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In this Supplementary Material, we provide additional conditions, theorems, tables, and

corollaries, as well as proofs for Lemma 1, all theorems, propositions and corollaries.

S1 Additional conditions

To simplify statements, we introduce the following notations for limiting behaviors of se-
quences with certain probability. A function ¢;(n) satisfies ¢1(n) = oY (g2(n)) if and only
if there exists a constant M > 0 such that |gi(n)] < Mgs(n) with probability at least
1 — O(n™?%), where § > 0. Similarly, g;(n) = o) (g2(n)) if and only if for any € > 0 there

exists a constant N such that for all n > N, |g1(n)| < €g2(n) with probability at least

1—0(n™°).

Condition 4. For some constants 0 < § < min{l — kg, 2r0} and 0 < k3, k4 < 1/2 such
that 3+ fg < 1/2, [|C | = OF (%), Amin(CL1) > 0, [[(CE) |l = OF (n™t\/log pa /),

Vnubn = o(1), Ay = O(nY/*72) 1/\, = o(n"~!/logn), max,<j<,, d;; = O(logn), and



maxi<j<y, d;;' = O(logn), where vy, = Mgn(logpn/n)%ng, Amin(-) denotes the smallest

eigenvalue of a matrix, and b, = max{logn,n"s 40 (logn)?}.

Condition 5. Assume that D € G, (K, , M,, ). There exist positive constants 0 < k5 < 1/4

and M, such that E{exp(reX?)} < M; for all |rg] < ks and all j =1,...,py.

Condition 6. For some constants 0 < 0 < min{l — k2,2ko} and 0 < K3, Ky < 1/2
such that k3 + ks < 1/2, [|C?|s = O(n"), Amin(C1) > (a — 1)71, (C1)"Y|s =
O (2% g BT ), V™ NG = 0(1), P (min) = (™), 1/A, = O log™ ),
' = O(logn).

and maxi<j<p, d;

Conditions [4| and |§| are similar. They both require that C!! is invertible, and also
control the norms of (C1')~', C2!, and d, which could be satisfied for exchangeable or AR-1
structures. The lower bounds for eigenvalues of C!' in Conditions |4 and |§| are to ensure
strict local minimizers of Lgcap(7y, ci) and Lpgsso(7, ci) in 1} and , respectively. On
the other hand, Condition [4] is for consistency of the SPAC-Lasso, while Condition [0] is for
consistency of the SPAC-SCAD. The tuning parameter in pscap yx (hmin) is rescaled to the

size of B, and the condition on pl AD A (Amin) holds when A, < hp,. Condition [5| comes

from |Cai et al.| (2011) to ensure consistency of the CLIME.

S2 Consistency for fixed p and ¢

In this subsection, we assume that p, ¢, 3, C, and ~ are all constant as n — 0o, so that we
can use the inverse of the sample covariance matrix to estimate diagonal elements d. For
each 1 <7 < p, let

dj = (X" X /n)™; (S2.1)
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be the j-th diagonal element in (X7 X /n)~t. Moreover, we assume the following regularity

condition on the existence of the fourth moment of the covariates:
Condition 7. The E(X;-l) is finite for j = 1,...,p.

Condition [7] is automatically satisfied under normality or when the tail distribution is
well behaved, for example, the sub-Gaussian distribution.

In the following, we show that the estimator d approximates d with a certain rate in
Lemma [2] which is useful in establishing the strong sign consistency of the proposed SPAC-

Lasso in Theorem [l

Lemma 2. Suppose that \,//nlogn — co. With dj; for 1 < j < p defined in , we
have max \d;; — d;;| = O(A\,/n) with probability at least 1 — O(1/+/n).

Theorem 3. For p, q, and v independent of n, under the reqularity Condition [T, suppose
that \,/n — 0 and \,/v/nlogn — oo, and that Condition |1 holds with probability at least

1 — O(1/y/n) for some 0 < § < 1/2. Then the SPAC-Lasso with d;; (1 < j < p) defined in

152.1)) is strongly sign consistent, that is,

A

p('AYLasso<)\n> d) =s 7) > I O<1/\/ﬁ)
Let an estimator 4 be general sign consistent if

lim P {there exists A > 0 such that ¥(\) =5 v} = 1.

n—oo
By definition, the strongly sign consistency implies general sign consistency. We also define

the following condition which is slightly weaker than Condition [I}
Condition 8 (Weak irrepresentable condition for SPAC-Lasso). Each element in

V2)CH(CM) V(1) sign(8(1)
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is less than 1 for sufficiently large n, where | - | represents taking the absolute value of each

entry.

Theorem 4. For fized p, q, C and ~, the SPAC-Lasso with cfjj (1 < j < p) defined in

152.1)) is general sign consistent only if Condition @ holds with probability tending to 1.

Theorem |3| indicates that the probability of the SPAC-Lasso selecting the true model
approaches 1, if Condition (1| (the irrepresentable condition for SPAC-Lasso) and regularity
Condition [7lhold. Theorem[4]states that Condition[§]is necessary for general sign consistency.
Thus, Conditions [I| and [8] are nearly necessary and sufficient for the sign consistency of the
proposed SPAC-Lasso in general.

For strong sign consistency of the proposed SPAC-SCAD, we assume the following Con-
dition [9) which is a typical condition of A, for the SCAD penalty, and can be satisfied when

An — 0.

Condition 9. The SCAD penalty satisfies that max;{pscap.r, (|75]) : 75 # 0} = O(n=1/2%?)

for some 0 < § < 1/2 and max;{p§cap ., ([7]) 175 # 0} = 0 as n — oo.

Theorem 5. For p, q, C and = independent of n, let djj (1 < j <p) be defined in
and suppose that /n\,/\/logn — oo. Under the regularity C’ondz’tions@ and@ we have the
following properties for the minimization of LSCAD('y,ci) in with probability at least
1-0(1/y/n):

(1) Estimation consistency: There exist a positive constant Ko and a local minimizer

Ascap(An, d) such that

1Yscap — 2 < Kon Y29,



The corresponding estimator of coefficients B = V’lﬁfsc AD Satisfies
18 — B2 < Kon /29,

where V=1 = diag{\/dy1, ..., \/dp, } is a diagonal matriz.

(2) Strong sign consistency: Yscap =s Y-

Theorem [5| demonstrates that the proposed SPAC-SCAD possesses both estimation con-
sistency and strong sign consistency under Conditions [7] and [0} The SPAC-SCAD estimator
is almost root-n consistent and selects the true model with probability tending to 1. The
above theorem does not require any irrepresentable condition since the dimension of coef-
ficients is fixed and the SCAD penalty becomes a constant when the coefficients are large

compared to the tuning parameter.



S3 Additional tables

Table 7: Probes selected by the Lasso, SPAC-Lasso, ALasso, SPAC-Lasso based on all samples.

Method

Selected probes

Lasso

ILMN_2329927, ILMN_1794782, ILMN_1684271, ILMN_1760143, ILMN_1741572, ILMN_1664449,
ILMN_1815306, ILMN_2398847, ILMN_1772527, ILMN_3187771, ILMN_2413318, ILMN_1716728,
ILMN_1793508, ILMN_2139035, ILMN_1682259, ILMN_1783815, ILMN_1762316, ILMN_3247835,

ILMN_3307729, ILMN_1783337, ILMN_1655930, ILMN_2413251, ILMN_1670134, ILMN_1654851,

ILMN_1778240, ILMN_1791222, ILMN_1681802, ILMN_2356574, ILMN_1793201, ILMN_2413537,
ILMN_1913676, ILMN_1847402, ILMN_1845157, ILMN_1915345, ILMN_1881192, ILMN_17286786,
ILMN_1811507, ILMN_1664294, ILMN_1670693, ILMN_3187362, ILMN_3237534, ILMN_3246424,
ILMN_3199438, ILMN_1657022, ILMN_3230260, ILMN_1656111, ILMN_1797332, ILMN_1676289,
ILMN_2295879, ILMN_1678032, ILMN_2328378, ILMN_3230157, ILMN_1693259, ILMN_3243705,
ILMN_1769751, ILMN_1774836, ILMN_1727127, ILMN_2346573, ILMN_2127328, ILMN_2209766,
ILMN_1739423, ILMN_1747192, ILMN_1786972, ILMN_2148679, ILMN_2364535, ILMN_2323302,
ILMN_1684802, ILMN_2386269, ILMN_1719039, ILMN_2360291, ILMN_3248844, ILMN_1678919,
ILMN_1654689, ILMN_2399686,

SPAC-Lasso

ILMN_2263466, ILMN_1760143, ILMN_1741572, ILMN_1815306, ILMN_1697827, ILMN_1772527,
ILMN_3187771, ILMN_2413318, ILMN_1716728, ILMN_1793508, ILMN_2139035, ILMN_2244484,
ILMN_1682259, ILMN_1783815, ILMN_1762316, ILMN_3247835, ILMN_3307729, ILMN_1783337,
ILMN_1811650, ILMN_1655930, ILMN_2413251, ILMN_1670134, ILMN_1654851, ILMN_1778240,
ILMN_1791222, ILMN_2356574, ILMN_1793201, ILMN_2413537, ILMN_1913676, ILMN_1847402,
ILMN_1845157, ILMN_1915345, ILMN_1881192, ILMN_1768483, ILMN_1728676, ILMN_1811507,
ILMN_1664294, ILMN_1670693, ILMN_3187362, ILMN_3237534, ILMN_3246424, ILMN_3292551,
ILMN_3199438, ILMN_1753518, ILMN_1676100, ILMN_1657022, ILMN_3230260, ILMN_1656111,
ILMN_1797332, ILMN_1676289, ILMN_2295879, ILMN_1678032, ILMN_2328378, ILMN_3230157,
ILMN_1693259, ILMN_3243705, ILMN_1769751, ILMN_1774836, ILMN_1727127, ILMN_2346573,
ILMN_2127328, ILMN_2209766, ILMN_1747192, ILMN_1786972, ILMN_2148679, ILMN_2364535,
ILMN_2323302, ILMN_1813491, ILMN_1663035, ILMN_1684802, ILMN_2386269, ILMN_2360291,

ILMN_3248844, ILMN_1678919, ILMN_1654689, ILMN_2399686, ILMN_1654357, ILMN_1683854

ALasso

ILMN_1760143, ILMN_1716728, ILMN_1793508, ILMN_1682259, ILMN_3307729, ILMN_1670134,
ILMN_1778240, ILMN_1793201, ILMN_1845157, ILMN_1881192, ILMN_1811507, ILMN_3187362,
ILMN_3237534, ILMN_3246424, ILMN_1656111, ILMN_1797332, ILMN_2295879, ILMN_1769751,
ILMN_1774836, ILMN_2209766, ILMN_3248844

SPAC-ALasso

ILMN_1760143, ILMN_1716728, ILMN_1682259, ILMN_3247835, ILMN_3307729, ILMN_1655930,
ILMN_1670134, ILMN_1778240, ILMN_1793201, ILMN_1881192, ILMN_1811507, ILMN_3237534,
ILMN_3246424, ILMN_1656111, ILMN_1797332, ILMN_2295879, ILMN_1693259, ILMN_1769751,
ILMN_1774836, ILMN_2209766, ILMN_1813491, ILMN_1663035, ILMN_3248844, ILMN_1654357




Table 8: Probes selected by the SCAD, SPAC-SCAD, and PC-simple algorithm based on all samples.

Method Selected probes

ILMN_2307883, ILMN_2157709, ILMN_1783023, ILMN_1716728, ILMN_1776337, ILMN_1682259,
ILMN_2136177, ILMN_3307729, ILMN_1670134, ILMN_1805216, ILMN_1793201, ILMN_3270641,
ILMN_1836958, ILMN_1811507, ILMN_1715814, ILMN_3187362, ILMN_3294033, ILMN_1653573,
SCAD ILMN_1734427, ILMN_1803799, ILMN_1715175, ILMN_1793349, ILMN_1656111, ILMN_1675239,
ILMN_1672080, ILMN_1802628, ILMN_3225534, ILMN_1656791, ILMN_2148679, ILMN_1763989,
ILMN_2086238, ILMN_1659761, ILMN_2194229, ILMN_1672004, ILMN_1664175, ILMN_3248844,
ILMN_1749809

ILMN_1719498, ILMN_2306955, ILMN_1760143, ILMN_2124155, ILMN_3230880, ILMN_3240538,
ILMN_1716728, ILMN_2244484, ILMN_1699610, ILMN_1753468, ILMN_1737195, ILMN_1776337,
ILMN_1682259, ILMN_3307729, ILMN_1738272, ILMN_1670134, ILMN_1804248, ILMN_2268921,
SPAC-SCAD | | MN_1793201, ILMN_1656977, ILMN_1847402, ILMN_1811507, ILMN_1715814, ILMN_3187362,
ILMN_1670570, ILMN_1656111, ILMN_1675239, ILMN_1663437, ILMN_3245983, ILMN_2377862,
ILMN_2148679, ILMN_1654637, ILMN_1721563, ILMN_2203147, ILMN_3248844, ILMN_1751963,
ILMN_2399686

ILMN_2307883, ILMN_2413318, ILMN_1716728, ILMN_1670926, ILMN_1682259, ILMN_3307729,
ILMN_1783337, ILMN_1780601, ILMN_1670134, ILMN_1815668, ILMN_1793201, ILMN_1846499,
ILMN_1845157, ILMN_1863939, ILMN_1728676, ILMN_1811507, ILMN_1715814, ILMN_3199438,
Farm-Select | || MN_1657022, ILMN_1658015, ILMN_1715175, ILMN_1656111, ILMN_1797332, ILMN_2295879,
ILMN_2048822, ILMN_1727127, ILMN_1739583, ILMN_2148679, ILMN_1763989, ILMN_1654637,
ILMN 2364535, ILMN_1813491, ILMN_1684802, ILMN_1749403, ILMN_2204726, ILMN_3248844,
ILMN_1706342

PC-simple | ILMN_1664449, ILMN_1716728, ILMN_3307729, ILMN_3237534, ILMN_3248844

S4 Additional corollary and proofs

Corollary 3. Let d be diagonal elements of the CLIME of D. Suppose that hy;, > n=".

Under the conditions of Proposition (1] and Condition |6, if there exists a positive constant n

11—«
o] < (1 =m)y /= &;al/%a(hmm), (S4.2)

then the SPAC-SCAD possesses estimation consistency and strong sign consistency with

such that

sufficiently large qo and py — qo.

Proof of Lemma [1
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Proof. Tt can be calculated that o/ = dj; + /6’]2/052, o% = 1/o2, and 0¥ = f;/o? for

J=1,...,p. Then,

JJ 5YY JY\2 12 1 5j 2 _ dj vy
oot — (o) = (djj + 5)—5 = (5)° = —y = djjo
The jth SPAC is
—gly oii —giY

_ B
PjS; = [diguy \| adigvy — (O.jy)Z - oYY /_djj - /_djj =7

The standard deviation of the response conditional on X_; is

2 _ o’ _d+ B, B
S, = — - — — O-E _|_ —
J gligyy — (gjy)Q djjgyy djj
O
Lemma 3. Suppose that W1, ..., W, are k-dimensional i.i.d. random vectors with mean

0., and covariance matriz X.,. Further suppose that E(||W;||?) is finite for any 1 <i <mn.
(1) We have

Jn (Wn - ew) 4N, (0,2,), (S4.3)

where W,, =" | W;/n. Moreover,

sip‘P <\/ﬁ (Wn—ew) eA> —P(ZEA)‘ :0<%), (S4.4)

where Z ~ Ni(0,%,,) and the supremum is taken over all measurable conver sets A.
(2) For any continuous function g : R¥ — R satisfying the properties that Vg(0,) # 0

and that ||[V?9(0)||« is continuous at 0,,, we have

Vit (9(W) = 9(84)) 5 N (0,{Vg(8,)} =, Vg(6,)) (54.5)

and



where Z, ~ N(0,{Vg(0.,)}' £,Vg(0,)).

(8) Suppose that Uy, . .., U, arel-dimensional identically-distributed random vectors with
mean 6, and covariance matriz 3, such that (UL, WT ... (UF, W) are i.i.d. vectors.
Let h : RN — R be a continuous function such that Vh(0,) # 0 and that |[V2h(0)|« is

continuous at 6,. Then,

h(U,) 2 h(8,), (S4.7)

Vi h(@,) (9(W) — 9(0,)) 5 hON (0,{V9(0,)} S, Ve(60,),  (518)

and

sup | P (\/ﬁ h(U,) <g(ﬁ7n) - g(ew)) < x) P (Zy, < x)‘ ~0 (i) , (S4.9)

zeR

where U, = S0 Us/n, and Zng ~ h(6,)N(0,{Vg(0,)} T, Vg(0,)).

Proof. (1) The follows from the multivariate central limit theorem. The follows
from (Gotzel 1991, Theorem 1.3).

(2) The follows from the delta method. The follows from (Pinelis and
Molzon, 2016, Theorem 2.9).

(3) The and follows from the weak law of large numbers and Slutsky’s
theorem.

Let §(Un, W,) = h(U,) (g(Wn) - g(Ow)>. We apply the multivariate central limit

theorem to the sequence {(Ul, WI)T} and then apply the Delta method to g(U,, W,).

Thus, based on ((S4.6)), we can obtain ((S4.9)). ]

Proof of Lemma 2|
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Proof. Let v be a vector containing all the elements in upper-triangular part of the true
covariance C, and v; be a vector containing corresponding sample covariance estimator only
using the i-th sample. Since samples are i.i.d, ©; for 1 <i <n are i.i.d. Let o =", 0;/n.
Then v contains elements in upper-triangular part of C. By the multivariate central limit

theorem,

where 3, = Var(v;).
There exists a continuous function g;(v), such that g;(v) = d;; for 1 < j < p. Then

dj; = g;(v). Let Vg;(v) be the gradient of ¢g. Since C is positive definite, Vg;(v) # 0. By

the delta method,

A

Vild; — di;) = Vn{g(8) = g(v)} 5 N(0, Vg;(v)" 2, Vg;(v)).

~

Since \,/v/nlogn — oo, by Lemma , we have P(|d;; — d;;| > A\,/n) = O(1/y/n) for any
0<d< 1/2, which 1mphes that P(maXlSjgp’Cij — djj| > )\n/n) < Z?zl P('CZ] — dj| >

An/n) = O(1/4/n). This completes the proof. O
Proof of Theorem (3]

Proof. The proposed estimator with Lasso penalty is

R ‘ 1 p - p .
YLasso = argmii {§||y - Z Xj V d]'j’}/j||2 + An Z d]]|7]|} :
v j=1 j=1

Let B = (Bi,...,3,) and ¥ = (71, . . .,7,) be the true values of the 3 and SPACs, respectively.
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Then B8 = V4. Denote @ = V410500 — V19 = V910050 — B. Then
1 P B P - -
u = arginin {gHy - ZXJ(UJ' + B+ A Z \/ dijlu; + 53‘!}
J=1 7j=1
1 p p - B
= argmin {5”6 - ;Xjujﬂz + A ; \ dijlus + @I}

1 Ld - _
= argmin {E’U,TXTX’U, —vVnwlu+ M\, Z \/ djj|uj + 5j|} )
=1

u

where w = XTe/\/n. Notice that

diu" X" Xu — /nw’u]
du

= /n(vnCu — w). (54.10)

Let w(1), w(1), B(1), and @(2), w(2), B(2) be the first ¢ and last p — ¢ entries of @, w, and

3, respectively. Then, based on the Karush-Kuhn-Tucker (KKT) conditions, if there exists

4 such that

AV (1)EMa(1) — V(1)w(1) = —%sign(ﬂ_(l)), (S4.11)
[a(1)] < |B(1)],
VAV (2)E2a(1) — V(2w (2)| < A—’;LL

then sign(Yrasso(1)) = sign(B(1)) = sign(y(1)) and Yrasso(2) = u(2) = 0.
Take (S4.11)) as a definition of @(1). Then the existence of such @ is implied by the

following inequalities:

(E™) Mw(1)] < VAIBO)| - 2 (E) YV Wsim(B)),  (54.12)

V() (C) w(l) — V(2)w(2)| < %(1 — [V(2)C*(C) 'V (1) sign(B(1)))-

(S4.13)
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Let A, denote the event that (S4.12) holds, and B, be the event that (S4.13) holds.

Then

A

P(’?Lasso()\na d) s ’7) > P(An N Bn)

Denote ¢ = (¢1,...,¢,) = (C)'w(1), and ¢ = (G, ..., Cyg) = V(2)CH(C) 1w (1) —
V(2)w(2). Let b = (by,...,b,) = [(C")'V~1(1)sign(¥(1))| and § = (..., 7, )T =

1—|V(2)C?*(C™) 'V ~1(1)sign(B(1))|. Then

1—-P(A,NB,) < P(AS)+ P(BS)

< 3 Pl 2 V(B - 20)) + 3 PG| = S

By the multivariate central limit theorem,
XTe/\/n -4 N(0,02C).

Since V(1)(C™) ™ 25 V(1)(C1)™, V(2) L5 V(2), and V(Q)CH(C1) 7 5 V(2O (C1) 7,
by Slutsky’s theorem,

A

(€ lw(1) -5 N(0,02(C™)7Y),

V(2)C*(CM) 'w(1) - V(2)w(2) -5 N(0,02V (2)(C? - C?(C)'CP?)V(2)). (S4.14)

Hence, ¢; and (; converge in distribution to Gaussian random variables for each j.
By Lemma 2] and Lemma[3], with probability at least 1 —O(1/4/n) for 0 < ¢ < 1/2, there

exists a constant €, such as maxj<j<, d;; < €., minj<;<, d;; > 1/e,

max I\ dij — \/dj;| < echn/n, and  max |1/1/d;; — 1//d;;| < €chn/n. (54.15)
<j<p

1<j<p
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We have

IBlloc = I(C™) V(1) sign(3(1))|oc (54.16)
< J{EH ™ = () V () sign((1) ]l
HI(C™") V(1) = V(1)) sign(3(1) [l
HI(CH) V(1) sign(¥(1)) [l
Since the elements of sample covariance matrix C converge to the corresponding true co-
variances with probability at least 1 — O(1/y/n), ||(C™)~! — (C')™!||o converges to 0 with

probability at least 1—O(1/y/n). Since A,,/n — 0, the \,b;/n converges to 0 with probability

at least 1 — O(1/4/n). We also have

n = 1-|V(2C*(C) 'V (1)sign(B(1))] (54.17)
> 1-|{V(2) - V(2)}C*(CM) 'V (1) sign(B(1)]
—[V(@)C*(C) V(1) — V(1)) sign(B(1))]
—V(2)CH(CH) V(1) sign(B(1))]

The inequality in (S4.17)) is element-wise. By (S4.15)) and Condition , n; > n/2 holds with

probability at least 1 — O(1/y/n) for each j. Based on \,/v/nlogn — oo and Gaussian

distributions of ¢; and (;, we have

3" P > G180~ 20,) Z[ P(o;1 2 Y18 + 0/vi)| = 0/vR),

=1

p—q

P(I¢

"3

—q

")) < 1P<r@|> jl>+o<1/f> O(1//n).

This completes the proof. O

_2\/_

<.
-

<.
Il
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Proof of Theorem 5

Proof. Let ¥ = (%1,...,7%,) and B = (Bi,...,3,) be the true values of the SPACs and g3,

respectively, a,, = n~ 1?9 and

. . 1 P -
L(y.d) = lly = > Xj\/dymll*
j=1
By the definition of d and Lemma , P(maxi<j<p |d;; — dij| < an) =1 —0(1//n).

(1) It suffices to show that there exists a large constant M such that,

| rﬁainM Lscap(¥ + anu,d) > Lscap(7, d), (S4.18)
u||2=

with probability at least 1 — O(1/y/n). Let D,, = Lscap (¥ + anu, ci) — Lscap (7, ci) Then,

q
D, > L(Y + ayu,d) — L(y,d) + ”Z djj [pscap (17 + anusl) — pscap . (1])] -

J=1

By Tayler expansion, we have

n

N . 1 3 .
D, > anL'(ﬁ/,d)Tu—l—§a2uTL”('7,d)u (S4.19)

q
Ton Z djj [anbscap o, (1751 sign(3;)w; + anpscap s, (1751)45] -
j=1

The second term in (S4.19)) is bounded below by by M?a?n with probability at least 1 —
O(1/+/n) for some constant by, > 0. By the multivariate central limit theorem, |ay, L' (7, d) u| <

bo1a2n/3, dominated by the second term, with probability at least 1 — O(1/y/n). The third

term in (S4.19)) is bounded above by
bo2 |gMay,n m]aX{PISCAD,,\n(WjD 19, # 0} + M?aZn m]aX{PgCAD,,\n(WjD % # 0},

with probability at least 1—O(1/y/n) for some constant by o > 0. This term is also dominated

by the second term via choosing a sufficiently large M. Thus, the (S4.18)) holds.
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(2) Let w = X"e//n and & = V~""4scap — B. Similarly as in the proof of Theorem ,

if
ViV (1)CH1a(1) — V(Dw(1) = —v/nA,G sign(8(1)), (S4.20)
[a(1)] < |B(1)], (S4.21)
IVV (2)CHa(1) — V(2)w(2)| < vadl, (S4.22)

then sign(yscap(1)) = sign(¥(1)) and Yscap(2) = w(2) = 0, where Gisa g X q diagonal

matrix with (G);; = p’SCAD djj/\n(|(ﬁ,(1) +B(1);]) for j=1,...,q.

Take (S4.20) as a definition of @(1). Then the (S4.21)) and (S4.22)) are implied by the

following inequalities:

() w(1)] < V(B MI(CH) V()G sien(BO))). (34.23)

V(2)C*(C) w(1) = V(2)w(2)] < Va1 - [V(2)C*(CM) 'V (1)G sign(B(1)))).
(S4.24)
Let A, denote the event that (S4.23) holds, and B, be the event that (S4.24)) holds.

Then

A

P(Ascap(An,d) =s4) > P(A, N B,).
Similarly as in the proof of Theorem, let @ = (¢1,....04) = (C’H)_lw(l), C=(Cr, - Gpyg)
= V(2)C*(C™)'w(1) — V(2w(2), b = (by,...,b,) = [(C')"'V~1(1)G sign(5(1))| and

1= (1 p-g) = 1= [V(2)C?(C) TV (1)G sign(5(1))]-
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By Part (1) in this theorem and max;{pscap ., (13]) 1 7 # 0} = O(n=Y/2%9), X, = O(1)
and the diagonal elements of G converge to 0 with probability at least 1 — O(1/y/n). Then,
Anbj converge to 0, and 7; > 1/2, with probability at least 1 — O(1/4/n) for each j. Since

VA, /v/1ogn — oo, by Lemma |3| and the asymptotic Gaussian distributions of ¢; and (;,

> Pyl = L) - Z[ (16,1 = YA + 00 /vi)| = 0 /v,

i Pl = ZP!@I> VI 0(1/vi)

This completes the proof. O

We prove Theorem [2] first, and then prove Theorem [I]

Proof of Theorem 2|

Proof. Let 4 and B be the true values of v and B respectively, and w = (wy,...,w,, )T =
XTy — XTXV~14 = XTe. Denote the first g, entries of w by w(1), and the remaining

elements by w(2). Define (1), B(1), and 4(2), B(2) in a similar way. Then B(1) =

For events A; = {||w(1)|lsc < V20./nlogn} and Ay = {||w(2)s < V20.n'""0\/logn},

since all the covariates are standardized, we have

qn Pn
P(AiNAy) > 1-— ZP(|wj| > V20.+/nlogn) — Z P(jw;] > V200" /logn)
Jj=1 J2qn+1

> 1- 20, [an_l N 1°g”]

= 1- O(n_d)a

by the multivariate central limit theorem.
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Under the event A; N A,, it suffices to show that there exists a strict local minimizer

'?SC’AD of LSCAD(’)’,d) such that ||V71’A)’SCAD — ,BHOO = O(Ozn) and 'S’SCAD = "_)’, where

a, = /logp,/n.
We first show that for sufficiently large n, there exists a vector ¥scap(1) in
Ho={y(1) € R : [V(1)"'v(1) = B(1)[|oe < awn},
such that
Uy (fscan(1)) = Xy — X{ XaV (1) " Hscan(l) — nv(l)_lpiS'CAD,An (¥scap(1)) = 0.
(54.25)

For any (1) = (71, -+, %,) € H, since hpin > a,, minj, |\/cijﬂj| > minf, 18] = hanin =
Pin, Which implies v =g 8 =, ~. The ¥, can be rewritten as

~

U (y(1) = w(1) + X{ X1 (V1) 5(1) = V) (1) = 0V (1) Pscap, (v(1)).
By multiplying [X7X,]”" on both sides, we have
(XTX1] W(v(1) = G 'w()+ (B1) - V(1) v(1)  (S4.26)
—(CHTV()  Pacapa, (Y1),
Since [[(C11) ™ [l = 0 (aun™),
(G w (M)l < 2 HIC) Moo lw (Do = 0 ()

Since pscap .y, (1) is a decreasing function,
P/SCAD,,\n () = P,SCAD, TAn <\/ djj%‘) /\/ dj; < dj_jl piS‘CAD,A;;(hmin)‘
Since cfjj is the CLIME of d;;, by |Cai et al.| (2011, Theorem 5),

max |dAjj — djj’ = O;‘S) (Vn,u) . <S427)
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We have A, = O(1), maxi<j<p, d;;' = O(logn), which implies

max |\/d;; — \/d;;| = O (vu\/logn), max al]1 Ol(f)(logn),

1<5<pn <j<pn

max |1/\/> 1/:/dj;| = OV (v, . (log n)?/?).

1<j<pn

Then by Condition [6]

V(D) Psoapa, (Y1) oo
< M) ooV ™ = V) M ooV (D) lsoPlscan s (Buin) + 1CH) ™ llsoPscap s (min)
= ol(f)(an)

-1

It follows that (1) + V(1) [ XTX,] Wi(y(1)) lies in H for any (1) € H. Thus, by the

Brouwer fixed-point theorem, V(1) [XlTXl]fl U1 (Yscap(1)) = 0 for some Yscap(l) € H,

which implies (54.25)).
Let Ascap(2) = 0, and Uy = (nA,) 'V (2) XL (y — X1V (1) Hscan(1)). Next, we will

show that ||Vs]|s < 1. It can be rewritten as
Uy = (n)) "V (2)w(2) + A V()G V(1) 715(1) = V(1) Hscan (1)) (54.28)

The first term on the right-hand side of is op (1) by Condltlon@ Substitute yscap(1)
in the second term on the right-hand side of (S4.28)) by the solution to ¥ (4scap(1)) = 0.
Then we have

AIVE)ICPH V() TF(1) = V() Hseap(1)) (S4.29)

= X'VCHCH V() Pscapa, (scan(1) = A V(2)CH (nCyH) T w(D).

Since all the covariates are standardized, the second term on the right-hand side of ((S4.29)
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18

N ~ N a7} K4
AV (2)C2 (nCH) T w (1) = 0D (—5—/log n 05— /nlogn) = ol (1),

log®n n

by Conditions [5| and |§| In the first term on the right-hand side of (S4.29)),

A Dscapa, (Gscap,j) = Pa,(Yscap;) = P\/@,\n(\/ djjVscapj) < Prs (hmin),

where 4scap.; is the jth element of Yscap. It follows that H)\;lngAD’An(’ySCAD(l))Hoo <

Pz (hmin). The first term on the right-hand side of (S4.29) is

a

NVRICCH V() seapa, (Bsean(D)| (54.30)

[e.9]

V) -V EHEN) V) Phoana, Fsean(D)|

e}

AV EIEEH) V)T = V)T VOV e, Bscan (D)

o0

a

AV RICHCE) V) Baeapa, (sean(1))|

Then, by Condition , the last term on the right-hand side of is less than 1. Other
terms on the right-hand side of are oY’ (1) by Condition @ Therefore, ||[¥all0 < 1
for sufficiently large n.

By Condition @, )\min(CA%I) > (a — 1)7! for sufficiently large n. Thus, the yscap is a

strict local minimizer of Lgcap(7y, d) by Fan and Lv (2011, Theorem 1). This completes the

proof.

Proof of Theorem [

Proof. We use the same notation as in the proof of Theorem [2]

For events A; = {||w(1)|lec < V20.v/nlogn} and Ay = {||w(2)|s < V20.n'"%0\/logn},

we still have P(A; N Ay) > 1 — O(n~°) by the multivariate central limit theorem.
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Under the event A; N Ay, we first show that for sufficiently large n, there exists a vector
’?Lasso(l) in
H={v(1) € R : [V(1)""v(1) = Bl < an},

such that
\Ill(ﬁ/Lasso(l)) = XlTy - X1TX1V(1>_1’3/L0L850(1) - )\nv(1>_1 Sign(ﬁ/Lasso(l)) = 07 (8431)

where o, = \/log p,/n. Forany ¥(1) = (71,...,7,,) € H, since hyin > ay,, minf”, |\/djﬂj| >
mln ’BJ' mln = hmm, which lrnphes Y =s /6
By multiplying [X{ X;] ! on both sides, the ¥, can be rewritten as

-1

(XTX)] 7 (y(1) = (G w(l) +(B(1) = V(1) (1) (54.32)

~Aa(nCH) TV (1) sign(y(1)).

Since [[(C11) ! |os = 08 (avun™) for Ky < 1/2,

(G w ()]l <07 ICH  eollw (D)oo = OF (0™ an™/nlogn) = ofY (ay).
Since d; is the CLIME of d;;,

max |d]] d]'j’ = Ogs) (Vn,u) . (8433)

1<5<pn

—1
We have max;<j<,, d;; = O(logn), maxi<;<,, d.; =

o = O(logn) and vy, logn = o(1), which

implies

max |\/dj; — \/dj;| = O (vyu/logn),  max y/dj; = O (/logn),

1<j<pn 1<j<gn
/ /— _ 5 3/2 / 5

Since )\, = O(n1/2+“3), the third term on the right-hand side of (S4.32) is

IA(nCH TV (1) sign(v(1)) ]| < —H(C”) NoellV (1) oo = o (ca)-

P
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It follows that (1) + V(1) [XlTXl]fl

Uy (y(1)) lies in H for any (1) € H. Thus, by the
Brouwer fixed-point theorem, V(l) [Xlerl Uy (YLasso(1)) = 0 for some russ0(1) € H,
which implies .

Lot Yrasso(2) = 0 and ¥y = A2V (2) X T (y — X1V (1) " ALass0(1)). Next, we will show

that || Ua]]oo < 1. It can be rewritten as
l112 = )‘;1‘7(2)"‘)(2) + n)‘glv(z)ésl(‘/(l)ilﬁl(l) - V(l)ilﬁLasso(l))' <S4'34)

The first term on the right-hand side of (S4.34) is 0f’(1) since ;! = o(n~!/logn). Sub-
stitute Yrasso(1) in the second term on the right-hand side of (S4.34) by the solution to

U1 (YLasso(1)) = 0. Then we have

~

nA V)GV (1) 7'(1) = V(1) Hrasso(1))

= V(2)CH(C 'V (1) sigh(Hrasso(1)) — nA, ' V(2)CH (nCH) " w(1). (S4.35)
Since all the covariates are standardized, the second term in (S4.35)) is

KO Ka
lggn\/logn n“3ﬂx/nlogn) = 0]()5)(1),

n

InA, 'V (2)C (nCY) w (1)l = OF(
by Conditions [3] and [l The first term on the right-hand side of (S4.35)) is

|[VEEE V1) sign(Frasse (1) (34.36)

e 9]

= [{ve) - v} e V) s (1)

o

+|veczen (v - v sienGew )|

o0

+[V@E @ V) s 1)

[e.9]

Since sign(Yrass0(1)) = sign(B(1)), the last term of (S4.36) is less than 1 by Condition [1}

Other terms on the right-hand side of (S4.36) are 01(06)(1) since v, ,n TR (logn)? = o(1).
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Therefore, | Us]|o < 1 for sufficiently large n.

By Condition , )\min(CA'él) > ( for sufficiently large n. Thus, the 4.0 1S a strict local

A

minimizer of Lpgss0(7, d) by Fan and Lv| (2011, Theorem 1). This completes the proof.

Proof of Theorem [4]

Proof. Let

Fi, = {there exists A, > 0 such that Yruss0 =s Y}

)

= {there exists A, > 0 such that sign(¥rasso(1)) = sign(vy(1)) and Yrass0(2) = 0} .

Then the SPAC-Lasso is general sign consistent if lim P(F},) = 1. Based on the Karush-

n—o0

Kuhn-Tucker (KKT) conditions and (S4.10)), F}, implies that

ViV (1)CMa(1) — V(Dw(l) = —%sign(ﬁ(l)%

VAV (2)Ca(1) — V(2)w(2)] < %1.

Solve (1) out of (S4.37) and substitute it into (S4.38). Then we have

Fyp = {ﬁfl,n <V©2)CH(CH 1 'w(l) — V(2w(2) < An

= Tt

where

fra=-1+V(2)C*(C") 'V (1)sign(B(1)).

A

fon =1+ V(2)C?(C)'V (1) sign(B(1)).

(S4.37)

(S4.38)

3
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Let fo(x) = P(F5,|X = x), and

H, = {X]| at least one element of |V (2)C* (C')~"'V (1)"sign(3(1))]

is greater than or equal to 1},

representing the design matrices for which Condition [ fails. Since e follows a Gaussian
distribution with mean 0, f,(x) < 1/2 when & € H,. If for any large n there exists § > 0

such that P(X € H,,) > 0, then we have
P(F,,) = / fo(x)dP(x) + P(Fy,, X € H)) < P(X € H,)/2+ P(X € H;) <1-§/2.
xEH,
Thus, limsup P(F},,) < limsup P(F3,) < 1. This contradicts the general sign consistency.
Therefore, |V/(2)C? (C')~"'V (1)~ sign(B8(1))| < 1.
Since
V(2)C*(CM) 'V (1) sign(B(1))] (54.39)
< [V(@)C(CM) V(1) sign(B(1))]
+H{V(2) - V(2)}C*(C") 'V (1) sign(B(1))]
+HV ()G (C)H{V (1) = V(1) Y sign(B(1))],

where the last two items go to zero as n increases, each element in |V (2)C21(C™) "'V (1)~ sign(B(1))|

is less than 1 for sufficiently large n. m
Proof of Proposition

Proof. By the definition of C,,

|C2H(CM) ™ sign(B(1)) o = 220! (34.40)

1—Oz1+041q0'
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Since C,, is positive definite for all large ¢y and py, a; > 0 and az > 0.

We have
IC2H(CY) " sign(B(1)) ]| (54.41)
> |CH ey sign(B(1) e — ICPH(C) ™ = (C1) ' sign(B(1)) s

—ll(C3t = () sign(B(D)) o

By the normality assumption and (Laurent and Massart} 2000, Lemma 1), elements in C,
converge to corresponding elements in C,, with probability at least 1 — O(exp(n~°)) and
0 < ¢ < 1/2, which implies that [|C? — C?!|| = O (n~7). In addition, similarly as the
proof in part (2) of Lemma , we can show that ||(C11)~! — (C11)"!||c = O (n~7). Thus,
the last two terms on the right hand of goes to zero as n increases with probability
at least 1 — O(n™9).

On the one hand, if oy = 0, obviously holds for large mg. If |as| > ayLy > 0,
then there exists a constant €y > 0 such that |as| > a1qo/mo + €. Thus, follows from

(54.40) and (S4.41)) for sufficiently large my.

On the other hand, we have
IC21(C) " sign(B(1)) [l (54.42)
< [le2 (e sign(B() [l + ICEH(C) ™ = (€} ) sign(B(1)) [l
HI(C2 = CIH(CY) ™ sign(B(1)) e
Thus, implies that ||[C*(C!")~'sign(B(1))]|e > 1, which implies that

11—«
! +C¥1& > OélL(].
mo

|az| >
myo

Hence |ag| > a3 Ly > oy, where the second inequality follows from mg < go. By the positive
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definiteness of C,,

az > |as| Dl + < Q00 - 1) !
1—&1—{—@1(]0 1—@14—011(]0 To—l’

where 7o = pg — qo. Since the C), is positive definite for any large rg, implies az > |as].
We also have
IV @)E2(EH) V(1) sign(B1)) (34.43)
< IVEC(C!) VL) sign(B(1))
HIV)CH(CH) ™ = (G V(1) sign(B(1)
HIVE)(C) = ()T V(1) sign(B(1))|o-
Similarly as , the last two terms on the right hand side of goes to zero as n

increases with probability at least 1 — O(n~°). Based on the definition of C,,,

V(2)CHH(C,) V(1) sign(B(1))] (S4.44)

]_—013

= |GG sign(BM) T

X\/(l + (g0 — 2)a)(1 + (1o — Daz) — (g0 — D)ro

(1+ (qo — Day)(1+ (ro — 2)as) — qo(ro — 1)a3’

Since ag > «a; and the last factor on the right hand side of (S4.44)) is close to 1 for large qq

and g,
(V(2)CH(C,H) TV (1) sign(B(1))] < [CRH(C,) ™ sign(B(1))]- (54.45)
Then by (S4.41)) and (S4.43)), (4.6]) holds for sufficiently large mg and ry. O

Proof of Proposition

Proof. By the definition of C,,,

cr(ey |, — — 1920l S4.46
O Mo = (54.46)
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We have

ICHCH) e < ICHCH oo + ICTHCH) ™ = (G Yl
HI(C = CINC) e
Since the last two terms on the right hand side of (S4.47]) goes to zero as n increases with

probability at least 1—O(n~?), the inequality (4.7) implies that [|C2*(C1) ™| Pa(hmin) > 1,

which implies

lova| > (1_a1+a1> 1 > ay.
o P (Prmin)

By the positive definiteness of C,,,

az > |ag| dolaz| + < %05 — 1> !
1—oa; +ai1qo 1 -1 +a1q0 rog— 1’

where 19 = pg— qo. Since the second term is close to zero for large ro, (4.7) implies ag > |ag].

We also have

IVERCHCH V) s < IVECHCH V) s (54.47)
HIVE@)CH{(CH ™ = (CH V() e

HIVE)(CH - C2HCH) V)
and

IC2HC) Mo < ICHC) Moo + ICTHCH) ™ = (G Hloe (S4.48)

HI(CT = CC) e

The last two terms on the right hand sides of (S4.47)) and (S4.48)) goes to zero as n increases
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with probability at least 1 — O(n~?). Moreover, based on the definition of C,,,

1—043

IV2)CZHC,H) " V() e = [C2HC) s o
X\/(l + (g0 — 2)a) (1 + (10 — 1)az) — (g0 — D)road
(1+ (qo — Day)(1+ (ro — 2)as) — qo(ro — 1)a3’

Since a3 > ay and the last factor is close to 1 for large gy and rg, (4.8)) holds for sufficiently

large qo and ry. ]
Proof of Corollary

Proof. By the definition of C), and distribution assumption of X, Condition [5|is satisfied.

By the definition of p, and ¢,, and h.;, > n~"°, Condition |3| also holds. Since
1 —
ogmol _ [l=as (S4.49)
1—0(14—041(]0 11—y

1—a1( do 1—Oé1)

is equivalent to

joa| < (1 =)

then (S4.49) is implied by (4.9). Then, by (S4.43), (S4.44), and the proof of Proposition [1]

Condition [1] holds for sufficiently large gy and py — go with probability at least 1 — O(n™°).

This completes the proof.

Proof of Corollary

Proof. By the definition of C), and distribution assumption of X, Condition [5|is satisfied.
By the definition of p, and ¢,, and Ay, > n~%, Condition |3| also holds. The first ele-

ment of |C?(C!)~Lsign(B(1))| is the largest one, and it is equal to the first element of
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|C2Y(C})~11|. Combining with (S4.42)), (4.5) implies that

|| (1 — aay)
(1 —+ 061)(1 — OéQ)

> 1,

which further implies ap > .

Let To =Po — 4o, "Tn = Pn — Qn,

(
L=t —ag)
B (a3 — a2)?(1 — a3 %)
N G RPEIR

T=1-201T,, T =1- iy T}, and

(q0—Fk) 2 2rg—2

(a — ag)?(1 — a1a2)2a§ (g — ag)*(1 — a5 %)
— 1+

S(Q()aTOakaalaa/Za&B) 1 _ail (1 —Oé§>(1 —OK%)

Then, d;; can be expressed as

(

1 f1<j<gn—qoand g, +ro+1=<j<pn
o (1 Slembpened) g, - gy 41
o (1 + S<q°”°’j’;”’“2’a3)> if g~ +2<j< g~ 1
4% =4 =7 if j = gn
@ if j =q,+1
e <1 + S(To’qo”’O‘J;l’“?”“Q’“l)) if go+2<j<gn+ro—1
= (1 + 5<T°’q0’15;*3’“2’“1>) if j = go + 7o.

Since S(qo, 70, k, a1, a2, a3) = @3S (qo, ro, k + 1, a1, o, a3),

Qo < \/djj/dj+1j+1 <1 for n — Qo + 2 < j <q, — 2, (8450)

and

Qo < \/dj+1j+1/djj <1 for qn + 2 S] < Qn + 710 — 2. (S451)
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In addition, since ay > a1 > 0,

dgngn = dgu-14,-1- (S4.52)

Let ¥ = (¢1,...,¢,)" = |V(2)C?*(C)~"'V (1) *sign(B(1))]. Then by , for

2<j<ro—1 ¢j/tjs1 = \/dg+jt1gntj+1/dgnrjanri/ 2 > 1. Since C, is extended block-

AR, ¢; = 0for ro+1 < j < r,. Hence, we need to show that there exists a positive constant
no such that max{wy,¥s} <1 —mng. Let 9 € (0,7).

By (S4.50) and (S4.52) for any ¢, € (0,17 — n9) and sufficiently large py and go,

2| (1 — o) I aj |os|(1 — o)
0 =
(1+a)(l—a2) || dgsrgesr 1—af (1+a1)(1—a2)

The last inequality follows from (4.10). In addition, ¢ = ¥icar/dg, 119011/ dgt2gmr2 <

P < +copy <1 —1p0.

g /|as — as|. Then we have |||l < 1—n by (4.10). By (S4.43), Condition (1| holds with

probability at least 1 — O(n%). This completes the proof. O
Proof of Corollary

Proof. Similarly as the proof in Corollary [I, Conditions [2] [3 and [ are satisfied, which

completes the proof. O
Proof of Proposition

Proof. For any 1 < i < ¢, and ¢, + 1 < j < p,, it suffices to show that d;;/d;; < g2. Let
Umax,i b€ an eigenvector corresponding to the largest eigenvalue of C), ;, and ¢} be the angle

between v; and Vpax ;. Then,

dy; . det(C,,;) . I 'UjT(Cn,j)fl'Uj - Hlijg/)\max,j

_ _ < .
djj  det(Chny)  1—v](Cpi) v = 1 —||v]3co8? ¢} [ Amaxi — ||Vi]|3 8In* 0} / Amin,s

By the Perron-Frobenius theorem, wp.x; can be chosen from the cone spanned by the

columns of C,,;. Thus, 0 < ¢f < ¢; < w/2. The last inequality follows from ¢y > 0
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for any 1 < k,l < p,,. Therefore,

1 — [[9;113/ Amas;

Zu<
1= [|v]13/ Amaxi — [|vill3sin® i/ Amnin

dj]

dii

which implies ||V (2)C?}(C)~'V (1)7!||c < 1—n. By normality assumption and Conditions
and 4| with ko > max{kg + K3, (k2 + K4)/2}, the last two terms on the right hand sides of
(S4.47) goes to zero as n increases with probability at least 1 — O(n~?%). This completes the

proof.

References

Cai, T., W. Liu, and X. Luo (2011). A constrained /1 minimization approach to sparse precision matrix estimation.

Journal of the American Statistical Association 106(494), 594-607.

Fan, J. and J. Lv (2011). Nonconcave penalized likelihood with NP-dimensionality. IEEE Transactions on Information

Theory 57(8), 5467-5484.
Gotze, F. (1991). On the rate of convergence in the multivariate CLT. The Annals of Probability, 724-739.
Laurent, B. and P. Massart (2000). Adaptive estimation of a quadratic functional by model selection. The Annals of
Statistics 28(5), 1302-1338.
Pinelis, I. and R. Molzon (2016). Optimal-order bounds on the rate of convergence to normality in the multivariate

delta method. Electronic Journal of Statistics 10(1), 1001-1063.



	Additional conditions
	Consistency for fixed p and q
	Additional tables
	Additional corollary and proofs

