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In this Supplementary Material, we provide additional conditions, theorems, tables, and

corollaries, as well as proofs for Lemma 1, all theorems, propositions and corollaries.

S1 Additional conditions

To simplify statements, we introduce the following notations for limiting behaviors of se-

quences with certain probability. A function g1(n) satisfies g1(n) = O
(δ)
p (g2(n)) if and only

if there exists a constant M > 0 such that |g1(n)| ≤ Mg2(n) with probability at least

1 − O(n−δ), where δ > 0. Similarly, g1(n) = o
(δ)
p (g2(n)) if and only if for any ε > 0 there

exists a constant N such that for all n ≥ N , |g1(n)| ≤ εg2(n) with probability at least

1−O(n−δ).

Condition 4. For some constants 0 < δ < min{1 − κ2, 2κ0} and 0 < κ3, κ4 < 1/2 such

that κ3 +κ4 < 1/2, ‖Ĉ21
n ‖∞ = O

(δ)
p (nκ3), λmin(Ĉ11

n ) > 0, ‖(Ĉ11
n )−1‖∞ = O

(δ)
p (nκ4

√
log pn/n),

νn,ubn = o(1), λn = O(n1/2+κ3), 1/λn = o(nκ0−1/ log n), max1≤j≤qn djj = O(log n), and
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max1≤j≤pn d
−1
jj = O(log n), where νn,u = M2

pn(log pn/n)
1
2n

δ
2 , λmin(·) denotes the smallest

eigenvalue of a matrix, and bn = max{log n, nκ3+κ4−κ0(log n)2}.

Condition 5. Assume that D ∈ Gu(Kpn ,Mpn). There exist positive constants 0 < κ5 < 1/4

and M2 such that E{exp(κ6X
2
j )} ≤M2 for all |κ6| ≤ κ5 and all j = 1, . . . , pn.

Condition 6. For some constants 0 < δ < min{1 − κ2, 2κ0} and 0 < κ3, κ4 < 1/2

such that κ3 + κ4 < 1/2, ‖Ĉ21
n ‖∞ = O

(δ)
p (nκ3), λmin(Ĉ11

n ) > (a − 1)−1, ‖(Ĉ11
n )−1‖∞ =

O
(δ)
p (nκ4

√
log pn/n), νn,un

κ3/
√

log n = o(1), p′SCAD,λ∗n(hmin) = o(n−κ4), 1/λn = O(nκ0 log−2 n),

and max1≤j≤pn d
−1
jj = O(log n).

Conditions 4 and 6 are similar. They both require that Ĉ11
n is invertible, and also

control the norms of (Ĉ11
n )−1, Ĉ21

n , and d, which could be satisfied for exchangeable or AR-1

structures. The lower bounds for eigenvalues of Ĉ11
n in Conditions 4 and 6 are to ensure

strict local minimizers of LSCAD(γ, d̂) and LLasso(γ, d̂) in (3.5) and (3.3), respectively. On

the other hand, Condition 4 is for consistency of the SPAC-Lasso, while Condition 6 is for

consistency of the SPAC-SCAD. The tuning parameter in p′SCAD,λ∗n(hmin) is rescaled to the

size of β, and the condition on p′SCAD,λ∗n(hmin) holds when λn � hmin. Condition 5 comes

from Cai et al. (2011) to ensure consistency of the CLIME.

S2 Consistency for fixed p and q

In this subsection, we assume that p, q, β, C, and γ are all constant as n→∞, so that we

can use the inverse of the sample covariance matrix to estimate diagonal elements d. For

each 1 ≤ j ≤ p, let

d̂jj = [(XTX/n)−1]jj (S2.1)
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be the j-th diagonal element in (XTX/n)−1. Moreover, we assume the following regularity

condition on the existence of the fourth moment of the covariates:

Condition 7. The E(X4
j ) is finite for j = 1, . . . , p.

Condition 7 is automatically satisfied under normality or when the tail distribution is

well behaved, for example, the sub-Gaussian distribution.

In the following, we show that the estimator d̂ approximates d with a certain rate in

Lemma 2, which is useful in establishing the strong sign consistency of the proposed SPAC-

Lasso in Theorem 3.

Lemma 2. Suppose that λn/
√
n log n → ∞. With d̂jj for 1 ≤ j ≤ p defined in (S2.1), we

have max
1≤j≤p

|d̂jj − djj| = O(λn/n) with probability at least 1−O(1/
√
n).

Theorem 3. For p, q, and γ independent of n, under the regularity Condition 7, suppose

that λn/n → 0 and λn/
√
n log n → ∞, and that Condition 1 holds with probability at least

1 − O(1/
√
n) for some 0 < δ < 1/2. Then the SPAC-Lasso with d̂jj (1 ≤ j ≤ p) defined in

(S2.1) is strongly sign consistent, that is,

P (γ̂Lasso(λn, d̂) =s γ) ≥ 1−O(1/
√
n).

Let an estimator γ̂ be general sign consistent if

lim
n→∞

P {there exists λ ≥ 0 such that γ̂(λ) =s γ} = 1.

By definition, the strongly sign consistency implies general sign consistency. We also define

the following condition which is slightly weaker than Condition 1.

Condition 8 (Weak irrepresentable condition for SPAC-Lasso). Each element in∣∣∣V (2)Ĉ21(Ĉ11)−1V (1)−1 sign(β(1))
∣∣∣
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is less than 1 for sufficiently large n, where | · | represents taking the absolute value of each

entry.

Theorem 4. For fixed p, q, C and γ, the SPAC-Lasso with d̂jj (1 ≤ j ≤ p) defined in

(S2.1) is general sign consistent only if Condition 8 holds with probability tending to 1.

Theorem 3 indicates that the probability of the SPAC-Lasso selecting the true model

approaches 1, if Condition 1 (the irrepresentable condition for SPAC-Lasso) and regularity

Condition 7 hold. Theorem 4 states that Condition 8 is necessary for general sign consistency.

Thus, Conditions 1 and 8 are nearly necessary and sufficient for the sign consistency of the

proposed SPAC-Lasso in general.

For strong sign consistency of the proposed SPAC-SCAD, we assume the following Con-

dition 9, which is a typical condition of λn for the SCAD penalty, and can be satisfied when

λn → 0.

Condition 9. The SCAD penalty satisfies that maxj{p′SCAD,λn(|γj|) : γj 6= 0} = O(n−1/2+δ)

for some 0 < δ < 1/2 and maxj{p′′SCAD,λn(|γj|) : γj 6= 0} → 0 as n→∞.

Theorem 5. For p, q, C and γ independent of n, let d̂jj (1 ≤ j ≤ p) be defined in (S2.1)

and suppose that
√
nλn/

√
log n→∞. Under the regularity Conditions 7 and 9, we have the

following properties for the minimization of LSCAD(γ, d̂) in (3.5) with probability at least

1−O(1/
√
n):

(1) Estimation consistency: There exist a positive constant K0 and a local minimizer

γ̂SCAD(λn, d̂) such that

‖γ̂SCAD − γ‖2 ≤ K0n
−1/2+δ.
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The corresponding estimator of coefficients β̂ = V̂ −1γ̂SCAD satisfies

‖β̂ − β‖2 ≤ K0n
−1/2+δ,

where V̂ −1 = diag{
√
d̂11, . . . ,

√
d̂pp } is a diagonal matrix.

(2) Strong sign consistency: γ̂SCAD =s γ.

Theorem 5 demonstrates that the proposed SPAC-SCAD possesses both estimation con-

sistency and strong sign consistency under Conditions 7 and 9. The SPAC-SCAD estimator

is almost root-n consistent and selects the true model with probability tending to 1. The

above theorem does not require any irrepresentable condition since the dimension of coef-

ficients is fixed and the SCAD penalty becomes a constant when the coefficients are large

compared to the tuning parameter.
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S3 Additional tables

Table 7: Probes selected by the Lasso, SPAC-Lasso, ALasso, SPAC-Lasso based on all samples.

Method Selected probes

ILMN 2329927, ILMN 1794782, ILMN 1684271, ILMN 1760143, ILMN 1741572, ILMN 1664449,
ILMN 1815306, ILMN 2398847, ILMN 1772527, ILMN 3187771, ILMN 2413318, ILMN 1716728,
ILMN 1793508, ILMN 2139035, ILMN 1682259, ILMN 1783815, ILMN 1762316, ILMN 3247835,
ILMN 3307729, ILMN 1783337, ILMN 1655930, ILMN 2413251, ILMN 1670134, ILMN 1654851,
ILMN 1778240, ILMN 1791222, ILMN 1681802, ILMN 2356574, ILMN 1793201, ILMN 2413537,
ILMN 1913676, ILMN 1847402, ILMN 1845157, ILMN 1915345, ILMN 1881192, ILMN 1728676,
ILMN 1811507, ILMN 1664294, ILMN 1670693, ILMN 3187362, ILMN 3237534, ILMN 3246424,
ILMN 3199438, ILMN 1657022, ILMN 3230260, ILMN 1656111, ILMN 1797332, ILMN 1676289,
ILMN 2295879, ILMN 1678032, ILMN 2328378, ILMN 3230157, ILMN 1693259, ILMN 3243705,
ILMN 1769751, ILMN 1774836, ILMN 1727127, ILMN 2346573, ILMN 2127328, ILMN 2209766,
ILMN 1739423, ILMN 1747192, ILMN 1786972, ILMN 2148679, ILMN 2364535, ILMN 2323302,
ILMN 1684802, ILMN 2386269, ILMN 1719039, ILMN 2360291, ILMN 3248844, ILMN 1678919,

Lasso

ILMN 1654689, ILMN 2399686,
ILMN 2263466, ILMN 1760143, ILMN 1741572, ILMN 1815306, ILMN 1697827, ILMN 1772527,
ILMN 3187771, ILMN 2413318, ILMN 1716728, ILMN 1793508, ILMN 2139035, ILMN 2244484,
ILMN 1682259, ILMN 1783815, ILMN 1762316, ILMN 3247835, ILMN 3307729, ILMN 1783337,
ILMN 1811650, ILMN 1655930, ILMN 2413251, ILMN 1670134, ILMN 1654851, ILMN 1778240,
ILMN 1791222, ILMN 2356574, ILMN 1793201, ILMN 2413537, ILMN 1913676, ILMN 1847402,
ILMN 1845157, ILMN 1915345, ILMN 1881192, ILMN 1768483, ILMN 1728676, ILMN 1811507,
ILMN 1664294, ILMN 1670693, ILMN 3187362, ILMN 3237534, ILMN 3246424, ILMN 3292551,
ILMN 3199438, ILMN 1753518, ILMN 1676100, ILMN 1657022, ILMN 3230260, ILMN 1656111,
ILMN 1797332, ILMN 1676289, ILMN 2295879, ILMN 1678032, ILMN 2328378, ILMN 3230157,
ILMN 1693259, ILMN 3243705, ILMN 1769751, ILMN 1774836, ILMN 1727127, ILMN 2346573,
ILMN 2127328, ILMN 2209766, ILMN 1747192, ILMN 1786972, ILMN 2148679, ILMN 2364535,
ILMN 2323302, ILMN 1813491, ILMN 1663035, ILMN 1684802, ILMN 2386269, ILMN 2360291,

SPAC-Lasso

ILMN 3248844, ILMN 1678919, ILMN 1654689, ILMN 2399686, ILMN 1654357, ILMN 1683854
ILMN 1760143, ILMN 1716728, ILMN 1793508, ILMN 1682259, ILMN 3307729, ILMN 1670134,
ILMN 1778240, ILMN 1793201, ILMN 1845157, ILMN 1881192, ILMN 1811507, ILMN 3187362,
ILMN 3237534, ILMN 3246424, ILMN 1656111, ILMN 1797332, ILMN 2295879, ILMN 1769751,

ALasso

ILMN 1774836, ILMN 2209766, ILMN 3248844
ILMN 1760143, ILMN 1716728, ILMN 1682259, ILMN 3247835, ILMN 3307729, ILMN 1655930,
ILMN 1670134, ILMN 1778240, ILMN 1793201, ILMN 1881192, ILMN 1811507, ILMN 3237534,
ILMN 3246424, ILMN 1656111, ILMN 1797332, ILMN 2295879, ILMN 1693259, ILMN 1769751,

SPAC-ALasso

ILMN 1774836, ILMN 2209766, ILMN 1813491, ILMN 1663035, ILMN 3248844, ILMN 1654357
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Table 8: Probes selected by the SCAD, SPAC-SCAD, and PC-simple algorithm based on all samples.

Method Selected probes

ILMN 2307883, ILMN 2157709, ILMN 1783023, ILMN 1716728, ILMN 1776337, ILMN 1682259,
ILMN 2136177, ILMN 3307729, ILMN 1670134, ILMN 1805216, ILMN 1793201, ILMN 3270641,
ILMN 1836958, ILMN 1811507, ILMN 1715814, ILMN 3187362, ILMN 3294033, ILMN 1653573,
ILMN 1734427, ILMN 1803799, ILMN 1715175, ILMN 1793349, ILMN 1656111, ILMN 1675239,
ILMN 1672080, ILMN 1802628, ILMN 3225534, ILMN 1656791, ILMN 2148679, ILMN 1763989,
ILMN 2086238, ILMN 1659761, ILMN 2194229, ILMN 1672004, ILMN 1664175, ILMN 3248844,

SCAD

ILMN 1749809
ILMN 1719498, ILMN 2306955, ILMN 1760143, ILMN 2124155, ILMN 3230880, ILMN 3240538,
ILMN 1716728, ILMN 2244484, ILMN 1699610, ILMN 1753468, ILMN 1737195, ILMN 1776337,
ILMN 1682259, ILMN 3307729, ILMN 1738272, ILMN 1670134, ILMN 1804248, ILMN 2268921,
ILMN 1793201, ILMN 1656977, ILMN 1847402, ILMN 1811507, ILMN 1715814, ILMN 3187362,
ILMN 1670570, ILMN 1656111, ILMN 1675239, ILMN 1663437, ILMN 3245983, ILMN 2377862,
ILMN 2148679, ILMN 1654637, ILMN 1721563, ILMN 2203147, ILMN 3248844, ILMN 1751963,

SPAC-SCAD

ILMN 2399686
ILMN 2307883, ILMN 2413318, ILMN 1716728, ILMN 1670926, ILMN 1682259, ILMN 3307729,
ILMN 1783337, ILMN 1780601, ILMN 1670134, ILMN 1815668, ILMN 1793201, ILMN 1846499,
ILMN 1845157, ILMN 1863939, ILMN 1728676, ILMN 1811507, ILMN 1715814, ILMN 3199438,
ILMN 1657022, ILMN 1658015, ILMN 1715175, ILMN 1656111, ILMN 1797332, ILMN 2295879,
ILMN 2048822, ILMN 1727127, ILMN 1739583, ILMN 2148679, ILMN 1763989, ILMN 1654637,
ILMN 2364535, ILMN 1813491, ILMN 1684802, ILMN 1749403, ILMN 2204726, ILMN 3248844,

Farm-Select

ILMN 1706342
PC-simple ILMN 1664449, ILMN 1716728, ILMN 3307729, ILMN 3237534, ILMN 3248844

S4 Additional corollary and proofs

Corollary 3. Let d̂ be diagonal elements of the CLIME of D. Suppose that hmin ≥ n−κ0.

Under the conditions of Proposition 1 and Condition 6, if there exists a positive constant η

such that

|α2| ≤ (1− η)

√
1− α1

1− α3

α1/Pλ∗n(hmin), (S4.2)

then the SPAC-SCAD possesses estimation consistency and strong sign consistency with

sufficiently large q0 and p0 − q0.

Proof of Lemma 1
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Proof. It can be calculated that σjj = djj + β2
j /σ

2
ε , σ

yy = 1/σ2
ε , and σjy = βj/σ

2
ε for

j = 1, . . . , p. Then,

σjjσyy − (σjy)2 = (djj +
β2
j

σ2
ε

)
1

σ2
ε

− (
βj
σ2
ε

)2 =
djj
σ2
ε

= djjσ
yy.

The jth SPAC is

ρjsj =
−σjy√
σjjσyy

√
σjj

σjjσyy − (σjy)2
=
−σjy

σyy
√
djj

=
βj√
djj

= γj.

The standard deviation of the response conditional on X−j is

s2j =
σjj

σjjσyy − (σjy)2
=
djj + β2

jσ
yy

djjσyy
= σ2

ε +
β2
j

djj
.

Lemma 3. Suppose that W1, . . . ,Wn are k-dimensional i.i.d. random vectors with mean

θw and covariance matrix Σw. Further suppose that E(‖Wi‖3) is finite for any 1 ≤ i ≤ n.

(1) We have

√
n
(
W̃n − θw

)
d→ Nk (0,Σw) , (S4.3)

where W̃n =
∑n

i=1Wi/n. Moreover,

sup
A

∣∣∣P (√n(W̃n − θw
)
∈ A

)
− P (Z ∈ A)

∣∣∣ = O

(
1√
n

)
, (S4.4)

where Z ∼ Nk(0,Σw) and the supremum is taken over all measurable convex sets A.

(2) For any continuous function g : Rk → R satisfying the properties that ∇g(θw) 6= 0

and that ‖∇2g(θ)‖∞ is continuous at θw, we have

√
n
(
g(W̃n)− g(θw)

)
d→ N

(
0, {∇g(θw)}TΣw∇g(θw)

)
, (S4.5)

and

sup
x∈R

∣∣∣P (√n(g(W̃n)− g(θw)
)
≤ x

)
− P (Zg ≤ x)

∣∣∣ = O

(
1√
n

)
, (S4.6)



9

where Zg ∼ N(0, {∇g(θw)}TΣw∇g(θw)).

(3) Suppose that U1, . . . ,Un are l-dimensional identically-distributed random vectors with

mean θu and covariance matrix Σu such that (UT
1 ,W

T
1 )T , . . . , (UT

n ,W
T
n )T are i.i.d. vectors.

Let h : Rl → R be a continuous function such that ∇h(θu) 6= 0 and that ‖∇2h(θ)‖∞ is

continuous at θu. Then,

h(Ũn)
p→ h(θu), (S4.7)

√
n h(Ũn)

(
g(W̃n)− g(θw)

)
d→ h(θu)N

(
0, {∇g(θw)}TΣw∇g(θw)

)
, (S4.8)

and

sup
x∈R

∣∣∣P (√n h(Ũn)
(
g(W̃n)− g(θw)

)
≤ x

)
− P (Zhg ≤ x)

∣∣∣ = O

(
1√
n

)
, (S4.9)

where Ũn =
∑n

i=1Ui/n, and Zhg ∼ h(θu)N(0, {∇g(θw)}TΣw∇g(θw)).

Proof. (1) The (S4.3) follows from the multivariate central limit theorem. The (S4.4) follows

from (Gotze, 1991, Theorem 1.3).

(2) The (S4.5) follows from the delta method. The (S4.6) follows from (Pinelis and

Molzon, 2016, Theorem 2.9).

(3) The (S4.7) and (S4.8) follows from the weak law of large numbers and Slutsky’s

theorem.

Let ḡ(Ũn, W̃n) = h(Ũn)
(
g(W̃n)− g(θw)

)
. We apply the multivariate central limit

theorem to the sequence {(UT
i ,W

T
i )T}, and then apply the Delta method to ḡ(Ũn, W̃n).

Thus, based on (S4.6), we can obtain (S4.9).

Proof of Lemma 2
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Proof. Let v be a vector containing all the elements in upper-triangular part of the true

covariance C, and v̂i be a vector containing corresponding sample covariance estimator only

using the i-th sample. Since samples are i.i.d, v̂i for 1 ≤ i ≤ n are i.i.d. Let v̂ =
∑n

i=1 v̂i/n.

Then v̂ contains elements in upper-triangular part of Ĉ. By the multivariate central limit

theorem,

√
n(v̂ − v)

d→ N(0,Σv).

where Σv = Var(v̂i).

There exists a continuous function gj(v), such that gj(v) = djj for 1 ≤ j ≤ p. Then

d̂jj = gj(v̂). Let ∇gj(v) be the gradient of g. Since C is positive definite, ∇gj(v) 6= 0. By

the delta method,

√
n(d̂jj − djj) =

√
n{g(v̂)− g(v)} d→ N(0,∇gj(v)TΣv∇gj(v)).

Since λn/
√
n log n → ∞, by Lemma 3, we have P (|d̂jj − djj| ≥ λn/n) = O(1/

√
n) for any

0 < δ < 1/2, which implies that P (max1≤j≤p |d̂jj − djj| ≥ λn/n) ≤
∑p

j=1 P (|d̂jj − djj| ≥

λn/n) = O(1/
√
n). This completes the proof.

Proof of Theorem 3

Proof. The proposed estimator with Lasso penalty is

γ̂Lasso = argmin
γ

{
1

2
‖y −

p∑
j=1

Xj

√
d̂jjγj‖2 + λn

p∑
j=1

d̂jj|γj|

}
.

Let β̄ = (β̄1, . . . , β̄p) and γ̄ = (γ̄1, . . . , γ̄p) be the true values of the β and SPACs, respectively.
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Then β̄ = V −1γ̄. Denote û = V̂ −1γ̂Lasso − V −1γ̄ = V̂ −1γ̂Lasso − β̄. Then

û = argmin
u

{
1

2
‖y −

p∑
j=1

Xj(uj + β̄j)‖2 + λn

p∑
j=1

√
d̂jj|uj + β̄j|

}

= argmin
u

{
1

2
‖ε−

p∑
j=1

Xjuj‖2 + λn

p∑
j=1

√
d̂jj|uj + β̄j|

}

= argmin
u

{
1

2
uTXTXu−

√
nwTu+ λn

p∑
j=1

√
d̂jj|uj + β̄j|

}
,

where w = XTε/
√
n. Notice that

d[1
2
uTXTXu−

√
nwTu]

du
=
√
n(
√
nĈu−w). (S4.10)

Let û(1), w(1), β̄(1), and û(2), w(2), β̄(2) be the first q and last p− q entries of û, w, and

β̄, respectively. Then, based on the Karush-Kuhn-Tucker (KKT) conditions, if there exists

û such that

√
nV̂ (1)Ĉ11û(1)− V̂ (1)w(1) = − λn√

n
sign(β̄(1)), (S4.11)

|û(1)| < |β̄(1)|,

|
√
nV̂ (2)Ĉ21û(1)− V̂ (2)w(2)| ≤ λn√

n
1,

then sign(γ̂Lasso(1)) = sign(β̄(1)) = sign(γ̄(1)) and γ̂Lasso(2) = û(2) = 0.

Take (S4.11) as a definition of û(1). Then the existence of such û is implied by the

following inequalities:

|(Ĉ11)−1w(1)| <
√
n(|β̄(1)| − λn

n
|(Ĉ11)−1V̂ −1(1) sign(β̄(1))|), (S4.12)

|V̂ (2)Ĉ21(Ĉ11)−1w(1)− V̂ (2)w(2)| < λn√
n

(1− |V̂ (2)Ĉ21(Ĉ11)−1V̂ −1(1) sign(β̄(1))|).

(S4.13)
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Let An denote the event that (S4.12) holds, and Bn be the event that (S4.13) holds.

Then

P (γ̂Lasso(λn, d̂) =s γ̄) ≥ P (An ∩Bn).

Denote φ = (φ1, . . . , φq) = (Ĉ11)−1w(1), and ζ = (ζ1, . . . , ζp−q) = V̂ (2)Ĉ21(Ĉ11)−1w(1) −

V̂ (2)w(2). Let b = (b1, . . . , bq) = |(Ĉ11)−1V̂ −1(1) sign(γ̄(1))| and η̂ = (η̂1, . . . , η̂
′
p−q)

T =

1− |V̂ (2)Ĉ21(Ĉ11)−1V̂ −1(1) sign(β̄(1))|. Then

1− P (An ∩Bn) ≤ P (Acn) + P (Bc
n)

≤
q∑
j=1

P (|φj| ≥
√
n(|β̄(1)| − λn

n
bj)) +

p−q∑
j=1

P (|ζj| ≥
λn√
n
η′j).

By the multivariate central limit theorem,

XTε/
√
n

d−→ N(0, σ2
εC).

Since V̂ (1)(Ĉ11)−1
p−→ V (1)(C11)−1, V̂ (2)

p−→ V (2), and V̂ (2)Ĉ21(Ĉ11)−1
p−→ V (2)C21(C11)−1,

by Slutsky’s theorem,

(Ĉ11)−1w(1)
d−→ N(0, σ2

ε(C
11)−1),

V̂ (2)Ĉ21(Ĉ11)−1w(1)− V̂ (2)w(2)
d−→ N(0, σ2

εV (2)(C22−C21(C11)−1C12)V (2)). (S4.14)

Hence, φj and ζj converge in distribution to Gaussian random variables for each j.

By Lemma 2 and Lemma 3, with probability at least 1−O(1/
√
n) for 0 < c < 1/2, there

exists a constant εc such as max1≤j≤p d̂jj ≤ εc, min1≤j≤p d̂jj ≥ 1/εc,

max
1≤j≤p

|
√
d̂jj −

√
djj| ≤ εcλn/n, and max

1≤j≤p
|1/
√
d̂jj − 1/

√
djj| ≤ εcλn/n. (S4.15)
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We have

‖b‖∞ = ‖(Ĉ11)−1V̂ −1(1) sign(γ̄(1))‖∞ (S4.16)

≤ ‖{(Ĉ11)−1 − (C11)−1}V̂ −1(1) sign(γ̄(1))‖∞

+‖(C11)−1{V̂ −1(1)− V −1(1)} sign(γ̄(1))‖∞

+‖(C11)−1V −1(1) sign(γ̄(1))‖∞.

Since the elements of sample covariance matrix Ĉ converge to the corresponding true co-

variances with probability at least 1−O(1/
√
n), ‖(Ĉ11)−1− (C11)−1‖∞ converges to 0 with

probability at least 1−O(1/
√
n). Since λn/n→ 0, the λnbj/n converges to 0 with probability

at least 1−O(1/
√
n). We also have

η̂ = 1− |V̂ (2)Ĉ21(Ĉ11)−1V̂ −1(1) sign(β̄(1))| (S4.17)

≥ 1− |{V̂ (2)− V (2)}Ĉ21(Ĉ11)−1V̂ −1(1) sign(β̄(1))|

−|V (2)Ĉ21(Ĉ11)−1{V̂ −1(1)− V −1(1)} sign(β̄(1))|

−|V (2)Ĉ21(Ĉ11)−1V −1(1) sign(β̄(1))|

The inequality in (S4.17) is element-wise. By (S4.15) and Condition 1, η̂j > η/2 holds with

probability at least 1 − O(1/
√
n) for each j. Based on λn/

√
n log n → ∞ and Gaussian

distributions of φj and ζj, we have

q∑
j=1

P (|φj| ≥
√
n

2
(|β̄(1)| − λn

n
bj)) ≤

q∑
j=1

[
P (|φj| ≥

√
n

4
|β̄(1)|) +O(1/

√
n)

]
= O(1/

√
n),

p−q∑
j=1

P (|ζj| ≥
λn

2
√
n
η̂j) ≤

p−q∑
j=1

P (|ζj| ≥
λnη

4
√
n

) +O(1/
√
n) = O(1/

√
n).

This completes the proof.
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Proof of Theorem 5

Proof. Let γ̄ = (γ̄1, . . . , γ̄p) and β̄ = (β̄1, . . . , β̄p) be the true values of the SPACs and β,

respectively, αn = n−1/2+δ, and

L̃(γ, d̂) =
1

2
‖y −

p∑
j=1

Xj

√
d̂jjγj‖2.

By the definition of d̂ and Lemma 3, P (max1≤j≤p |d̂jj − djj| ≤ an) = 1−O(1/
√
n).

(1) It suffices to show that there exists a large constant M such that,

min
‖u‖2=M

LSCAD(γ̄ + αnu, d̂) > LSCAD(γ̄, d̂), (S4.18)

with probability at least 1−O(1/
√
n). Let Dn = LSCAD(γ̄ + αnu, d̂)− LSCAD(γ̄, d̂). Then,

Dn ≥ L̃(γ̄ + αnu, d̂)− L̃(γ̄, d̂) + n

q∑
j=1

d̂jj [pSCAD,λn(|γ̄j + αnuj|)− pSCAD,λn(|γ̄j|)] .

By Tayler expansion, we have

Dn ≥ αnL̃
′(γ̄, d̂)Tu+

1

2
α2
nu

T L̃′′(γ̄, d̂)u (S4.19)

+ n

q∑
j=1

d̂jj
[
αnp

′
SCAD,λn(|γ̄j|) sign(γ̄j)uj + α2

np
′′
SCAD,λn(|γ̄j|)u2j

]
.

The second term in (S4.19) is bounded below by b0,1M
2α2

nn with probability at least 1 −

O(1/
√
n) for some constant b0,1 > 0. By the multivariate central limit theorem, |αnL̃′(γ̄, d̂)Tu| <

b0,1α
2
nn/3, dominated by the second term, with probability at least 1−O(1/

√
n). The third

term in (S4.19) is bounded above by

b0,2

[
qMαnnmax

j
{p′SCAD,λn(|γ̄j|) : γ̄j 6= 0}+M2α2

nnmax
j
{p′′SCAD,λn(|γ̄j|) : γ̄j 6= 0}

]
,

with probability at least 1−O(1/
√
n) for some constant b0,2 > 0. This term is also dominated

by the second term via choosing a sufficiently large M . Thus, the (S4.18) holds.
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(2) Let w = XTε/
√
n and û = V̂ −1γ̂SCAD − β̄. Similarly as in the proof of Theorem 3,

if

√
nV̂ (1)Ĉ11û(1)− V̂ (1)w(1) = −

√
nλnĜ sign(β̄(1)), (S4.20)

|û(1)| < |β̄(1)|, (S4.21)

|
√
nV̂ (2)Ĉ21û(1)− V̂ (2)w(2)| ≤

√
nλn1, (S4.22)

then sign(γ̂SCAD(1)) = sign(γ̄(1)) and γ̂SCAD(2) = û(2) = 0, where Ĝ is a q × q diagonal

matrix with (Ĝ)jj = p′
SCAD,

√
d̂jjλn

(|(û(1) + β̄(1))j|) for j = 1, . . . , q.

Take (S4.20) as a definition of û(1). Then the (S4.21) and (S4.22) are implied by the

following inequalities:

|(Ĉ11)−1w(1)| <
√
n(|β̄(1)| − λn|(Ĉ11)−1V̂ −1(1)Ĝ sign(β̄(1))|), (S4.23)

|V̂ (2)Ĉ21(Ĉ11)−1w(1)− V̂ (2)w(2)| <
√
nλn(1− |V̂ (2)Ĉ21(Ĉ11)−1V̂ −1(1)Ĝ sign(β̄(1))|).

(S4.24)

Let An denote the event that (S4.23) holds, and Bn be the event that (S4.24) holds.

Then

P (γ̂SCAD(λn, d̂) =s γ̄) ≥ P (An ∩Bn).

Similarly as in the proof of Theorem 3, let φ = (φ1, . . . , φq) = (Ĉ11)−1w(1), ζ = (ζ1, . . . , ζp−q)

= V̂ (2)Ĉ21(Ĉ11)−1w(1) − V̂ (2)w(2), b = (b1, . . . , bq) = |(Ĉ11)−1V̂ −1(1)Ĝ sign(γ̄(1))| and

η̂ = (η̂1, . . . , η̂p−q) = 1− |V̂ (2)Ĉ21(Ĉ11)−1V̂ −1(1)Ĝ sign(γ̄(1))|.
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By Part (1) in this theorem and maxj{p′SCAD,λn(|γ̄j|) : γ̄j 6= 0} = O(n−1/2+δ), λn = O(1)

and the diagonal elements of Ĝ converge to 0 with probability at least 1−O(1/
√
n). Then,

λnbj converge to 0, and η̂j > 1/2, with probability at least 1 − O(1/
√
n) for each j. Since

√
nλn/

√
log n→∞, by Lemma 3 and the asymptotic Gaussian distributions of φj and ζj,

q∑
j=1

P (|φj| ≥
√
n

2
(|γ̄(1)| − λnbj)) ≤

q∑
j=1

[
P (|φj| ≥

√
n

4
|γ̄(1)|) +O(1/

√
n)

]
= O(1/

√
n),

p−q∑
j=1

P (|ζj| ≥
√
nλn
2

η′j) ≤
p−q∑
j=1

P (|ζj| ≥
√
nλn
4

) = O(1/
√
n).

This completes the proof.

We prove Theorem 2 first, and then prove Theorem 1.

Proof of Theorem 2

Proof. Let γ̄ and β̄ be the true values of γ and β respectively, and ω = (ω1, . . . , ωpn)T =

XTy −XTXV −1γ̄ = XTε. Denote the first qn entries of ω by ω(1), and the remaining

elements by ω(2). Define γ̄(1), β̄(1), and γ̄(2), β̄(2) in a similar way. Then β̄(1) =

V (1)−1γ̄(1).

For events A1 = {‖ω(1)‖∞ ≤
√

2σε
√
n log n} and A2 = {‖ω(2)‖∞ ≤

√
2σεn

1−κ0
√

log n},

since all the covariates are standardized, we have

P (A1 ∩ A2) ≥ 1−
qn∑
j≥1

P (|wj| >
√

2σε
√
n log n)−

pn∑
j≥qn+1

P (|wj| >
√

2σεn
1−κ0

√
log n)

≥ 1− 2σε

[
qnn

−1 + (pn − qn)e−n
1−2κ0 logn

]
= 1−O(n−δ),

by the multivariate central limit theorem.
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Under the event A1 ∩ A2, it suffices to show that there exists a strict local minimizer

γ̂SCAD of LSCAD(γ, d̂) such that ‖V̂ −1γ̂SCAD − β̄‖∞ = O(αn) and γ̂SCAD =s γ̄, where

αn =
√

log pn/n.

We first show that for sufficiently large n, there exists a vector γ̂SCAD(1) in

H = {γ(1) ∈ Rqn : ‖V̂ (1)−1γ(1)− β̄(1)‖∞ ≤ αn},

such that

Ψ1(γ̂SCAD(1)) ≡XT
1 y −XT

1 X1V̂ (1)−1γ̂SCAD(1)− nV̂ (1)−1p′SCAD,λn(γ̂SCAD(1)) = 0.

(S4.25)

For any γ(1) = (γ1, . . . , γqn) ∈ H, since hmin ≥ αn, minqnj=1 |
√
d̂jjγj| ≥ minqnj=1 |β̄j| − hmin =

hmin, which implies γ =s β̄ =s γ̄. The Ψ1 can be rewritten as

Ψ1(γ(1)) = ω(1) +XT
1 X1(V (1)−1γ̄(1)− V̂ (1)−1γ(1))− nV̂ (1)−1p′SCAD,λn(γ(1)).

By multiplying
[
XT

1 X1

]−1
on both sides, we have

[
XT

1 X1

]−1
Ψ1(γ(1)) = (nĈ11

n )−1ω(1) + (β̄(1)− V̂ (1)−1γ(1)) (S4.26)

−(Ĉ11
n )−1V̂ (1)−1p′SCAD,λn(γ(1)).

Since ‖(Ĉ11
n )−1‖∞ = o

(δ)
p (αnn

κ4),

‖(nĈ11
n )−1ω(1)‖∞ ≤ n−1‖(Ĉ11

n )−1‖∞‖ω(1)‖∞ = o(δ)p (αn).

Since p′SCAD,λn(·) is a decreasing function,

p′SCAD,λn(γj) = p′
SCAD,

√
djjλn

(√
djjγj

)/√
djj ≤

√
d−1jj p′SCAD,λ∗n(hmin).

Since d̂jj is the CLIME of djj, by Cai et al. (2011, Theorem 5),

max
1≤j≤pn

|d̂jj − djj| = O(δ)
p (νn,u) . (S4.27)
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We have λn = O(1), max1≤j≤pn d
−1
jj = O(log n), which implies

max
1≤j≤pn

|
√
d̂jj −

√
djj| = O(δ)

p (νn,u
√

log n), max
1≤j≤pn

d̂−1jj = O(δ)
p (log n),

max
1≤j≤pn

|1/
√
d̂jj − 1/

√
djj| = O(δ)

p (νn,u(log n)3/2).

Then by Condition 6,

‖(Ĉ11
n )−1V̂ (1)−1p′SCAD,λn(γ(1))‖∞

≤ ‖(Ĉ11
n )−1‖∞‖V̂ (1)−1 − V (1)−1‖∞‖V (1)‖∞p′SCAD,λ∗n(hmin) + ‖(Ĉ11

n )−1‖∞p′SCAD,λ∗n(hmin)

= o(δ)p (αn)

It follows that γ(1) + V̂ (1)
[
XT

1 X1

]−1
Ψ1(γ(1)) lies in H for any γ(1) ∈ H. Thus, by the

Brouwer fixed-point theorem, V̂ (1)
[
XT

1 X1

]−1
Ψ1(γ̂SCAD(1)) = 0 for some γ̂SCAD(1) ∈ H,

which implies (S4.25).

Let γ̂SCAD(2) = 0, and Ψ2 = (nλn)−1V̂ (2)XT
2 (y −X1V̂ (1)−1γ̂SCAD(1)). Next, we will

show that ‖Ψ2‖∞ < 1. It can be rewritten as

Ψ2 = (nλn)−1V̂ (2)ω(2) + λ−1n V̂ (2)Ĉ21
n (V (1)−1γ̄(1)− V̂ (1)−1γ̂SCAD(1)). (S4.28)

The first term on the right-hand side of (S4.28) is o
(δ)
p (1) by Condition 6. Substitute γ̂SCAD(1)

in the second term on the right-hand side of (S4.28) by the solution to Ψ1(γ̂SCAD(1)) = 0.

Then we have

λ−1n V̂ (2)Ĉ21
n (V (1)−1γ̄(1)− V̂ (1)−1γ̂SCAD(1)) (S4.29)

= λ−1n V̂ (2)Ĉ21
n (Ĉ11

n )−1V̂ (1)−1p′SCAD,λn(γ̂SCAD(1))− λ−1n V̂ (2)Ĉ21
n (nĈ11

n )−1ω(1).

Since all the covariates are standardized, the second term on the right-hand side of (S4.29)
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is

‖λ−1n V̂ (2)Ĉ21
n (nĈ11

n )−1ω(1)‖∞ = O(δ)
p (

nκ0

log2 n

√
log n nκ3

nκ4αn
n

√
n log n) = o(δ)p (1),

by Conditions 5 and 6. In the first term on the right-hand side of (S4.29),

λ−1n p′SCAD,λn(γ̂SCAD,j) = Pλn(γ̂SCAD,j) = P√
djjλn

(
√
djj γ̂SCAD,j) ≤ Pλ∗n(hmin),

where γ̂SCAD,,j is the jth element of γ̂SCAD. It follows that ‖λ−1n p′SCAD,λn(γ̂SCAD(1))‖∞ ≤

Pλ∗n(hmin). The first term on the right-hand side of (S4.29) is∥∥∥λ−1n V̂ (2)Ĉ21
n (Ĉ11

n )−1V̂ (1)−1p′SCAD,λn(γ̂SCAD(1))
∥∥∥
∞

(S4.30)

=
∥∥∥λ−1n {

V̂ (2)− V (2)
}
Ĉ21
n (Ĉ11

n )−1V̂ (1)−1p′SCAD,λn(γ̂SCAD(1))
∥∥∥
∞

+
∥∥∥λ−1n V (2)Ĉ21

n (Ĉ11
n )−1

{
V̂ (1)−1 − V (1)−1

}
V (1)V (1)−1p′SCAD,λn(γ̂SCAD(1))

∥∥∥
∞

+
∥∥∥λ−1n V (2)Ĉ21

n (Ĉ11
n )−1V (1)−1p′SCAD,λn(γ̂SCAD(1))

∥∥∥
∞
.

Then, by Condition 2, the last term on the right-hand side of (S4.30) is less than 1. Other

terms on the right-hand side of (S4.30) are o
(δ)
p (1) by Condition 6. Therefore, ‖Ψ2‖∞ < 1

for sufficiently large n.

By Condition 6, λmin(Ĉ11
n ) > (a − 1)−1 for sufficiently large n. Thus, the γ̂SCAD is a

strict local minimizer of LSCAD(γ, d̂) by Fan and Lv (2011, Theorem 1). This completes the

proof.

Proof of Theorem 1

Proof. We use the same notation as in the proof of Theorem 2.

For events A1 = {‖ω(1)‖∞ ≤
√

2σε
√
n log n} and A2 = {‖ω(2)‖∞ ≤

√
2σεn

1−κ0
√

log n},

we still have P (A1 ∩ A2) ≥ 1−O(n−δ) by the multivariate central limit theorem.
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Under the event A1 ∩A2, we first show that for sufficiently large n, there exists a vector

γ̂Lasso(1) in

H = {γ(1) ∈ Rqn : ‖V̂ (1)−1γ(1)− β̄(1)‖∞ ≤ αn},

such that

Ψ1(γ̂Lasso(1)) ≡XT
1 y −XT

1 X1V̂ (1)−1γ̂Lasso(1)− λnV̂ (1)−1 sign(γ̂Lasso(1)) = 0, (S4.31)

where αn =
√

log pn/n. For any γ(1) = (γ1, . . . , γqn) ∈ H, since hmin ≥ αn, minqnj=1 |
√
d̂jjγj| ≥

minqnj=1 |β̄j| − hmin = hmin, which implies γ =s β̄ =s γ̄.

By multiplying
[
XT

1 X1

]−1
on both sides, the Ψ1 can be rewritten as

[
XT

1 X1

]−1
Ψ1(γ(1)) = (nĈ11

n )−1ω(1) + (β̄(1)− V̂ (1)−1γ(1)) (S4.32)

−λn(nĈ11
n )−1V̂ (1)−1 sign(γ(1)).

Since ‖(Ĉ11
n )−1‖∞ = o

(δ)
p (αnn

κ4) for κ4 < 1/2,

‖(nĈ11
n )−1ω(1)‖∞ ≤ n−1‖(Ĉ11

n )−1‖∞‖ω(1)‖∞ = O(δ)
p (n−1αnn

κ4
√
n log n) = o(δ)p (αn).

Since d̂jj is the CLIME of djj,

max
1≤j≤pn

|d̂jj − djj| = O(δ)
p (νn,u) . (S4.33)

We have max1≤j≤qn djj = O(log n), max1≤j≤pn d
−1
jj = O(log n) and νn,u log n = o(1), which

implies

max
1≤j≤pn

|
√
d̂jj −

√
djj| = O(δ)

p (νn,u
√

log n), max
1≤j≤qn

√
d̂jj = O(δ)

p (
√

log n),

max
1≤j≤pn

|1/
√
d̂jj − 1/

√
djj| = O(δ)

p (νn,u(log n)3/2), max
1≤j≤pn

1/

√
d̂jj = O(δ)

p (
√

log n).

Since λn = O(n1/2+κ3), the third term on the right-hand side of (S4.32) is

‖λn(nĈ11
n )−1V̂ (1)−1 sign(γ(1))‖∞ ≤

λn
n
‖(Ĉ11

n )−1‖∞‖V̂ (1)−1‖∞ = o(δ)p (αn).
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It follows that γ(1) + V̂ (1)
[
XT

1 X1

]−1
Ψ1(γ(1)) lies in H for any γ(1) ∈ H. Thus, by the

Brouwer fixed-point theorem, V̂ (1)
[
XT

1 X1

]−1
Ψ1(γ̂Lasso(1)) = 0 for some γ̂Lasso(1) ∈ H,

which implies (S4.31).

Let γ̂Lasso(2) = 0 and Ψ2 = λ−1n V̂ (2)XT
2 (y −X1V̂ (1)−1γ̂Lasso(1)). Next, we will show

that ‖Ψ2‖∞ < 1. It can be rewritten as

Ψ2 = λ−1n V̂ (2)ω(2) + nλ−1n V̂ (2)Ĉ21
n (V (1)−1γ̄(1)− V̂ (1)−1γ̂Lasso(1)). (S4.34)

The first term on the right-hand side of (S4.34) is o
(δ)
p (1) since λ−1n = o(nκ0−1/ log n). Sub-

stitute γ̂Lasso(1) in the second term on the right-hand side of (S4.34) by the solution to

Ψ1(γ̂Lasso(1)) = 0. Then we have

nλ−1n V̂ (2)Ĉ21
n (V (1)−1γ̄(1)− V̂ (1)−1γ̂Lasso(1))

= V̂ (2)Ĉ21
n (Ĉ11

n )−1V̂ (1)−1 sign(γ̂Lasso(1))− nλ−1n V̂ (2)Ĉ21
n (nĈ11

n )−1ω(1). (S4.35)

Since all the covariates are standardized, the second term in (S4.35) is

‖nλ−1n V̂ (2)Ĉ21
n (nĈ11

n )−1ω(1)‖∞ = O(δ)
p (

nκ0

log n

√
log n nκ3

αnn
κ4

n

√
n log n) = o(δ)p (1),

by Conditions 3 and 4. The first term on the right-hand side of (S4.35) is

∥∥∥V̂ (2)Ĉ21
n (Ĉ11

n )−1V̂ (1)−1 sign(γ̂Lasso(1))
∥∥∥
∞

(S4.36)

=
∥∥∥{V̂ (2)− V (2)

}
Ĉ21
n (Ĉ11

n )−1V̂ (1)−1 sign(γ̂Lasso(1))
∥∥∥
∞

+
∥∥∥V (2)Ĉ21

n (Ĉ11
n )−1

{
V̂ (1)−1 − V (1)−1

}
sign(γ̂Lasso(1))

∥∥∥
∞

+
∥∥∥V (2)Ĉ21

n (Ĉ11
n )−1V (1)−1 sign(γ̂Lasso(1))

∥∥∥
∞
.

Since sign(γ̂Lasso(1)) = sign(β(1)), the last term of (S4.36) is less than 1 by Condition 1.

Other terms on the right-hand side of (S4.36) are o
(δ)
p (1) since νn,un

κ3+κ4−κ0(log n)2 = o(1).
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Therefore, ‖Ψ2‖∞ < 1 for sufficiently large n.

By Condition 4, λmin(Ĉ11
n ) > 0 for sufficiently large n. Thus, the γ̂Lasso is a strict local

minimizer of LLasso(γ, d̂) by Fan and Lv (2011, Theorem 1). This completes the proof.

Proof of Theorem 4

Proof. Let

F1,n = {there exists λn ≥ 0 such that γ̂Lasso =s γ}

= {there exists λn ≥ 0 such that sign(γ̂Lasso(1)) = sign(γ(1)) and γ̂Lasso(2) = 0} .

Then the SPAC-Lasso is general sign consistent if lim
n→∞

P (F1,n) = 1. Based on the Karush-

Kuhn-Tucker (KKT) conditions and (S4.10), F1,n implies that

√
nV̂ (1)Ĉ11û(1)− V̂ (1)w(1) = − λn√

n
sign(β̄(1)), (S4.37)

|
√
nV̂ (2)Ĉ21û(1)− V̂ (2)w(2)| ≤ λn√

n
1. (S4.38)

Solve û(1) out of (S4.37) and substitute it into (S4.38). Then we have

F2,n :=

{
λn√
n
f1,n ≤ V̂ (2)Ĉ21(Ĉ11)−1w(1)− V̂ (2)w(2) ≤ λn√

n
f2,n

}
,

where

f1,n = −1 + V̂ (2)Ĉ21(Ĉ11)−1V̂ −1(1) sign(β̄(1)),

f2,n = 1 + V̂ (2)Ĉ21(Ĉ11)−1V̂ −1(1) sign(β̄(1)).
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Let fn(x) = P (F2,n|X = x), and

Hn = {X| at least one element of |V̂ (2)Ĉ21(Ĉ11)−1V̂ (1)−1 sign(β(1))|

is greater than or equal to 1},

representing the design matrices for which Condition 8 fails. Since ε follows a Gaussian

distribution with mean 0, fn(x) < 1/2 when x ∈ Hn. If for any large n there exists δ > 0

such that P (X ∈ Hn) > δ, then we have

P (F2,n) =

∫
x∈Hn

fn(x)dP (x) + P (F2,n,X ∈ Hc
n) ≤ P (X ∈ Hn)/2 + P (X ∈ Hc

n) < 1− δ/2.

Thus, lim supP (F1,n) ≤ lim supP (F2,n) < 1. This contradicts the general sign consistency.

Therefore, |V̂ (2)Ĉ21(Ĉ11)−1V̂ (1)−1 sign(β(1))| < 1.

Since

|V (2)Ĉ21(Ĉ11)−1V (1)−1 sign(β(1))| (S4.39)

≤ |V̂ (2)Ĉ21(Ĉ11)−1V̂ (1)−1 sign(β(1))|

+|{V (2)− V̂ (2)}Ĉ21(Ĉ11)−1V (1)−1 sign(β(1))|

+|V̂ (2)Ĉ21(Ĉ11)−1{V (1)−1 − V̂ (1)−1} sign(β(1))|,

where the last two items go to zero as n increases, each element in |V (2)Ĉ21(Ĉ11)−1V (1)−1 sign(β(1))|

is less than 1 for sufficiently large n.

Proof of Proposition 1

Proof. By the definition of Cn,

‖C21
n (C11

n )−1 sign(β(1))‖∞ =
|α2m0|

1− α1 + α1q0
. (S4.40)
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Since Cn is positive definite for all large q0 and p0, α1 ≥ 0 and α3 ≥ 0.

We have

‖Ĉ21
n (Ĉ11

n )−1 sign(β(1))‖∞ (S4.41)

≥ ‖C21
n (C11

n )−1 sign(β(1))‖∞ − ‖C21
n {(C11

n )−1 − (Ĉ11
n )−1} sign(β(1))‖∞

−‖(C21
n − Ĉ21

n )(Ĉ11
n )−1 sign(β(1))‖∞.

By the normality assumption and (Laurent and Massart, 2000, Lemma 1), elements in Ĉn

converge to corresponding elements in Cn with probability at least 1 − O(exp(n−c)) and

0 < c < 1/2, which implies that ‖C21
n − Ĉ21

n ‖∞ = O
(δ)
p (n−τ ). In addition, similarly as the

proof in part (2) of Lemma 3, we can show that ‖(C11
n )−1 − (Ĉ11

n )−1‖∞ = O
(δ)
p (n−τ ). Thus,

the last two terms on the right hand of (S4.41) goes to zero as n increases with probability

at least 1−O(n−δ).

On the one hand, if α1 = 0, (4.5) obviously holds for large m0. If |α2| > α1L0 > 0,

then there exists a constant ε0 > 0 such that |α2| ≥ α1q0/m0 + ε0. Thus, (4.5) follows from

(S4.40) and (S4.41) for sufficiently large m0.

On the other hand, we have

‖Ĉ21
n (Ĉ11

n )−1 sign(β(1))‖∞ (S4.42)

≤ ‖C21
n (C11

n )−1 sign(β(1))‖∞ + ‖C21
n {(C11

n )−1 − (Ĉ11
n )−1} sign(β(1))‖∞

+‖(C21
n − Ĉ21

n )(Ĉ11
n )−1 sign(β(1))‖∞.

Thus, (4.5) implies that ‖C21
n (C11

n )−1 sign(β(1))‖∞ ≥ 1, which implies that

|α2| ≥
1− α1

m0

+ α1
q0
m0

> α1L0.

Hence |α2| > α1L0 ≥ α1, where the second inequality follows from m0 ≤ q0. By the positive
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definiteness of Cn,

α3 > |α2|
q0|α2|

1− α1 + α1q0
+

(
q0α

2
2

1− α1 + α1q0
− 1

)
1

r0 − 1
,

where r0 = p0− q0. Since the Cn is positive definite for any large r0, (4.5) implies α3 ≥ |α2|.

We also have

‖V (2)Ĉ21
n (Ĉ11

n )−1V (1)−1 sign(β(1))‖∞ (S4.43)

≤ ‖V (2)C21
n (C11

n )−1V (1)−1 sign(β(1))‖∞

+‖V (2)C21
n {(C11

n )−1 − (Ĉ11
n )−1}V (1)−1 sign(β(1))‖∞

+‖V (2)(C21
n − Ĉ21

n )(Ĉ11
n )−1V (1)−1 sign(β(1))‖∞.

Similarly as (S4.41), the last two terms on the right hand side of (S4.43) goes to zero as n

increases with probability at least 1−O(n−δ). Based on the definition of Cn,

|V (2)C21
n (C11

n )−1V (1)−1 sign(β(1))| (S4.44)

= |C21
n (C11

n )−1 sign(β(1))|
√

1− α3

1− α1

×

√
(1 + (q0 − 2)α1)(1 + (r0 − 1)α3)− (q0 − 1)r0α2

2

(1 + (q0 − 1)α1)(1 + (r0 − 2)α3)− q0(r0 − 1)α2
2

.

Since α3 > α1 and the last factor on the right hand side of (S4.44) is close to 1 for large q0

and r0,

|V (2)C21
n (C11

n )−1V (1)−1 sign(β(1))| < |C21
n (C11

n )−1 sign(β(1))|. (S4.45)

Then by (S4.41) and (S4.43), (4.6) holds for sufficiently large m0 and r0.

Proof of Proposition 2

Proof. By the definition of Cn,

‖C21
n (C11

n )−1‖∞ =
|α2q0|

1− α1 + α1q0
. (S4.46)
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We have

‖Ĉ21
n (Ĉ11

n )−1‖∞ ≤ ‖C21
n (C11

n )−1‖∞ + ‖C21
n {(C11

n )−1 − (Ĉ11
n )−1}‖∞

+‖(C21
n − Ĉ21

n )(Ĉ11
n )−1‖∞.

Since the last two terms on the right hand side of (S4.47) goes to zero as n increases with

probability at least 1−O(n−δ), the inequality (4.7) implies that ‖C21
n (C11

n )−1‖∞Pλ(hmin) ≥ 1,

which implies

|α2| ≥
(

1− α1

q0
+ α1

)
1

Pλ(hmin)
> α1.

By the positive definiteness of Cn,

α3 > |α2|
q0|α2|

1− α1 + α1q0
+

(
q0α

2
2

1− α1 + α1q0
− 1

)
1

r0 − 1
,

where r0 = p0−q0. Since the second term is close to zero for large r0, (4.7) implies α3 ≥ |α2|.

We also have

‖V (2)Ĉ21
n (Ĉ11

n )−1V (1)−1‖∞ ≤ ‖V (2)C21
n (C11

n )−1V (1)−1‖∞ (S4.47)

+‖V (2)C21
n {(C11

n )−1 − (Ĉ11
n )−1}V (1)−1‖∞

+‖V (2)(C21
n − Ĉ21

n )(Ĉ11
n )−1V (1)−1‖∞,

and

‖C21
n (C11

n )−1‖∞ ≤ ‖Ĉ21
n (Ĉ11

n )−1‖∞ + ‖C21
n {(C11

n )−1 − (Ĉ11
n )−1}‖∞ (S4.48)

+‖(C21
n − Ĉ21

n )(Ĉ11
n )−1‖∞.

The last two terms on the right hand sides of (S4.47) and (S4.48) goes to zero as n increases



27

with probability at least 1−O(n−δ). Moreover, based on the definition of Cn,

‖V (2)C21
n (C11

n )−1V (1)−1‖∞ = ‖C21
n (C11

n )−1‖∞
√

1− α3

1− α1

×

√
(1 + (q0 − 2)α1)(1 + (r0 − 1)α3)− (q0 − 1)r0α2

2

(1 + (q0 − 1)α1)(1 + (r0 − 2)α3)− q0(r0 − 1)α2
2

.

Since α3 > α1 and the last factor is close to 1 for large q0 and r0, (4.8) holds for sufficiently

large q0 and r0.

Proof of Corollary 1

Proof. By the definition of Cn and distribution assumption of X, Condition 5 is satisfied.

By the definition of pn and qn, and hmin ≥ n−κ0 , Condition 3 also holds. Since

|α2m0|
1− α1 + α1q0

√
1− α3

1− α1

≤ 1− η (S4.49)

is equivalent to

|α2| ≤ (1− η)

√
1− α1

1− α3

(α1
q0
m0

+
1− α1

m0

),

then (S4.49) is implied by (4.9). Then, by (S4.43), (S4.44), and the proof of Proposition 1,

Condition 1 holds for sufficiently large q0 and p0 − q0 with probability at least 1 − O(n−δ).

This completes the proof.

Proof of Corollary 2

Proof. By the definition of Cn and distribution assumption of X, Condition 5 is satisfied.

By the definition of pn and qn, and hmin ≥ n−κ0 , Condition 3 also holds. The first ele-

ment of |C21
n (C11

n )−1 sign(β(1))| is the largest one, and it is equal to the first element of
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|C21
n (C11

n )−11|. Combining with (S4.42), (4.5) implies that

|α2|(1− α1α2)

(1 + α1)(1− α2)
≥ 1,

which further implies α2 > α1.

Let r0 = p0 − q0, rn = pn − qn,

T1 = 1 +
(α1 − α2)

2(1− α2q0−2
2 )

(1− α2
1)(1− α2

2)
,

T2 = 1 +
(α3 − α2)

2(1− α2r0−2
2 )

(1− α2
3)(1− α2

2)
,

T = 1− α2
2T1T2, T̃ = 1− α4

2T1T2, and

S(q0, r0, k, α1, α2, α3) =
(α1 − α2)

2(1− α1α2)
2α

2(q0−k)
2

1− α4
1

[
1 +

(α3 − α2)
2(1− α2r0−2

2 )

(1− α2
3)(1− α2

2)

]
.

Then, djj can be expressed as

djj =



1 if 1 ≤ j ≤ qn − q0 and qn + r0 + 1 ≤ j ≤ pn

1
1−α2

1

(
1 + S(q0,r0,1,α1,α2,α3)

T

)
if j = qn − q0 + 1

1+α2
1

1−α2
1

(
1 + S(q0,r0,j,α1,α2,α3)

T

)
if qn − q0 + 2 ≤ j ≤ qn − 1

T̃
(1−α2

1)T
if j = qn

T̃
(1−α2

3)T
if j = qn + 1

1+α2
3

1−α2
3

(
1 + S(r0,q0,p0−j+1,α3,α2,α1)

T

)
if qn + 2 ≤ j ≤ qn + r0 − 1

1
1−α2

3

(
1 + S(r0,q0,1,α3,α2,α1)

T

)
if j = qn + r0.

Since S(q0, r0, k, α1, α2, α3) = α2
2S(q0, r0, k + 1, α1, α2, α3),

α2 <
√
djj/dj+1j+1 < 1 for qn − q0 + 2 ≤ j ≤ qn − 2, (S4.50)

and

α2 <
√
dj+1j+1/djj < 1 for qn + 2 ≤ j ≤ qn + r0 − 2. (S4.51)
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In addition, since α2 > α1 > 0,

dqnqn ≥ dqn−1qn−1. (S4.52)

Let ψ = (ψ1, . . . , ψrn)T = |V (2)C21
n (C11

n )−1V (1)−1 sign(β(1))|. Then by (S4.51), for

2 ≤ j ≤ r0 − 1, ψj/ψj+1 =
√
dqn+j+1qn+j+1/dqn+jqn+j/α2 > 1. Since Cn is extended block-

AR, ψj = 0 for r0 +1 ≤ j ≤ rn. Hence, we need to show that there exists a positive constant

η0 such that max{ψ1, ψ2} ≤ 1− η0. Let η0 ∈ (0, η).

By (S4.50) and (S4.52) for any c0,η ∈ (0, η − η0) and sufficiently large p0 and q0,

ψ1 ≤
|α2|(1− α1α2)

(1 + α1)(1− α2)

√
dqnqn

dqn+1qn+1

+ c0,η =

√
1− α2

3

1− α2
1

|α2|(1− α1α2)

(1 + α1)(1− α2)
+ c0,η ≤ 1− η0.

The last inequality follows from (4.10). In addition, ψ2 = ψ1α2

√
dqn+1qn+1/dqn+2qn+2 ≤

ψ1α2/|α2 − α3|. Then we have ‖ψ‖∞ ≤ 1− η by (4.10). By (S4.43), Condition 1 holds with

probability at least 1−O(n−δ). This completes the proof.

Proof of Corollary 3

Proof. Similarly as the proof in Corollary 1, Conditions 2, 3, and 5 are satisfied, which

completes the proof.

Proof of Proposition 3

Proof. For any 1 ≤ i ≤ qn and qn + 1 ≤ j ≤ pn, it suffices to show that dii/djj ≤ g2n. Let

vmax,i be an eigenvector corresponding to the largest eigenvalue of Cn,i, and ϕ∗i be the angle

between vi and vmax,i. Then,

dii
djj

=
det(Cn,i)

det(Cn,j)
=

1− vTj (Cn,j)
−1vj

1− vTi (Cn,i)−1vi
≤ 1− ‖vj‖22/λmax,j

1− ‖vi‖22 cos2 ϕ∗i /λmax,i − ‖vi‖22 sin2 ϕ∗i /λmin,i

.

By the Perron–Frobenius theorem, vmax,i can be chosen from the cone spanned by the

columns of Cn,i. Thus, 0 ≤ ϕ∗i ≤ ϕi ≤ π/2. The last inequality follows from ckl ≥ 0
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for any 1 ≤ k, l ≤ pn. Therefore,

dii
djj
≤ 1− ‖vj‖22/λmax,j

1− ‖vi‖22/λmax,i − ‖vi‖22 sin2 ϕi/λmin,i

,

which implies ‖V (2)C21
n (C11

n )−1V (1)−1‖∞ ≤ 1−η. By normality assumption and Conditions

3 and 4 with κ0 > max{κ2 + κ3, (κ2 + κ4)/2}, the last two terms on the right hand sides of

(S4.47) goes to zero as n increases with probability at least 1−O(n−δ). This completes the

proof.
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