension p. In particular, T1 may have slightly

higher empirical test sizes, because T1 contains the sums of the fourth powers of

the sample eigenvalues of R̂nR
−1
0 . Then, if there are some large top eigenvalues,

the variance of T1 may be large, which will influence the finite-sample performance
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Table 1. Percentages for the empirical size for Gaussian and Non-Gaussian populations
under Model 1.

Empirical sizes for θ = 0 under Model 1
Population Normal Gamma
ρ p T1 T2 T3 TK TG T1 T2 T3 TK TG

100 4.58 4.81 5.01 56.0 0.00 4.90 5.04 5.45 56.1 0.00
0.1 200 4.91 5.01 5.06 96.7 0.00 5.24 4.98 4.78 96.8 0.00

400 5.14 5.00 5.14 100 0.00 4.80 5.03 4.92 100 0.00
100 4.43 4.67 5.02 100 0.00 4.72 5.51 5.45 100 0.00

0.5 200 4.98 4.78 4.76 100 0.00 4.93 5.18 5.24 100 0.00
400 4.74 4.62 4.98 100 0.00 4.92 5.05 4.93 100 0.00
100 4.44 4.77 5.16 100 0.00 4.43 4.88 5.43 100 0.00

0.8 200 4.77 4.84 4.98 100 0.00 4.79 5.25 5.44 100 0.00
400 4.91 4.88 5.10 100 0.00 4.96 5.03 5.56 100 0.00

Table 2. Percentages for the empirical power for Gaussian and Non-Gaussian populations
with θ = 0.01 under Model 1.

Empirical powers for θ = 0.01 under Model 1
Population Normal Gamma
ρ p T1 T2 T3 TK TG T1 T2 T3 TK TG

100 93.6 58.5 15.3 95.0 0 93.6 58.3 14.6 94.8 0
0.1 200 100 100 92.3 100 98.6 100 100 92.2 100 98.4

400 100 100 100 100 100 100 100 100 100 100
100 11.24 8.52 5.71 100 0 11.42 8.40 5.52 100 0

0.5 200 84.2 45.7 11.6 100 0 83.8 45.3 11.8 100 0
400 100 99.9 53.9 100 12.4 100 100 53.6 100 13.5
100 8.45 6.86 5.99 100 0 8.41 6.80 5.73 100 0

0.8 200 40.0 20.4 6.88 100 0 42.1 21.4 6.86 100 0
400 100 97.9 18.1 100 0 100 97.8 18.8 100 0

Table 3. Percentages for the empirical power for Gaussian and Non-Gaussian populations
θ = 0.02 under Model 1.

Empirical powers for θ = 0.02 under Model 1
Population Normal Gamma
ρ p T1 T2 T3 TK TG T1 T2 T3 TK TG

100 100 100 91.4 100 94.6 100 100 91.5 100 94.5
0.1 200 100 100 100 100 100 100 100 100 100 100

400 100 100 100 100 100 100 100 100 100 100
100 78.1 47.7 11.0 100 0 77.5 47.0 10.8 100 0

0.5 200 100 99.9 51.2 100 14.9 100 99.9 51.5 100 15
400 100 100 99 100 100 100 100 99.9 100 100
100 47.9 27.8 7.09 100 0 48.3 27.6 6.91 100 0

0.8 200 99.9 96.3 17.3 100 0.05 99.9 96.2 17.2 100 0.01
400 100 100 73.2 100 99.9 100 100 73.4 100 99.9
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Table 4. Percentages for the empirical size for Gaussian and Non-Gaussian populations
under Model 2.

Empirical sizes for θ = 0 under Model 2
Population Normal Gamma
ρ p T1 T2 T3 TK TG T1 T2 T3 TK TG

100 6.10 5.72 4.89 80.1 0.09 6.21 5.88 4.91 85.9 0.10
0.1 200 5.58 5.61 4.99 99.6 0.19 5.78 5.62 5.18 99.9 0.31

400 5.57 5.23 5.01 100 0.39 5.24 5.14 4.72 100 0.64
100 7.12 6.11 5.16 100 1.34 7.33 6.14 5.72 100 1.34

0.5 200 5.97 5.42 5.04 100 2.30 6.23 5.68 5.27 100 2.69
400 5.71 5.40 5.13 100 3.13 5.47 5.19 5.06 100 3.66
100 8.60 6.79 5.18 100 1.94 7.62 6.31 5.46 100 1.68

0.8 200 6.63 5.76 5.27 100 3.16 6.22 5.72 5.24 100 3.10
400 6.14 5.53 5.00 100 6.43 5.87 5.29 4.92 100 6.41

Table 5. Percentages for the empirical power for Gaussian and Non-Gaussian populations
with θ = 0.01 under Model 2.

Empirical powers for θ = 0.01 under Model 2
Population Normal Gamma
ρ p T1 T2 T3 TK TG T1 T2 T3 TK TG

100 31.0 27.0 25.9 85.7 2.67 30.3 25.3 25.9 89.4 3.07
0.1 200 62.2 58.4 61.4 99.8 21.3 61.1 57.4 59.9 99.9 23.4

400 96.3 95.4 96.89 100 84.4 96.7 96.0 97.0 100 87.9
100 15.8 12.7 8.90 100 4.86 15.3 12.3 9.07 100 4.36

0.5 200 22.5 19.7 15.9 100 15.4 22.3 19.8 16.9 100 16.1
400 45.5 44.1 40.7 100 50.2 44.9 42.5 39.8 100 50.6
100 14.9 11.2 7.13 100 4.66 14.7 11.2 7.86 100 4.54

0.8 200 18.3 15.6 11.9 100 13.4 17.6 15.0 11.7 100 13.1
400 32.7 30.7 26.6 100 39.2 32.3 30.3 26.4 100 39.9

Table 6. Percentages for the empirical power for Gaussian and Non-Gaussian populations
θ = 0.02 under Model 2.

Empirical powers for θ = 0.02 under Model 2
Population Normal Gamma
ρ p T1 T2 T3 TK TG T1 T2 T3 TK TG

100 75.9 71.0 73.2 94.4 23.1 76.0 70.4 72.9 95.6 25.6
0.1 200 99.4 99.0 99.3 99.9 90.9 99.5 99.2 99.4 100 92.9

400 100 100 100 100 100 100 100 100 100 100
100 31.8 27.4 20.1 100 13.0 31.4 26.5 20.6 100 12.7

0.5 200 57.7 54.6 49.1 100 47.9 58.7 55.1 49.5 100 49.4
400 93.7 93.3 91.6 100 95.1 93.2 92.9 91.2 100 95.1
100 26.2 20.9 14.0 100 11.0 25.2 20.2 13.7 100 10.5

0.8 200 44.7 40.4 32.0 100 37.6 43.3 39.5 32.2 100 36.6
400 81.2 79.7 74.5 100 86.1 80.1 78.9 73.8 100 85.7
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Figure 1. ROC cures for Models 1–2 with p = 400, ρ = 0.5, θ = 0.005.

of T1 when n and p are not large enough. In fact, the empirical sizes of T1 are

close to 5% as n and p become large.

For detailed comparisons, we plot the receiver operating characteristic (ROC)

curve for four tests T1, T2, T3, TK when p = 400, ρ = 0.5, and θ = 0.02 in Figure

1 for Model 1 and Model 2. From the ROC curve, T1 and T2 perform better than

other tests for Model 1, and T1 performs better than other tests for Model 2.

5. Conclusion and Discussion

We have investigated the spectral properties of high-dimensional rescaled

sample correlation matrices. Under the framework that the dimension and the

sample size tend to infinity proportionally, we proved that the LSS of R−1R̂n

have Gaussian fluctuations under some mild assumptions. By multiplying R−1,

we relaxed the commonly used assumption in random matrix theory that the

spectral norm of R is bounded in p. Furthermore, in contrast to the existing

literature, we do not need to assume that R = Ip or Gaussian populations. We

also provided some useful examples of the LSS for rescaled sample correlation

matrices. An application was proposed for hypothesis testing on population cor-

relation matrices, and simulations were conducted to investigate the performance

of the proposed test statistics. Future work will focus on the spectral properties

of R̂n.
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Supplementary Material

The online Supplementary Material contains detailed proofs of Theorem 1,

Theorem 2, Corollary 1, and Example 5.
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