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SEMI-STANDARD PARTIAL COVARIANCE

VARIABLE SELECTION WHEN

IRREPRESENTABLE CONDITIONS FAIL
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Abstract: Traditional variable selection methods could fail to be sign consistent

when irrepresentable conditions are violated. This is especially critical in high-

dimensional settings when the number of predictors exceeds the sample size. In

this paper, we propose a new semi-standard partial covariance (SPAC) approach

that is capable of reducing the correlation effects from other covariates, while fully

capturing the magnitude of the coefficients. The proposed SPAC is effective in

choosing covariates that have direct effects on the response variable, while elimi-

nating predictors that are not directly associated with the response, but are highly

correlated with the relevant predictors. We show that the proposed SPAC method

with the Lasso penalty or the smoothly clipped absolute deviation (SCAD) penalty

possesses strong sign consistency in high-dimensional settings. Numerical stud-

ies and a post-traumatic stress disorder data application confirm that the proposed

method outperforms the existing Lasso, adaptive Lasso, SCAD, Peter–Clark-simple

algorithm, and factor-adjusted regularized model selection methods when the irrep-

resentable conditions fail.

Key words and phrases: Irrepresentable condition, Lasso, model selection consis-

tency, partial correlation, smoothly clipped absolute deviation.

1. Introduction

Variable selection is an important model-building tool for selecting covari-

ates relevant to the response variable, which is fundamental for the construction

of a sparse model when the number of relevant covariates is much smaller than

the total number of observed covariates. This is especially crucial under high

dimensionality, where the number of covariates far exceeds the number of ob-

servations. For high-dimensional data, traditional regularization variable selec-

tion methods (Tibshirani (1996); Fan and Li (2001); Zou and Hastie (2005);

Yuan and Lin (2006); Zou (2006); Candes and Tao (2007); Zhang (2010)) are

effective in achieving model selection and parameter estimation simultaneously
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under irrepresentable conditions (Zhao and Yu (2006); Fan and Lv (2011);

Kim, Choi and Oh (2008)), which assume that the correlations between rele-

vant and irrelevant covariates are relatively weak compared with those between

relevant covariates.

However, the irrepresentable conditions could fail, regardless of whether or

not the dimension is high. For example, in a mediation analysis seeking to identify

mediators that transmit effects from an exposure factor to an outcome variable,

spurious mediators (irrelevant covariates) could be strongly correlated with the

exposure factor and the true mediators (relevant covariates) (Jérolon et al. (2021);

Chén et al. (2018); Imai and Yamamoto (2013)). Although modified model se-

lection methods have been proposed that incorporate strongly correlated covari-

ates, they either do not possess variable selection consistency (Wang and Wang

(2014); Maier and Rodŕıguez-Salas (2017); Hilafu and Yin (2017); Bühlmann

et al. (2013)), or they impose a more restrictive condition, such as knowing the

true number of relevant covariates (Javanmard and Montanari (2013)). In par-

ticular, several existing methods (Sharma, Bondell and Zhang (2013); Fu et al.

(2014); Zeng and Xie (2012); Huang et al. (2016)) tend to group and select highly

correlated relevant and irrelevant predictors together. Jia and Rohe (2015) pro-

pose transforming the design matrix so that the irrepresentable conditions are

satisfied. However, the error terms are no longer independent from each other

after the transformation. More importantly, a model-based transformation loses

its original interpretation, in practice.

Under high-dimensional settings (Fan, Shao and Zhou (2018)), sure indepen-

dence screening (Fan and Lv (2008)) screens out variables using the marginal

correlations between the response and the covariates. However, the marginal

correlations between the irrelevant covariates and the response could increase

when the irrelevant covariates are strongly correlated with the relevant covari-

ates, which may reduce the effectiveness of the sure independence screening. The

Peter–Clark-simple (PC-simple) algorithm (Bühlmann, Kalisch and Maathuis

(2010)) was developed to screen variables using partial correlation to solve the

correlation problem. Moreover, Cho and Fryzlewicz (2012) generalize the par-

tial correlation to a tilted correlation, and Li et al. (2016) and Jin, Zhang and

Zhang (2014) incorporate inter-feature correlations to improve the detection of

marginally weakly associated covariates. In addition, Bradic (2016) proposes

a subsample bootstrap aggregation approach to circumvent the irrepresentable

conditions, and Fan, Ke and Wang (2020) developed the factor-adjusted reg-

ularized model selection (Farm-Select) method to decorrelate highly-correlated

covariates.
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The partial correlation approach measures each individual covariate effect

after removing other covariate effects (Peng et al. (2009); Bühlmann, Kalisch

and Maathuis (2010); Li, Liu and Lou (2017); Tang, Wang and Barut (2017)).

However, the range of the partial correlation is bounded between minus one and

one, and therefore the partial correlation may not fully capture strong signals

of some relevant covariates. This motivates us to develop a new semi-standard

partial covariance (SPAC) approach to fully use the magnitude of the signal

strength. The proposed SPAC is more powerful than the partial correlation in

identifying relevant covariates.

Compared with traditional regularization methods, the proposed method en-

courages selecting covariates that have direct effects on the response variable,

while discouraging the selection of irrelevant covariates that are strongly corre-

lated with relevant covariates. We demonstrate the estimation consistency and

variable selection consistency for the proposed SPAC method with the Lasso

penalty (SPAC-Lasso) and the smoothly clipped absolute deviation (SCAD)

penalty (SPAC-SCAD). The proposed method can handle both fixed-dimensional

settings and high-dimensional settings when relevant and irrelevant covariates are

highly correlated with each other.

Our work has the following contributions. First, the proposed variable selec-

tion approach can mitigate the bias of model selection caused by the violation of

irrepresentable conditions for the Lasso or the SCAD method. We show that the

proposed SPAC-Lasso and SPAC-SCAD are still sign consistent, and are espe-

cially effective when the correlations between the relevant and irrelevant covari-

ates are higher than those between the relevant covariates. Second, the proposed

SPAC is more effective in acquiring the signal strength, and thus is more pow-

erful in selecting relevant predictors than is the traditional partial correlation.

Numerical studies confirm that the proposed method outperforms traditional

penalty-based variable selection methods, namely, the PC-simple algorithm and

the Farm-Select method, for highly dependent covariates.

The remainder of the paper is organized as follows. Section 2 provides the

model framework for the variable selection problem. Section 3 introduces the

SPAC and presents the proposed methodology. Section 4 establishes theoretical

properties of the SPAC-Lasso and SPAC-SCAD. Section 5 discusses the imple-

mentation of the proposed method. Section 6 presents various simulation studies.

Section 7 illustrates a real-data application to a study on post-traumatic stress

disorder (PTSD) in African Americans. Section 8 concludes the paper.
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2. Model Framework and Notation

We formulate the variable selection problem under a linear regression setting,

y = Xβ + ε, (2.1)

where y = (y1, . . . , yn)T consists of samples for the response variable Y ,X = (xij)

is an n × p random design matrix, β = (β1, . . . , βp)
T is a coefficient vector, and

the noise vector ε ∼ Nn(0, σ2εIn) is uncorrelated with X. Let xj be the jth

column (jth covariate) of X, for each j = 1, . . . , p. Without loss of generality,

we assume that each column is standardized from independently and identically

distributed (i.i.d.) samples; that is, xTj xj = n and mean
∑n

i=1 xij = 0, for

j = 1, . . . .n. Then, each row of X is identically distributed from a p-dimensional

random vector X = (X1, . . . , Xp)
T with mean 0 and positive-definite covariance

matrix Cp×p, with diagonal elements all ones. In addition, we assume that the

response variable is standardized with
∑n

i=1 yi = 0, and thus the intercept can

be omitted.

Here, we assume that the linear model in (2.1) is sparse, where most co-

variates have zero coefficients and are irrelevant to the response Y . That is,

only the first q covariates in X have nonzero coefficients and are relevant to

the response variable, and let βi = 0 if and only if i > q. In addition, we let

Σ = Cov(Y,X1, . . . , Xp) and Σ−1 = (σij), where i, j ∈ {Y, 1, 2, . . . , p}.
Under the sparsity assumption, the penalized least squares regression meth-

ods (Tibshirani (1996); Fu (1998)) select variables by minimizing the penalized

least squares function

L(β) =
1

2
‖y −Xβ‖2 +

p∑
j=1

pλ(βj), (2.2)

where ‖ · ‖ represents the Euclidean norm, pλ(·) is a penalty function, and λ is

a tuning parameter. Here, pλ(βj) could be the Lasso, adaptive Lasso, or SCAD

penalty, which have the forms pLasso,λ(βj) = λ|βj |, pALasso,λ(βj) = λ|βj |/|β̂0j |,
and

pSCAD,λ(βj) =


λ|βj | if 0 ≤ |βj | ≤ λ
aλ|βj | − 0.5(|βj |2 + λ2)

a− 1
if λ < |βj | ≤ aλ

λ2(a2 − 1)

2(a− 1)
if |βj | > aλ,

(2.3)

respectively, where “ALasso” represents the adaptive Lasso penalty, a > 2, and

β̂0j is an initial estimator of βj .
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3. A New Variable Selection Method

In this section, we propose a semi-standard partial covariance (SPAC) vari-

able selection approach to achieve selection consistency when the original ir-

representable conditions (Zhao and Yu (2006); Fan and Lv (2011)) fail; that

is, there exist strong correlations between the relevant and the irrelevant co-

variates. The proposed SPAC is able to capture the relationship between a

relevant covariate and the response variable, conditional on other covariate ef-

fects, because we derive this SPAC from the notion of partial correlation. For

each j = 1, . . . , p, let ρj = Corr(εY , εj) be the partial correlation between

the response Y and the covariate Xj , where εY and εj are the residuals of

linear regression models with Y and Xj as responses, respectively, and with

X−j = {Xk : k = 1, . . . , j − 1, j + 1, . . . , p} as predictors.

Under the normality assumption

(Y,X1, . . . , Xp)
T ∼ Np+1(0,Σ), (3.1)

it is well known that ρj = Corr(Y,Xj | X−j) (Baba, Shibata and Sibuya (2004)),

indicating that a partial correlation measures the linear relationship between Y

and Xj , conditional on other covariates. Moreover, nonzero partial correlations

correspond to relevant covariates, whereas zero partial correlations correspond to

irrelevant covariates.

However, a partial correlation is unable to fully capture the signal strength,

which is the magnitude of βj , owing to its bounded range. To overcome this

limitation, we propose the following SPAC, and provide the association between

the SPAC and a partial correlation in Lemma 1.

Definition 1. The semi-standard partial covariance (SPAC) between a response

Y and a covariate Xj is γj = βj/d
1/2
jj , for j = 1, . . . , p, where djj is the jth

diagonal element of the precision matrix D = C−1.

The exponent 1/2 of djj in Definition 1 ensures that γj does not depend on

the scale of Xj | X−j , as stated in the following lemma.

Lemma 1. Let sj = {Var(Y | X−j)}1/2, for each j = 1, . . . , p. Under the

normality assumption (3.1), we have

γj = ρjsj =
Cov(Y,Xj | X−j)
{Var(Xj | X−j)}1/2

, s2j =
1/σY Y

1− ρ2j
=
β2j
djj

+ σ2ε .

By definition, γj = 0 if and only if βj = 0, for each j = 1, . . . , p, implying

that we can select relevant covariates by identifying nonzero SPACs. Lemma 1
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shows that the SPAC is equivalent to multiplying the partial correlation by sj
under the normality assumption. Moreover, the proposed γj standardizes the

partial covariance Cov(Y,Xj | X−j) by {Var(Xj | X−j)}1/2, instead of both sj
and {Var(Xj | X−j)}1/2 as in the partial correlation, which is why we refer to γj
as the “semi-standard” partial covariance. We involve sj in the SPAC, because

it is an increasing function of the partial correlation ρj , and it incorporates the

magnitude of the coefficient βj , as indicated in Lemma 1. Therefore, the proposed

SPAC is able to fully capture the signal strength of relevant predictors, while

removing the effects of other covariates.

We illustrate the SPAC and compare it with a partial correlation from a

geometric perspective using a toy example. Let y = β1x1 +β2x2 +ε, with β1 6= 0

and β2 = 0; that is, x1 is relevant, but x2 is irrelevant. We also assume that x1

and x2 are correlated. By definition, γ1 6= 0 and γ2 = 0.

We plot the relationships of x1, x2, and y in Figure 1. As shown in the left

graph, ω̂1 is the angle between the two bold lines, which represent residuals of

projections from y and x1 onto x2. Then, ρ̂1 = cos(ω̂1) is the sample partial

correlation based on samples in x1, x2, and y. The length of the bold line

for residuals of y is a sample estimator of s1, denoted by ŝ1. By Lemma 1,

γ̂1 = ŝ1 cos(ω̂1) is a sample estimator for γ1, which is also the projection from

residuals of y onto residuals of x1, represented by the dotted line in the left graph.

Similarly, in the right graph of Figure 1, ρ̂2 = cos(ω̂2) and γ̂2 are the sample

partial correlation and sample SPAC for x2, respectively. Here, γ̂2 is not exactly

zero owing to sample variation. The differences between the sample SPACs and

the sample partial correlations come from ŝ1 and ŝ2. As shown in Figure 1, ŝ2 is

just the sample variance of the error term, while ŝ1 contains the error variation

and increases with the signal coefficient β1, implying that ŝ1 should be larger than

ŝ2. Therefore, the SPAC is more effective in distinguishing relevant covariates

from irrelevant covariates than is a partial correlation.

Compared with the coefficients β, the SPAC takes account of correlation ef-

fects from other covariates. Specifically, because 1/d
1/2
jj = {Var(Xj | X−j)}1/2 =

(1−R2
j )

1/2 (Lauritzen (1996); Raveh (1985)), the SPAC for covariate Xj is

γj = βj {Var(Xj | X−j)}1/2 = βj
(
1−R2

j

)1/2
,

where Rj is the coefficient of the multiple correlation between Xj and all other

covariates. When Xj is independent of the other covariates, γj is the same as

βj . On the other hand, when Xj is correlated with the other covariates, the

SPAC mitigates the correlation effects from other covariates by multiplying βj
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Figure 1. Illustrations of the SPAC and partial correlation when X1 and X2 are corre-
lated.

by (1−R2
j )

1/2. Thus, we propose estimating SPAC γj instead of the coefficient βj
to achieve model selection consistency for data with strong correlations between

the irrelevant covariates and the relevant covariates.

Specifically, we replace the coefficient βj in the penalized least squares func-

tion (2.2) with d̂
1/2
jj γj , for each j = 1, . . . , p, and estimate γ = (γ1, . . . , γp)

T by

minimizing

L(γ, d̂) =
1

2
‖y −

p∑
j=1

xj d̂
1/2
jj γj‖

2 +

p∑
j=1

pλ(γj)d̂jj , (3.2)

where d̂ = (d̂11, . . . , d̂pp)
T is a consistent estimator of the diagonal elements

d = (d11, . . . , dpp)
T . Substituting β by γ, we obtain a new matrix X∗ =

(x1d̂
1/2
11 , . . . ,xpd̂

1/2
pp ), which serves as a design matrix for γ. The squared Eu-

clidean norm of the jth column in X∗ is d̂jjx
T
j xj = d̂jjn, for j = 1, . . . , p, which

leads to different weights on the penalizations for different covariates. However,

the SPAC of each covariate could be equally important. To avoid unequal weight-

ing, we reweight the penalization term by multiplying the penalty pλ(γj) in (3.2)

by d̂jj , for each j = 1, . . . , p. Consequently, the proposed SPAC estimator is

γ̂ = argmin
γ

L(γ, d̂),

and the corresponding estimator for the coefficients is β̂ = (d̂
1/2
11 γ̂1, . . . , d̂

1/2
pp γ̂p)

T .

We adopt the Lasso, adaptive Lasso, and SCAD penalty functions to shrink

the SPACs in Examples 1–3, respectively, and refer to the corresponding estima-
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tors as SPAC-Lasso, SPAC-ALasso, and SPAC-SCAD, respectively. We compare

these estimators with the original Lasso, adaptive Lasso, and SCAD estimators

in Sections 6 and 7.

Example 1. If we use Lasso penalty, the penalized loss function in (3.2) becomes

LLasso(γ, d̂) =
1

2
‖y −

p∑
j=1

xj d̂
1/2
jj γj‖

2 + λ

p∑
j=1

d̂jj |γj |. (3.3)

Accordingly, the proposed estimator with the Lasso penalty (SPAC-Lasso) is

γ̂Lasso = argmin
γ

LLasso(γ, d̂).

Example 2. Suppose that γ̂0 = (γ̂01, . . . , γ̂0p)
T is a consistent initial estimator

for γ. The objective function for the SPAC method with the adaptive Lasso

penalty (SPAC-ALasso) is

LALasso(γ, d̂) =
1

2
‖y −

p∑
j=1

xj d̂
1/2
jj γj‖

2 + λ

p∑
j=1

d̂jj
|γj |
|γ̂0j |µ

, (3.4)

where µ > 0 is a tuning parameter. The corresponding SPAC-ALasso estimator

is

γ̂ALasso = argmin
γ

LALasso(γ, d̂).

Example 3. Similarly, the objective function for the proposed SPAC method

with the SCAD penalty (SPAC-SCAD) is

LSCAD(γ, d̂) =
1

2
‖y −

p∑
j=1

xj d̂
1/2
jj γj‖

2 + n

p∑
j=1

pSCAD,λ(γj)d̂jj , (3.5)

where pSCAD,λ(·) is defined in (2.3), and the corresponding SPAC-SCAD estima-

tor is

γ̂SCAD = argmin
γ

LSCAD(γ, d̂).

4. Consistency Theory

In this section, we demonstrate the asymptotic properties of the proposed

SPAC-Lasso and SPAC-SCAD estimators, and provide examples satisfying the

conditions for the consistency of the proposed method. Although Lemma 1 is un-

der the normality assumption, we do not require this assumption in the following

subsection.
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4.1. Consistency under high dimensionality

In this subsection, we establish the variable selection consistency and estima-

tion consistency of the SPAC-Lasso and SPAC-SCAD under high dimensionality,

where p = pn, q = qn, and C = Cn increases with n. Similar results for fixed

dimensions of p and q are provided in Section S2 in the Supplementary Material.

For high-dimensional settings, the Lasso, adaptive Lasso, and SCAD methods re-

quire the correlations between relevant and irrelevant covariates to be relatively

small compared with those between relevant covariates in order to achieve vari-

able selection consistency (Zhao and Yu (2006); Huang, Ma and Zhang (2008);

Kim, Choi and Oh (2008); Fan and Lv (2011)). The proposed SPAC approach

mitigates the correlation effects from other covariates to achieve model selection

consistency when relevant and irrelevant covariates are strongly correlated and

the original irrepresentable conditions fail.

Following similar notation to that in Zhao and Yu (2006), let γ̂ =s γ if and

only if sign(γ̂) = sign(γ), and an estimator γ̂ is strongly sign consistent if

there exists a tuning parameter λn, a function of n, such that

lim
n→∞

P {γ̂(λn) =s γ} = 1,

where λn is independent of the data.

To show the sign consistency of the proposed method, we define the following

notation. LetX(1) andX(2) be the first qn and the remaining pn−qn columns in

X, respectively, such that X(1) contains relevant covariates, and X(2) consists

of irrelevant covariates. Let Ĉn = XTX/n be the sample covariance matrix of

X, with diagonal elements all ones, because the covariates are standardized, as

mentioned in Section 2. Thus, Ĉn and the true covariance matrix Cn are both

correlation matrices, and can be partitioned into blocks

Ĉn =

(
Ĉ11
n Ĉ12

n

Ĉ21
n Ĉ22

n

)
, Cn =

(
C11
n C12

n

C21
n C22

n

)
,

according toX = (X(1),X(2)). Similarly, we partition γ into γ(1) = (γ1, . . . , γq)
T

and γ(2) = (γq+1, . . . , γp)
T , representing the relevant and irrelevant coefficients

of the SPACs, respectively.

In addition, we define the following conditions for the proposed SPAC-Lasso

and SPAC-SCAD.

Condition 1 (Irrepresentable condition for SPAC-Lasso). There exists a
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positive constant η such that∥∥∥V (2)Ĉ21
n (Ĉ11

n )−1V (1)−1 sign{β(1)}
∥∥∥
∞
≤ 1− η,

where ‖ · ‖∞ represents the infinity norm of a matrix, and V (1) and V (2) are

diagonal matrices diag{1/d1/211 , . . . , 1/d
1/2
qq } and diag{1/d1/2q+1q+1, . . . , 1/d

1/2
pp }, re-

spectively.

Condition 2 (Irrepresentable condition for SPAC-SCAD). There exists a

positive constant η such that

Pλ∗
n

(hmin)
∥∥∥V (2)Ĉ21

n (Ĉ11
n )−1V (1)−1

∥∥∥
∞
≤ 1− η,

where Pλ∗
n
(·) = p′SCAD,λ∗

n
(·)/λ∗n, hmin = min1≤j≤qn |βj |/2, and λ∗n = λn max1≤j≤qn

d
1/2
jj .

Condition 1 is required for the sign consistency of the SPAC-Lasso, while

Condition 2 is required for the SPAC-SCAD under high-dimensional settings.

Condition 2 is weaker than Condition 1 when the signals are strong, because the

SCAD penalty gradually levels off. The above two conditions are modified from

the original irrepresentable conditions proposed in Zhao and Yu (2006) and Fan

and Lv (2011) for the Lasso and SCAD, respectively. However, the proposed

Conditions 1 and 2 could still hold for cases where the original irrepresentable

conditions fail. We illustrate this with examples in Section 4.2.

Condition 3. For some positive constants 0 < κ0, κ2 < 1/2, and κ1 > 0, log pn =

O(n1−2κ0), qn = O(nκ2), hmin ≥ (log pn/n)1/2, and pn ≥ nκ1.

Condition 3 allows the number of covariates to grow exponentially, but re-

quires a lower bound of signal strength, similarly to Fan and Lv (2013) and Zheng,

Fan and Lv (2014)). The requirement pn ≥ nκ1 comes from Cai, Liu and Luo

(2011) to ensure the consistency of the constrained L1-minimization estimator

(CLIME) (Cai, Liu and Luo (2011)), which is adopted in the following theorems.

We let d̂ be the diagonal elements of the CLIME. Then, d̂ is consistent under

some regularity conditions and a sparsity assumption of the precision matrix (Cai,

Liu and Luo (2011)).

Following the notation in Cai, Liu and Luo (2011), we model the sparsity of

the precision matrix D by defining

Gu(Kpn ,Mpn) =

{
D : max

1≤j≤pn

pn∑
i=1

|dij |u ≤ Kpn , ‖D‖1 ≤Mpn

}
, (4.1)
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where 0 ≤ u < 1, and Kpn and Mpn are positive and allowed to increase with

n. We consider data with precision matrices D ∈ Gu(Kpn ,Mpn) throughout this

subsection. Details of other regularity Conditions 4, 5, 6, are provided in Section

S1 in the Supplementary Material. The proofs for the following theorems are

provided in Section S4 in the Supplementary Material.

Theorem 1. Let d̂ be diagonal elements of the CLIME of D. If Conditions 3,

4, and 5 are satisfied, and Condition 1 holds with probability at least 1−O(n−δ),

then we have the following properties for the minimization of LLasso(γ, d̂) in (3.3)

with probability at least 1−O(n−δ).

(1) Strong sign consistency: There exists a strict local minimizer γ̂Lasso such

that γ̂Lasso =s γ.

(2) Estimation consistency: The corresponding estimator of the coefficients β̂ =

V̂ −1γ̂Lasso satisfies

‖β̂ − β‖∞ = O

{(
log pn
n

)1/2}
.

Theorem 2. Let d̂ be diagonal elements of the CLIME of D. If Conditions 3,

5, and 6 are satisfied, and Condition 2 holds with probability at least 1−O(n−δ),

then we have the following properties for the minimization of LSCAD(γ, d̂) in

(3.5) with probability at least 1−O(n−δ).

(1) Strong sign consistency: There is a strict local minimizer γ̂SCAD such that

γ̂SCAD =s γ.

(2) Estimation consistency: The corresponding estimator of the coefficients β̂ =

V̂ −1γ̂SCAD satisfies

‖β̂ − β‖∞ = O

{(
log pn
n

)1/2}
.

Theorems 1 and 2 state that, even though the number of covariates increases

exponentially, the proposed SPAC-Lasso and SPAC-SCAD are able to select the

true model with probability tending to one under Conditions 1 and 2, respectively.

Moreover, the estimators for the coefficients based on the SPAC-Lasso and SPAC-

SCAD both converge to the true β.

Note that Condition 1 could still be valid even when the original irrepre-

sentable conditions (Zhao and Yu (2006)) for the Lasso are violated. Similarly,
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Condition 2 is able to accommodate highly correlated covariates when the ir-

representable condition for the SCAD method (Fan and Lv (2011)) fails. We

illustrate this point with examples in the following subsection.

4.2. Examples satisfying the proposed conditions

In this subsection, we give some examples where the proposed irrepresentable

Conditions 1 and 2 still hold, even when the original irrepresentable conditions

for the Lasso and SCAD fail, respectively. We suppose that Cn is a submatrix

of Cn+1 as the dimension increases.

We first consider using an extended block-exchangeable covariance matrix

structure, which is defined as a block diagonal matrix consisting of identity ma-

trices and R:

Cn = diag{Iqn−q0 ,R, Ipn−qn−(p0−q0)}, (4.2)

where

Rp0×p0 =

(
R11 R12

(R12)T R22

)
(4.3)

is block-exchangeable with

(R11)i,j =

{
1, i = j

α1, i 6= j
, (R22)i,j =

{
1, i = j

α3, i 6= j
, (R12)i,j = α2.

Here, α1, α2, and α3 are unknown constants, R11 is a q0× q0 matrix, and p0 and

q0 are constants independent of n.

The R is a fixed-dimensional and dense sub-matrix in Cn. The number q0
represents the number of relevant covariates with a nonsparse covariance matrix

R11, and p0 represents the total number of covariates with a nonsparse covariance

matrix R. There are p0− q0 irrelevant covariates with a dense covariance matrix

R22. In addition, R12 represents the covariance matrix between the correlated

relevant and irrelevant covariates. We use Cn = diag{Iqn−q0 ,R, Ipn−qn−(p0−q0)}
instead ofR as the covariance matrix to include a diverging and sparse covariance

matrix for high-dimensional settings. Even under the sparse covariance matrix

setting, the original irrepresentable conditions could still fail.

Similarly, we define Cn = diag{Iqn−q0 ,Rp0×p0 , Ipn−qn−(p0−q0)} as an ex-

tended block-autoregressive (block-AR) covariance matrix, where

(R11)i,j = α
|i−j|
1 , (R22)i,j = α

|i−j|
3 , (R12)i,j = α

|i−(q0+j)|
2 . (4.4)
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When the covariance matrix Cn is extended block-exchangeable, as in (4.2), the

sparsity assumption in (4.1) holds with K = p0{(p0−1)!/∆1}u and M = p0!/∆1,

where (p0 − 1)! and p0! denote the factorials of p0 − 1 and p0, respectively, and

∆1 = (1−α1)
q0(1−α3)

p0−q0q0(p0− q0)(α1α3−α2
2). When the covariance matrix

is extended block-AR, the sparsity assumption in (4.1) holds with K = p0{(p0 −
1)!/∆2}u and M = p0!/∆2, where ∆2 = (1 − α2

1)
q0(1 − α2

3)
p0−q0 [1 − α2

2(1 −
α1α2)

2(1 − α3α2)
2/{(1 − α2

1)(1 − α2
3)(1 − α2

2)
2}]. Note that in both cases, the

K and M do not depend on pn. To simplify the following statements, we let

L0 = q0/m0, where m0 = |
∑qn

i=qn−q0+1 sign(βi)| = |
∑qn

i=qn−q0+1 sign(γi)| > 0.

Proposition 1. Let pn = exp(n1−2κ0) and qn = n1/3, with 1/3 + τ < κ0 <

1/2 and 0 < τ < 1/6. Under the normality assumption (3.1), suppose that Cn
is an extended block-exchangeable covariance matrix of the form in (4.2), with

α1, α2, α3 ∈ (−1, 1), such that α1α3 6= α2
2 and Cn is positive definite for any

large constants q0 and p0 − q0, where q0 < p0 − q0. Then, there exists a constant

0 < δ < 1/2 such that

‖Ĉ21
n (Ĉ11

n )−1 sign{β(1)}‖∞ ≥ 1 with probability at least 1−O(n−δ) (4.5)

if |α2| > α1L0. Conversely, (4.5) implies |α2| > α1L0 ≥ α1, α3 ≥ |α2|, and

|V (2)Ĉ21
n (Ĉ11

n )−1V (1)−1 sign{β(1)}| < |Ĉ21
n (Ĉ11

n )−1 sign{β(1)}|, (4.6)

for sufficiently large constants m0 and p0−q0 with probability at least 1−O(n−δ),

where the inequality holds element-wise.

Proposition 2. Under the conditions of Proposition 1, if for some constant

0 < δ < 1/2,

‖Ĉ21
n (Ĉ11

n )−1‖∞Pλ(hmin) ≥ 1 with probability at least 1−O(n−δ), (4.7)

then α3 ≥ |α2| > α1, and

‖V (2)Ĉ21
n (Ĉ11

n )−1V (1)−1‖∞Pλ(hmin) < ‖Ĉ21
n (Ĉ11

n )−1‖∞Pλ(hmin), (4.8)

for sufficiently large constants m0 and p0−q0 with probability at least 1−O(n−δ).

The failure of the original irrepresentable conditions (Zhao and Yu (2006);

Fan and Lv (2011)) of the Lasso and SCAD methods implies inequalities (4.5) and

(4.7), respectively. By Propositions 1 and 2, if the original irrepresentable condi-

tions fail, then the correlations between the relevant covariates are the smallest

among the correlations of all covariates, followed by those between the relevant
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and irrelevant covariates. More importantly, the inequalities in (4.6) and (4.8)

hold even when the original irrepresentable conditions are violated, indicating

that the new irrepresentable Conditions 1 and 2 for the SPAC-Lasso and SPAC-

SCAD, respectively, can still be valid.

The following corollaries provide sufficient conditions for the SPAC-Lasso to

be strongly sign consistent when the true covariance matrix is extended block-

exchangeable, as in (4.2), or extended block-AR, with R defined as in (4.4).

We also provide a similar corollary in Section S4 in the Supplementary Material

for the strong sign consistency of the SPAC-SCAD under the extended block-

exchangeable covariance matrix structure.

Corollary 1. Let d̂ be diagonal elements of the CLIME of D. Suppose that the

conditions of Proposition 1 and Condition 4 are satisfied, and that hmin ≥ n−κ0.

If there exists a positive constant η such that

|α2| ≤ (1− η)

(
1− α1

1− α3

)1/2

α1L0, (4.9)

then the SPAC-Lasso possesses strong sign consistency, and the estimator β̂ =

V̂ −1γ̂Lasso is consistent for sufficiently large q0 and p0 − q0.

Under the extended block-exchangeable structure with large n, the weak ir-

representable condition (Zhao and Yu (2006)) of the Lasso holds for large α1.

However, when α1 < |α2|/L0 ≤ |α2|, the Lasso is not sign consistent, by Propo-

sition 1. In contrast, Corollary 1 shows that the SPAC-Lasso is strongly sign

consistent, given that α3 is sufficiently large, even when α1 is small.

Corollary 2. Suppose that the conditions of Corollary 1 are satisfied, except

that Cn is an extended block-AR covariance matrix with R defined in (4.4) and

α1, α2, α3 ∈ (0, 1), such that 2|α2 − z|{α2 + 1/(1 + z)} < 1, where z = α1 or α3.

Further, suppose that the true coefficients of the relevant covariates have the

same sign. If (4.5) is satisfied, then α2 > α1, and the SPAC-Lasso is strongly

sign consistent when there is a constant η > 0 such that

max

{
α2

|α2 − α3|
, 1

}(
1− α2

3

1− α2
1

)1/2
α2(1− α1α2)

(1 + α1)(1− α2)
≤ 1− η. (4.10)

Corollary 2 states that, under the extended block-AR structure, the failure of

the weak irrepresentable condition of the Lasso also implies that the correlations

between the relevant and irrelevant covariates are stronger than those between

the relevant covariates, that is, α2 > α1. More importantly, even when the weak
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irrepresentable condition fails, the SPAC-Lasso is still strongly sign consistent,

given that α3 is sufficiently large. This is consistent with the results of the

extended block-exchangeable example.

In the following proposition, we present another sufficient condition for Con-

ditions 1 and 2 of the proposed method when the correlation structure does not

have a specific form. We first introduce some notation. Let Cn = (cij)p×p with

cij ≥ 0, and let Cn,i be a submatrix of Cn with the ith row and ith column

removed for each i = 1, . . . , p. Denote the ith column of Cn with the ith entry

removed as vi; that is, vi = (c1i, . . . , ci−1i, ci+1i, . . . , cpi)
T . In addition, let ϕi be

the largest angle between vi and any column vector in Cn,i, and let λmin,i and

λmax,i be the smallest and the largest eigenvalues of Cn,i, respectively.

Proposition 3. Suppose that the normality assumption (3.1) and Conditions 3

and 4 are satisfied with κ0 > max{κ2 + κ3, (κ2 + κ4)/2}. If

0 ≤ 1− ‖vj‖22/λmax,j

1− ‖vi‖22/λmax,i − ‖vi‖22 sin2 ϕi/λmin,i
< g2n

holds for all i ∈ {1, . . . , qn} and j ∈ {qn + 1, . . . , pn}, with gn = (1 − η)/‖C21
n

(C11
n )−1‖∞ for some η > 0, then ‖V (2)Ĉ21

n (Ĉ11
n )−1V (1)−1‖∞ ≤ 1 − η with

probability at least 1−O(n−δ).

In general, when the correlations between relevant and irrelevant covariates

are larger than those between the relevant covariates, the original irrepresentable

conditions are likely to fail. In this case, correlations between irrelevant covariates

could be high, owing to the positive-definiteness constraint on the correlation

matrices. This indicates that, for each pair of relevant and irrelevant covariates,

variables other than such a pair are more correlated with the irrelevant covariate

than they are with the relevant one. Then, the irrepresentable conditions of the

proposed SPAC method are likely to hold, by Proposition 3. Consequently, the

irrepresentable conditions for the proposed SPAC method can still be satisfied

when the original irrepresentable conditions are violated.

5. Implementation

In this section, we discuss the implementation of the proposed method with

the Lasso, adaptive Lasso, or SCAD penalty. To estimate the diagonal elements

d, we apply the CLIME in our algorithms under high-dimensional settings, which

estimates the jth column of the precision matrix D using the following minimiza-

tion problem:
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min
b∈Rp
|b|1 subject to |Ĉnb− ej |∞ ≤ λd, (5.1)

where 1 ≤ j ≤ p, ej ∈ Rp is a vector with one in the jth coordinate and zero

in the others, λd is a tuning parameter, and | · |1 and | · |∞ represent the 1-norm

and infinity norm, respectively, of a vector. We solve the problem (5.1) us-

ing the “fastclime” R package (https://cran.r-project.org/web/packages/

fastclime/index.html), and then let d̂jj be the jth element of the solution. In

the fixed-dimensional settings, we use the sample precision matrix to estimate

the diagonal elements

d̂jj = {(n−1XTX)−1}jj , j = 1, . . . , p. (5.2)

For the SPAC-ALasso, we estimate the initial estimator γ̂0 = (γ̂01, . . . , γ̂0p)
T

in (3.4) using γ̂0j = β̂0j/d̂
1/2
jj (1 ≤ j ≤ p), which implies that an initial estimator

β̂0 for β is required. We use the ordinary least squares (OLS) estimator of β as

the initial estimator β̂0 under fixed-dimensional situations. For high-dimensional

settings, we first select the variables using the SPAC-Lasso, and then compute

the OLS estimators of the coefficients for the selected variables. We let β̂0 be

the vector consisting of the OLS estimators for the selected covariates, and zeros

for the nonselected covariates. For the tuning parameter related to the adaptive

Lasso penalty in (3.4), we let µ = 1, and compare the proposed SPAC-ALasso

with the traditional adaptive Lasso method with µ = 1.

We use the coordinate descent algorithm (Fu (1998); Breheny and Huang

(2011)) to solve the minimization problems with objective functions in (3.3), (3.4),

and (3.5) for the SPAC-Lasso, SPAC-ALasso, and SPAC-SCAD, respectively. We

illustrate this with p = 1 first. The unpenalized least squares solution of the

univariate setting is z = XTy/(nd̂1/2). Accordingly, the proposed SPAC-Lasso,

SPAC-ALasso, and SPAC-SCAD estimators have closed forms

γ̂Lasso(z, λ) = sign(z)(|z| − λ)+, γ̂ALasso(z, λ, γ̂0) = sign(z)

(
|z| − λ

|γ̂0|

)
+

,

(5.3)

γ̂SCAD(z, λ, a) =


sign(z)(|z| − λ)+ if |z| ≤ 2λ

(a− 1)z − sign(z)aλ

a− 2
if 2λ < |z| ≤ aλ

z if |z| > aλ,

(5.4)

respectively.

For a multivariate case, we use these univariate solutions to obtain coordinate-

wise minimizers, except that we replace z in (5.3) and (5.4) with the unpenalized

https://cran.r-project.org/web/packages/fastclime/index.html
https://cran.r-project.org/web/packages/fastclime/index.html
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Algorithm 1: SPAC-SCAD.

1. Set l = 1. Set tolerance ε, initial values γ(0), and tuning parameters λ and a.

2. Calculate d̂ using (5.2) or by solving (5.1), for j = 1, . . . , p.

3. Calculate r(0) = y −
∑p

j=1 xj d̂
1/2
jj γ

(0)
j .

4. For j = 1, . . . , p, estimate γ
(l)
j as follows:

Calculate zj using (5.5);

Calculate γ
(l)
j = γ̂SCAD(zj , λ, a) using (5.4);

Update r(l) = r(l−1) − xj d̂
1/2
jj (γ

(l)
j − γ

(l−1)
j )

5. Iterate Step 4 until a convergence criterion is satisfied, for example,

minj{|(γ(l)j − γ
(l−1)
j )/γ

(l−1)
j |} < ε.

solution of the regression with the partial residual of xj (1 ≤ j ≤ p) as the

response

zj =
xTj r−j

nd̂
1/2
jj

=
xTj r

nd̂
1/2
jj

+ γ
(l−1)
j , (5.5)

where r−j = y −
∑

i 6=j xid̂
1/2
ii γ∗i is xj ’s partial residual, r = y −

∑p
i=1 xid̂

1/2
ii γ∗i ,

and γ∗ = (γ∗1 , . . . , γ
∗
p)T is the most recent updated estimator for γ. A complete

algorithm for the SPAC-SCAD is provided in Algorithm 1, including the estima-

tion of d in Step 2 and the coordinate descent method in Step 4. Algorithms of

the SPAC-Lasso and SPAC-ALasso are similar to Algorithm 1, except that we

replace γ̂SCAD in Step 4 with γ̂Lasso or γ̂ALasso in (5.3), respectively.

6. Simulations

In this section, we compare the performance of the proposed method with

that of existing model selection approaches in simulation studies. We generate

data 100 times based on a linear regression model, y = Xβ + Nn(0, In), where

X is an n × p matrix and β is a p × 1 vector. Each row of the design matrix

X is i.i.d. from a multivariate normal distribution with mean 0p×1 and a block-

exchangeable covariance matrix Cp×p of the form in (4.3) with the parameters

α = (α1, α2, α3)
T . The first q elements in the coefficient vector β are nonzero

and take the value βs; the remaining elements are zero.

We implement the Lasso, adaptive Lasso, and SCAD methods using the co-

ordinate descent algorithm (Fu (1998); Breheny and Huang (2011)). Because the
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purpose of the proposed method is to provide model selection consistency when

the traditional methods fail, we first check whether the original weak irrepre-

sentable condition is satisfied for the covariates selected by the Lasso. If the con-

dition is violated, we adopt the proposed method; otherwise, the standard Lasso,

adaptive Lasso, and SCAD methods can still be applied. We use the “pcalg”

R package (https://cran.r-project.org/web/packages/pcalg/index.html)

to implement the PC-simple algorithm with a significance level of 0.05, which

is a method based on partial correlations. The Farm-Select method is imple-

mented using the “FarmSelect” R package (https://cran.r-project.org/web/

packages/FarmSelect/index.html). In each penalty-based method, the tuning

parameter λ is selected using the extended BIC (EBIC), which is effective for

small n, but large p (Chen and Chen (2008)). For the SCAD method and the

proposed SPAC-SCAD method, we choose a = 3.7 (Fan and Li (2001)). For

the adaptive Lasso, we apply the Lasso estimator as the initial estimator for the

weighting.

To evaluate the performance of each method, we compute the false negative

rate (FNR) and false positive rate (FPR), as follows:∑p
j=1 I(β̂j = 0, βj 6= 0)∑p

j=1 I(βj 6= 0)
,

∑p
j=1 I(β̂j 6= 0, βj = 0)∑p

j=1 I(βj = 0)
,

respectively, where I(·) is an indicator function. The FNR represents the pro-

portion of relevant covariates that are not selected, while the FPR represents the

proportion of selected irrelevant covariates. We define the overall false rate of

a method as the summation of the FNR and the FPR. A method with smaller

overall false rate exhibits better performance in terms of model selection. We

calculate the mean FNR and FPR for each method using 100 replications.

Setting 1: Let p = 250, q = 5, n = 80, βs = 0.4, and α = (0.1, 0.3, 0.8)T ,

(0.2, 0.4, 0.8)T , (0.3, 0.5, 0.8)T , or (0.5, 0.7, 0.9)T .

Table 1 shows that the proposed method outperforms existing model selection

approaches under Setting 1. Specifically, the ratio of overall false rate of each

penalty-based method to that of the proposed method with the same penalty

function is greater than one across all covariance matrices. Furthermore, the

overall false rates of the Farm-Select method and the PC-simple algorithm are

both larger than that of the proposed SPAC-SCAD. In particular, the ratio of

overall false rates is the largest when α = (0.5, 0.7, 0.9)T , where the covariates

are most correlated. For example, the ratio between the traditional Lasso and

https://cran.r-project.org/web/packages/pcalg/index.html
https://cran.r-project.org/web/packages/FarmSelect/index.html
https://cran.r-project.org/web/packages/FarmSelect/index.html
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the proposed SPAC-Lasso is 6.637 when α = (0.5, 0.7, 0.9)T , which is much larger

than the corresponding ratios under other α.

Moreover, the FNRs of the SPAC-Lasso, SPAC-ALasso, and SPAC-SCAD are

smaller than those of the traditional Lasso, adaptive Lasso, and SCAD methods,

respectively, given each α. This also holds for the FPR. In addition, we present

the violation rates in the last row of Table 1, which is the percentage of the original

weak irrepresentable condition being violated based on 100 simulated data. The

violation rates are all close to one, because the original weak irrepresentable

condition does not hold for the true covariance matrices in this setting.

Setting 2: Let p = 1000, q = 20, n = 150, α = (0.3, 0.5, 0.8)T , and βs =

0.2, 0.3, 0.4, 0.5, or 0.6.

We consider high-dimensional situations with 1,000 covariates in Setting 2.

The results in Table 2 show that the proposed method still outperforms other

competing methods in terms of overall false rate. In addition, the ratios between

the overall false rates are larger for scenarios with larger βs, indicating that the

proposed method shows a greater improvement over existing methods when the

signals are stronger. The FNR and FPR of the PC-simple algorithm for relatively

larger βs are not provided in Table 2 because the PC-simple algorithm is quite

time consuming under settings with strong signals and thousands of correlated

potential predictors. It takes more than a few hours to run the algorithm for only

one replication. However, we can still observe that the proposed SPAC-SCAD

outperforms the PC-simple algorithm based on the results under βs = 0.2 and

βs = 0.3.

We incorporate binary covariates in Setting 3. We first simulate data from

a multivariate normal distribution with mean 0 and covariance matrix C of the

form in (4.3), and then transform two relevant and 60 irrelevant covariates Xj to

sign(Xj).

Setting 3: Let p = 250, q = 5, n = 80, α = (0.5, 0.7, 0.9)T , and βs =

0.2, 0.3, 0.4, 0.5, 0.6, or 0.7.

The proposed method also outperforms the other methods when we have

binary potential predictors, according to the results in Table 2. For instance,

when βs = 0.5, the FNR of the SPAC-ALasso is 0.320, only 43.4% of the FNR of

the adaptive Lasso method, indicating that the proposed SPAC-ALasso selects a

greater number of relevant covariates. Similarly, the FPR of the SPAC-ALasso

is smaller than that of the adaptive Lasso, implying that the proposed SPAC-

ALasso selects fewer irrelevant covariates. In addition, the overall false rate of
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Table 1. Results for Setting 1. The “Ratio” for each penalty-based approach is the
ratio of FPR+FNR calculated using the traditional method to the FPR+FNR from the
proposed method with the same penalty. The “Ratio” for Farm-Select (or PC-simple) is
the ratio of FPR+FNR for Farm-Select (or PC-simple) to that of SPAC-SCAD. “Violate”
represents the percentage of the original weak irrepresentable condition being violated
based on Lasso selection results for 100 simulated data.

α (0.1, 0.3, 0.8) (0.2, 0.4, 0.8) (0.3, 0.5, 0.8) (0.5, 0.7, 0.9)

Lasso
FNR 0.804 0.718 0.744 0.744

FPR 0.002 0.005 0.007 0.018

SPAC-Lasso

FNR 0.510 0.382 0.460 0.112

FPR 0.002 0.003 0.006 0.003

Ratio 1.576 1.876 1.614 6.637

ALasso
FNR 0.794 0.778 0.794 0.890

FPR 0.001 0.001 0.003 0.006

SPAC-ALasso

FNR 0.500 0.430 0.528 0.384

FPR 0.000 0.001 0.002 0.002

Ratio 1.589 1.808 1.505 2.321

SCAD
FNR 0.148 0.196 0.380 0.859

FPR 0.126 0.093 0.057 0.004

SPAC-SCAD

FNR 0.126 0.120 0.214 0.303

FPR 0.052 0.043 0.038 0.003

Ratio 1.542 1.775 1.734 2.821

Farm-Select

FNR 0.200 0.600 0.200 1.000

FPR 0.065 0.029 0.065 0.004

Ratio 1.489 3.859 1.052 3.281

PC-simple

FNR 0.496 0.530 0.696 0.892

FPR 0.003 0.004 0.005 0.007

Ratio 2.809 3.273 2.782 2.937

Violate 0.900 0.940 0.860 0.970

the SPAC-SCAD decreases much faster than that of the PC-simple algorithm as

βs increases, which is consistent with the fact that a partial correlation is unable

to fully use the signal strength, owing to its bounded range.

Because the estimation of the diagonal elements d could be inaccurate, we

investigate the robustness of the proposed method with respect to the estimation

of d in Setting 4. In this setting, we replace d̂jj in the implementation of SPAC-

Lasso with d̂jj + uj , for each j = 1, . . . , p, where uj are i.i.d. from a truncated

normal distribution with minimum value max1≤j≤p{−d̂jj}, mean zero, and vari-

ance σ2u. Here, we require the random noise uj ≥ max1≤j≤p{−d̂jj} to ensure that

d̂jj + uj is positive for each j = 1, . . . , p.

Setting 4: Let p = 500, q = 6, n = 100, βs = 0.3, and α = (0.1, 0.3, 0.8)T or
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Table 2. Results for Settings 2 and 3. The “Ratio” for each penalty-based approach is the
ratio of FPR+FNR calculated using the traditional method to the FPR+FNR from the
proposed method with the same penalty. The “Ratio” for Farm-Select (or PC-simple) is
the ratio of FPR+FNR for Farm-Select (or PC-simple) to that of SPAC-SCAD. “Violate”
represents the percentage of the original weak irrepresentable condition being violated
based on Lasso selection results for 100 simulated data.

Setting Setting 2 Setting 3

βs 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6 0.7

Lasso
FNR 0.986 0.972 0.852 0.586 0.415 0.976 0.912 0.782 0.642 0.388 0.180

FPR 0.007 0.008 0.010 0.016 0.019 0.003 0.009 0.016 0.018 0.025 0.028

SPAC-Lasso

FNR 0.921 0.639 0.357 0.094 0.020 0.904 0.692 0.334 0.182 0.044 0.006

FPR 0.003 0.007 0.012 0.019 0.021 0.002 0.003 0.009 0.011 0.013 0.014

Ratio 1.075 1.516 2.334 5.328 10.625 1.082 1.325 2.329 3.425 7.214 10.557

ALasso
FNR 0.998 0.990 0.936 0.659 0.466 0.982 0.954 0.854 0.738 0.496 0.300

FPR 0.002 0.002 0.002 0.003 0.002 0.002 0.004 0.005 0.006 0.005 0.005

SPAC-ALasso

FNR 0.969 0.806 0.565 0.340 0.249 0.914 0.744 0.478 0.320 0.108 0.042

FPR 0.001 0.001 0.001 0.001 0.000 0.001 0.002 0.002 0.002 0.002 0.001

Ratio 1.031 1.229 1.657 1.939 1.881 1.075 1.284 1.788 2.309 4.569 7.080

SCAD
FNR 0.827 0.702 0.580 0.323 0.073 0.824 0.830 0.780 0.612 0.476 0.242

FPR 0.005 0.008 0.008 0.007 0.004 0.024 0.008 0.008 0.009 0.006 0.005

SPAC-SCAD

FNR 0.513 0.296 0.108 0.013 0.001 0.774 0.499 0.298 0.158 0.078 0.032

FPR 0.007 0.007 0.004 0.002 0.001 0.005 0.006 0.007 0.004 0.004 0.002

Ratio 1.599 2.339 5.235 22.118 44.648 1.090 1.659 2.585 3.825 5.908 7.275

Farm-Select

FNR 1.000 1.000 1.000 0.850 0.800 1.000 1.000 1.000 1.000 0.400 0.200

FPR 0.000 0.001 0.005 0.006 0.006 0.016 0.016 0.024 0.000 0.029 0.029

Ratio 1.923 3.296 8.944 >50 >50 1.306 2.011 3.359 6.154 5.250 6.712

PC-simple

FNR 0.992 0.997 — — — 0.918 0.876 0.844 0.786 0.726 0.682

FPR 0.005 0.007 — — — 0.005 0.006 0.007 0.007 0.007 0.007

Ratio 1.917 3.305 — — — 1.186 1.746 2.789 4.880 8.981 20.242

Violate 0.980 0.970 1.000 1.000 1.000 0.909 0.899 0.980 0.960 0.970 1.000

(0.2, 0.4, 0.8)T . The variance parameter σu = 0, 1, 3, or 5.

The results for Setting 4 in Table 3 show that the overall false rate of the

SPAC-Lasso with noise increases as the variance σ2u increases, but that this overall

false rate is still smaller than that of the Lasso method. For example, when

α = (0.1, 0.3, 0.8)T , the overall false rate of the SPAC-Lasso with σu = 5 is 0.919

larger than that with σu = 0, but smaller than 0.989, which is the overall false

rate of the Lasso method. Thus, the proposed method is robust to certain errors

in the estimation of d. Although we use the CLIME for the estimation of d in

this study, other consistent estimators can also be used.

Setting 5: Let p = 150, q = 3, n = 80, and βs = 0.5. The parameters

α = (α1, α2, α3)
T are (0.2, 0.4, 0.8), (0.8, 0.4, 0.2), (0.1, 0.3, 0.8), (0.8, 0.3, 0.1),

(0.2, 0.4, 0.7), (0.7, 0.4, 0.2), (0.4, 0.5, 0.7), or (0.7, 0.5, 0.4).



1902 XUE AND QU

Table 3. Results for Setting 4.

α (0.1, 0.3, 0.8) (0.2, 0.4, 0.8)

Method Lasso SPAC-Lasso Lasso SPAC-Lasso

σu — 0 1 3 5 — 0 1 3 5

FNR 0.988 0.843 0.903 0.895 0.918 0.958 0.848 0.867 0.915 0.908

FPR 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.002

FNR+FPR 0.989 0.843 0.903 0.896 0.919 0.960 0.849 0.868 0.917 0.910

In Setting 5, we examine the robustness of the proposed method when the

original weak irrepresentable condition holds. As shown in Tables 4–5, the pro-

posed method still outperforms the existing methods in terms of FNR+FNP

when α3 > α1. In addition, the proposed method performs comparably to the

existing methods when α1 > α3, where the original weak irrepresentable con-

dition holds. For example, the ratios of the overall false rates of the adaptive

Lasso method to those of the proposed SPAC-ALasso are greater than 1.5 when

α3 > α1, and are equal to or quite close to one when α1 > α3. In summary, the

proposed method performs similarly to the regular penalization method when the

weak irrepresentable condition holds, but performs much better than the existing

method when the condition fails.

7. Real-Data Application

In this section, we apply the proposed method to high-dimensional genetic

data collected in the Detroit neighborhood health study (https://dnhs.unc.

edu/), a representative study focusing on post-traumatic stress disorder (PTSD)

of African American adults in Detroit, Michigan. This study collects gene ex-

pression data and post-traumatic checklists based on incident trauma exposures,

which is a 17-item set of self-reported measures of PTSD symptoms. We treat

the average of the 17 post-traumatic checklist scores as the response Y . Studies

(Logue et al. (2015); Kuan et al. (2017b)) show that gene expression is associated

with PTSD. To identify gene probes that are relevant to PTSD, we consider using

all gene probes as potential predictors.

Because there are more than 15,000 gene probes and the sample size is only

93, we first screen the gene probes based on the correlations between probes and

the marginal correlations between probes and Y . For each probe Xj , we let cj
denote the vector consisting of correlations between this probe and other probes.

Because the proposed method targets correlated data, we consider Xj to be cor-

related with others and select it if the average absolute value of the elements in

https://dnhs.unc.edu/
https://dnhs.unc.edu/
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Table 4. Results for Setting 5. The “Ratio” for each penalty-based approach is the
ratio of FPR+FNR calculated using the traditional method to the FPR+FNR from the
proposed method with the same penalty. “Violate” represents the percentage of the
original weak irrepresentable condition being violated based on Lasso selection results
for 100 simulated data.

α (0.2, 0.4, 0.8) (0.8, 0.4, 0.2) (0.1, 0.3, 0.8) (0.8, 0.3, 0.1)

Lasso
FNR 0.240 0.110 0.357 0.103

FPR 0.009 0.002 0.006 0.002

SPAC-Lasso

FNR 0.143 0.123 0.123 0.110

FPR 0.003 0.002 0.003 0.002

Ratio 1.699 0.895 2.871 0.942

ALasso
FNR 0.297 0.393 0.257 0.373

FPR 0.002 0.001 0.001 0.001

SPAC-ALasso

FNR 0.160 0.413 0.147 0.373

FPR 0.001 0.001 0.001 0.001

Ratio 1.852 0.952 1.748 1.000

SCAD
FNR 0.073 0.647 0.057 0.660

FPR 0.012 0.002 0.009 0.002

SPAC-SCAD

FNR 0.050 0.657 0.030 0.663

FPR 0.007 0.002 0.006 0.002

Ratio 1.493 0.985 1.830 0.995

Violate 0.797 0.037 0.743 0.007

cj is greater than 0.1. Moreover, we calculate the marginal correlations between

selected probes and the response variable, and filter out probes with absolute val-

ues of the marginal correlations less than 0.15, which are unlikely to be important

probes. After the screening, we retain 3, 591 gene probes for further analysis.

To evaluate the performance of the different methods, we randomly partition

all observations into 95% for training and 5% for testing, 100 times. For each

method, we estimate the parameters using the training sets, calculate the mean

number of selected probes, and compute the average prediction mean squared

errors (PMSEs) from testing sets based on 100 replications. However, the PMSEs

of the PC-simple algorithm and the Farm-Select method are unavailable; the

former only provides variable selection results, without a coefficient estimation,

and the R package of the Farm-Select method does not have an intercept in the

model. To calculate prediction errors for the two methods and compare them

to those of other methods, we adopt the OLS to estimate the coefficients of the

probes selected by each method, and calculate the PMSE based on the OLS

estimation, denoted by OLS-PMSE. The original weak irrepresentable condition

fails in each training set based on the selection results of Lasso, indicating that
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Table 5. Results for Setting 5. The “Ratio” for each penalty-based approach is the
ratio of FPR+FNR calculated using the traditional method to the FPR+FNR from the
proposed method with the same penalty. “Violate” represents the percentage of the
original weak irrepresentable condition being violated based on Lasso selection results
for 100 simulated data.

α (0.2, 0.4, 0.7) (0.7, 0.4, 0.2) (0.4, 0.5, 0.7) (0.7, 0.5, 0.4)

Lasso
FNR 0.520 0.103 0.353 0.170

FPR 0.010 0.004 0.013 0.004

SPAC-Lasso

FNR 0.303 0.110 0.163 0.193

FPR 0.007 0.004 0.006 0.004

Ratio 1.708 0.943 2.158 0.884

ALasso
FNR 0.593 0.310 0.377 0.327

FPR 0.002 0.002 0.003 0.002

SPAC-ALasso

FNR 0.380 0.310 0.200 0.350

FPR 0.001 0.002 0.002 0.003

Ratio 1.562 1.000 1.882 0.931

SCAD
FNR 0.280 0.463 0.187 0.493

FPR 0.012 0.008 0.015 0.009

SPAC-SCAD

FNR 0.140 0.473 0.133 0.497

FPR 0.006 0.008 0.010 0.010

Ratio 1.991 0.980 1.409 0.991

Violate 0.883 0.007 0.890 0.133

the proposed method is more suitable for the data than traditional methods are.

Table 6 provides the average PMSE and OLS-PMSE and the number of se-

lected probes for all the methods. According to the table, the proposed method

produces a smaller PMSE and a smaller OLS-PMSE than those of existing meth-

ods. In particular, the average OLS-PMSE of the Lasso is 18.7% more than

that of the SPAC-Lasso. Similarly, the average PMSE of the traditional adaptive

Lasso and SCAD methods are 16.2% and 17.3% more than those of the proposed

SPAC-ALasso and SPAC-SCAD, respectively. Moreover, in terms of the OLS-

PMSE, the Farm-Select method and PC-simple algorithm perform worse than

the proposed method. Among all the methods, the SPAC-ALasso produces the

smallest PMSE with relatively fewer selected probes. In addition, the prediction

errors of the methods with the SCAD penalty are larger than those of methods

with other penalties.

In addition, we apply these methods to all of the samples, and summarize the

selected probes in tables in Section S3 of the Supplementary Material. On the

one hand, ILMN 1716728, ILMN 1682259, ILMN 3307729, ILMN 1670134, ILMN 1793201,

ILMN 1811507, ILMN 1656111, and ILMN 3248844 are common probes selected by the
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Table 6. Average results for the real data.

PMSE OLS-PMSE NS

Lasso 0.9306 0.9868 73

SPAC-Lasso 0.8283 0.8310 74

ALasso 0.9568 1.0406 20

SPAC-ALasso 0.8232 0.9101 22

SCAD 1.3353 1.3164 38

SPAC-SCAD 1.1387 1.1298 39

Farm-Select — 1.2429 40

PC-simple — 1.3278 5

Lasso, SPAC-Lasso, ALasso, SPAC-ALasso, SCAD, SPAC-SCAD, and Farm-

Select. Thus, these probes are very likely to be associated with the response.

Of these, ILMN 1716728, ILMN 3307729, and ILMN 3248844 are also selected by the

PC-simple algorithm, indicating that these three probes are extremely likely to

be relevant to PTSD. On the other hand, ILMN 1663035 from the SREBF1 gene is

only selected by the proposed SPAC-Lasso and SPAC-ALasso. According to the

existing literature (Kuan et al. (2017a)), the SREBF1 gene is indeed associated

with PTSD.

In conclusion, the proposed method leads to a smaller PMSE and OLS-PMSE

than existing variable selection methods with similar numbers of selected probes,

showing that the proposed SPAC strategy improves the accuracy of variable se-

lection.

8. Conclusion

We have proposed a new variable selection approach to address the problem

in which the original irrepresentable conditions fail due to a strong dependency

between relevant and irrelevant covariates. The violation of the irrepresentable

conditions leads to inconsistency of model selection based on traditional methods.

In this paper, we introduce a semi-standard partial covariance (SPAC), which has

a clear geometric interpretation based on projections, and takes advantage of both

coefficients β and partial correlations. Moreover, we develop a SPAC method that

penalizes SPACs instead of coefficients β or partial correlations alone to mitigate

the selection of irrelevant covariates that are strongly correlated with relevant

covariates.

We establish the strong sign consistency of the proposed SPAC-Lasso and

SPAC-SCAD under high dimensionality. Specifically, we transform irrepresentable

conditions to achieve variable selection consistency, thus solving the problem of
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when the Lasso or SCAD method is not sign consistent. Because we focus on

situations in which traditional methods fail, we first check whether the original

weak irrepresentable condition holds. If it is violated, numerical studies show that

the proposed approach is more effective and outperforms the traditional variable

selection methods.

In contrast to partial correlation approaches, such as the PC-simple algo-

rithm, the proposed method takes full advantage of the signal strength, because

SPACs incorporate the magnitudes of the coefficients. This is also reflected in

the numerical studies, where the SPAC-ALasso and the PC-simple algorithm

both produce relatively small FNRs but large FPRs, because they tend to select

fewer covariates compared with other methods. However, as the signal strength

increases, the false positive rate of the SPAC-ALasso decreases significantly com-

pared with that of the PC-simple algorithm. Additionally, the proposed method

can still achieve sign consistency for nonGaussian distributed covariates, such as

categorical covariates, where a partial correlation is unable to capture the condi-

tional independence. In simulation settings with binary covariates, the proposed

method performs much better than the PC-simple algorithm in terms of overall

false rate.

Although we do not provide the theoretical properties on the consistency

of the SPAC-ALasso, the proof should be similar to that of the SPAC-Lasso.

Moreover, the SPAC idea is flexible and can be readily applied to other penalty-

based methods and the generalized linear model framework.

Supplementary Material

We provide additional conditions, theorems, tables, and corollaries, as well

as proofs for Lemma 1, all theorems, propositions, and corollaries, in the online

Supplementary Material.
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