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Abstract: Testing for structural changes in spatial trends constitutes an important

issue in many biomedical and geophysical applications. In this paper, a novel statis-

tic based on a discrepancy measure over small blocks is proposed. This measure can

be used not only to construct tests for structural breaks, but also to identify the

change-boundaries of the breaks. The asymptotic properties and limit distributions

of the proposed tests are also established. To derive the asymptotics, the notion

of spatial physical dependence is adopted to account for the spatial dependence

structure. A bootstrap procedure is applied to the proposed statistic to handle the

asymptotic variance of the limit distribution. The method is illustrated by means

of simulations and a data analysis.
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1. Introduction

Inference for second-order stationary spatial statistical models with a con-

stant mean and a stationary covariance structure has been a topic of active study;

see, for example, the seminal text of Cressie (1993) for a comprehensive introduc-

tion. When data are affected by topographical structures, sudden events, abrupt

policy changes, and other local issues, the second-order stationarity assumption

becomes questionable. A misspecified model can often result in inefficient infer-

ence and inaccurate predictions. Thus, it is important to test for stationarity,

and when nonstationarity is detected, to identify a change boundary. The main

objectives of this study are to deal with these two tasks in a structural break

context. Specifically, consider the two-dimensional spatial trend model:

Yi = µ

(
i

n

)
+ εi, i = (i1, i2) ∈ [1,n] ∩ Z2, (1.1)
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where n = (n1, n2), i/n = (i1/n1, i2/n2), [1,n] = [1, n1] × [1, n2], µ is an un-

known measurable function, and the noise {εi} is a mean-zero spatial process

with expression εi = g(ηi−j , j ∈ Z2), for some measurable function g and inde-

pendent and identically distributed (i.i.d.) spatial random variables {ηi}. It is

important to test whether there are abrupt changes in µ. We consider an abrupt

change as the Hölder discontinuity in the function µ. Specifically, a function f is

said to be Hölder continuous with an exponent α > 0 on I = [0, 1] × [0, 1] ⊂ R2

if there exists a constant C such that, for any s, t ∈ I,

sup
s,t
|f(s)− f(t)| ≤ C||t− s||α,

where || · || denotes the Euclidean norm. When α = 1, f is called a Lipschitz

continuous function. With different values of α, we can measure changes in the

degrees of smoothness in µ. Therefore, considering Hölder continuity is more

general than merely testing for changes in the constant mean levels in µ.

Let Cm(I) be the collection of functions having up to mth-order derivatives

on I, Hα(I) be the set of Hölder continuous functions with exponent α on I, and

PHα(I) be the set of piecewise Hölder continuous functions with exponent α on

I; that is, there exist a partition {B1, . . . , Bp} of I (i.e.,
⋃p
i=1Bi = I, Bi∩Bj = ∅)

and p different Hölder continuous functions {fj} such that

µ(s) =

p∑
j=1

fj(s)I(s ∈ Bj) , (1.2)

and µ(·) satisfies mins∈∂Bi(δ)∩Bi, t∈∂Bi(δ)∩Bc
i
|µ(s)− µ(t)| ≥ ϑ0 > 0, where ∂Bi is

the boundary of Bi and ∂Bi(δ) = {x : mins∈∂Bi
‖x − s‖ ≤ δ}. For model (1.1),

two related issues are considered:

1. We test the hypothesis that the trend µ(·) contains no structural break. In

the context of Hölder continuity, the null hypothesis is H0 : µ(·) ∈ Hα(I).

The alternative hypothesis is H1 : µ(·) ∈ PHα(I).

2. We detect possible change-boundaries (∂Bj), which partition I into p sub-

regions, such that µ(·) is Hölder continuous within each subregion, but not

Hölder continuous on any two adjacent subregions, that is, µ(·) ∈ PHα(I),

as defined in (1.2).

Issue 1 tests for the stationarity assumption commonly made in spatial statis-

tics. When µ(s) = c1I(s ∈ B) + c2I(s ∈ Bc) and the noise {εi} is independent,

issue 2 is equivalent to an edge estimation in image processing or the detection
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of disease outbreaks in public health, which have been actively pursued in the

literature. See, for example, Song et al. (2011); Muller and Song (1994), and Otto

and Schmid (2016) for edge estimation; see Kulldorff (2001); Huang, Kulldorff

and Gregorio (2007), and Neill (2012) for detection of disease outbreaks.

Issues 1 and 2 have been studied extensively in a time series context; for ex-

amples, see Bick and Rosenblatt (1973); Bai and Perron (1998, 2003); Davis, Lee

and Rodriguez-Yam (2006); Wu and Zhao (2007); Harchaoui and Lévy-Leduc

(2010); Chen and Hong (2012); Chan, Yau and Zhang (2014); Aue, Rice and

Sönmez (2018). Structural break phenomena of spatial data may also be found

in many practical problems: the detection of tumors in computed tomography

scans, described in Otto and Schmid (2016); the estimation of the change bound-

ary for the support of a multivariate probability density, as given in Hall, Peng

and Rau (2001); and the estimation of edges in image processing, studied in Tsy-

bakov (1994). Some procedures for detecting change-boundaries have also been

developed. For example, De Martino et al. (2008) and Song et al. (2011) clas-

sify functional magnetic resonance imaging (fMRI) spatial patterns by combining

feature selection and support-vector machines (SVMs). The SVM training algo-

rithm is applied recursively to eliminate irrelevant voxels (features) and estimate

informative spatial patterns; see also Mwangi, Tian and Soares (2014). We adopt

a different approach to detect edges based on spatial change-locations, which is

similar to change-point detection in time series. For example, Muller and Song

(1994) assume that the edges divide the region into two subregions, and esti-

mate the change curve over candidate plateau sets based on a cumulative sum

(CUSUM)-type test statistic. Otto and Schmid (2016) assume that the means of

the observations are different between the interior and the exterior of a circle of

radius δ, and then estimate the circular change boundary based on the maximum

likelihood function under the Gaussian assumption. These methods fail when

changes occur in more than two regions. Furthermore, no spatial dependence

structure is considered.

In this study we pursue a different approach, based on detecting discontinu-

ous points of µ, to depict the change boundary. To elucidate the main idea, we

take a two-dimensional random field as an example. In such a field, changes oc-

cur along curves between two adjacent regions. To detect such changes, one must

identify the boundary curve. Such a curve may be approximated by line segments

connecting a number of grid points, the discontinuous vertices (change points)

of µ. We can therefore detect a possible spatial change region by identifying the

discontinuous vertices, and then connecting them with the segments to construct

an approximate change-boundary curve. Even though edge estimation in image
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Figure 1. Four blocks Di, for i = 1, 2, . . . , 4, with side length kn, used to detect changes
at a spatial point t0 = (i0/n1, j0/n2). An arrow from Di to Di+1 indicates a difference
in the total discrepancy µ(s) between Di and Di+1 in (1.3).

processing (also known as the multivariate change-point problem) is an area of

active research, for example, see Carlstein, Müller and Siegmund (1994), it seems

that no formal definition has ever been given for a spatial change-point based on

the distances between different quadrants. We now give such a definition for the

two-dimensional case, which can be extended easily to higher dimensions.

Given a spatial point t0 = (t01, t
0
2) ∈ R2, define i0 = [n1t

0
1], j0 = [n2t

0
2], D1 =

[i0, i0 +kn]× [j0, j0 +kn], D2 = [i0−kn, i0]× [j0, j0 +kn], D3 = [i0−kn, i0]× [j0−
kn, j0], D4 = [i0, i0 + kn]× [j0 − kn, j0], and D5 = D1, where kn is the number of

lattice points on each side of a block, also known as the block length. This setup

is shown in Figure 1. We say a point t0 is a change point of the trend µ if the

total discrepancy of µ(s) on Di, for i = 1, 2, 3, 4, that is,

Dist(t0) :=

4∑
i=1

[∫
Di

µ(s) ds

|Di|
−
∫
Di+1

µ(s) ds

|Di+1|

]2
, (1.3)

is large, where |Di| denotes the area of the set Di.

Define

S1([n · t0]) =
1

k2n

i0+kn∑
i=i0

j0+kn∑
j=j0

Yij , S2([n · t0]) =
1

k2n

i0∑
i=i0−kn

j0+kn∑
j=j0

Yij ,

S3([n · t0]) =
1

k2n

i0∑
i=i0−kn

j0∑
j=j0−kn

Yij , S4([n · t0]) =
1

k2n

i0+kn∑
i=i0

j0∑
j=j0−kn

Yij ,
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and let S5([n · t0]) = S1([n · t0]), where [n · t0] = ([n1t
0
1], [n2t

0
2]) = (i0, j0).

To test whether a point t0 ∈ R2 is a change point of µ, we propose a statistic

Tn based on a local discrepancy measure on t0, which is an estimator of (1.3)

given by

Tn := T ([n · t0]) =

4∑
i=1

(Si([n · t0])− Si+1([n · t0]))2 =:

4∑
i=1

M2
n,i. (1.4)

The reason for using a local instead of a global discrepancy measure is that nearby

regions usually contain more similar information than those that are far apart.

As a result, a large Tn value indicates that discontinuities exist between the four

quadrants. It is shown that the proposed statistic has an asymptotic χ2-type

distribution under the null hypothesis (i.e., no change point), and diverges to

infinity under a spatial change point, and therefore provides consistent detection.

The proposed test statistic Tn also enables us to identify change boundaries.

This procedure involves splitting the region into smaller blocks, and identifying

possible discontinuous points in these blocks. The change-boundary may then

be recovered by connecting these vertices. Because any subset of R2 can be

approximated by smaller squares, this idea is similar to the approximation of

integrals by Riemann sums.

Compared with the subset-scan detection scheme of Kulldorff (2001); Neill

(2012); Huang, Kulldorff and Gregorio (2007), the proposed method is easier to

implement with less of a computational burden. Our method scans the region

at most n2 times, while subset scanning detects change areas by scanning all

possible subsets, which may require up to 2n scans.

The remainder of the paper is organized as follows. In Section 2, we estab-

lish the asymptotic properties of the proposed tests. Section 3 identifies change

boundaries using an illustrative example. Section 4 considers a practical issue

related to the limit distribution, namely spatial bootstrapping. Simulations and

two real examples are given in Section 5. Section 6 concludes the paper. All

proofs are presented in the Supplementary Material.

2. Test for Stationarity

In this section, we consider the test statistic (1.4) for the existence of struc-

tural breaks in µ. Let Yij = 0, for i ≤ 0 or i > n1 or j ≤ 0 or j > n2, and

n = n1n2. Define an integrated discrepancy Gn by
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Gn =
k2n
n

[n1/kn]∑
i=0

[n2/kn]∑
j=0

T (ikn, jkn) . (2.1)

Such a statistic has an intuitive meaning. If µ in model (1.1) is aHα(I) continuous

function, then Gn is likely to be small because all of the {T (ikn, jkn)} are small.

Thus, we use Gn to solve issue 1.

To establish the asymptotic distributions of Tn and Gn, we first introduce

the dependence structure for the noise. In spatial statistics, the notion of de-

pendence is often modeled using a strong mixing condition (e.g., α-mixing) on

the underlying sigma fields; more information about strong mixing can be found

in Doukhan (1994); Lin and Lu (1996). However, as Wu (2005) pointed out, it

is not easy to determine whether a stationary random field satisfies the mixing

condition. In this study, we adopt the notion of the physical dependence measure

introduced by Wu (2005). In particular, let {η′i} be an i.i.d. copy of {ηi}, and

let ε̃i be the coupled version of εi given by

ε̃i = g(η̃i−j , j ∈ Z2),

where η̃i = ηi if i 6= 0, and η̃i = η′i if i = 0. Let δi,p = E(|εi − ε̃i|
p)1/p =:

||εi − ε̃i||p be the physical dependence measure of {εi}, which measures the

effect of a single noise at the origin on an observation at i. In addition, let

∆p =
∑

i∈Z2 δi,p be the stability measure as given in Machkouri, Volný and Wu

(2013), with ∆p(m) =
∑

i∈Zd, ||i||>m δi,p. It can be shown that when ∆4 < ∞,

the fourth moment exists and the process is short-range dependent. Two typical

examples of the physical dependence are the following:

1. Linear random field: εi =
∑

j∈Zd α(i−j)ηj for certain real numbers {α(i)}
and i.i.d. sequence {ηt}; see Lahiri and Robinson (2016).

2. Spatial autoregressive models:

yn = λ0W nyn + un,

where yn = (y1, . . . , yn)T , W n is an n × n matrix in which the diagonal

elements are all zero, and u = (η1, . . . , ηn)T , ηt are i.i.d. random errors.

Let

Ω =


2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

 .
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Then, we have the following asymptotic results for Tn and Gn:

Theorem 1. Suppose that model (1.1) holds with noise satisfying ∆4 <∞, µ(s) ∈
PHα[I], and the block length kn satisfies 1/kn + k1+αn (n1 + n2)

α/nα → 0. Then,

(i) For Tn, we have

k2n

[
Tn − 2

4∑
i=1

(µi − µi+1)(Mn,i − EMn,i)−
4∑
i=1

(µi − µi+1)
2

]
d−→ σ2

4∑
i=1

Z2
i ,

(2.2)

where σ2 =
∑

j∈Z2 E(ε0εj), (Z1, . . . , Z4) is a four-dimensional normally

distributed random vector with mean vector zero and covariance matrix Ω,

µi = limn→∞ E(Si([n · t0])), for i = 1, 2, 3, 4, and µ1 = µ5.

(ii) For Gn, we have

(
√
nkn)(Gn − EGn)

d−→ N(0, σ20), for some σ20 > 0. (2.3)

Furthermore, under H0 : µ ∈ Hα(I),

(
√
nkn)(Gn − 8σ2k−2n )

d−→ N(0, σ20) . (2.4)

Because kn is the block size and 2(n1 + n2) and n = n1n2 are the perimeter

and area, respectively, of the spatial region, the condition 1/kn + k
(1+α)
n (n1 +

n2)
α/nα → 0 in Theorem 1 asserts that the block size grows to infinity at a rate

slower than the α/(1 + α) power of the ratio of the area to the perimeter of a

spatial region. To give more insight into Theorem 1, we provide the following

remarks:

Remark 1. Theorem 1 indicates that if t0 is not a break point of µ(·), then

k2nTn converges to a generalized chi-squared distribution, as the other two terms

disappear in this case. In contrast, if t0 is a break point, then k2nTn = Op(k
2
n)

because kn
∑4

i=1(µi − µi+1)(Mn,i −EMn,i)
d−→
∑4

i=1(µi − µi+1)Zi, by Lemma 1

and the continuous mapping theorem (see the proof of Theorem 1), which means

the second term on the left-hand side of (2.2) is Op(kn). When t0 is a break point,

(µi − µi+1)
2 > 0 for at least one of i = 1, . . . , 4, which results in the dominance

of the third term in (2.2) with order O(k2n).

Remark 2. When µ is Hölder continuous and k1+αn (n1 + n2)
α/nα → 0, then

EGn converges to a quantity that does not depend on µ. This is because when µ

is Hölder continuous, for any given s = (s1, s2) ∈ [(i− 1)kn/n1, (i+ 1)kn/n1] ×
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[(j − 1)kn/n2, (j + 1)kn/n2],∣∣∣∣µ(s)− µ
(
ikn
n1

,
jkn
n2

)∣∣∣∣ ≤ C((knn1
)α

+

(
kn
n2

)α)
, (2.5)

which implies that for any t0 = (t01, t
0
2),

E

[
4∑
i=1

(Si([n · t0])− Si+1([n · t0]))2
]

=

4∑
i=1

(Sµi ([n · t0])− Sµi+1([n · t0])
2 +

4∑
i=1

E
[
S̄i([n · t0])− S̄i+1([n · t0])

]2
≤ C

(∣∣∣∣knn1
∣∣∣∣α +

∣∣∣∣knn2
∣∣∣∣α)2

+

4∑
i=1

E
[
S̄i([n · t0])− S̄i+1([n · t0])

]2
=

4∑
i=1

E
[
S̄i([n · t0])− S̄i+1([n · t0])

]2
(1 + o(1)),

as k1+αn (n1 + n2)
α/nα → 0 and E[S̄i([n · t0])− S̄i+1([n · t0])]2 = O(1/k2n), where

Sµi ([n ·t0]) and S̄i([n ·t0]) are defined analogously to Si([n ·t0]), with Yij replaced

with µij = µ(i/n1, j/n2) and εij , respectively.

Remark 3. If µ ∈ Hα(I) and k1+αn (n1 + n2)
α/nα → 0, then by (2.5), we have

EGn = 8σ2k−2n (1 + o(1)). However, when µ ∈ PHα(I), EGn ≥ Ckn(1/n1 +

1/n2) + 8σ2k−2n . This implies that if k3n(1/n1 + 1/n2)→∞, then

√
nkn(Gn − 8σ2k−2n ) =

√
nkn(EGn − EGn + EGn − 8σ2k−2n )

=
√
nkn(EGn − EGn) +

√
nkn(EGn − 8σ2k−2n )

=
√
nkn(EGn − EGn) +

√
nk2n

(
1

n1
+

1

n2

)
(1 + o(1))

→∞.

Thus, one can test whether changes happen in different regions using the statistics

gn =
√
nkn(Gn − 8σ2k−2n ). One might also consider applying the statistics G̃n =

max1≤i≤[n1/kn],1≤j1≤[n2/kn] T (ikn, jkn) instead. It would be interesting to establish

the asymptotic distribution of G̃n and compare its performance with Gn.

3. Boundary-Change Detection

Boundary-change detection is a very important problem in nonstationary

spatial statistics. To pursue a solution, we propose a threshold point evaluation
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(TPE) algorithm for boundary detection, which evaluates Tn at each location, and

deletes those values smaller than a certain threshold. In particular, we estimate

the boundary using a three-step procedure:

1. Calculate Tn at each lattice point si with spacing kn.

2. Select si, such that Tn(si) > λ for some prescribed threshold λ, as possible

change points s∗1, s
∗
2, . . . , s

∗
Kmax

.

3. Connect the adjacent lattice points among s∗1, s
∗
2, . . . , s

∗
Kmax

with line seg-

ments to visualize a change boundary.

Remark 4. To implement the testing and TPE algorithm, we consider the fol-

lowing choices of parameters kn and λ. First, taking kn = cn1/5 = c(n1n2)
1/5,

for c > 0, satisfies the theoretical requirements 1/kn + k1+αn (n1 + n2)
α/nα → 0,

for α = 1 and k3n(1/n1 + 1/n2) → ∞. The case α = 1 corresponds to Hölder

continuity of the spatial trend µ with order equal to one, which is convenient

and weak enough for many practical situations. On the other hand, when con-

sidering smoother functions, such as piecewise constant functions, a larger kn
of order (n1n2)

1/4 can be employed. Our simulation experiments suggest that

kn = 2(n1n2)
1/5 gives good performance in most cases.

For the selection of λ, when µ is Hölder continuous and satisfies the conditions

of Theorem 1, then for x > 0,

P
{

max
i
Tn(si) > x

}
≤
∑
i

P{k2nTn(si) > k2nx}

≤ nk−2n
4∑
i=1

P

{
Z2
i >

k2nx

4σ2

}
(1 + o(1))

= 4nk−2n P

{
|Z1| >

kn
√
x

2σ

}
(1 + o(1))

≤ 16σnk−3n x−1 exp

{
−xk2n
8σ2

}
(1 + o(1)),

which implies that if λ = 16σ2 log n/k2n, then P{maxi Tn(si) > λ} → 0. However,

if s0 is a change point, then Tn(s0) has the same order as k2n. As a result, we can

choose a threshold such as λ = 16σ2 log n/k2n, log n, or O(log n/kn) in the TPE

algorithm. Based on our simulation experience, we suggest λ = 16 log n/kn as a

rule-of-thumb choice.

We now give an example to illustrate the above algorithm. Consider model

(1.1) with i.i.d. standard normal white noise and the trend µ(s) = 0 (s = (s1, s2))
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Figure 2. The left panel plots the true boundaries for three different regions, where the
green area corresponds to µ(s) = 0, the yellow to µ(s) = 5, and the gray to µ(s) = 10.
The estimated boundaries and regions with kn = n1/4/4 and kn = 2n1/5 are plotted in
the middle and right panels, respectively.

for s21+(s2−1)2 < 1/4, µ(s) = 5 for s for s21+(s2−1)2 ≥ 1/4, and s1+s2 > 1 and

µ(s) = 10 otherwise. The corresponding areas are plotted in green, yellow, and

gray in the left panel of Figure 2. In the simulation, we set kn = n1/4/4 and 2n1/5,

where n1 = n2 = 100 and n = n1n2, and choose a cutoff with λ = 16 log n/kn.

All blocks containing change points (i.e., Tn(si) > λ) are used to estimate the

change boundaries. The estimated change blocks are depicted in white; see the

right panel of Figure 2, which estimates the true boundaries very well.

4. Bootstrapping

From equations (2.3) and (2.4), the proposed test statistic Gn has a normal

limit distribution, which involves two nuisance parameters σ2 and σ20. Although

σ2 and σ20 can be estimated using the asymptotic variance estimators of the

observations y(si) and the quantities Gn respectively (e.g., Sherman (2010)), the

estimators can sometimes be unstable. As an alternative, we use a spatial block

bootstrap procedure, called the grid-based block bootstrap (GBBB), introduced

by Lahiri and Zhu (2006), to directly approximate the asymptotic distribution

without estimating σ2 and σ20. Specifically, let bn be the block size, and let

Jn = {j ∈ Z2 : {jbn + [0, 1)2bn} ∩ [1,n] 6= ∅}

be the minimal set of indices j ∈ Z2, such that the disjoint hyper-cubes {jbn +

[0, 1)2bn, j ∈ Jn} with side lengths bn constitute a covering of [1,n] = [1, n1] ×
[1, n2]. Let

In = {i ∈ Z2 : {i + [0, 1)2bn} ⊆ [1,n]}

be the index set of all overlapping hyper-cubes contained in [1,n]. Consider a
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|Jn| out of |In| version of the GBBB algorithm, as follows:

1. Let Ij , j ∈ Jn be i.i.d. with a uniform distribution on the set In:

P ∗(Ij = i) =
1

|In|
, i ∈ In.

Let An(j) = jbn + [0, 1)2bn and Bn(Ij) = Ij + [0, 1)2bn, j ∈ Jn. Define

{Y ∗t }, the block bootstrap series of {Yt}, as follows:

{Y ∗t , t ∈ An(j)} := Y ∗(An(j)) = Y (Bn(Ij)) =: {Yt, t ∈ Bn(Ij)}, j ∈ Jn.

2. We calculate the bootstrap version of Gn by

G∗n =
1

|Jn|
∑
j∈Jn

T ∗n(An(j)), (4.1)

where

T ∗n(An(j)) =
k2n
b2n

∑
i:[(i−1)kn,(i+1)kn]⊆An(j)

T ∗n(ikn) ,

and T ∗n(ikn) is defined analogously to Tn(ikn) in Section 2, replacing Yt
with Y ∗t .

Theorem 2. Suppose that the conditions of Theorem 1 hold, kn = o(bn), and

bn = o(min{n1, n2}); then, for any x ∈ R,

P ∗{
√
|Jn|bnkn[G∗n − E∗(G∗n)] ≤ x} = P{

√
nkn(Gn − EGn) ≤ x}+ op(1),

where P ∗ and E∗ denote the probability and expectation value, respectively, of the

bootstrapped sample.

From the simulation experiments in Section 5, it can be seen that various

choices of block sizes that satisfy bn = o(min{n1, n2}) give excellent performance.

In practice, a convenient choice is bn = min{n1, n2}2/3 or n1/3 when n1 = n2.

5. Simulations and Applications

5.1. Simulations

We illustrate the proposed method using simulated examples and two data

sets. Let εs be a noise process generated by

εij = a1εi−1,j + a2εi,j−1 + a3εi−1,j−1 + ηij , (5.1)
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Figure 3. The density and the QQ plot of (

√
nkn)(Gn − EGn) for µ(s) = 0, with noise

drawn from (5.1) and (a1, a2, a3) = (0.3, 0.2, 0.3), given in the left and right panels,
respectively. The dotted red curves are the density (left panel) and the QQ plot (right
panel)of a standard normal distribution.

where {ηij} is a sequence of i.i.d. standard normal random variables.

First, we simulate the distribution of gn = (
√
nkn)(Gn − E(Gn)). The data

are generated from model (1.1) with µ(s) = 0, and the noise is generated from

(5.1) with (a1, a2, a3) = (0.3, 0.2, 0.3) and (n1, n2) = (250, 250). We set kn =

2(n1n2)
1/5 and draw 1,000 samples. The corresponding distribution of gn/sd(gn)

is plotted in Figure 3, where the left panel gives the density and the right panel

gives the QQ plot, and sd(gn) denotes the standard deviation of gn. Here, Gn
approximates a normal distribution well, as shown in Figure 3.

Second, we consider the power and size of Gn in testing H0 : µ(s) = 0

vs. H1 : µ(s) = σ · I(1/3 ≤ s, t ≤ 2/3) for different values of σ and (n1, n2).

We set kn = 2(n1n2)
1/5 and use the noise given in (5.1) with (a1, a2, a3) =

(0.3, 0.2, 0.3) in all of the simulations. The power of Gn over 500 replications,

with significance level α = 0.05, is reported in Table 1. In addition, the size of

Gn over 500 replications, with (n1, n2) = (100, 100), (200, 200), and (250, 250) and

with significance levels α = 0.05 and 0.10, is reported in Table 2. Table 1 shows

that Gn works reasonably well in detecting spatial change points, especially when

n = n1n2 and σ are large. Furthermore, the power increases as σ and n increase.

This makes sense, because when σ increases, changes become bigger and easier

to detect, and as n increases, Theorem 1 shows that the asymptotic power tends

to one. Similarly, Table 2 shows that the sizes of Gn approximate well to the

significance level. This result confirms the conclusion of Theorem 1.

Third, we consider the performance of the TPE algorithm in detecting the
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Table 1. The power of Gn in testing H0 : µ(s) = 0 vs. H1 : µ(s) = σ · I(1/3 ≤ s1, s2 ≤
2/3).

σ (n1, n2)=(50, 50) (100, 100) (150, 150) (200, 200) (250, 250) (500, 500)

0.5 0.132 0.132 0.161 0.189 0.178 0.458

1 0.41 0.441 0.703 0.881 0.872 1.000

2 0.985 1.000 1.000 1.000 1.000 1.000

Table 2. The size of Gn in testing H0 : µ(s) = 0 vs. H1 : µ(s) 6= 0.

α=0.05 α=0.10

(n1, n2) = (100, 100) (200, 200) (250, 250) (100, 100) (200, 200) (250, 250)

0.045 0.047 0.038 0.090 0.097 0.095
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Figure 4. The true circles with center (0.5, 0.5) and radii 0.2 and 0.4 and their estimates
from the TPE algorithm with threshold λ = 16 log n/kn, where the data in the three sub-
regions from inside to outside are generated from model (1.1) with mean functions µ(s) =
0, 5, and 10, respectively, and the noise is generated from (5.1). The sub-figures (a)–
(d) are plotted for noise with (a1, a2, a3) = (0, 0, 0), (0.3, 0.2, 0.3), (0.6, 0.8,−0.48), and
(0.6, 0.9,−0.54) respectively.

change boundary, with noise given by (5.1) and (a1, a2, a3) = (0, 0, 0), (0.3, 0.2,

0.3), (0.6, 0.8,−0.48), and (0.6, 0.9,−0.54). The first example consists of two con-

centric circles, both with center (0.5, 0.5) and with respective radii 0.2 and 0.4.

These circles split the region into three subregions. The data within the circle

with radius 0.2 have a zero mean function, those between the two circles have a

mean function µ(s) = 5, and those outside the circle with radius 0.4 have a mean

function µ(s) = 10. In this example, we take n1 = n2 = 500 and kn = 2(n1n2)
1/5,

and compute Tn on all of the lattices (ikn, jkn), i, j = 1, 2, . . . , [500/kn]. The

threshold λ in the TPE algorithm is taken as λ = 16 log n/kn, n = n1n2 = 5002,

and all lattices with Tn > λ are taken as possible change points. The true circles

and their change-point estimates (dots) based on the TPE are plotted in Figure 4.

The change boundary in the second example consists of two parabolas, the

first given by y = 2(x − 0.5)2 + 0.5, and the second by y = −2(x − 0.5)2 + 0.5,
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Figure 5. The true parabolas y = 2(x−0.5)2+0.5 and y = −2(x−0.5)2+0.5 and their esti-
mates based on the TPE algorithm with threshold λ = 16 log n/kn, where sub-figures (a)–
(d) are plotted for noise with (a1, a2, a3) = (0, 0, 0), (0.3, 0.2, 0.3), (0.6, 0.8,−0.48), and
(0.6, 0.9,−0.54), respectively.

which partition the region into four subregions. The mean function of the data

in the upper region with lower boundary y = 2(x−0.5)2 +0.5 and the data in the

lower region with upper boundary y = −2(x − 0.5)2 + 0.5 is taken as µ(s) = 5,

while the mean function of the data in the other two subregions is taken as

µ(s) = 0; the noise is generated just as in the first example. We choose sample

size n1 = n2 = 500, block length kn = 2(n1n2)
1/5, and threshold λ = 16 log n/kn.

The true parabolas and their TPE estimates are plotted in Figure 5.

We also consider estimating the change boundary under a large number of

dispersed change regions. Twenty-five circular regions centered at (cx, cy), for

cx, cy ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, each with radius 0.05, are assigned with mean

function µ(s) = 5, while the mean function of the data outside the circular

regions is taken as µ(s) = 0. The noise is generated as in the first example. We

choose sample size n1 = n2 = 500, block length kn = 2(n1n2)
1/5, and threshold

λ = 16 log n/kn. The true parabolas and their TPE estimates are plotted in

Figure 6. Figures 4 to 6 show that the proposed procedure works reasonably

well, but that noise dependence affects the performance; that is, the weaker the

spatial autocorrelation between the noise, the better is the performance.

Finally, we consider the power of the bootstrap procedure. To this end, data

inside and outside the circle with radius 1 are generated from model (1.1) with

mean µ(s) = 1 and µ(s) = 0, respectively, and noise (5.1) with (a1, a2, a3) =

(0, 0, 0), (0.3, 0.2, 0.3), (0.6, 0.7,−0.42), and (0.6, 0.8,−0.48), as shown in Fig-

ure 7. We set n1 = n2 = 500 =
√
n and repeat each simulation 1,000 times.

Based on these 1,000 samples, the power of G∗n in detecting structural breaks for

different (kn, bn) with significance level α = 0.05 is reported in Table 3. From

Table 3, the bootstrap procedure is demonstrated to work well, except in the case

bn = n1/2, where |Jn| = 1 and the condition bn = o(min{n1, n2}) in Theorem 2
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Figure 6. The true circular regions (x − cx)2 + (y − cy)2 = 0.052, where cx, cy ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, and their estimates based on the TPE algorithm with thresh-
old λ = 16 log n/kn, where sub-figures (a)–(d) are plotted for noise with (a1, a2, a3) =
(0, 0, 0), (0.3, 0.2, 0.3), (0.6, 0.8,−0.48), and (0.6, 0.9,−0.54), respectively.
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Figure 7. Data with mean µ(s) = 1 inside the circle with radius 1, µ(s) = 0 outside
the circle, and noise (5.1) with (a1, a2, a3) = (0, 0, 0), (0.3, 0.2, 0.3), (0.6, 0.7,−0.42), and
(0.6, 0.8,−0.48) are plotted in (a)–(d) respectively.

Table 3. The power of G∗
n under H1 for circular-boundary data.

(a1, a2, a3)
(kn, bn)

(n1/3, n1/2) (n1/4, n1/2) (n1/3, n9/20) (n1/4, n9/20) (n1/3, n2/5) (n1/4, n2/5) (n1/4, n1/3)

(0, 0, 0) 0.527 0.822 0.992 1.000 1.000 1.000 1.000

(0.3,0.2,0.3) 0.508 0.754 0.999 1.000 1.000 1.000 1.000

(0.6,0.7,-0.42) 0.455 0.969 0.939 1.000 1.000 1.000 1.000

(0.6,0.8,-0.48) 0.322 0.995 1.000 0.998 1.000 1.000 1.000

does not hold.

5.2. Data analysis

In this subsection, we apply Gn to test the stationarity of two data sets.

The first is the precipitation data set from the National Climatic Data Ce-

nter for the years 1895 to 1997, available at www.image.ucar.edu/GSP/Data

/US.monthly.met. This data set has been analyzed extensively, including by

www.image.ucar.edu/GSP/Data/US.monthly.met
www.image.ucar.edu/GSP/Data/US.monthly.met
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Table 4. The values of Gn and G̃n for the monthly total precipitation in Colorado in
December of 1986, with length kn = [(n1n2)1/δ].

n1 δ 4 4.5 5 5.5 6 6.5 7 7.5 8

kn 14 11 8 7 6 5 5 4 4

200 Gn 478.94 547.45 526.98 483.58 433.47 341.85 341.85 242.63 242.63

G̃n 1916.06 1452.74 923.36 691.26 522.78 372.60 372.60 212.49 212.49

kn 22 16 12 10 8 7 6 5 5

500 Gn 537.93 465.53 304.41 242.79 165.98 133.70 98.79 70.83 70.83

G̃n 6282.35 3844.14 2259.48 1699.52 1037.24 748.68 478.72 214.89 214.89

Johns et al. (2003); Furrer, Genton and Nychka (2006); Kaufman, Schervish and

Nychk (2008). Assuming the data to be stationary, Liang et al. (2013) used this

data set to analyze anomalies in monthly total precipitation, which are defined

as monthly totals, standardized by the long-term mean and standard deviation

for each station. It is informative to test for the stationarity assumption before

pursuing further analysis. Consider the monthly total precipitation in Colorado

in December of 1986. One reason for examining this month is that it includes a

large data set from 283 stations. In our analysis, we split the range of longitudes

(l1 = 8.463◦) and latitudes (l2 = 4.955◦) of the 283 stations into rectangles of

length and width (l1/500, l2/500) (i.e., n1 = n2 = 500) and (l1/200, l2/200) (i.e.,

n1 = n2 = 200), and take the block length kn to be [(n1n2)
1/δ] with different δ in

computing Tn. The corresponding values ofGn and G̃n = (
√
nknσ̂0)(Gn−8σ̂2k−2n )

are reported in Table 4, where σ̂20 and σ̂2 are the asymptotic variance estimators

for σ20 and σ2, respectively. By (2.4) and the stationarity assumption, G̃n con-

verges to a standard normal distribution, which means that all of the values of

G̃n in Table 4 yield very small p-values; this casts doubt on the stationarity

assumption.

We also use G̃n to test the December data for other years, and find that

all of the p-values are very small, which indicates again that the stationarity

assumption is questionable. The nonstationarity of this data set is confirmed by

the bootstrap procedure with a significance level of 0.05. The locations of the

largest values over λ = 8 log n/kn and 16 log n/kn of Tn, and the change boundary

based on these change points for n1 = n2 = 200 and kn = [2(n1n2)
1/5], are plotted

in (a) and (b) of Figure 8, respectively.

Although different λ may lead to different quantities of change points and

different change boundaries, Figure 8 shows that changes in monthly total precip-

itation occur in the west of Colorado, especially the southwestern region, but not

in the east. Because plains cover most of eastern Colorado, precipitation varies

little. However, most of western Colorado is made up of mountains, foothills,
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Figure 8. The locations of those points with Tn over λ, and the corresponding change
boundaries based on the detected change points for monthly total precipitation in Col-
orado, USA, are marked in red for (a) λ = 8σ2 log n/kn and (b) λ = 16 log n/kn.

Table 5. The values of Gn and G̃n with length kn = [(n1n2)1/δ] for the average monthly
temperature in China, in January.

n1 δ 4 4.5 5 5.5 6 6.5 7 7.5 8

kn 10 8 6 5 5 4 4 3 3

100 Gn 143.98 117.22 125.05 143.34 143.34 146.55 146.55 112.30 112.30

G̃n 499.05 345.63 227.63 181.96 181.96 125.24 125.24 17.57 17.57

kn 14 11 8 7 6 5 5 4 4

200 Gn 121.61 137.77 146.55 143.70 112.30 92.34 92.34 66.12 66.12

G̃n 1259.64 1031.56 724.03 557.01 405.98 238.08 238.08 47.35 47.35

high plains, and desert lands. Our result confirms the finding of Doesken, Pielke,

Sr. and Bliss (2003) that mountains and surrounding valleys greatly affect local

climate.

The second data set consists of monthly temperatures (in degrees Celsius)

recorded at 176 monitoring stations in China from January 1970 to December

2000. All series have length 372. In our analysis, we consider the average monthly

temperature for January over the entire 31 years. In this data set, the range of

longitudes amongst all stations is 56.01◦, and the range of latitudes is 29.24◦. As

in the previous example, we split the ranges of longitudes and latitudes into 200

subintervals of length l1/200 and width l2/200 (i.e., n1 = n2 = 200), and 100

subintervals of length l1/100 and width l2/100 (i.e., n1 = n2 = 100); the value

of kn is taken to be (n1n2)
1/δ, as in the first example. We then calculate the

corresponding Gn and G̃n, as shown in Table 5.

Because G̃n converges to a standard normal distribution under the station-

arity assumption, Table 5 shows that at a significance level of 0.05, the average

monthly temperature varies between locations, and thus the stationarity assump-
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Figure 9. The change locations and corresponding change boundaries for monthly tem-
perature in China in January for the period 1970− 2000 based on Tn > 16 log n/kn and
kn = [2(n1n2)1/5], for (a) n1 = n2 = 100 and (b) n1 = n2 = 200.

tion is questionable. To determine possible change points, we consider those Tn
with values larger than λ = 16 log n/kn, where kn = [2(n1n2)

1/5], n = n1n2, and

n1 = n2 is chosen to be 100 and 200. The corresponding change points and their

boundaries are plotted in Figure 9.

Figure 9 shows that different λ can lead to some changes on the boundaries,

but that major change regions located in Xinjiang province and on the north-

ern border remain similar. Little change occurs in the southern regions. These

phenomena can be explained intuitively as follows. Because Xinjiang province is

surrounded by mountains, plains, and deserts, its temperature varies more than

in the other regions. Similarly, climate patterns in the northern part of China are

more severely affected by the winter monsoon. As a result, the observed temper-

ature changes are most pronounced in Xinjiang province and the northern part

of China, as indicated in Figure 9.

6. Conclusion

This paper proposes a discrepancy measure for the identification of changes

in spatial domains. The underlying idea is similar to the approximation of in-

tegrals by Riemann sums in local regions, in which in-fill asymptotics can be

implemented. Also called fixed-domain asymptotics, these are based on observa-

tions that become increasingly dense in some fixed, bounded region as the sample

size increases, as seen in Cressie (1993). Using this measure, we present novel

statistical tests for structural changes and the specific forms of the underlying

trends. We also establish the asymptotic properties of these tests and limit dis-

tributions. Furthermore, an algorithm to identify change-boundaries is provided.
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The proposed procedures are illustrated using simulations and real data.

Although this study mainly focuses on the lattice case, it is plausible (al-

though nontrivial) to extend the results to the nonlattice case by applying kernel

smoothing to Tn. In addition, the approach presented here can be applied to test

structural covariances by considering the product process {Y (s)Y (t)}. These

challenging issues are left to future research.

Supplementary Material

Proofs of the main theorems are presented in Supplementary Materials.
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Harchaoui, Z. and Lévy-Leduc, C. (2010). Multiple change-point estimation with a total varia-

tion penalty. Journal of the American Statistical Association 105, 1480–1493.

Huang, L., Kulldorff, M. and Gregorio, D. (2007). A spatial scan statistic for survival data.

Biometrics 63, 109–118.

Johns, C. J., Nychka, D., Kittel, T. G. F. and Daly, C. (2003). Infilling sparse records of spatial

fields. Journal of the American Statistical Association 98, 796–806.

Kaufman, C. G., Schervish, M. J. and Nychka, D. W. (2008). Covariance tapering for likelihood-

based estimation in large spatial data sets. Journal of the American Statistical Associa-

tion 103, 1545–1555.

Kulldorff, M. (2001). Prospective time periodic geographical disease surveillance using a scan

statistic. Journal of the Royal Statistical Society: Series A (Statistics in Society) 164,

61–72.

Lahiri, S. N. and Robinson, P. M. (2016). Central limit theorems for long-range dependent

spatial linear processes. Bernoulli 22, 345–375.

Lahiri, S. N. and Zhu, J. (2006). Resampling methods for spatial regression models under a class

of stochastic designs. The Annals of Statistics 34, 1774–1813.

Liang, F., Cheng, Y., Song, Q., Park, J. and Yang, P. (2013). A resampling-based stochastic

approximation method for analysis of large geostatistical data. Journal of the American

Statistical Association 108, 325–339.

Lin, Z. and Lu, C. (1996). Limit Theory on Mixing Dependent Random Variables. Kluwer Aca-

demic Publishers, Dordrecht.
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