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S1 Histograms of simulated TYS

In Section 1, we mentioned that the null distribution of Yamada and Sri-

vastava (2012)’s test statistic TYS may not be approximately normal if it

is blindly applied. To show this, in Figure S.1, we display the histograms

of the simulated TYS under the null hypothesis for a three-sample one-way

MANOVA problem. It is seen that the shapes of the histograms are mainly

controlled by the value of the tuning parameter ρ which determines the

correlation among the p-variables of the generated high-dimensional data,

that is, the larger the value of ρ is, the larger the correlation among the

p-variables. When ρ = 0.01, the histograms are quite symmetric and bell-

shaped, showing that a normal approximation to the null distribution of TYS
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Figure S.1: Histograms of the simulated TYS under the null hypothesis for a three-

sample one-way MANOVA problem. The three samples are independently generated

from Np(0,Σ) with Σ = D1/2RD1/2, D = diag(d21, . . . , d
2
p), dk = (p − k + 1)/p, k =

1, . . . , p,R = (rk`) with rk` = (−1)k+`ρ0.01|k−`|, k, ` = 1, . . . , p, for various tuning pa-

rameters [n1, n2, n3, p, ρ] showed in the subtitle of each panel.
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as suggested by Yamada and Srivastava (2012) is adequate. However, when

ρ = 0.5 and 0.9, the histograms are quite skewed, showing that a normal

approximation to the null distribution of TYS is no longer applicable since

the underlying null distribution of TYS is actually skewed while a normal

distribution is always symmetric and bell-shaped.

S2 A simulation study on Condition (2.3)

Scale-invariant tests are generally more powerful than non-scale-invariant

tests but this is not a free lunch since scale-invariant tests often require

larger sample sizes to work well than non-scale-invariant tests. This is be-

cause scale-invariant tests need to estimate the variances σrr, r = 1, . . . , p

of the p-variables of the high-dimensional data accurately to take the vari-

ations of the p-variables into account. In Remark 1, we mentioned that

Condition (2.3) is crucial for our normal-reference scale-invariant test Tn,p

to work well. It requires n should not be too small compared with log(p).

If the sample size n is too small compared with log(p), we cannot estimate

σrr’s with σ̂rr’s accurately as indicated by (2.1) and we cannot reduce study-

ing the distribution of Tn,p to studying the distribution of T ∗n,p as indicated

by (2.2). Therefore, if Condition (2.3) is violated, Tn,p may not have a good

size control.
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A question arises naturally. How large is the sample size n, compared

with log(p), needed for Tn,p to work well? To answer this question and

to address a comment from an anonymous reviewer, we conduct a small

simulation study using the setup of Simulation 1 in Section 4.1. We consider

five cases of [n/ log(p)] as [n/ log(p)] ∈ {5, 10, 20, 30, 40}, where [x] returns

the nearest integer to x to compare the performance of Tn,p against TFHW

and TSF, the two non-scale-invariant tests developed by Fujikoshi et al.

(2004) and Srivastava and Fujikoshi (2006), respectively, and TYS, the scale-

invariant test developed by Yamada and Srivastava (2012), in terms of size

control.

The empirical sizes of the four tests are shown in Table S.1. For each

value of [n/ log(p)], we display the ARE values of the four tests associated

with three values of ρ. We first investigate the case when ρ = 0.01, i.e.,

when the data are nearly uncorrelated. In this case, the null distributions

of all the four tests can be adequately approximated by the normal approx-

imation if the sample size n is sufficiently large. It is seen that when the

sample size is too small compared with log(p), i.e., when [n/ log(p)] = 5, 10,

Tn,p is rather liberal with its empirical sizes generally larger than 5% and

some of them even larger than 9% and TYS is rather conservative with its

empirical sizes generally smaller than 5% and some of them even smaller
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Table S.1: Empirical sizes (in %, Simulation on Condition (2.3)).

ρ = 0.01 ρ = 0.55 ρ = 0.95

[ n
log(p) ] Model [p, n1, n2, n3] TFHW TSF TYS Tn,p TFHW TSF TYS Tn,p TFHW TSF TYS Tn,p

5

1

[200,7,9,10] 6.44 6.80 4.99 9.59 7.71 8.06 4.11 8.91 9.10 9.36 1.68 8.27

[500,8,10,12] 5.77 5.98 3.17 8.77 7.03 7.27 3.22 8.73 8.65 8.84 1.41 8.42

[1000,9,11,14] 5.44 5.69 2.34 8.06 6.37 6.60 2.38 8.32 8.52 8.71 1.20 8.24

2

[200,7,9,10] 4.72 5.00 3.65 7.55 7.34 7.69 3.93 8.75 9.19 9.47 1.70 8.00

[500,8,10,12] 4.86 5.15 2.42 6.95 6.08 6.33 2.76 7.87 8.93 9.18 1.29 8.28

[1000,9,11,14] 4.51 4.66 1.64 6.34 5.96 6.21 1.99 7.39 8.11 8.34 1.19 8.46

3

[200,7,9,10] 5.89 6.22 3.42 7.13 7.07 7.35 3.56 8.49 8.87 9.06 1.78 8.30

[500,8,10,12] 5.24 5.50 2.04 6.14 6.83 7.09 3.00 8.41 8.11 8.29 1.37 7.85

[1000,9,11,14] 4.94 5.16 1.34 5.32 6.45 6.73 2.11 7.70 7.88 8.08 1.19 7.85

ARE 10.56 12.98 44.42 46.33 35.20 40.73 39.87 65.71 71.91 76.29 71.53 63.71

10

1

[200,14,18,20] 6.38 6.52 4.79 7.36 7.30 7.40 3.66 7.43 7.91 8.03 1.04 6.54

[500,16,20,24] 5.31 5.44 3.56 6.60 7.06 7.16 3.49 7.37 8.04 8.19 0.97 6.75

[1000,18,22,28] 5.58 5.71 3.35 6.52 6.13 6.22 2.37 6.42 7.52 7.66 0.75 6.85

2

[200,14,18,20] 5.04 5.18 4.02 6.43 6.98 7.03 3.37 6.93 7.92 7.99 0.73 6.31

[500,16,20,24] 4.45 4.52 3.33 6.02 6.52 6.66 3.28 6.75 7.21 7.34 1.02 6.37

[1000,18,22,28] 4.66 4.76 2.39 5.57 5.61 5.75 2.63 6.07 7.22 7.42 0.73 6.56

3

[200,14,18,20] 5.36 5.53 3.72 5.95 7.51 7.67 3.71 7.51 8.02 8.09 0.95 6.49

[500,16,20,24] 5.42 5.63 3.51 6.10 6.87 7.04 3.33 6.96 7.63 7.73 0.85 6.51

[1000,18,22,28] 4.97 5.09 2.45 5.39 6.17 6.30 2.85 6.41 7.50 7.57 1.04 6.74

ARE 8.91 10.71 30.84 24.31 33.67 36.07 36.24 37.44 53.27 55.60 82.04 31.38

20

1

[200,28,36,40] 5.75 5.85 4.48 5.91 6.96 7.03 3.41 6.06 7.79 7.88 0.72 6.25

[500,32,40,48] 5.83 5.93 4.25 5.67 6.48 6.57 3.36 5.97 7.47 7.52 0.80 5.89

[1000,36,44,56] 5.59 5.68 3.93 5.91 6.04 6.10 3.00 5.48 7.38 7.41 0.85 6.03

2

[200,28,36,40] 5.65 5.71 4.55 5.68 7.06 7.12 3.47 6.35 7.42 7.51 0.79 5.78

[500,32,40,48] 4.64 4.75 3.79 5.32 6.19 6.26 3.53 6.20 7.53 7.61 0.81 5.87

[1000,36,44,56] 4.97 5.02 3.53 5.35 6.18 6.23 3.34 5.83 6.94 7.01 0.61 5.82

3

[200,28,36,40] 5.56 5.61 4.33 5.73 6.38 6.43 3.04 5.71 7.22 7.28 0.50 5.79

[500,32,40,48] 5.65 5.70 4.39 5.92 6.51 6.55 3.11 5.48 6.92 6.97 0.65 6.03

[1000,36,44,56] 5.24 5.31 3.60 5.09 5.97 6.05 3.32 5.69 7.18 7.25 0.79 5.78

ARE 10.36 11.24 18.11 12.40 28.38 29.64 34.27 17.27 46.33 47.64 85.51 18.31

30

1

[200,42,54,60] 6.23 6.31 4.92 5.84 6.68 6.81 3.38 5.91 7.32 7.34 0.63 5.53

[500,48,60,72] 5.69 5.72 4.39 5.56 6.20 6.24 3.87 6.21 7.34 7.36 0.59 6.16

[1000,54,66,84] 4.66 4.71 3.77 5.03 5.57 5.64 3.20 5.33 6.88 6.93 0.85 5.66

2

[200,42,54,60] 5.41 5.47 4.62 5.59 6.91 6.95 3.26 5.95 6.91 6.94 0.47 5.18

[500,48,60,72] 5.40 5.49 4.24 5.19 6.37 6.40 3.33 5.64 7.13 7.16 0.62 5.43

[1000,54,66,84] 4.53 4.57 3.63 4.93 5.78 5.81 3.44 5.41 6.68 6.70 0.70 5.55

3

[200,42,54,60] 5.49 5.50 4.25 5.19 6.50 6.57 3.23 6.32 7.63 7.65 0.69 5.64

[500,48,60,72] 5.53 5.58 4.06 4.97 5.93 5.98 3.11 5.07 6.85 6.89 0.53 5.19

[1000,54,66,84] 5.64 5.67 4.09 5.26 6.11 6.18 3.47 5.44 6.75 6.77 0.77 5.39

ARE 11.56 12.13 15.62 6.13 24.56 25.73 32.69 13.96 41.09 41.64 87.00 10.51

40

1

[200,56,72,80] 5.84 5.84 5.25 5.92 7.02 7.07 3.28 5.74 7.01 7.02 0.59 5.40

[500,64,80,96] 5.65 5.69 4.75 5.48 6.77 6.80 3.71 5.87 7.18 7.18 0.56 5.57

[1000,72,88,112] 5.50 5.51 4.42 5.31 6.05 6.07 3.69 5.33 6.68 6.72 0.74 5.41

2

[200,56,72,80] 5.72 5.74 4.81 5.42 7.06 7.09 3.42 5.46 7.29 7.34 0.75 5.51

[500,64,80,96] 5.32 5.34 4.33 5.07 6.12 6.15 3.31 5.42 7.35 7.38 0.82 5.73

[1000,72,88,112] 4.69 4.72 3.76 4.62 6.25 6.30 3.60 5.54 6.92 6.92 0.70 5.31

3

[200,56,72,80] 5.96 6.00 5.16 5.71 6.88 6.93 3.09 5.53 7.46 7.47 0.60 5.77

[500,64,80,96] 5.35 5.42 4.52 5.32 6.00 6.03 3.42 5.37 7.46 7.48 0.56 5.89

[1000,72,88,112] 5.47 5.50 4.34 5.37 6.08 6.12 3.73 5.51 6.53 6.58 0.53 5.32

ARE 11.38 11.82 9.96 8.84 29.40 30.13 30.56 10.60 41.96 42.42 87.00 10.91
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than 2%. However, in this case, both TFHW and TSF still perform well with

their empirical sizes around 5% to 6%. This shows that scale-invariant tests

indeed need larger sample sizes than non-scale-invariant tests to work well,

as expected. It is also seen that when the sample size is sufficiently large

compared with log(p), i.e., when [n/ log(p)] = 20, 30, 40, all the four tests

perform reasonably well with their empirical sizes around 5%.

We next investigate the case when ρ = 0.55 and 0.95, i.e., when the

data are moderately or highly correlated. In these two cases, the null dis-

tributions of all the four tests cannot be well approximated by the normal

approximation even when the sample size n is sufficiently large. There-

fore, in terms of size control, it is expected that TFHW, TSF and TYS will

not perform well even when the sample size is sufficiently large, i.e., when

[n/ log(p)] = 20, 30, 40. This is actually confirmed by the empirical sizes of

the three tests presented in Table S.1 from which, it is seen that both TFHW

and TSF are liberal with their empirical sizes larger than 5% and many of

them around 7%, while TYS is conservative with its empirical sizes smaller

than 5% and many of them even smaller than 1%. Nevertheless, Tn,p per-

forms differently: when [n/ log(p)] = 5, 10, Tn,p is rather liberal with its

empirical sizes generally larger than 5% and some of them even larger than

8% and when [n/ log(p)] = 20, 30, 40, Tn,p performs well with its empirical



S3. COMPARING TN,P , T
∗
N,P , T

∗
N,P,0 AND T ∗P,0 BY SIMULATION

sizes around 5%.

The above simulation study partially demonstrates that scale-invariant

tests require larger sample sizes than non-scale-invariant tests to work well

and when the sample size n is large enough compared with log(p), i.e., when

Condition (2.3) holds approximately, in terms of size control, Tn,p performs

well regardless of whether the data are nearly uncorrelated, moderately

correlated, or highly correlated and it outperforms TFHW, TSF and TYS sub-

stantially. This latter conclusion is consistent with those drawn from the

simulation studies presented in Section 4.

S3 Comparing Tn,p, T
∗
n,p, T

∗
n,p,0 and T ∗p,0 by simulation

To address a comment from an anonymous reviewer, in this section, we

compare Tn,p, T
∗
n,p, T

∗
n,p,0, and T ∗p,0 via their kernel density estimates (KDE)

to assess if the theories established in Section 2 are valid, i.e., if the proba-

bility density functions (pdfs) of Tn,p and T ∗n,p are close to each other and if

the pdfs of T ∗n,p,0 and T ∗p,0 are close to each other. Under Conditions C1–C4

and (2.3), as n, p→∞, we have (2.2), meaning that for large samples, the

KDEs of Tn,p and T ∗n,p should be close to each other and under the condi-

tions of Theorem 1, for large samples, the KDEs of T ∗n,p,0 and T ∗p,0 should

be close to each other. In real data analysis, T ∗n,p, T
∗
n,p,0 and T ∗p,0 are not
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Figure S.2: KDEs of the simulated Tn,p, T
∗
n,p, T

∗
n,p,0 and T ∗p,0 (Tn,p: black solid curves

with triangles, T ∗n,p: red dashed curves with diamonds, T ∗n,p,0: dark blue dotted curves

with squares, T ∗p,0: orange dot-dashed curves with circles) under the null hypothesis as-

sociated with parameters [n1, n2, n3, p, ρ] from the settings under Model 1 in Simulation

1 of Section 4.1.
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Figure S.3: Same caption as that of Figure S.2 except under Model 2 in Simulation 1 of

Section 4.1.

computable but they are used to simplify the deriving process of the main

results presented in Section 2.

We first generate the high-dimensional data using the setup of Simula-

tion 1 in Section 4.1. Each time, based on the simulated data, we calculate
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Figure S.4: Same caption as that of Figure S.2 except under Model 3 in Simulation 1 of

Section 4.1.

the values of Tn,p, T
∗
n,p, and T ∗n,p,0 using the formulas in (1.6), (2.2), and

(2.6), respectively. That is,

Tn,p = n−k−2
(n−k)pq

tr(ShD̂
−1

), T ∗n,p = n−k−2
(n−k)pq

tr(ShD
−1), and

T ∗n,p,0 = (pq)−1tr(ε>HεD−1).

(S3.1)
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At the same time, to compute T ∗p,0
d
= (pq)−1

∑p
r=1 λp,rAr, Ar

i.i.d.∼ χ2
q, we ran-

domly generate zr ∼ χ2
q, r = 1 . . . , p and compute T ∗p,0 as (pq)−1

∑p
r=1 λp,rzr.

Note that in the above computations, we use the true values of D, λp,r, r =

1, . . . , p which are not available in real data applications but they are avail-

able in the simulation studies. We repeat the above process for 10, 000

times so that for each of Tn,p, T
∗
n,p, T

∗
n,p,0, and T ∗p,0, we have an indepen-

dent sample of size 10, 000 which can be used to compute the KDEs of

Tn,p, T
∗
n,p, T

∗
n,p,0, and T ∗p,0 respectively. To compute the KDEs, we use the

R-function “density” directly, i.e., the default kernel and bandwidth are

used directly without adjustment.

We first compare the KDEs of Tn,p, T
∗
n,p, T

∗
n,p,0, and T ∗p,0 when the null

hypothesis is valid. Figures S.2, S.3, and S.4 display the KDEs of the

simulated Tn,p, T
∗
n,p, T

∗
n,p,0, and T ∗p,0 (Tn,p: black solid curves with triangles,

T ∗n,p: red dashed curves with diamonds, T ∗n,p,0: dark blue dotted curves with

squares, T ∗p,0: orange dot-dashed curves with circles) associated with param-

eters [n1, n2, n3, p, ρ] from the settings under Models 1, 2, and 3, respectively

of Simulation 4.1. It is seen that the KDEs of the simulated Tn,p, T
∗
n,p, T

∗
n,p,0,

and T ∗p,0 are nearly the same under various configurations. This is consis-

tent with those theories established in Section 2. This is reasonable since

we have n/ log(p) = 35 so that Condition (2.3) is approximately valid.
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Figure S.5: KDEs of Tn,p, T
∗
n,p, T

∗
n,p,0 and T ∗p,0 under an alternative hypothesis associ-

ated with parameters [n1, n2, n3, p, ρ] from the settings under Model 1 in Simulation 1 of

Section 4.1.

We next compare the KDEs of Tn,p, T
∗
n,p, T

∗
n,p,0, and T ∗p,0 when an al-

ternative hypothesis is valid. Figures S.5 ∼ S.7 display the KDEs of the

simulated Tn,p, T
∗
n,p, T

∗
n,p,0 and T ∗p,0 under an alternative hypothesis. It is
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Figure S.6: Same caption as that of Figure S.5 except under Model 2 in Simulation 1 of

Section 4.1.

seen that the KDEs of Tn,p and T ∗n,p are close to each other, and the KDEs

T ∗n,p,0 and T ∗p,0 are close to each other. However, the KDEs of Tn,p, T
∗
n,p and

those of T ∗n,p,0, T
∗
p,0 are very different. This is not surprise since under an

alternative hypothesis, T ∗n,p and T ∗n,p,0 do not have the same distribution.
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Figure S.7: Same caption as that of Figure S.5 except under Model 3 in Simulation 1 of

Section 4.1.

From the above simulation study, we can see that for large samples,

under null or alternative hypotheses, it is reasonable to approximate the

distribution of Tn,p using that of T ∗n,p as guaranteed theoretically by (2.2)

and it is reasonable to approximate the distribution of T ∗n,p,0 using that of
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T ∗p,0 as guaranteed by Theorem 1.

S4 Comparison with some tests by Li et al. (2020)

To address a comment from an anonymous reviewer, we examine the per-

formance of Tn,p against the tests proposed by Li et al. (2020) for the GLHT

problem (1.2) under the three-sample one-way MANOVA framework con-

sidered in Simulation 1. Li et al. (2020) proposed several tests with dif-

ferent shrinkage methods to regularize the spectrum of Σ̂. To save space,

we only compare Tn,p against the composite ridge-regularized tests of Algo-

rithm 4.2 in Li et al. (2020), denoted respectively as LRc, LHc, and BNPc,

which are implemented via the R codes kindly provided by the first au-

thor of Li et al. (2020). Figures 1 ∼ 3 of Li et al. (2020) indicate that

these three tests outperform or perform not worse than other tests pro-

posed in their paper. Without loss of generality, we consider the contrast

test H0 : µ1 + 2 µ2 − 3 µ3 = 0, which can be written in the form of the

GLHT problem (1.2) with Θ = ( µ1, µ2, µ3)> and C = (1, 2,−3). Other

tuning parameters are set to be the same as those specified in Simulation 1

except we now take δ = 0.03, 0.045, 0.07 for ρ = 0.01, 0.55, 0.95 respectively.

Table S.2 displays the empirical sizes of the four tests under various

configurations. It is seen that in terms of size control, Tn,p performs well
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Table S.2: Empirical sizes (in %) of LRc, LHc, BNPc and Tn,p.

ρ = 0.01 ρ = 0.55 ρ = 0.95

Model p n0 LRc LHc BNPc Tn,p LRc LHc BNPc Tn,p LRc LHc BNPc Tn,p

1

200

80 7.53 8.83 6.38 5.06 8.53 9.35 7.55 5.36 8.74 9.23 8.19 4.98

100 7.58 8.54 6.71 5.32 7.99 8.62 7.39 5.37 8.89 9.32 8.58 4.57

120 7.65 8.33 6.85 5.55 8.24 8.78 7.73 5.05 8.76 9.07 8.43 5.27

500

80 7.66 8.80 6.61 5.73 7.97 9.22 6.85 5.39 8.65 9.49 8.06 5.39

100 7.13 8.29 6.00 5.47 7.66 8.60 6.62 5.43 9.38 9.94 8.55 5.90

120 6.66 7.84 5.61 5.09 7.63 8.46 6.75 5.35 8.41 8.99 7.98 5.12

1000

80 7.67 8.40 7.00 5.33 7.04 8.18 5.98 5.02 8.19 9.12 7.21 5.51

100 7.42 8.21 6.66 5.23 7.54 8.60 6.52 5.54 8.39 9.39 7.58 5.45

120 6.62 7.38 5.90 4.98 6.75 7.82 5.93 4.94 7.83 8.47 7.05 5.41

2

200

80 6.99 8.34 6.03 5.19 8.33 9.32 7.58 5.55 8.41 8.87 7.90 4.80

100 6.81 7.85 5.99 5.23 8.55 9.20 8.00 5.59 8.79 9.15 8.37 5.24

120 7.12 7.81 6.42 5.09 8.08 8.69 7.50 5.70 8.19 8.35 7.90 5.18

500

80 7.14 8.25 6.14 5.22 7.76 9.00 6.48 5.29 7.98 8.60 7.17 4.88

100 6.76 8.21 5.61 5.46 7.87 9.08 6.86 5.36 8.24 8.97 7.64 5.36

120 6.50 7.46 5.49 5.01 7.15 8.08 6.43 5.15 8.60 9.15 8.06 5.39

1000

80 7.28 8.10 6.57 5.33 7.48 8.61 6.36 5.67 8.71 9.77 7.82 5.49

100 6.53 7.34 5.89 5.24 6.72 8.01 5.86 5.23 8.37 9.09 7.42 5.13

120 6.27 7.19 5.65 4.71 7.14 8.04 6.28 5.25 8.04 8.79 7.31 5.32

3

200

80 7.57 8.67 6.58 5.10 8.52 9.50 7.78 6.18 8.46 9.10 7.98 4.90

100 7.16 7.90 6.36 4.82 7.71 8.40 7.11 5.21 8.61 8.92 8.22 5.21

120 7.14 7.74 6.48 5.20 7.67 8.22 7.14 5.38 8.93 9.30 8.64 5.14

500

80 7.00 8.09 6.15 5.42 7.79 9.17 6.74 5.41 8.59 9.34 7.91 5.34

100 6.89 8.10 5.97 5.31 7.80 8.96 6.82 5.88 8.32 8.90 7.76 5.35

120 6.66 7.89 5.69 5.14 7.82 8.80 6.93 5.55 8.44 9.00 7.93 5.70

1000

80 7.75 8.66 7.00 5.24 7.42 8.71 6.29 5.78 8.42 9.46 7.46 5.83

100 7.35 8.13 6.62 5.44 7.16 8.37 6.16 5.62 8.30 9.23 7.72 5.08

120 6.85 7.53 6.22 4.96 7.08 8.01 6.24 5.27 8.41 9.06 7.74 5.51

ARE 41.99 61.39 24.87 5.13 53.63 73.19 36.21 8.62 69.67 82.27 57.47 6.81

and generally outperforms the other three tests regardless of whether the

simulated data are nearly uncorrelated, moderately correlated, or highly

correlated while LRc, LHc, and BNPc are in general rather liberal as most

of their empirical sizes are larger than 7%. The empirical powers of the

four considered tests are displayed in Figure S.8 (LHc: black solid curves

with triangles, LRc: red dashed curves with diamonds, BNPc: green dotted

curves with squares, and Tn,p: blue dot-dashed curves with circles). It is

seen that when ρ = 0.01 and 0.55, LRc, LHc, and BNPc almost have no
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Figure S.8: Empirical powers (in %) of LRc, LHc, BNPc and Tn,p (LHc: black solid

curves with triangles, LRc: red dashed curves with diamonds, BNPc: green dotted curves

with squares, and Tn,p: blue dot-dashed curves with circles) associated with parameters

[p, n0] from the settings under Model 1 (1st row), Model 2 (2nd row), and Model 3 (3rd

row).
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powers under the various configurations. When ρ = 0.95, LRc, LHc, and

BNPc have higher powers than Tn,p only in the first three settings when

p = 200 and they have much lower powers than Tn,p in the remaining

settings when p = 500, 1000.

S5 Some asymptotical properties of cn,p

To address a comment from an anonymous reviewer, we derive some asymp-

totical properties of the adjustment coefficient cn,p used in the test statistic

TYS (1.4) of Yamada and Srivastava (2012). By (1.5), (2.16) and (2.17),

some simple algebra yields

cn,p = 1 +
(n− k − 1)(n− k + 2)

(n− k − 2)2

q
√
p

d̂
+

√
p

n− k
,

where d̂ is the estimated approximate degrees of freedom defined in (2.17).

Under Conditions C1–C4 and (2.4), by Theorem 2, as n, p→∞, we have

cn,p =

(
1 +

q
√
p

d

)
[1 + op(1)]. (S5.2)

According to the discussion presented in Section 2.2, when d is bounded for

all p, the normal-reference distribution of T ∗n,p,0, i.e., the distribution of T ∗p,0

will not tend to normal and in this case, by (S5.2), we have cn,p → ∞ in

probability. That is to say, when d̂ is small and cn,p is large, as in the corneal

surface data example presented in Section 5 (see Table 4), the underlying



S5. SOME ASYMPTOTICAL PROPERTIES OF cn,p

null distributions of Tn,p, TYS and T ∗
YS

are unlikely to be normal and hence

the normal approximation to the null distributions of Tn,p, TYS and T ∗
YS

is no

longer applicable.

Recall that under Conditions C1–C5, by Theorem 1(a), as n, p → ∞,

both T̃n,p,0 and T̃ ∗p,0 will tend to ζ, a non-normal random variable and under

Conditions C1–C4, and C6, by Theorem 1(b), as n, p→∞, both T̃n,p,0 and

T̃ ∗p,0 will tend to N(0, 1). Then by (2.2) and Remark 1, under Conditions

C1–C5 and (2.4), as n, p → ∞, the limiting null distribution of Tn,p after

normalization is not normal and under Conditions C1–C4, C6, and (2.4),

as n, p → ∞, the limiting null distribution of Tn,p after normalization is

normal. In these two cases, we can show that cn,p will tend to ∞ and 1

respectively.

In fact, under Condition C5 and by (2.15), as n, p→∞, we have

d =
(n− k)2p2q

(n− k − 2)2tr(R2)
→ q

(
∞∑
r=1

ρr

)2

<∞. (S5.3)

Then under Conditions C1–C5 and (2.4), we have (S5.2) so that as n, p→

∞, we have cn,p →∞ in probability. Further, under Condition C6 and by

(2.15), as n, p→∞, we have

d =
(n− k)2p2q

(n− k − 2)2tr(R2)
=
qp

a
[1 + o(1)] = O(p), (S5.4)

where a is a finite constant defined in Condition C6. Then under Conditions
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C1–C4, C6, and (2.4), we have (S5.2) so that as n, p→∞, we have cn,p =(
1 + a√

p

)
[1 + op(1)]→ 1 in probability.

The above theoretical results, together with the relationship (4.1), i.e.,

TYS = T ∗
YS
/
√
cn,p, clearly explain why when Conditions C1–C4, C6 and (2.4)

are satisfied, i.e., when the distributions of TYS and T ∗
YS

are nearly normal,

the empirical sizes and powers of TYS are close to those of T ∗
YS

and when

Conditions C1–C5 and (2.4) are satisfied, i.e., when the distributions of TYS

and T ∗
YS

are unlikely normal, the empirical sizes and powers of TYS are much

smaller than those of T ∗
YS

, as seen from Table 1 and Figure 1 presented in

Section 4.

From the above analysis, we may loosely suggest that the tests TYS and

T ∗
YS

can be used only when the value of cn,p is very close to 1 and they

should not be used when the value of cn,p is much larger than 1. However,

according to the simulation results presented in Section 4 and in Section S4,

the proposed test Tn,p can work well regardless of what value the adjustment

coefficient cn,p takes.
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S6 Technical proofs

S6.1 Proofs of (2.1) and (2.2)

Recall that σ̂rr, r = 1, . . . , p and σrr, r = 1, . . . , p are the diagonal entries

of Σ̂ and Σ, respectively. Let srr denote the r-th diagonal entry of Sh in

(1.3). Then we have

Tn,p =
n− k − 2

(n− k)pq
tr(ShD̂

−1
) =

n− k − 2

(n− k)pq

p∑
r=1

σ̂−1
rr srr

=
n− k − 2

(n− k)pq

p∑
r=1

srr
σrr

[(
σrr
σ̂rr
− 1

)
+ 1

]

= T ∗n,p +
n− k − 2

(n− k)pq

p∑
r=1

srr
σrr

(
σrr
σ̂rr
− 1

)
.

It follows that

|Tn,p − T ∗n,p| =

∣∣∣∣∣n− k − 2

(n− k)pq

p∑
r=1

srr
σrr

(
σrr
σ̂rr
− 1

)∣∣∣∣∣
≤ n− k − 2

(n− k)pq

p∑
r=1

srr
σrr

∣∣∣∣σrrσ̂rr − 1

∣∣∣∣ ≤ max
1≤r≤p

∣∣∣∣σrrσ̂rr − 1

∣∣∣∣T ∗n,p.
(S6.5)

Next, we aim to study max1≤r≤p

∣∣∣σrrσ̂rr
− 1
∣∣∣. Under Condition C1, we have

εi = (εi1, . . . , εip)
> = Γ>vi, i = 1, . . . , n which are i.i.d. p-vectors with

E(εi) = 0 and Cov(εi) = Σ. The usual unbiased estimator of Σ is Σ̂ =

(n − k)−1Se, where Se is defined in (1.3) and also can be written as Se =

ε>(In − PX)ε, where In is the usual n × n identity matrix, and PX =

X(X>X)−1X>. Let pij denote the (i, j)-th entry of PX , then we have

σ̂rr = (n−k)−1
(∑n

i=1 ε
2
ir −

∑n
i=1

∑n
j=1 εirεjrpij

)
, where εir is the r-th entry



TIANMING ZHU, LIANG ZHANG AND JIN-TING ZHANG

of εi with E(εir) = 0 and Var(εir) = σrr. It follows that

σ̂rr
σrr

= (n− k)−1

(
n∑
i=1

ε2ir
σrr
−

n∑
i=1

n∑
j=1

εirεjrpij
σrr

)
.

Then we have

√
n

(
σ̂rr
σrr
− 1

)
=

n

n− k
[
Ir1 − Ir2/(

√
nσrr)

]
,

where

Ir1 =
√
n
(
n−1

∑n
i=1

ε2ir
σrr
− 1
)
, and

Ir2 =
(∑n

i=1

∑n
j=1 εirεjrpij

)
− kσrr.

(S6.6)

It is easy to note that E(σ−1
rr ε

2
ir) = 1. Let γj`, j, ` = 1, . . . , p denote the

(j, `)-th entry of Γ. Then under Condition C1, we have εir =
∑p

j=1 γjrvij

and σrr =
∑p

j=1 γ
2
jr. Furthermore, under Conditions C1–C3, we have

E

(
ε4ir
σ2
rr

)
= σ−2

rr E

(
p∑
j=1

γ4
jrv

4
ij

)
+ 3σ−2

rr E

(∑
j 6=s

γ2
jrγ

2
`rv

2
ijv

2
i`

)

= (3 + ∆)σ−2
rr

p∑
j=1

γ4
jr + 3σ−2

rr

∑
j 6=`

γ2
jrγ

2
`r = ∆σ−2

rr

p∑
j=1

γ4
rj + 3

≤ 3 + ∆,

where we use the fact that σ−2
rr

∑p
j=1 γ

4
rj ≤ σ−2

rr (
∑p

j=1 γ
2
rj)

2 = σ−2
rr σ

2
rr = 1.

Therefore, together with Condition C4, for all r = 1, . . . , p, we have

ζrr = Var(σ−1
rr ε

2
ir) ≤ 2 + ∆ <∞, (S6.7)
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uniformly for all r. By the central limit theorem, for any r ∈ {1, . . . , p}, as

n→∞, we have

Ir1 =
√
n

(
n−1

n∑
i=1

ε2ir
σrr
− 1

)
L−→ N(0, ζrr).

We now consider Ir2. We first have E(Ir2) = 0. Since εir, i = 1, . . . , n

are i.i.d., E(εir) = 0, and Var(εir) = σrr, under Conditions C1–C3, we have

Var(Ir2) = Var

(
n∑
i=1

pii(ε
2
ir − σrr) + 2

∑
j<`

pj`εjrε`r

)

=
n∑
i=1

p2
iiVar(ε2ir − σrr) + 4

∑
j<`

p2
j`σ

2
rr

≤
n∑
i=1

p2
iiσ

2
rr(2 + ∆) + 4

∑
j<`

p2
j`σ

2
rr,

where we use the fact that by (S6.7), we have Var(ε2ir−σrr) = σ2
rrVar(σ−1

rr ε
2
ir) ≤

σ2
rr(2 + ∆). It follows that

Var(Ir2) ≤ ∆σ2
rr(

n∑
i=1

p2
ii) + 2σ2

rr(
n∑
i=1

n∑
j=1

p2
ij)

≤ (∆ + 2)σ2
rr(

n∑
i=1

n∑
j=1

p2
ij)

= (∆ + 2)kσ2
rr,

where we use the fact that
∑n

i=1 p
2
ii ≤

∑n
i=1

∑n
j=1 p

2
ij = tr(P2

X) = tr(PX) =

k. It follows that as n→∞, we have

Var
[
Ir2/(

√
nσrr)

]
= Var(Ir2)/(nσ2

rr) ≤ (∆ + 2)k/n→ 0,
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uniformly for all r = 1, . . . , p. Therefore, as n → ∞, we have Ir2/(
√
nσrr)

converges to 0 in probability uniformly. Thus, for any r ∈ {1, . . . , p}, as

n→∞, under Conditions C1–C4, we have

√
n

(
σ̂rr
σrr
− 1

)
L−→ N(0, ζrr).

Set g(x) = 1/x, x > 0. We have g′(x) = −1/x2. Set λrr = E
(
σ̂rr
σrr

)
= 1. It

follows that for any r ∈ {1, . . . , p}, as n→∞, we have

√
n

{
g

(
σ̂rr
σrr

)
− g (λrr)

}
L−→ N

{
0, [g′(λrr)]

2
ζrr

}
.

Since g(λrr) = 1 and [g′(λrr)]
2 = (−1/λ2

rr)
2

= 1, for any r ∈ {1, . . . , p}, we

have

√
n

(
σrr
σ̂rr
− 1

)
L−→ N(0, ζrr).

Then we have

Pr

[
max
1≤r≤p

∣∣∣∣ σ̂rrσrr − 1

∣∣∣∣ >√2(2 + ∆) log(p)/n

]
≤ 2

p∑
r=1

Pr

[√
n

(
σ̂rr
σrr
− 1

)
>
√

2(2 + ∆) log(p)

]

= 2

p∑
r=1

{
1− Φ

[√
2(2 + ∆) log(p)/ζrr

]}
[1 + o(1)]

≤ 2p
{

1− Φ
[√

2 log(p)
]}

[1 + o(1)]

≤ π−1/2 log(p)−1/2[1 + o(1)]→ 0,

as p→∞. As n, p→∞, we then have max1≤r≤p

∣∣∣σrrσ̂rr
− 1
∣∣∣ = Op [n−1 log(p)],

resulting in (2.1). The expression (2.2) follows from (S6.5) immediately.
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The proof is complete.

S6.2 Proof of Theorem 1

We first prove the first expression of Part (a). Write T ∗n,p,0 = (pq)−1tr(Z>HZ),

where Z = εD−1/2 = (z1, . . . , zn)> with z1, . . . , zn being i.i.d. with E(z1) =

0 and Cov(z1) = R. Let up,1, . . . ,up,p denote the orthonormal eigenvectors

associated with the eigenvalues λp,1, . . . , λp,p of R in descending order. We

can write zi =
∑p

r=1 ξirup,r, i = 1, . . . , n. It is known that ξir, r = 1, . . . , p

are uncorrelated with E(ξir) = 0 and Var(ξir) = λp,r. It follows that

z>i zi =
∑p

r=1 ξ
2
ir and z>i zj =

∑p
r=1 ξirξjr. Thus, T ∗n,p,0 = (pq)−1

∑p
r=1Bn,r,

where Bn,r = ξ>r H ξr with ξr = (ξ1r, . . . , ξnr)
>, r = 1, . . . , p. Set

Wn = [C(X>X)−1C>]−1/2C(X>X)−1X>, (S6.8)

a q × n matrix of rank q. We have H = W>
nWn and WnW

>
n = Iq. In

addition, we have tr(H) = q and tr(H2) = q.

Let hij denote the (i, j)-th entry of H. We have Bn,r =
∑n

i=1 hiiξ
2
ir +

2
∑

1≤i<j≤n hijξirξjr, r = 1, . . . , p. It follows that E(Bn,r) =
∑n

i=1 hiiλp,r =

qλp,r and Var(Bn,r) =
∑n

i=1 h
2
iiVar(ξ2

ir) + 4
∑

1≤i<j≤n h
2
ijλ

2
p,r. Under Condi-

tion C1, we have ξ2
ir = (z>i up,r)

2 = v>i Svi where E(vi) = 0 and Cov(vi) = Ip

and S = R1/2up,ru
>
p,rR

1/2. Then we have tr(S2) = (u>p,rRup,r)
2 = λ2

p,r. Un-

der Conditions C1, C2, and C4, applying Lemma 6.1 (b) of Srivastava and
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Kubokawa (2013), we have Var(ξ2
ir) = Var(v>i Svi) = ∆

∑p
r=1 s

2
rr+2tr(S2) ≤

(∆ + 2)tr(S2) = (∆ + 2)λ2
p,r, where srr’s denote the diagonal entries of S.

It follows that

Var(Bn,r) =
n∑
i=1

h2
iiVar(ξ2

ir)+4
∑

1≤i<j≤n

h2
ijλ

2
p,r ≤ (2q+∆

n∑
i=1

h2
ii)λ

2
p,r, (S6.9)

where we use the fact that
∑n

i=1

∑n
j=1 h

2
ij = tr(H2) = q.

Write T̃ ∗n,p,0 = [pqT ∗n,p,0 − qtr(R)]/[2qtr(R2)]1/2 = [
∑p

r=1(Bn,r − qλp,r)]/

[2qtr(R2)]1/2. Set T̃
∗(m)
n,p,0 = [

∑m
r=1(Bn,r − qλp,r)]/[2qtr(R2)]1/2. By (S6.9), we

have

E
(
T̃ ∗n,p,0 − T̃

∗(m)
n,p,0

)2

= E
{∑p

r=m+1(Bn,r − qλp,r)/[2qtr(R2)]1/2
}2

= Var
(∑q

r=m+1 Bn,r

)
/[2qtr(R2)] ≤

[∑q
r=m+1

√
Var(Bn,r)

]2

/[2qtr(R2)]

≤ (2q + ∆
∑n

i=1 h
2
ii)
(∑q

r=m+1 λp,r
)2
/[2qtr(R2)]

=
(

1 + ∆
2q

∑n
i=1 h

2
ii

) (∑q
r=m+1 ρp,r

)2
.

It follows that

|ψT̃ ∗
n,p,0

(t)− ψ
T̃

∗(m)
n,p,0

(t)| ≤ |t|
[
E(T̃ ∗n,p,0 − T̃

∗(m)
n,p,0 )2

]1/2

≤ |t|
(

1 + ∆
2q

∑n
i=1 h

2
ii

)1/2∑p
r=m+1 ρp,r,

where ψT̃ ∗
n,p,0

(t) and ψ
T̃

∗(m)
n,p,0

(t) are the characteristic functions of T̃ ∗n,p,0 and

T̃
∗(m)
n,p,0 , respectively.

Let t be fixed. By Condition C5, for any fixed m, as p → ∞, we have∑∞
r=1 ρr <∞ and

p∑
r=m+1

ρp,r =

p∑
r=1

ρp,r −
m∑
r=1

ρp,r →
∞∑
r=1

ρr −
m∑
r=1

ρr →
∞∑

r=m+1

ρr.
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By letting m → ∞, we further have
∑∞

r=m+1 ρr → 0. Notice that under

Condition C3, we have
∑n

i=1 h
2
ii = O(n−1). Thus, for any given ε > 0,

there exist P1, M1 and N1, depending on t and ε, such that for any p ≥ P1,

m ≥M1 and n ≥ N1, we have

|ψT̃ ∗
n,p,0

(t)− ψ
T̃

∗(m)
n,p,0

(t)| ≤ ε. (S6.10)

Set ζn,r = Wn ξr, r = 1, . . . , p where Wn is defined in (S6.8). Then

Bn,r = ξ>r H ξr = ‖ ζn,r‖2, r = 1, . . . , p. For any fixed finite r, by the

central limit theorem, as n→∞, we have ζn,r
L−→ ζr ∼ Nq(0, λp,rIq) and

hence Bn,r
d
= λp,rAr, Ar ∼ χ2

q. Therefore, for any fixed p ≥ P1,m ≥ M1,

as n → ∞, we have T̃
∗(m)
n,p,0

L−→ T̃
(m)
p,0 where T̃

(m)
p,0 =

∑m
r=1 ρp,r(Ar − q)/

√
2q.

That is, under Condition C3, there exists N2, depending on p,m, t and ε,

such that for any n ≥ N2 we have

∣∣ψ
T̃

∗(m)
n,p,0

(t)− ψ
T̃

(m)
p,0

(t)
∣∣ ≤ ε. (S6.11)

Recall that ζ =
∑∞

r=1 ρr(Ar − q)/
√

2q. Set ζ(m) =
∑m

r=1 ρr(Ar − q)/
√

2q.

Then, under Condition C5, for any fixed m, as p → ∞, we have T̃
(m)
p,0

L−→

ζ(m). That is, there exists a P2, depending on m, t and ε, such that for any

p ≥ P2 we have

∣∣ψ
T̃

(m)
p,0

(t)− ψζ(m)(t)
∣∣ ≤ ε. (S6.12)
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Furthermore, we have

∣∣ψζ(m)(t)− ψζ(t)
∣∣ ≤ |t|

{
E

[∑∞
r=m+1 ρr(Ar − q)/

√
2q

]2}1/2

≤ |t|
{

Var

[∑∞
r=m+1 ρr(Ar − q)/

√
2q

]}1/2

= |t|
(∑∞

r=m+1 ρ
2
r

)1/2

≤ |t|
(∑∞

r=m+1 ρr

)
,

which, under Condition C5, tends to 0 as m→∞. Thus, there exists M2,

depending on t and ε, such that for any m ≥M2 we have

∣∣ψζ(m)(t)− ψζ(t)
∣∣ ≤ ε. (S6.13)

It follows from (S6.10)–(S6.13) that for any n ≥ max(N1, N2), p ≥ max(P1, P2)

and m ≥ max(M1,M2) we have

∣∣ψT̃ ∗
n,p,0

(t)− ψζ(t)
∣∣ ≤ ∣∣ψT̃ ∗

n,p,0
(t)− ψ

T̃
∗(m)
n,p,0

(t)
∣∣+
∣∣ψ

T̃
∗(m)
n,p,0

(t)− ψ
T̃

(m)
p,0

(t)
∣∣

+
∣∣ψ

T̃
(m)
p,0

(t)− ψζ(m)(t)
∣∣+
∣∣ψζ(m)(t)− ψζ(t)

∣∣ ≤ 4ε.

The convergence in distribution of T̃ ∗n,p,0 to ζ given in (2.11) follows as we

can let ε→ 0. The first expression of Theorem 1(a) is then proved.

When the measurement error matrix ε are normally distributed, Con-

ditions C1 and C2 are automatically satisfied and we have T ∗n,p,0
d
= T ∗p,0

so that under Conditions C3, C4, and C5, the second expression of (2.11)

follows immediately.

We now prove (b). Under Conditions C1–C4, and C6, the first expres-
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sion of (2.12) follows from Theorem 2.1 of Srivastava and Kubokawa (2013).

Again, when the measurement error matrix ε are normally distributed, Con-

ditions C1 and C2 are automatically satisfied and we have T ∗n,p,0
d
= T ∗p,0 so

that the second expression of (2.12) follows immediately too.

Set x̃ = (x − 1)/
[
2p−2q−1tr(R2)

]1/2
for any real number x. Since the

limit ζ is a continuous random variable, by Lemma 2.11 of Vaart (1998),

the uniform convergence result given in (2.13) follows directly from the

convergence in distribution of both T̃ ∗n,p,0 and T̃ ∗p,0 to ζ and the triangular

inequality:

sup
x

∣∣Pr(T ∗n,p,0 ≤ x)− Pr(T ∗p,0 ≤ x)
∣∣ = sup

x

∣∣Pr(T̃ ∗n,p,0 ≤ x̃)− Pr(T̃ ∗p,0 ≤ x̃)
∣∣

≤ sup
x

∣∣Pr(T̃ ∗n,p,0 ≤ x̃)− Pr(ζ ≤ x̃)
∣∣+ sup

x

∣∣Pr(T̃ ∗p,0 ≤ x̃)− Pr(ζ ≤ x̃)
∣∣→ 0,

as n, p→∞. The theorem is then proved.

S6.3 Proof of Theorem 2

Notice that we can treat R as the covariance matrix of “the transformed

data” ε∗i = D−1/2εi, i = 1, . . . , n. Under Conditions C1–C3, by Zhang et al.

(2020), the ratio-consistent estimator of tr(R2) is given by

(n− k)2

(n− k − 1)(n− k + 2)

[
tr(R̃

2
)− 1

n− k
tr2(R̃)

]
,
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where R̃ = D−1/2Σ̂D−1/2. Notice that under Conditions C1–C4, by (2.1)

and (2.3), we can write D̂
−1

= D−1[1 + op(1)]. It follows that tr(R̂) =

tr(R̃)[1 + op(1)] and tr(R̂
2
) = tr(R̃

2
)[1 + op(1)]. Therefore,

t̂r(R2) =
(n− k)2

(n− k − 1)(n− k + 2)

[
tr(R̂

2
)− 1

n− k
tr2(R̂)

]
,

is ratio-consistent for tr(R2) as desired. That is, as n, p → ∞, we have

t̂r(R2)/tr(R2) → 1 in probability. It follows that as n, p → ∞, we have

d̂/d→ 1 in probability. The theorem is proved.

S6.4 Proof of Theorem 3

First of all, under Conditions C1–C4 and (2.3), by Theorem 2, d̂ (2.17) is a

ratio-consistent estimator of d (2.15). We now prove (a). Under (2.3), we

have Tn,p = T ∗n,p[1 + op(1)]. This, together with (2.5) and (2.18), we have

Tn,p = [T ∗n,p,0+(pq)−1tr( ΩD−1)][1+op(1)]. Under Conditions C1–C5, Theo-

rem 1(a) indicates that as n, p→∞, we have (T ∗n,p,0−1)/[2p−2q−1tr(R2)]1/2
L−→
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ζ. We then have

Pr
[
Tn,p ≥ χ2

d̂
(α)/d̂

]
= Pr

[
T ∗n,p,0 ≥ χ2

d̂
(α)/d̂− (pq)−1tr( ΩD−1)

]
[1 + o(1)]

= Pr

[
T ∗
n,p,0−1√

2p−2q−1tr(R2
)
≥ χ2

d̂
(α)/d̂−1√

2p−2q−1tr(R2
)
− tr( ΩD−1

)√
2qtr(R2

)

]
[1 + o(1)]

= Pr

[
ζ ≥ χ2

d(α)/d−1√
2p−2q−1tr(R2

)
− tr( ΩD−1

)√
2qtr(R2

)

]
[1 + o(1)]

= Pr

[
ζ ≥ χ2

d(α)−d√
2d
− tr( ΩD−1

)√
2qtr(R2

)

]
[1 + o(1)].

Part (a) is proved.

Next we prove Part (b). Under Conditions C1–C4 and C6, by Theo-

rem 1(b), we have (T ∗n,p,0 − 1)/[2p−2q−1tr(R2)]1/2
L−→ N(0, 1) and (T ∗p,0 −

1)/[2p−2q−1tr(R2)]1/2
L−→ N(0, 1) as n, p → ∞. Since T ∗p,0 is a chi-square

type mixture, by Theorems 4 and 5 of Zhang et al. (2020), we have d →

∞ as p → ∞. It follows that (χ2
d − d)/

√
2d

L−→ N(0, 1) and hence

[χ2
d(α) − d]/

√
2d → zα where zα denotes the upper 100% percentile of

N(0, 1). It follows that under the given conditions, as n, p→∞, we have

Pr
[
Tn,p ≥ χ2

d̂
(α)/d̂

]
= Pr

[
T ∗n,p,0 ≥ χ2

d̂
(α)/d̂− (pq)−1tr( ΩD−1)

]
[1 + o(1)]

= Pr

[
T ∗
n,p,0−1√

2p−2q−1tr(R2
)
≥ χ2

d(α)−d√
2d
− tr( ΩD−1

)√
2qtr(R2

)

]
[1 + o(1)]

= Φ

[
−zα + tr( ΩD−1

)√
2qtr(R2

)

]
[1 + o(1)],

where Φ(·) denotes the cumulative distribution of N(0, 1). The proof is

complete.
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