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SPARSE FUNCTIONAL PRINCIPAL

COMPONENT ANALYSIS IN HIGH DIMENSIONS
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Abstract: Existing functional principal component analysis (FPCA) methods are

restricted to data with a single or finite number of random functions (much smaller

than the sample size n). In this work, we focus on high-dimensional functional

processes where the number of random functions p is comparable to, or even much

larger than n. Such data are ubiquitous in various fields, such as neuroimaging

analysis, and cannot be modeled properly by existing methods. We propose a new

algorithm, called sparse FPCA, that models principal eigenfunctions effectively un-

der sensible sparsity regimes. The sparsity structure motivates a thresholding rule

that is easy to compute by exploiting the relationship between univariate orthonor-

mal basis expansions and the multivariate Karhunen–Loève representation. We

investigate the theoretical properties of the resulting estimators, and illustrate the

performance using simulated and real-data examples.

Key words and phrases: Basis expansion, multivariate Karhunen-Loève expansion,

sparsity regime.

1. Introduction

Functional data are commonly encountered in modern statistics, and dimen-

sion reduction plays a key role, owing to the infinite dimensionality of such data.

As an important tool for dimension reduction, functional principal component

analysis (FPCA) is optimal in the sense that the integrated mean squared er-

ror is efficiently minimized, which has wide applications in functional regression,

classification, and clustering (Rice and Silverman (1991); Yao, Müller and Wang

(2005a,b); Müller and Stadtmüller (2005); Hall and Hosseini-Nasab (2006); Hall

and Horowitz (2007); Horváth and Kokoszka (2012); Dai, Müller and Yao (2017);

Wong, Li and Zhu (2019)). Despite progress being made in this field, existing

methods often involve a single or finite number of random functions. In this study,

we focus on modeling principal eigenfunctions of p random functions, where p is

comparable to, or even much larger than the sample size n, that is, the number of

subjects. Such high-dimensional functional data are becoming increasingly avail-
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able in many fields, such as neuroimaging analysis, where various brain regions

of interest are scanned over time for individuals.

A typical example is that of electroencephalography (EEG) data; see Section

5 for a description of the data set that consists of n = 122 subjects, with 77 in the

alcoholic group and 45 in the control group. For each subject, p = 64 electrodes

are recorded at m = 256 time points for one-second intervals, where classification

using brain signals is often of interest. In brain computer interface applications,

a widely adopted approach is to use spatial covariance matrices (averaged over

time) as EEG signal descriptors, and to implement classification under a Rie-

mannian manifold perspective (Barachant et al. (2011); Nguyen and Artemiadis

(2018); Sabbagh et al. (2019)). However, owing to the dynamic and nonstationary

(Sun and Zhou (2014)) features of EEG signals, averaging over time may lead to a

lack of interpretation and/or loss of information in the original high-dimensional

space, as evidenced by the results shown in Table 3 in Section 5. Hence, we

aim to model the data directly, and provide an efficient, yet effective means of

extracting features from the original signals (Qiao, Guo and James (2019); Qiao

et al. (2020); Solea and Li (2020)). To deal with such high-dimensional processes,

a straightforward way is to extract features using p individual FPCAs, and then

to apply high-dimensional techniques to reduced the variables. Nevertheless, this

strategy has some drawbacks, including being computationally expensive, inter-

pretationally difficult, and theoretically unjustified. Therefore, classical methods

and results are no longer applicable, which motivates this study of scalable FPCA

in high dimensions.

There is increasing interest in studying multivariate FPCA. A standard ap-

proach is to concatenate the multiple functions to perform a univariate FPCA

(Ramsay and Silverman (2005, Chap. 8.5)). Berrendero, Justel and Svarc (2011)

performed a classical multivariate PCA for each value of the domain on which

the functions are observed. Chiou, Chen and Yang (2014) proposed a normal-

ized version of the multivariate FPCA. Jacques and Preda (2014) introduced a

method based on basis expansions, which was later extended by Happ and Greven

(2018) to handle multivariate functional data observed on different (dimensional)

domains. In the aforementioned works, the number of functional variables p is

considered finite and much smaller than the sample size n. As a result, these

methods fail to deal with functional data in high dimensions, because of both

computational and theoretical issues.

Similarly, in multivariate statistics, sample eigenvectors are inconsi-

stent in high dimensions (Johnstone and Lu (2009)). A typical strategy is to

impose the sparsity assumption on the eigenvectors or principal subspace
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(Zou, Hastie and Tibshirani (2006); Shen and Huang (2008); Vu and Lei (2013),

among others). In particular, Johnstone and Lu (2009) proposed an estima-

tor based on diagonal thresholding that screens out variables with small sample

variances. However, despite the extensive literature on sparse PCA, extensions

to high-dimensional functional processes remain challenging, because functional

data are usually observed at grids with noise and the large p leads to error ac-

cumulation. Moreover, there is no available notion of sparsity in the context of

high-dimensional functional data, where not only is p large, but each variable is

an intrinsically infinite-dimensional process.

Our goal is to establish a parsimonious sparse FPCA that facilitates inter-

pretation for high-dimensional functional data. We begin by establishing the

connection between the multivariate Karhunen–Loève (K–L) expansion and the

univariate orthonormal basis representation for infinite-dimensional processes,

which is a generalization of Happ and Greven (2018), assuming that each process

has a finite-dimensional representation. The established relationship is flexible

to allow any suitable basis expansions, such as the orthonormal B-spline basis

and the wavelet basis. Based on this relationship, our method avoids perform-

ing univariate FPCAs, which are computationally expensive and introduce data-

dependent uncertainty in high dimensions. The main contributions of this study

include coupling the sparsity concept in multivariate statistics with functional

variables. While sparsity is standard in multivariate statistics, there has been no

attempt to generalize it to functional settings. The sparsity structure motives a

thresholding technique that identifies important processes and avoids intensive

computation. Moreover, we carefully investigate the theoretical properties of the

resulting estimators, as well as the complex interaction between the eigen prob-

lem and the sparsity regularization. A phase transition phenomenon intrinsic to

discretely observed functional data in terms of the sampling rate is revealed in

this context. To the best of our knowledge, this has not been discussed in the

literature and provides insight into consistent dimension reduction for discretely

observed noisy functional data in high dimensions.

The remainder of the paper is organized as follows. In Section 2, we provide

the sparsity assumption and introduce the proposed approach called sparse FPCA

(sFPCA). In Section 3, we present the theoretical results for sFPCA under the

sparsity regime. Simulation results for both trajectory recovery and classification

are included in Section 4, followed by an application to EEG data in Section 5.

Additional theoretical results, technical proofs, and simulations are deferred to

the Supplementary Material.
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2. Sparse FPCA in High Dimensions

2.1. Multivariate K–L expansion

We first present the notation used in the remainder of the paper. Boldface

letters denote vectors, where an uppercase X denotes a model and a lowercase x

is for the observed sample. For a vector x = (x1, . . . , xp)
T, let x(j) denote the jth

coordinate that is non-increasingly ordered, such that x(1) ≥ x(2) ≥ · · · ≥ x(p).

For n ∈ N and two sequences of real numbers, αn and βn, αn ≈ βn stands for

αn/βn → 1, αn � βn stands for αn/βn → 0, αn � βn stands for αn/βn → ∞,

and αn ∝ βn denotes 0 < αn/βn <∞ as n→∞.

Suppose that the functional data are X(t) = (X1(t), . . . , Xp(t))
T, and each

Xj(·) ∈ L2(T ) is a square-integrable random function defined on a compact in-

terval T = [0, 1] with continuous mean and covariance functions. Let H denote

a Hilbert space of p-dimensional vectors of functions in L2(T ), equipped with

the inner product < f , g >H=
∑p

j=1

∫
T fj(t)gj(t)dt and the norm ‖ · ‖H =<

·, · >1/2
H . Without loss of generality (w.l.o.g.), we assume that all processes

are centered; that is, E{Xj(t)} = 0. Define the covariance function G(s, t) =

E{X(s)X(t)T} = {Gjk(s, t)} ∈ Rp×p.
According to the multivariate Mercer’s theorem (Balakrishnan (1960); Kelly

and Root (1960)), there exists a complete orthonormal basis {ψk(t) : k ≥ 1} and

the corresponding sequence of eigenvalues {λk > 0 : k ≥ 1} such that G(s, t) has

the representation G(s, t) =
∑∞

k=1 λkψk(s)ψk(t)
T, where < ψk1(t),ψk2(t) >H=

δk1k2 , where δk1k2 is one if k1 = k2, and zero otherwise, and λ1 ≥ λ2 ≥ · · · ≥ 0.

Accordingly, the multivariate K–L expansion is X(t) =
∑∞

k=1 ηkψk(t), where

ψk(t) = (ψk1(t), . . . , ψkp(t))
T and the scores ηk =< X,ψk >H are random vari-

ables with mean zero and variances E(η2k) = λk. This leads to a single set of

scores for each subject, which serves as a proxy for the multivariate functional

data. In contrast, the univariate K–L expansion is Xj(t) =
∑∞

k=1 ξjkφjk(t), where

ξjk =
∫
T Xj(t)φjk(t)dt and

∫
T φjk1(t)φjk2(t)dt = δk1k2 . To avoid ambiguity, we

refer to ψk(t) and φjk(t) as multivariate and univariate eigenfunctions, respec-

tively. Clearly the main difference between these two expansions is that ψk(t)

are vector-valued, whereas the scores ηk are scalars, which allows a parsimonious

representation of the data and the same structure for each subject. Our focus

of interest is to establish consistent estimators for ψk(t), and as a consequence,

obtain the scores ηk and parsimonious data recovery.
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2.2. Basis representation for K–L expansion

In high dimensions, computational tractability is a practical consideration.

The pre-smoothing (Ramsay and Silverman (2005)) and post-smoothing (Yao,

Müller and Wang (2005a)) methods for FPCA are both computationally pro-

hibitive when p is large (Xue and Yao (2021)); see Remark 3. A remedy is

to represent functional processes using a set of orthonormal bases, and then to

express and estimate the covariance/eigenfunctions accordingly (Rice and Wu

(2001); James, Hastie and Sugar (2000)). We derive the relationship between

univariate basis expansions and multivariate K–L representations in Proposition

1 for intrinsically infinite-dimensional processes, setting the stage for the proposed

methodology.

Proposition 1. Assume that X ∈ H. Given a complete and orthonormal

basis {bl(t), l ≥ 1} in L2(T ), the representation for each random process is

Xj(t) =
∑∞

l=1 θjlbl(t), where θjl =
∫
T Xj(t)bl(t)dt and the sum converges in the

mean square sense. Let ψk and λk be the eigenfunctions and the corresponding

eigenvalues, respectively, of the covariance operator of X. By Parseval’s identity,

denote ψkj(t) =
∑∞

l=1 ukjlbl(t), where ukjl =
∫
T bl(t)ψkj(t)dt. We have

p∑
j′=1

∞∑
l′=1

cov(θjl, θj′l′)ukj′l′ = λkukjl, j = 1, . . . , p; k, l = 1, 2, . . . , (2.1)

with the sum converging absolutely, and the scores ηk =
∑p

j=1

∑∞
l=1 ukjlθjl, with

the sum converging in the mean square sense.

By contrast, Happ and Greven (2018) gave a similar relationship under the

assumption of finite-dimensional representations. Proposition 1 is a generaliza-

tion in line with the intrinsically infinite-dimensional nature of functional data.

Accordingly, the jth component of the eigenfunctions ψk can be expressed as

a linear combination of bases {bl : l ≥ 1}, with generalized Fourier coefficients

{ukjl : l ≥ 1} obtained from (2.1), and the scores ηk are linear combinations of

basis coefficients {θjl : j = 1, . . . , p; l = 1, . . . ,∞}.
Proposition 1 allows arbitrary basis expansions incorporating a set of prespec-

ified bases (e.g., orthonormal B-splines, wavelets) or data-driven bases (i.e., eigen-

functions). Although the eigenfunctions can be estimated from the data, it is in-

advisable to employ a univariate FPCA, which is computationally prohibitive for

large p and introduces data-dependent uncertainty. Therefore, we adopt prespec-

ified basis functions to represent the trajectories and covariance/eigenfunctions

(Rice and Wu (2001); James, Hastie and Sugar (2000)). W.l.o.g., we use a com-
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mon complete and orthonormal basis {bl : l ≥ 1} in L2(T ) for p processes,

and do not pursue other complicated basis-seeking procedures that are periph-

eral to the key proposal. Let the underlying random functions be expressed as

Xj(t) =
∑∞

l=1 θjlbl(t), where the coefficients θjl =
∫
T Xj(t)bl(t)dt are random

variables with mean zero and variance E(θ2jl) = σ2jl. We refer to the total vari-

ability of the jth process as its energy, and denote it by Vj =
∑∞

l=1 σ
2
jl < ∞. It

is necessary to regularize infinite-dimensional processes, and a natural means of

doing so is truncation, which serves as a sieve-type approximation. The size of

the truncation may diverge with the sample size n, which maintains the nonpara-

metric nature of the proposed method. Denote the number of basis functions

by snj , also referred to as the truncation parameter of the jth process when no

confusion arises, for j = 1, . . . , p. It suffices to use a common sn for the method

development and theoretical analysis, assuming snj � sn.

From Proposition 1, the multivariate FPCA can be transformed to perform

the classical PCA on the covariance matrix of all basis coefficients. Moreover,

this motivates an easy-to-implement estimation procedure under sensible sparsity

regimes; see Section 2.3.

Remark 1. Using a prespecified basis expansion is a fairly popular method

of dealing with functional data, see James, Hastie and Sugar (2000), Ramsay

and Silverman (2005), and Koudstaal and Yao (2018), among others. Although

Proposition 1 is presented using the same set of orthonormal basis functions for p

random processes to simplify the exposition, our method is applicable to the gen-

eral case of different bases (not necessarily orthonormal) and/or domains. Such

generality results ensure that the random processes could lie in different Hilbert

spaces, and we need to choose suitable bases to represent each process. For non-

orthonormal bases, the estimation algorithm can still be applied by considering

the inner product matrix.

2.3. Sparsity regimes

To the best of our knowledge, there is no available notion of sparsity in the

context of FPCA for high-dimensional cases where p is large, though the spar-

sity of principal eigenvectors or subspaces (Vu and Lei (2013)) in multivariate

statistics is well defined. The formulation of sparsity in our problem is nontriv-

ial. First, FPCA depends on vector-valued eigenfunctions, not vectors. Second,

functional data are usually discretely observed with errors, which leads to more

challenging estimation and data recovery, owing to error accumulation in high

dimensions. Therefore, we aim to reduce the dimensionality from p to a much
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smaller one. To succeed, the total energy of the data should be concentrated in

a smaller number of processes. To achieve this, we need additional structures for

high-dimensional functional data.

For the moment, we first review a typical decay assumption for univariate

functional data (Koudstaal and Yao (2018)). Recall that σ2jl = E(θ2jl), where

θjl =
∫
T Xj(t)bl(t)dt is the basis coefficient of Xj . Assume, for adequately large

sn,

σ2j(l) = O{l−(1+2α)}, l ≤ sn,

σ2jl = O{l−(1+2α)}, l > sn, (2.2)

uniformly in j = 1, . . . , p, where α > 0 and the ordered values satisfy σ2j(1) ≥
σ2j(2) ≥ · · · This assumption ensures that the bulk of the signals in each process

are contained in the largest sn coordinates, while the location and the order of

these coordinates are unknown a priori. This relaxation of the variance decay

enables us to adapt to functions with features such as local spikes, termed “spatial

adaptation” in Donoho and Johnstone (1994); for a graphical demonstration, see

Section 4.1 in Koudstaal and Yao (2018).

Condition (2.2) is not enough to handle the problem because it does not

provide any regularization for the high dimensionality p. Recall that V =

(V1, . . . , Vp)
T, and Vj =

∑∞
l=1 σ

2
jl is the total energy of the jth process. In the

following, the sparsity is assumed for the high-dimensional vector V, which is

shown to be reasonable in practice, as illustrated in Section 5.

Weak lq sparsity. A typical situation of interest is to incorporate processes

with small energies that decay in a nonparametric manner. Specifically, assume

that for some positive constant C > 0,

V(j) ≤ Cj−2/q, j = 1, . . . , p, (2.3)

where 0 < q < 2 determines the sparsity level, that is, smaller q entails sparser

processes. Consequently, the total energy is concentrated in the leading processes

with large energies. Thus, a reasonable assumption is

σ2(j)(l) = O{j−2/ql−(1+2α)}, l ≤ sn,

σ2(j)l = O{j−2/ql−(1+2α)}, l > sn,
(2.4)

where σ2(j)(l) is the lth-largest variance of the coefficients for the process with

energy V(j), and the extra term j−2/q, in comparison with (2.2), is because of the

sparsity assumed in (2.3).
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To summarize, in contrast to the multivariate case, functional weak lq spar-

sity contains two types of decay: within processes, determined by α, and between

processes, determined by q. The decay within processes means that the variances

of the coefficients exhibit certain sparsity, whereas the decay between processes

depicts the sparsity assumption on the high-dimensional energy vector V. The

within-process sparsity is standard for univariate functional data (Koudstaal and

Yao (2018)). The between-process sparsity is specified for the first time to reg-

ularize the high dimensionality p in the context of functional data. Note that

another type of sparsity, the l0 sparsity in the sense of ‖V‖0 = g � p, is also

discussed for completeness; see the Supplementary Material.

2.4. Proposed thresholding estimation and recovery

In contrast to existing works, we aim to model eigenfunctions of p random

processes, where p � n. Here, the standard FPCA methods, such as Happ and

Greven (2018), are no longer applicable because of computational and theoretical

issues in high dimensions, as discussed in Section 4 and 5. In this section, we pro-

pose a unified framework for performing sparse FPCA based on the relationship

declared in Proposition 1.

Let {xi(t) : i = 1, . . . , n} be independent and identically distributed (i.i.d.)

realizations from X(t), where xi(t) = (xi1(t), . . . , xip(t))
T. In reality, we do

not observe the entire trajectories xij , but some noisy measurements, yijk =

xij(tk) + εijk, tk ∈ T , where εijk is a measurement error independent of xij with

mean zero and variance σ2, for i = 1, . . . , n, j = 1, . . . , p, and k = 1, . . . ,m. To

simplify the statements, we assume that the grid is regular, that is, tk = k/m,

although our methodology can be applied directly to more general grid structures.

The extremely sparse case, when only a few measurements are available for each

trajectory (Yao, Müller and Wang (2005a)), is beyond the scope of this study

and is left to future research.

According to Proposition 1, we first perform basis expansions for all processes

based on discrete observations. Let Ik = ((k − 1)/m, k/m] for k = 2, . . . ,m and

I1 = [0, 1/m]. We define y∗ij(t) = yijk, for t ∈ Ik, and define x∗ij and ε∗ij similarly.

Note that y∗ij(t) = x∗ij(t)+ε∗ij(t), and projecting y∗ij(t) onto the orthonormal basis

bl(t) yields θ̂ijl = θ̃ijl + ε̃ijl, for l = 1, . . . , sn, for a suitable choice of sn, where

θ̂ijl =
∑m

k=1 yijkbl(tk)/m are estimated basis coefficients, and ε̃ijl is independent

of θ̃ijl with mean zero and variance σ̃2 = E(ε̃2ijl) = σ2m−1 + O(m−2), owing to

discretization. We emphasize that our method avoids intensive computation by

using basis expansions and thresholding. The impact of the noise/discretization

on the resulting estimators is analyzed theoretically in Section 3.
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Assume that θijl and εijk are jointly Gaussian. Therefore, we conclude that

σ̂2jl ∼ (σ2m−1 + σ̃2jl)χ
2
n/n, where σ̂2jl = n−1

∑n
i=1 θ̂

2
ijl and σ̃2jl = E(θ̃2ijl). For

the method development, it suffices to use σ2/m as an approximation of σ̃2 to

construct our estimators. The difference between σ̃2jl and σ2jl is negligible for

large m, and large values of σ2jl are prone to have large sample variances σ̂2jl. The

idea is to include only the variables with the largest sample variances. Thus, we

perform the coordinate selection as follows:

Î = {(j, l), j = 1, . . . , p; l = 1, . . . , sn : σ̂2jl ≥ m−1σ2(1 + αn)}, (2.5)

where αn = α0{n−1 log(psn)}1/2, and α0 >
√

12 is a suitable positive constant

for theoretical guarantees (Johnstone and Lu (2009)). The choice of αn is based

on the concentration result of the basis coefficients, and the number of bases sn
comes from the sieve-like truncation for functional processes. When l > m1/(2α+1)

or j > mq/2, the signals decrease rapidly below the noise level. We expect that

the proposed strategy retains only sizable signals and forces the rest to zero,

leading to the desired model parsimony.

Denote the retained coefficients by θÎ = (θjl, (j, l) ∈ Î)T. Let SÎ = n−1
∑n

i=1

θ̂iÎ θ̂
T
iÎ

be the sample covariance matrix. Based on Proposition 1, we perform a

multivariate PCA on SÎ to yield the principal eigenvectors ûk, for k = 1, . . . , rn.

Finally, we transform the results back to functional spaces,

ψ̂kj(t) =
∑

l:(j,l)∈Î

ûkjlbl(t), η̂ik =
∑

(j,l):(j,l)∈Î

ûkjlθ̂ijl, x̂rni (t) =

rn∑
k=1

η̂ikψ̂k(t),

for j = 1, . . . , p, k = 1, . . . , rn. Let Nj be the number of retained coefficients for

the jth process. Thus, Nj = 0 implies that elements of the jth block of θ̂ satisfy

θ̂jl /∈ θ̂Î , for all l = 1, . . . , sn. Then each element of the jth block of ûk is equal

to zero, ψ̂kj(t) ≡ 0, for k = 1, . . . , rn; that is, the jth random process is ruled

out. Otherwise, for Nj > 0, there exists at least one element of the jth block of

θ̂ satisfying θ̂jl ∈ θ̂Î . Then the jth random process is retained. The algorithm is

summarized below.

Remark 2. In practice, the variance m−1σ2 is usually unknown. Thus, we re-

place it with a quantile estimator Qρ(σ̂
2
jl : j = 1, . . . , p, l = 1, . . . , sn), as suggested

by Koudstaal and Yao (2018), where Qρ(z), for 0 < ρ < 1, is the 100ρth sample

quantile of the sorted values in a vector z. We also propose an objective-driven

method for choosing the parameter ρ, which controls the desired sparsity level,

the truncation sn, and the number of principal components rn. For unsupervised
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Algorithm 1 The algorithm for sFPCA.

In general, denote ȳj(t) = n−1
∑n

i=1 y
∗
ij(t) and ỹij(t) = y∗ij(t)− ȳj(t).

(i) Projection and truncation. Project ỹij(t) onto the orthonormal basis functions bl(t)

to yield θ̂ijl =
∫ 1

0
ỹij(t)bl(t)dt, j = 1, . . . , p, l = 1, . . . , sn.

(ii) Thresholding. Calculate the sample variances σ̂2
jl of θ̂ijl, and perform the subset

selection based on the rule

Î = {(j, l), j = 1, . . . , p; l = 1, . . . , sn : σ̂2
jl ≥ m−1σ2(1 + αn)},

where αn = 4{n−1 log(psn)}1/2 in our numerical studies.

(iii) Eigen-decomposition and transformation. Calculate the sample covariance matrix

SÎ of the retained coefficients θ̂Î . Perform a PCA on SÎ to yield the principal
eigenvectors ûk, for k = 1, . . . , rn. Then, calculate

ψ̂kj(t) =
∑

l:(j,l)∈Î

ûkjlbl(t), η̂ik =
∑

(j,l):(j,l)∈Î

ûkjlθ̂ijl, x̂rn
i (t) = ȳ(t) +

rn∑
k=1

η̂ikψ̂k(t),

where ȳ = (ȳ1, . . . , ȳp)T.

problems, ρ may be determined by a trade-off between the quality of recovery

and the model complexity, that is, the number of retained processes. We use

K-fold cross-validation to choose sn, and the fraction of variance explained to

choose rn for the reduced computation. If one considers a supervised problem,

such as regression or classification, the parameters ρ, sn, and rn may be tuned us-

ing K-fold cross-validation to minimize the prediction/classification error. From

our theoretical analysis and numerical experience, as a practical guide, one may

choose an adequate sn to characterize the features, and then focus on choices of

ρ and rn. More details and empirical evidence are offered in Section 4.

Remark 3. To illustrate the computational advantage of our algorithm, we ex-

amine the order of the computational complexity for the estimation of the covari-

ance and the eigenstructure, and compare it to that of the HG method (Happ

and Greven (2018)) and p univariate FPCAs. The HG method operates with

O(np2s2n + p3s3n) complexity, which scales poorly for high-dimensional functional

data. The univariate FPCA with either presmoothing (Ramsay and Silverman

(2005)) or post-smoothing (Yao, Müller and Wang (2005a)) requires computa-

tion of order O(npm2 + pm3), which is fairly intensive for densely observed high-

dimensional functional data. Our method retains at most N =
∑p

j=1Nj nonzero

coordinates, where N � psn almost surely, according to Lemma 1. Thus, our
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procedure operates with complexity O(npsn+nN2 +N3), achieving considerable

computational savings; see the numerical studies in Section 4 and 5.

Note that analyzing functional data is more challenging than analyzing mul-

tivariate data in high dimensions. First, because functional data are recorded at

a grid of points, the estimation error from the observed discrete version to the

functional continuous version needs to be investigated with care. Second, most

existing studies assume the spiked covariance model for the sparse PCA, although

it is not valid for functional data that has potentially infinite rank. Third, as dis-

cussed in Section 2.3, the variances of the coefficients involve two types of decay:

within processes, α, and between processes, q.

3. Theoretical Properties

In this section, we focus on the consistency of the eigenfunction estimates.

Additional results, for example, related to trajectory recovery, are deferred to the

Supplementary Material. To begin with, we state the key conditions necessary

for the theoretical analysis, in which Conditions 1–5 describe the properties of

the underlying processes and how the functional data are sampled/observed.

Condition 1. The coefficients θijl and errors εijk are jointly Gaussian.

Condition 2. The sample paths are Lipschitz continuous, that is, |Xj(t) −
Xj(s)| ≤ LXj

|t − s|, and assume E(L2
Xj

) < ∞, for j = 1, . . . , p. Moreover,

E(θ4jl) ≤ C{E(θ2jl)}2.

The Gaussian assumption is needed to determine the constant α0 in the

thresholding value αn (Donoho and Johnstone (1994); Koudstaal and Yao (2018)).

Conditions 1 and 2 imply that Xj is a Gaussian process with continuous sample

paths, and the moment conditions are standard in the FDA literature (Hall and

Horowitz (2007); Kong et al. (2016)). The next condition prevents the spacing

between adjacent eigenvalues from being too small, and implies that λk ≥ Ck−a.

Condition 3. For a > 1 and C > 0, λk − λk+1 ≥ Ck−a−1, for k ≥ 1.

Condition 4. Let tk = k/m, where {tk, k = 1, . . . ,m} are considered determin-

istic and are ordered increasingly.

Condition 5. The sampling rate satisfies m = O(nγ) for γ > (1− β)/2.

To simplify the exposition, we assume that the data are equally spaced.

The algorithm can be readily generalized to more general designs by defining

δ = supi,j,k{tij,k+1 − tij,k} and m = infi,jmij and assuming δ = O(1/m). The
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sampling frequency m should be large enough to control the discretization error

such that σ̃2jl/σ
2
jl → 1. Condition 5 is milder than that imposed by Kong et al.

(2016). We shall see from later theorems that this assumption on the sampling

rate plays an indispensable role in the approximation/estimation error. The

dimension p is allowed to be ultrahigh.

Condition 6. p = O{exp(nβ)} for 0 < β < 1.

It is standard to assume that sn is sufficiently large to capture the significant

coordinates. However, it should not be too large in order to ensure reliable

concentration results for sample variances of θijl, which provides the theoretical

foundation for establishing the thresholding rule. Thus, it suffices to have an

adequately large sn, which is a useful guide in practice. Moreover, we impose

Lipschitz continuity on the basis functions, w.l.o.g.

Condition 7. (m−1
√

log p/n)−1/(2α+1) � sn = O(p).

Condition 8. The basis functions are Lipschitz continuous; that is, |bl(t) −
bl(s)| ≤ L|t− s|, for all l = 1, . . . , sn.

We control the number of principal components rn, because as it becomes

larger, it causes increasingly unstable estimates. Conditions 9 and 10 concern the

approximation error and the estimation error, respectively.

Condition 9. ra+1
n max{g1/2−1/q+δn , (m−1

√
log p/n)α/(2α+1)} = o(1), for some

δ > 0.

Condition 10. max{ra+1
n n−1/2, ra+1

n g
1/2
n m−1} = o(1).

In the asymptotic analysis, we consider the approximation error caused by

truncation/thresholding, as well as the statistical estimation error. For the eigen-

functions, one has the following decomposition: ‖ψk − ψ̂k‖H ≤ ‖ψk − ψ̃k‖H +

‖ψ̃k−ψ̂k‖H, where ψ̃k are the eigenfunctions of the thresholded processes X̃ with

X̃j(t) =
∑

l:(j,l)∈Î θjlbl(t). The first term on the right-hand side can be viewed

as the approximation error, and the second term is interpreted as the estimation

error. The approximation error is random because it depends on random quanti-

ties Nj , where Nj is the number of retained coefficients θ̂ijl for Xj . Let gn denote

the number of retained processes that may grow with the sample size n in a

nonparametric manner. Recall that Vj denotes the energy of a process. W.l.o.g.,

we assume for the moment that V1 ≥ · · · ≥ Vp. The following lemma quantifies

gn and Nj . Note that the discretization error must be handled carefully when

applying the concentration results.
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Lemma 1. Under Conditions 1–2, 4–7, and weak lq sparsity, the number of

retained processes gn ≤ C{m−1
√

log p/n}−q/2, and the number of retained θ̂ijl
for the jth process satisfies Nj ≤ C{m−1

√
log p/n}−1/(2α+1)j−2/{q(2α+1)} almost

surely (a.s.), for some C > 0.

Lemma 1 illustrates that many processes with small energies are excluded

from the estimation. The term j−2/{q(2α+1)} indicates that the quantity Nj de-

creases as Vj decays. Here, the processes are screened out if Vj decays to a smaller

magnitude; that is, Nj is zero for those processes. The retained coefficients of Xj

are thresholded from sn terms, which to some extent implies a sufficiently large

sn.

Theorem 1 (Approximation Error). Under weak lq sparsity (2.4), if Conditions

3–9 hold and < ψk, ψ̃k >H ≥ 0, then uniformly for k = 1, . . . , rn, we have the

following:

Case 1. When q(2α+ 1) > 2,

‖ψ̃k −ψk‖H = O(ka+1g1/2−1/qn ), a.s.,

Case 2. When q(2α+ 1) = 2,

‖ψ̃k −ψk‖H = O

[
ka+1

{
m−1

√
log p

n

}α/(2α+1)

(log gn)1/2

]
, a.s.,

Case 3. When q(2α+ 1) < 2,

‖ψ̃k −ψk‖H = O

[
ka+1

{
m−1

√
log p

n

}α/(2α+1)
]
, a.s..

Theorem 1 establishes the rates of convergence for the approximation error

based on the comparison of α and q, which represent the sparsity levels within

and between processes, respectively. The term ka+1 is attributed to the increas-

ing error of approximating higher-order eigenelements ψk. The approximation

error is decomposed into two terms that incorporate errors caused by screening

out processes with small energies, and excluding coefficients with small variances

for the retained processes. Note that smaller q and larger α lead to sparser set-

tings. When α is relatively large, say α > 1/q− 1/2, as in Case 1, the energies of

the processes Vj do not decay so fast that the term g
1/2−1/q
n caused by excluding

the processes with small energies dominates. Intuitively, the processes are more

like scalar variables, because the between-process sparsity dominates. When q is
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relatively small, the rates are determined by the term {m−1
√

log p/n}α/(2α+1) at-

tributed to the thresholding coefficients of the retained processes. The additional

term log gn in Case 2 is because Nj corresponds to j−2/{q(2α+1)}, as a consequence

of the decaying energies.

Theorem 2 (Estimation Error). Under weak lq sparsity (2.4), if Conditions 1–8

and 10 hold and < ψ̂k, ψ̃k >H ≥ 0, then uniformly for k = 1, . . . , rn, we have the

following:

Case 1. When γ > 1/(2− q),

‖ψ̃k − ψ̂k‖H = Op(kn
−1/2),

Case 2. When (1− β)/2 < γ ≤ 1/(2− q) with log p/n = O(nβ−1),

‖ψ̃k − ψ̂k‖H = Op(k
a+1g1/2n m−1).

The estimation error does not involve the term Nj , because we quantify the

discretization error of the retained coefficients via the retained processes using

Bessel’s inequality. The corresponding rate of convergence for the covariance of

the retained processes is Op(n
−1/2+g

1/2
n m−1), where gn is the number of retained

processes determined by the quantities q and γ from Lemma 1. Cases 1 and 2

correspond to the parametric covariance estimation error and discretization error,

respectively. The rates of convergence exhibit a phase transition phenomenon

that depends on the sampling rate γ. When the data are sufficiently dense, as in

Case 1, the error term for the covariance estimation induced by the discretization

is negligible, achieving the parametric rate n−1/2, as if the complete functions

are observed. Using similar techniques to those in Hall and Horowitz (2007),

we attain a sharp bound for the eigenfunctions. Otherwise, as in Case 2, we

obtain slower convergence rates for the eigenfunctions using Theorem 1 in Hall

and Hosseini-Nasab (2006) by taking the discretization error m−1 into account.

Combining the approximation error and estimation error, the convergence rate of

‖ψ̂k−ψk‖H cannot exceed the parametric rate, which is consistent with common

sense.

4. Simulation Studies

4.1. Sparse FPCA

We conduct several experimental studies to illustrate the performance of the

proposed method for high-dimensional functional variables. We first assess the
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Figure 1. The results for the weak lq sparsity setting with p = 100: cross-validated mean
relative squared error (MRSE) under different quantile levels and different numbers of
knots (a), model complexity (i.e., the number of retained processes) (b), and MRSE (c)
under different quantile levels.

estimators in an unsupervised fashion.

The noisy observations are generated from yij(tk) = xij(tk)+εijk =
∑s

l=1 θijl
φl(tk)+εijk, tk ∈ [0, 1], for j = 1, . . . , p, where εijk are i.i.d. fromN(0, 1). Let φl(t)

be functions in the Fourier basis, where φl(t) =
√

2 sin{π(l + 1)t} when l is odd,

and φl(t) =
√

2 cos(πlt) when l is even. We set s = 50 to mimic the infinite nature

of the functional data. The equally spaced grids are {tk}mk=1 = {0, 0.01, . . . , 1}
with m = 101, and the sample size n = 100. Each simulation consists of 100

Monte Carlo runs.

To generate xij(·), define wij(t) =
∑s

l=1 θ̃ijlφl(t), where θ̃ijl ∼ N(0, 16l−7/3)

are i.i.d across i and j. The processes are given based on the autoregressive

relationship

xij(t) =

p∑
j′=1

%|j−j
′|j−1/qwij′(t) =

s∑
l=1

p∑
j′=1

%|j−j
′|j−1/q θ̃ij′lφl(t) =

s∑
l=1

θijlφl(t),

with θijl =
∑p

j′=1 %
|j−j′|j−1/q θ̃ij′l. The constant q determines the sparsity level,

and % controls the correlation between the functional variables. Set q = 0.5 and

% = 0.5. Let p = 50, 100, 200 for different experiments.

To demonstrate the performance, we use the mean square error (MSE) for

the eigenfunctions ‖ψ(t)−ψ̂(t)‖2H =
∑p

j=1 ‖ψj(t)−ψ̂j(t)‖2 and the MRSE for the

true curves, n−1
∑n

i=1 ‖xi(t)− x̂i(t)‖2H/‖xi(t)‖2H. We use the number of retained

processes to evaluate the model complexity. Moreover, we compare the results

and computation time of our method to those of the HG method (Happ and

Greven (2018)).

We use an orthonormal cubic spline basis for both methods. The results
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Table 1. The MSE with standard errors in parentheses for the first four eigenfunctions
and the comparison of average computation time for a full sample recovery, where the
quantile ρ = 0.5 in our method.

ψ1 ψ2 ψ3 ψ4

p = 100
sFPCA 0.007(0.005) 0.031(0.024) 0.074(0.046) 0.242(0.255)
MFPCA 0.013(0.005) 0.059(0.024) 0.148(0.047) 0.381(0.271)

p = 200
sFPCA 0.007(0.005) 0.026(0.016) 0.073(0.048) 0.276(0.254)
MFPCA 0.019(0.005) 0.084(0.019) 0.211(0.054) 0.511(0.320)

Average computation times for recovery (second)
sn 14 24 34 44

p = 100
sFPCA 1.269 2.099 3.210 4.464
MFPCA 7.366 26.52 68.68 139.4

p = 200
sFPCA 2.482 4.917 8.908 14.677
MFPCA 32.368 157.799 447.874 1,017.838

for p = 50, which reveal similar patterns, are not presented for conciseness. For

the parameters sn and ρ in our method, it is computationally expensive to use

cross-validation to choose both jointly. Based on our experience, the results are

actually not sensitive to sn, as long as it is adequate, as shown in Figure 1(a),

but not too large for effective computation. This empirical finding is in line with

our theory that it suffices to have an adequately large sn. In particular, we use

sn = 14 in the lq setting for the presented results.

In the unsupervised problems, the influence of quantiles on the trade-off

between the model complexity and the quality of the estimation/recovery is of

main interest. We obtain parsimonious models with satisfactory performance

of recovery over a wide quantile range; see Figure 1(b) and 1(c). We suggest

choosing a slightly large ρ if model parsimony is important. Briefly, in practice,

we suggest first fixing an adequately large sn, and then determining the “best”

choice of ρ. One might inspect the performance of several sn, given the selected

quantiles, for confirmation.

We see from Table 1 that our method with ρ = 0.5 clearly outperforms the

HG method, especially when p is large. Compared with the sFPCA, the HG

method includes all processes, which cannot yield parsimonious representations.

Lastly, we illustrate the substantial computational savings of our algorithm by

reporting the average computation time over 100 Monte Carlo runs for a full

sample recovery using different numbers of basis functions on a standard com-

puter with a 2.40GHz I7 Intel microprocessor and 16 GB of memory; see Table 1.

The results roughly agree with the computation complexity O(npsn+nN2 +N3)

for our approach and O(np2s2n + p3ns
3
n) for the HG method in Remark 3, where
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Table 2. The averages of misclassification rates on testing samples with standard errors in
parentheses across different rn and the average computation time. The square brackets
show the average model complexity of the proposed method with standard errors in
parentheses.

Method
rn Time (second)

2 5 8 12 15

sFPCA

+LDA

30.19(3.78)

[2.62(4.88)]

13.41(2.79)

[2.47(5.59)]

13.14(2.68)

[2.49(5.41)]

13.66(2.78)

[2.54(6.26)]

14.09(2.82)

[2.62(6.48)]
1.28

MFPCA

+LDA
30.66(3.83) 15.55(2.77) 14.75(2.74) 14.67(2.79) 14.68(2.59) 7.78

UFPCA

+ROAD
34.27(5.77) 17.53(8.31) 16.46(8.04) 16.53(7.83) 16.55(7.94) 42.05

N =
∑p

j=1Nj quantifies the number of all retained coefficients after thresholding,

which often entails N � psn.

4.2. Classification

We inspect the performance of our algorithm on the subsequent classifica-

tion. The data are generated from y
(`)
ij (tijk) = µ

(`)
j (t) + x

(`)
ij (tijk) + εijk, where

` = 1 and 0 denote classes 1 and 0, respectively. Let κ denote the number of

significant processes for classification. We set µ
(0)
j (t) = 0, for j = 1, . . . , p, and

µ
(1)
j (t) are linear combinations of the first five eigenfunctions with weights equal

to (1, 1,−0.75, 0.75, 0.5), for j = 1, . . . , κ, and the remaining µ
(1)
j (t) = 0, for

j = κ + 1, . . . , p. We set κ = 2 and p = 100. The coefficients {θ(`)ijl} for both

groups follow the previous generation mechanisms, with a slight modification:

θ̃
(`)
jl ∼ N(0, 3l−2), for j = 1, . . . , p, l = 1, . . . , s. In each of the 100 Monte Carlo

runs, we generate a training set of 100 subjects and an independent testing set of

200 subjects, where half of these belong to each class. The proposed method and

the HG method both obtain rn multivariate scores η̂ik =
∑p

j=1

∫ 1
0 y
∗
ij(t)ψ̂kj(t)dt,

which are low dimensional and allow us to apply a classical linear discriminant

analysis (LDA) for classification. We also consider another viable method that

combines and trains the scores obtained from univariate FPCAs for p processes

using the high-dimensional classifier ROAD proposed by Fan, Feng and Tong

(2012).

In the supervised problem, we tune sn and ρ jointly using five-fold cross-

validation, and choose the parameters of the other methods in a similar manner.

For comprehensive comparison, we train the models by retaining 2, 5, 8, 12, 15

principal components. The principal components mean multivariate scores ηk for

the first two methods, and univariate scores ξjk for the last one. As shown in Table
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Figure 2. (a) The ordered energies V(j) of EEG data. (b) The electrode names and
positions, where those marked in rectangles are selected by our method with the chosen
parameters in over half of the runs.

2, the parsimonious models obtained by our method enjoy favorable classification

performance. Our algorithm successfully selects relevant processes in nearly all

runs, while the HG method treats all processes equally and fails to identify im-

portant processes. Although the last method adopts a high-dimensional classifier,

it still performs worse than our approach. Furthermore, the average computation

time over different rn and 100 Monte Carlo runs is reported, where the chosen

parameters are used for our approach and the HG method, and the R package

“fdapace” is used to implement the univariate FPCA. The result indicates that

our proposal is much more computationally efficient.

5. Real-Data Example

We apply the proposed method to the EEG data obtained from an alcoholism

study (Zhang et al. (1995); Ingber (1997)). The data consist of n = 122 subjects,

77 in the alcoholic group and 45 in the control group, with each exposed to either

a single stimulus or two stimuli. Sixty-four electrodes are placed at standard

locations on participants’ scalps to record the brain activities. Each electrode is

sampled at 256 HZ for one second intervals. Hence, each subject involves p = 64

functions observed at 256 time points. This data set contains high-dimensional

functional processes, and was analyzed for functional graphical models (Qiao,

Guo and James (2019); Qiao et al. (2020); Solea and Li (2020)). Hayden et al.

(2006) found evidence of regional asymmetric patterns between the two groups
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Table 3. The average misclassification rates on testing samples and computation time
with standard errors in parentheses across different numbers of eigenfunctions. The
square brackets show the average model complexity of the sFPCA, with standard errors
in parentheses.

Method
rn Time (second)

10 20 30 40 50

sFPCA

+LDA

14.25(3.98)

[34.08(17.34)]

14.73(3.46)

[36.07(19.47)]

13.68(3.54)

[37.12(16.77)]

13.18(3.87)

[35.19(16.64)]

13.28(3.55)

[33.30(16.10)]
0.31

MFPCA

+LDA
19.38(4.53) 19.05(4.33) 18.40(4.21) 17.05(4.54) 17.33(4.34) 3.74

UFPCA

+ROAD
16.50(4.10) 16.05(4.19) 16.10(4.21) 16.10(4.21) 16.10(4.21) 364.18

TSROAD 34.30(0.06) 138.85

by using four representative electrodes from the frontal and parietal regions.

We consider the average recordings for each subject under the single stimulus

condition. As shown in Figure 2(a), the energies V(j) exhibit a sparsity pattern,

which indicates that the weak lq sparsity assumption is advisable in practice. Our

goal is to classify alcoholic and control groups based on their recordings. For each

group, we randomly select two-thirds of participants as the training sample, and

the rest as the test sample. We repeat 100 times and use the three methods in the

simulation. We also use the tangent space linear discriminant analysis method

(Barachant et al. (2011)) coupled with ROAD (TSROAD), because the dimension

of the tangent space p(p+1)/2 is large, to evaluate the classification performance.

Owing to the sample splitting, the sample size of the training samples is rather

small, especially for the control group. Thus, we calculate the misclassification

errors over a candidate set of parameters in each method, and use the lowest

for comparison. Table 3 presents the misclassification rates for all considered

methods under several rn, indicating the superiority of our method with minimal

misclassification errors. In particular, the TSROAD performs poorly, indicat-

ing substantial discriminative information loss, which might be due to averaging

over time. Moreover, the average computation time in Table 3 demonstrates the

scalability of our approach for large p and m, which is consistent with the compu-

tational complexity discussed in Remark 3. Figure 2(b) presents the 64 electrode

names and positions. The electrodes marked in rectangles indicate those selected

in more than half of the 100 runs by our method with the chosen parameters.

It is observed that the retained electrodes lie mainly in the frontal and parietal

regions.
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Supplementary Material

The online Supplementary Material available at Statistica Sinica includes the

theory and simulation for the l0 sparsity setting, additional results on recovery,

auxiliary lemmas, and technical proofs.
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