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S1 Proofs of main results

Proof of Proposition 1. We provide the proof of the generalized version

of Proposition 1 which allows different basis functions among processes.

The univariate orthonormal basis representation for each random process

is Xj =
∑∞

l=1 θjlbjl. Recall that G(s, t) = E{X(s)X(t)T} ∈ Rp×p and∫
G(s, t)ψk(s)ds = λkψk(t). Then we have{∫
G(s, t)ψk(s)ds

}
j

=

p∑
j′=1

∫
cov{Xj′(s), Xj(t)}ψkj′(s)ds

=

p∑
j′=1

∫ ∞∑
l′=1

∞∑
m=1

cov(θj′l′ , θjm)bj′l′(s)bjm(t)ψkj′(s)ds

=

p∑
j′=1

∞∑
l′=1

∞∑
m=1

cov(θj′l′ , θjm)bjm(t)

∫
bj′l′(s)ψkj′(s)ds

= λkψkj(t). (S1.1)
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Denote ukjl =
∫
T bjl(t)ψkj(t)dt. Multiplying both sides by bjl(t) and

then integrating both sides over t yields

p∑
j′=1

∞∑
l′=1

∞∑
m=1

cov(θj′l′ , θjm)

∫
bjm(t)bjl(t)dt

∫
bj′l′(s)ψkj′(s)ds = λk

∫
bjl(t)ψkj(t)dt,

p∑
j′=1

∞∑
l′=1

cov(θj′l′ , θjl)ukj′l′ = λkukjl. (S1.2)

Combining (S1.1) and (S1.2), the eigenfunctions ψk are

ψkj(t) =
∞∑
l=1

ukjlbjl(t), t ∈ T , j = 1, . . . , p, k = 1, 2, . . . .

Obviously,
∑p

j=1

∑∞
l=1 u

2
kjl = 1 and

∑p
j=1

∑∞
l=1 ukjluk′jl = 0 for k 6= k′. And

the scores are

ηk = <X(t),ψk(t) > =
∑p

j=1

∫
Xj(t)ψkj(t)dt

=
∑p

j=1

∫ ∑∞
l=1 θjlbjl(t)ψkj(t)dt =

∑p
j=1

∑∞
l=1 θjlukjl.

For convenience, we suppress the subscript H in inner product and norm

operations when there is no ambiguity.

Proof of Theorem 1. Recall that X̃j =
∑Nj

l=1 θjlbl and G̃(s, t) = E{X̃(s)X̃(t)T},

λ̃k and ψ̃k are corresponding eigenvalues and eigenfunctions respectively.

First we provide the bound of |||G̃−G|||2 which is important in the sequel.

|||G̃−G|||2 ≤
∫ ∫ p∑

j=1

p∑
j′=1

{G̃jj′(s, t)−Gjj′(s, t)}2dsdt
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=

∫ ∫ p∑
j=1

p∑
j′=1

{EX̃j(s)X̃j′(t)− EXj(s)Xj′(t)}2dsdt

.
p∑
j=1

p∑
j′=1

(∫ ∫
[EX̃j(s){X̃j′(t)−Xj′(t)}]2dsdt

+

∫ ∫
[EXj′(t){X̃j(s)−Xj(s)}]2dsdt

)
≤ E‖X̃‖2E‖X̃ −X‖2 + E‖X‖2E‖X̃ −X‖2. (S1.3)

Use the notations I−n and I+n defined in Lemma S1. Denote the event

{I−n ⊂ Î ⊂ I+n } by An. By Lemma S1, we have P (lim supAn) = 1. Under

the weak lq sparsity, E‖X‖2 = O(1). On the event An, we have

E‖X̃ −X‖2 ≤
∑

(j,l)/∈I−n

σ2
jl ≤

∑
j,l

(m−1σ2a+αn) ∧ σ2
(j)(l)

�
gn∑
j=1

∞∑
l=Nj+1

σ2
(j)(l) +

p∑
j=gn+1

V(j) = I + II.

It is obtained that II = O(g
1−2/q
n ). Based on the weak lq sparsity and

Lemma 1, we have

I �
gn∑
j=1

j−
2

q(2α+1)

(
1

m

√
log p

n

)2α/(2α+1)

.

Next we consider the following cases about the first term I based on

relationship between two types of sparsity q and α to obtain the final results.

• If q(2α+1) > 2, then I = O
[{
m−1(log p/n)1/2

}2α/(2α+1)
g
1−2/q(2α+1)
n

]
=

O(g
1−2/q
n ). Combining I and II yields E‖X̃ −X‖2 = O(g

1−2/q
n ).
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• If q(2α + 1) = 2, then

I = {m−1(log p/n)1/2}2α/(2α+1)

gn∑
j=1

j−1 = O
[
{m−1(log p/n)1/2}2α/(2α+1) log(gn)

]
.

Combining I and II yields E‖X̃−X‖2 = O
[
{m−1(log p/n)1/2}2α/(2α+1) log(gn)

]
.

• If q(2α + 1) < 2, then we have I = O
[
{m−1(log p/n)1/2}2α/(2α+1)

]
.

Combining I and II yields E‖X̃−X‖2 = O
[
{m−1(log p/n)1/2}2α/(2α+1)

]
.

From the bound on covariance (S1.3), according to the result of Theorem

1 in Hall and Hosseini-Nasab (2006), we arrive at the desired results.

Proof of Theorem 2. Recall that gn denotes the number of retained pro-

cesses. First, we prove that the measurement error is negligible and then it

suffices to quantify the error |||G̃− Ĝ||| on the event An, where Ĝjj′(s, t) =

n−1
∑n

i=1 x̌ij(s)x̌ij′(t) and x̌ij =
∑Nj

l=1 θ̃ijlbl. Observe that

ε̃ijl =
m∑
k=1

εijk

∫ tk

tk−1

bl(t)dt.

Then we have var(ε̃ijl) = σ2
∑m

k=1

{∫ tk
tk−1

bl(t)dt
}2

.

Denote ∆̃ = diag(var(ε̃11), . . . , var(ε̃1N1), . . . , var(ε̃p1), . . . , var(ε̃pNp)) and

∆ is a N × N diagonal matrix whose elements are all 1/m where N =∑p
j=1Nj. Note that ∣∣∣∣∣∣

m∑
k=1

{∫ tk

tk−1

bl(t)dt

}2

− 1

m

∣∣∣∣∣∣
4



S1. PROOFS OF MAIN RESULTS

=

∣∣∣∣∣
m∑
k=1

∫ tk

tk−1

∫ tk

tk−1

bl(t){bl(s)− bl(t)}dtds

∣∣∣∣∣
≤ L

m2

∫ 1

0

bl(t)dt,

where the last inequality follows from the Condition 8. Note that from

Lemma 1, we have N = op(gnm
2) under Condition 5. Then we have ‖∆̃−

∆‖F = op(g
1/2
n m−1).

On the event An,

|||G̃− Ĝ|||2 =

∫ ∫ p∑
j=1

p∑
j′=1

{G̃jj′(s, t)− Ĝjj′(s, t)}2dsdt

=

∫ ∫ p∑
j=1

p∑
j′=1

{
n−1

n∑
i=1

x̌ij(s)x̌ij′(t)− n−1
n∑
i=1

x̃ij(s)x̃ij′(t)

+ n−1
n∑
i=1

x̃ij(s)x̃ij′(t)− EX̃j(s)X̃j′(t)

}2

dsdt

≤ 4

gn∑
j=1

gn∑
j′=1

∫ ∫ [
n−1

n∑
i=1

{x̌ij(s)− x̃ij(s)}x̌ij′(t)

]2
dsdt

+4

gn∑
j=1

gn∑
j′=1

∫ ∫ [
n−1

n∑
i=1

x̃ij(s){x̃ij′(t)− x̌ij′(t)}

]2
dsdt

+2

∫ ∫ gn∑
j=1

gn∑
j′=1

{
n−1

n∑
i=1

x̃ij(s)x̃ij′(t)− EX̃j(s)X̃j′(t)

}2

dsdt

= I + II + III. (S1.4)

To bound the term I and II, note that

∫ ∫ [
n−1

n∑
i=1

{x̌ij(s)− x̃ij(s)}x̌ij′(t)

]2
dsdt
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≤ n−2

(
n∑
i=1

[∫ ∫
{x̌ij(s)− x̃ij(s)}2x̌2ij′(t)dsdt

]1/2)2

= n−2

(
n∑
i=1

[
‖x̃ij − x̌ij‖L2

{∫
x̌ij′(t)

2dt

}1/2
])2

, (S1.5)

where the first inequality follows from the triangle inequality. Similarly, we

have ∫ ∫ [
n−1

n∑
i=1

x̃ij(s){x̃ij′(t)− x̌ij′(t)}

]2
dsdt

≤ n−2

(
n∑
i=1

[
‖x̃ij′ − x̌ij′‖L2

{∫
x̃2ij(s)ds

}1/2
])2

. (S1.6)

Using Bessel’s inequality and Condition 2, we may prove that

‖x̃ij − x̌ij‖L2 ≤ ‖x∗ij − xij‖L2 = Op

(
1

m

)
. (S1.7)

So we have I = Op(gn/m
2) and II = Op(gn/m

2). To bound the term

III,

n−2
∫ ∫

E

{
n∑
i=1

{x̃ij(s)x̃ij′(t)− EX̃j(s)X̃j′(t)}

}2

dsdt

≤ n−2
∫ ∫ n∑

i=1

E{x̃2ij(s)x̃2ij′(t)}dsdt

= Op

(
1

n

)
,

where the last equality follows from Condition 2. Thus, combining together

yields that |||Ĝ− G̃||| = Op(n
−1/2 + g

1/2
n m−1).

Case 1. If γ > 1/(2 − q), the parametric rate dominates while the

discretization error is negligible, |||G̃ − Ĝ||| = Op(n
−1/2). In this case, we
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adopt techniques in Hall and Horowitz (2007) and Kong et al. (2016) to

obtain sharper bounds.

Define ∆̂ = |||Ĝ− G̃|||. We find that, for k = 1, . . . , rn,

λ̃k − λ̃k+1 ≥ |λk − λk+1 − 2∆| ≥ Ck−a−1,

which holds according to Condition 9, where ∆ = |||G− G̃|||. Denote

Jn = {λ̃k − λ̃k+1 > 2/(2−
√

2)∆̂, k = 1, . . . , rn}.

The set Jn means that the distance of adjacent ordered eigenvalues does

not fall below 2/(2 −
√

2)∆̂, P (Jn) → 1, n → ∞ is implied by Condition

10. For some constant C, define the set

Fn = {(λ̂k1−λ̃k2)−2 ≤ 2(λ̃k1−λ̃k2)−2 ≤ Cr2(a+1)
n , k1, k2 = 1, . . . , rn, k1 6= k2}.

For k1 6= k2, |λ̂k1 − λ̃k1| ≤ ∆̂ < (1 −
√

2/2) mink1 6=k2 |λ̃k1 − λ̃k2| gives

that

|λ̂k1 − λ̃k2| = |λ̂k1 − λ̃k1 + λ̃k1 − λ̃k2|

≥ |λ̃k1 − λ̃k2| − |λ̂k1 − λ̃k1|

≥ |λ̃k1 − λ̃k2| − ∆̂.

Then we have P (Fn)→ 1 as n→∞. By (5.16) in Hall and Horowitz (2007),

one has ‖ψ̂k− ψ̃k‖2 ≤ 2û2k where û2k =
∑

l:l 6=k(λ̂k− λ̃l)−2{
∫
ψ̂

T

k (Ĝ− G̃)ψ̃l}2.
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By Lemma 1 in Kong et al. (2016), we have

û2k ≤ 4
∑
l:l 6=k

(λ̃k − λ̃l)−2
{∫

ψ̃
T

k (G̃− Ĝ)ψ̃l

}2

+ 2Cr2(a+1)
n ‖ψ̂k − ψ̃k‖2∆̂2.

Plugging this into ‖ψ̂k − ψ̃k‖2 ≤ 2û2k, we find that

(1− 4Cr2(a+1)
n ∆̂2)‖ψ̂k − ψ̃k‖2 ≤ 8

∑
l:l 6=k

(λ̃k − λ̃l)−2
{∫

ψ̃
T

k (G̃− Ĝ)ψ̃l

}2

.

As r
2(a+1)
n ∆̂2 = op(1), we have

‖ψ̂k − ψ̃k‖2 ≤ 8
∑
l:l 6=k

(λ̃k − λ̃l)−2
{∫

ψ̃
T

k (G̃− Ĝ)ψ̃l

}2

,

by analogy to (5.22) in Hall and Horowitz (2007), E

[∑
l:l 6=k(λ̃k − λ̃l)−2

{∫
ψ̃

T

k (G̃− Ĝ)ψ̃l

}2
]

=

O(k2n−1) holds uniformly in k = 1, . . . , rn.

Case 2. If γ ≤ 1/(2−q), the discretization error dominates, |||Ĝ−G̃||| =

Op(g
1/2
n m−1). With the result of Theorem 1 in Hall and Hosseini-Nasab

(2006), the final results are established.

S2 Theoretical results on recovery

We can represent the trajectories using estimated eigenfunctions. It is of

interest to investigate the theoretical performance of recovered processes.

To provide more insights of the sampling frequency of m on the results, we

directly characterize the discretization error. For recovered curves, one has
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the following decomposition:

‖x̂rni − xi‖H ≤ ‖xrni − xi‖H + ‖x̃rni − x
rn
i ‖H + ‖x̂rni − x̃rni ‖H,

where x̂rni =
∑rn

k=1 η̂ikψ̂k, x̃
rn
i =

∑rn
k=1 η̃ikψ̃k and xrni =

∑rn
k=1 ηikψk. In the

righthand, the first and second terms can be both viewed as approximation

errors, while the third term is seen as an estimation error. Denote η̃ik =<

x̃i, ψ̃k >H. Under the weak lq sparsity, we consider the most interesting case

where 0 < q < 1 (Bruckstein et al., 2009). For more detailed interpretation,

one can refer to the discussion following Theorems 1 and 2.

Theorem S1 (Approximation Error for recovery under weak lq). Under

the Conditions in Theorem 1, if < ψk, ψ̃k >H ≥ 0, then uniformly for

k = 1, . . . , rn,

Case 1. When q(α + 1) > 2,

|η̃ik − ηik| = Op

(
ka+1g1/2−1/qn

)
,

‖x̃rni − x
rn
i ‖H = Op

(
ra+3/2
n g1/2−1/qn

)
.

Case 2. When q(α + 1) = 2,

|η̃ik − ηik| = Op

{
ka+1(m−1

√
log p/n)α/(2α+1)(log gn)1/2

}
,

‖x̃rni − x
rn
i ‖H = Op

{
ra+3/2
n (m−1

√
log p/n)α/(2α+1)(log gn)1/2

}
.
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Case 3. When q(α + 1) < 2,

|η̃ik − ηik| = Op

{
ka+1(m−1

√
log p/n)α/(2α+1)

}
,

‖x̃rni − x
rn
i ‖H = Op

{
ra+3/2
n (m−1

√
log p/n)α/(2α+1)

}
,

Moreover,

‖xi − xrni ‖H = Op

(
r1−an

)
.

Theorem S2 (Estimation Error for recovery under weak lq). Under Con-

ditions in Theorem 2, if < ψ̂k, ψ̃k >H≥ 0, then uniformly for k = 1, . . . , rn,

Case 1. When γ > 1/(2− q),

|η̃ik − η̂ik| = Op(kn
−1/2 + ka/2m−1/2),

‖x̃rni − x̂
rn
i ‖H = Op(r

3/2
n n−1/2 + r(a+1)/2

n m−1/2), i = 1, . . . , n.

Case 2. When (1− β)/2 < γ ≤ 1/(2− q),

|η̃ik − η̂ik| = Op(k
a+1g1/2n m−1 + ka/2m−1/2),

‖x̃rni − x̂
rn
i ‖H = Op(r

a+3/2
n g1/2n m−1 + r(a+1)/2

n m−1/2), i = 1, . . . , n.

S3 Proofs of lemmas and auxiliary results

Define two non-random sets I−n = {(j, l), j = 1, . . . , p; l = 1, . . . , sn :

σ2
jl > m−1σ2a+αn} and I+n = {(j, l), j = 1, . . . , p; l = 1, . . . , sn : σ2

jl >
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m−1σ2a−αn}. Recall that Î = {(j, l), j = 1, . . . , p; l = 1, . . . , sn : σ̂2
jl ≥

m−1σ2(1 + αn)}.

Lemma S1. For sufficiently large n, I−n ⊂ Î ⊂ I+n almost surely.

Proof. Recall that σ̃2
jl = var(θ̃jl). Observe that

θ̂ijl =

∫
T
xij(t)bl(t)dt+

m∑
k=1

∫ tk

tk−1

{xij(tk)− xij(t)}bl(t)dt+ ε̃ijl

= θijl + zijl + ε̃ijl.

We have θ̃ijl = θijl + zijl and σ̃2
jl = σ2

jl + var(zijl) + cov(θijl, zijl). Under the

Lipschitz condition, we have var(zijl) = O(m−2). So σ̃2
jl = σ2

jl + O(m−2) +

O(σjl/m). First we state the results from Johnstone (2001) that

pr{χ2
n ≤ n(1− ε)} ≤ exp(−nε2/4), 0 ≤ ε ≤ 1,

pr{χ2
n ≥ n(1 + ε)} ≤ exp(−3nε2/16), 0 ≤ ε < 1/2.

Denote M̄n
d
= χ2

n/n where x
d
= y means that x has the same distribution as

y. |I| denotes the cardinality of set I. Then,

P−n = pr(I−n /∈ Î)

= pr
[
{(j, l) ∈ I−n : σ̂2

jl ≤ m−1σ2(1 + αn)}
]

≤
∑

(j,l)∈I−n pr{σ̂2
jl ≤ m−1σ2(1 + αn)}, subadditivity

=
∑

(j,l)∈I−n pr{M̄n ≤ (1 + αn)/(1 +mσ̃2
jl/σ

2)}, σ̂2
jl ∼ (m−1σ2 + σ̃2

jl)χ
2
n/n

≤ |I−n |pr{M̄n ≤ (1 + αn)/(1 + (1 + o(1))a+αn)}

= |I−n |pr(M̄n ≤ 1− εn) ≤ |I−n | exp(−nε2n/4),

11
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where εn = {a+(1 + o(1)) − 1}αn/{1 + (1 + o(1))a+αn} and the second

inequality holds because σ̃2
jl/σ

2
jl → 1 for all (j, l) ∈ I−n under Condition 5.

We have nε2n ≈ {(a+ − 1)2α2
0 log(psn)}/(1 + a+αn)2 ≥ (a+ − 1)2α′ log(psn)

where α′ is slightly smaller than α2
0. Let α′′+ = (a+ − 1)2α′/4, then P−n ≤

(psn)1−α
′′
+ . If α0 ≥

√
12, then α′′+ ≥ 3 for suitable a+ > 2. Similarly, we

have

P+
n = pr(Î /∈ I+n )

≤
∑

(j,l)/∈I+n pr{σ̂2
jl ≥ m−1σ2(1 + αn)}

≤
∑

(j,l)/∈I+n pr{M̄n ≥ m−1σ2(1 + αn)/(m−1σ2 + σ̃2
jl)}, σ̂2

jl ∼ (m−1σ2 + σ̃2
jl)χ

2
n/n

≤ psnpr{M̄n ≥ (1 + αn)/(1 + (a− + o(1))αn)}

≤ psnpr(M̄n ≥ 1 + ε′n),

≤ psn exp(−3nε′2n /16),

where ε′n = {1− o(1)− a−}αn/{1 + (o(1) + a−)αn} and the third inequality

holds because m(σ̃2
jl − σ2

jl) = o(αn) for all (j, l) /∈ I+n under Condition 5.

We have nε′2n ≈ {(1− a−)2α2
0 log(psn)}/(1 + a−αn)2 ≥ (1− a−)2α′ log(psn)

where α′ is slightly smaller than α2
0. Let α′′− = 3(1 − a−)2α′/16, then

P+
n ≤ (psn)1−α

′′
− . If α0 ≥

√
12, then α′′− > 2 for suitable 0 < a− < 1−

√
8/9.

By a Borel-Cantelli argument, the result follows from the bounds on P−n

and P+
n .

Proof of Lemma 1. It is straightforward to obtain the bounds on cardinality
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of I−n and I+n based on sparsity assumptions. Combing Lemma S1 yields

the final results.

Proof of Theorem S1. For the approximated scores η̃k,

|η̃ik − ηik| = | < x̃i, ψ̃k >H − < xi,ψk >H |

= | < x̃i, ψ̃k −ψk >H + < x̃i − xi,ψk >H |

≤ ‖x̃i‖‖ψ̃k −ψk‖+ ‖x̃i − xi‖.

For the approximated curves x̃rni ,

‖x̃rni − x
rn
i ‖ =

∥∥∥∥∥
rn∑
k=1

(η̃ikψ̃k − ηikψk)

∥∥∥∥∥
≤

∥∥∥∥∥
rn∑
k=1

ηik(ψ̃k −ψk)

∥∥∥∥∥+

∥∥∥∥∥
rn∑
k=1

ψ̃k(η̃ik − ηik)

∥∥∥∥∥
≤

rn∑
k=1

|ηik|‖ψ̃k −ψk‖+

{
rn∑
k=1

(η̃ik − ηik)2
}1/2

.

Under the weak lq sparsity ‖x̃i‖ = Op(1). According to Theorem 1, we

establish the final results.

Proof of Theorem S2. For the estimated scores, we have

|η̃ik − η̂ik| ≤ ‖x̃i‖‖ψ̃k − ψ̂k‖+ |ûT
k (θiÎ − θ̂iÎ)|.

where uk is the kth eigenvector of Σ = E(θÎθ
T
Î

) and the inequality follows

from Proposition 1. To quantify the second term in the righthand, we have

|θijl − θ̂ijl| = Op(m
−1/2) for all j, l by simple calculation.
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Under weak lq sparsity, we assume α > 1/2 and we consider the most

interesting case where 0 < q < 1. We have ‖uk‖1 = O(ka/2), then we have

|ûT
k (θiÎ − θ̂iÎ)| = Op(k

a/2m−1/2).

We have ‖x̃i‖ = Op(1) under weak lq sparsity. According to the results

in Theorem 2, we establish results in Theorem S2.

S4 Processes under the l0 sparsity

We consider the case where only a small fraction of processes contain signals

and the rest do not. Here the l0 sparsity is in the sense of ‖V‖0 = g � p.

It is assumed w.l.o.g. that the first g processes contain signals with com-

parable energies and Vj ≡ 0, for j = g + 1, . . . , p. Moreover, the variances

of coefficients for these g processes satisfy (2.2).

S4.1 Regularity conditions

Conditions S1 and S2 concern the approximation error and estimation error,

respectively, under the l0 sparsity. Note that under the l0 setting, we do not

require g to be finite generally. Thus, there exists a little difference about

those conditions under these two settings.

Condition S1. ra+1
n g

(
m−1

√
log p/n

)α/(2α+1)

= o(1).

Condition S2. max
{
ra+1
n gm−1, ra+1

n gn−1/2
}

= o(1).

14
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To ensure that the g significant processes are consistently estimable,

under the l0 case, the signals should not be too small.

Condition S3. minj∈{1,...,g}maxl σ
2
jl � m−1

√
log p/n.

S4.2 Theoretical results under the l0 sparsity

In this section, we provide theoretical results for estimating multivariate

eigenfunctions under the l0 sparsity.

Lemma S2. Under the l0 sparsity, Conditions 1-2, 4-7 and S3, there exists

a constant C > 0 such that Nj ≤ C
(
m−1

√
log p/n

)−1/(2α+1)

almost surely

for j = 1, . . . , g and Nj
a.s.→ 0 for j = g + 1, . . . , p.

Lemma S2 implies the consistent selection property, that is, all the g

processes, and only those, are selected almost surely as n → ∞. Without

additional assumptions on the energy, it is clear that Nj, j = 1, . . . , g share

the same order. From the proof of Theorems S3 and S4, we also know that

‖Ĝ(s, t)−G(s, t)‖H = Op

{
g(m−1

√
log p/n)α/(2α+1) + gn−1/2 + gm−1

}
.

These three parts in the rates of convergence correspond to bias caused by

thresholding, covariance estimation error and discretization error, respec-

tively. Consequently, the rates of convergence for estimated eigenfunctions

are obtained, and presented as approximation and estimation error, respec-

15
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tively.

Theorem S3 (Approximation Error). Under l0 sparsity, if Conditions 1–7,

S1 and S3 hold and < ψk, ψ̃k >H≥ 0, then uniformly for k = 1, . . . , rn,

‖ψ̃k −ψk‖H = O

{
ka+1g

(
m−1

√
log p/n

)α/(2α+1)
}
, a.s..

The approximation error is caused by excluding the small variances in

the subset selection step. Due to the correct selection property, this error is

associated with g, the number of retained coefficients Nj and the variance

decaying rate α. To be specific, the term
(
m−1

√
log p/n

)α/(2α+1)

, that is,

N−αj , is determined by excluding coordinates with small variances and the

additional term ka+1 is attributed to the increasing error of approximat-

ing higher order eigenelements ψk, k = 1, . . . , rn. Next we quantify the

estimation error, where we consider two cases depending on whether the

discretization error can be asymptotically negligible. Recall that γ quanti-

fies the sampling rate m = O(nγ), where γ > (1−β)/2 and p = O{exp(nβ)}

for 0 < β < 1.

Theorem S4 (Estimation Error). Under l0 sparsity, if Conditions 1–8,

S2–S3 hold and < ψ̂k, ψ̃k >H≥ 0, then uniformly for k = 1, . . . , rn, we have

the following.

16
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Case 1. When γ > 1/2,

‖ψ̃k − ψ̂k‖H = Op

(
kgn−1/2

)
.

Case 2. When (1− β)/2 < γ ≤ 1/2,

‖ψ̃k − ψ̂k‖H = Op

(
ka+1gm−1

)
.

The correct selection property implied by Lemma S2 makes it sufficient

to consider the estimation error of a small set of retained processes. Note

that the estimation error does not involve the term Nj, as we quantify

the discretization error of retained coefficients via retained processes using

Bessel’s inequality. The sampling rate γ plays an important role in the

rates of convergence, which exhibits the phase transition phenomenon at

γ = 0.5. For more detailed interpretation, one can refer to the discussion

following Theorems 1 and 2.

Theorem S5 (Approximation Error for recovery under l0). Under Condi-

tions in Theorem S3, if < ψk, ψ̃k >H≥ 0, then uniformly for k = 1, . . . , rn,

|η̃ik − ηik| = Op

{
ka+1g3/2

(
m−1

√
log p/n

) α
2α+1

}
,

Moreover,

‖xi − xrni ‖H = Op

(
gr1−an

)
,

‖x̃rni − x
rn
i ‖H = Op

{
ra+3/2
n g3/2

(
m−1

√
log p/n

) α
2α+1

}
.

17
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Theorem S6 (Estimation error for recovery under l0). Under Conditions

in Theorem S4, if < ψ̂k, ψ̃k >H≥ 0, then uniformly for k = 1, . . . , rn,

Case 1. When γ > 1/2,

|η̃ik − η̂ik| = Op

(
kg3/2n−1/2 + ka/2gm−1/2

)
,

‖x̃rni − x̂
rn
i ‖H = Op

(
r3/2n g3/2n−1/2 + r(a+1)/2

n gm−1/2
)
, i = 1, . . . , n.

Case 2. When (1− β)/2 < γ ≤ 1/2,

|η̃ik − η̂ik| = Op

(
ka+1g3/2m−1 + ka/2gm−1/2

)
,

‖x̃rni − x̂
rn
i ‖H = Op

(
ra+3/2
n g3/2m−1 + r(a+1)/2

n gm−1/2
)
, i = 1, . . . , n.

It is straightforward to quantify the approximation error based on The-

orem S3. For estimation error, we need to carefully investigate both the

discretization and measurement errors. Basically, the first term in the rates

of convergence mainly depend on the estimation of eigenfunctions, and the

additional term is attributed to the measurement error. For consistent es-

timators of scores and recovery, we assume α > 1/2.

S4.3 Proofs under the l0 sparsity

Proof of Lemma S2. It is straightforward to obtain the bounds on cardinal-

ity of I−n and I+n based on sparsity assumptions. Combing Lemma S1 yields

the final results.

18
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Proof of Theorem S3. On the event An, based on the l0 sparsity, we have

E‖X̃ −X‖2 =
∑
(j,l)/∈Î

σ2
jl ≤

∑
(j,l)/∈I−n

σ2
jl = O

g
(

1

m

√
log p

n

) 2α
2α+1

 .

According to the result of Theorem 1 in Hall and Hosseini-Nasab (2006),

‖ψ̃k −ψk‖ ≤ 81/2ka+1

[∫ ∫ p∑
j=1

p∑
j′=1

{G̃jj′(s, t)−Gjj′(s, t)}2dsdt

]1/2
.

So, with (S1.3), we have

‖ψ̃k −ψk‖ = O

{
ka+1g

(
m−1

√
log p/n

) α
2α+1

}
, a.s..

Proof of Theorem S4. Recall that gn denotes the number of retained pro-

cesses. Under the weak lq sparsity, we consider to bound the terms in (S1.4)

replacing g by gn. Combining (S1.5) and (S1.7), using Cauchy-Schwarz in-

equality and Chebyshev’s inequality, we may prove that

I =

g∑
j=1

g∑
j′=1

∫ ∫ [
n−1

n∑
i=1

{x̌ij(s)− x̃ij(s)}x̌ij′(t)

]2
dsdt

= Op(g
2m−2).

With (S1.6) and (S1.7), we have II = Op(g
2m−2). Using Cauchy-Schwarz

inequality, we deduce that III = Op(g
2n−1). Thus, we obtain |||Ĝ− G̃||| =

Op(gn
−1/2 + gm−1).

Case 1. If γ > 1/2, the parametric rate dominates while discretization

error is negligible, |||Ĝ− G̃||| = Op(gn
−1/2).
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With similar arguments as proof of Theorem 2, we have λ̃k − λ̃k+1 ≥

Ck−a−1, k = 1, . . . , rn and ‖ψ̂k−ψ̃k‖2 ≤ 8
∑

l:l 6=k(λ̃k−λ̃l)−2
{∫
ψ̃

T

k (G̃− Ĝ)ψ̃l

}2

,

by analogy to (5.22) in Hall and Horowitz (2007), E

[∑
l:l 6=k(λ̃k − λ̃l)−2

{∫
ψ̃

T

k (G̃− Ĝ)ψ̃l

}2
]

=

O(k2g2n−1) holds uniformly in k = 1, . . . , rn.

Case 2. If γ ≤ 1/2, the discretization error dominates, |||Ĝ − G̃||| =

Op(gm
−1). With the result of Theorem 1 in Hall and Hosseini-Nasab (2006),

the final results are established.

Proof of Theorem S5. Under the l0 sparsity, ‖x̃i‖ = Op(g
1/2). Based on

Theorem S3 and following similar arguments to prove Theorem S1, we

obtain final results.

Proof of Theorem S6. Note that λ̃ku
2
kjl ≤ σ2

jl. Under l0 sparsity, we as-

sume α > 1/2, then we have ‖uk‖1 = O(ka/2g). Thus, |ûT
k (θiÎ − θ̂iÎ)| =

Op(k
a/2gm−1/2).

Moreover, we have ‖x̃i‖ = Op(g
1/2) under l0 sparsity. According to

the results in Theorem S4, we establish the final results following similar

arguments in proof of Theorem S2.

S4.4 Simulation under the l0 sparsity

Let p = 50, 100, 200 and the number of processes containing signals g = 2,

10, respectively. The underlying true signals xij(tijk) =
∑s

l=1 θijlφl(tijk) for
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Figure 1: The results for the l0 sparsity setting on sensitivity (a), specificity (b), and

MRSE (c), where p=100, g=10.

j = 1, . . . , g, and the rest xij(tijk) = 0. Denote θ = (θ11, . . . , θ1s, . . . , θg1, . . . , θgs)
T.

The coefficients θi are generated from N(0, C), where C = V DV T with

an orthonormal matrix V and a diagonal matrix with diagonal entries

Dνν = 16ν−7/3, ν = 1, . . . , gs. The dependence between coefficients leads to

correlated processes.

To evaluate the correct selection performance under the l0 sparsity, we

use the specificity and sensitivity criteria, defined as Specificity = TN/(TN+

FP ), Sensitivity = TP/(TP + FN), where TP and TN are abbreviations

for true positives and true negatives, respectively, that is, the number of

processes containing signals and the rest processes correctly identified by

our method, similarly FP and FN stand for false positives and false nega-

tives.

Only results with p = 100, g = 10 are reported, while other results

revealing similar patterns are not presented for conciseness. We use sn = 54
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Table 1: The MSE with standard errors in parentheses for the first four eigenfunctions

and the comparison of average computation time for a full sample recovery under the l0

sparsity with p = 100, where the quantile ρ = 0.5 in our method.

ψ1 ψ2 ψ3 ψ4

sFPCA .057(.005) .087(.019) .127(.038) .239(.134)

MFPCA .072(.006) .155(.023) .286(.043) .493(.116)

Average computation times for recovery (second)

sn 14 24 34 44

sFPCA 1.220 2.018 3.052 4.440

MFPCA 10.55 28.04 70.04 141.1

in the l0 setting for presented results. In the l0 sparsity setting, when the

underlying complexity is known, the Specificity and Sensitivity analyses in

Figures 1(a) and 1(b) clearly support an adequate choice of ρ that covers

a broad range to yield correct selection. Moreover, the performance of

recovery is quite stable with suitable ρ as shown in Figure 1(c). The above

findings suggest that a slightly large ρ is preferred if model parsimony is of

main concern. We see from Table 1 that our method with ρ = 0.5 clearly

outperforms the HG method.

The design for classification follows the previous generation mechanism

with Dνν = 3ν−2, ν = 1, . . . , gs, g = 2, while the mean functions are
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Table 2: The averages of misclassification rates on testing samples with standard errors

in parentheses across different rn and the average computation time under the l0 sparsity.

The square brackets show the average model complexity of the proposed method with

standard errors in parentheses.

Method
rn

Time (second)
2 5 8 12 15

sFPCA

+LDA

22.80(4.07)

[2.00(.00)]

9.95(2.51)

[2.01(.10)]

9.84(2.42)

[2.00(.00)]

9.97(2.49)

[2.00(.00)]

9.94(2.48)

[2.00(.00)]
1.92

MFPCA

+LDA
27.16(4.50) 18.57(4.14) 18.15(4.13) 17.96(4.18) 17.58(4.02) 51.90

UFPCA

+ROAD
29.11(6.02) 11.98(6.34) 11.43(5.56) 11.53(5.48) 11.55(5.46) 43.15

generated in the same way as that in the weak lq setting.
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