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Abstract: Recently, several non-scale-invariant and scale-invariant tests have been

proposed for a general linear hypothesis testing problem for high-dimensional data,

which include one-way and two-way MANOVA tests as special cases. Many of these

tests impose strong assumptions on the underlying covariance matrix to ensure that

their test statistics are asymptotically normally distributed. However, a simulation

example and some theoretical justifications indicate that these assumptions are

rarely satisfied in practice. As a result, these tests may not be able to maintain

their nominal size well. To overcome this problem, we propose a normal-reference

scale-invariant test. The test has good size control and power, without imposing

strong assumptions on the underlying covariance or correlation matrix. A real-data

example and several simulation studies demonstrate that the proposed test has much

better size control and power than several non-scale-invariant and scale-invariant

tests.

Key words and phrases: General linear hypothesis testing, high-dimensional linear

regression, scale-invariant test.

1. Introduction

Modern data collecting and storing technologies mean that many variables

are often observed on a few subjects in scientific fields such as biology, medicine,

genetics, economics, finance, and so on, resulting in so-called high-dimensional

data. Analyzing such data is challenging, because the dimension of the data

may be much larger than the sample size. This study is motivated by a corneal

surface data set described in Locantore et al. (1999). The data are from a con-

sulting project on a keratoconus disease study with Ms. Nancy Tripoli and Dr.

Kenneth L. Cohen of the Department of Ophthalmology, University of North

Carolina at Chapel Hill. According to varying degrees of the keratoconus dis-

ease, when the corneas are misshaped, 150 corneal surfaces are classified into

four groups, and each corneal surface has 6,912 measurements. Of interest is to
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check whether the four corneal surface groups have the same mean corneal sur-

face. Because the data dimension is much larger than the total sample size, this is

a special case of a one-way multivariate analysis of variance (MANOVA) problem

for high-dimensional data, which tests the equality of the mean vectors of several

independent high-dimensional samples. The classical one-way MANOVA tests,

such as Lawley–Hotelling’s and Bartlett–Nanda–Pillai’s trace tests, require that

the data dimension be much smaller than the total sample size, and hence are

not applicable.

It is well known that the one-way MANOVA problem is a special case of

the general linear hypothesis testing (GLHT) problem in multivariate linear re-

gression. We are interested in the GLHT problem in high-dimensional linear

regression where both the response variable and the regression coefficient are

high-dimensional. Mathematically, suppose Y = (y1, . . . ,yn)> is an n × p re-

sponse matrix obtained by independently observing a p-dimensional response

variable for n subjects, where n can be much smaller than p, X = (x1, . . . ,xn)>

is a known n× k full-rank design matrix with rank(X) = k < n− 2, Θ is a k× p
unknown parameter matrix, and ε = (ε1, . . . , εn)> is an n×p error matrix, where

εi, for i = 1, . . . , n are independent and identically distributed (i.i.d.) with mean

vector E(εi) = 0 and covariance matrix Cov(εi) = Σ. A high-dimensional linear

regression model can then be expressed as

Y = XΘ + ε. (1.1)

Of interest is to test the following GLHT problem:

H0 : CΘ = 0, versus H1 : CΘ 6= 0, (1.2)

where C is a known matrix of size q × k, with rank(C) = q < k.

Note that the usual least squares estimator of Θ is given by Θ̂ = (X>X)−1X>Y.

Then, the variation matrices due to the hypothesis and error, denoted as Sh and

Se, respectively, can be expressed as

Sh = (CΘ̂)>[C(X>X)−1C>]−1CΘ̂ = Y>HY, and

Se = (Y−XΘ̂)>(Y−XΘ̂) = Y>(In −PX)Y,
(1.3)

where In is the usual n × n identity matrix, and PX = X(X>X)−1X> and

H = X(X>X)−1C>[C(X>X)−1C>]−1C(X>X)−1X> are two useful idempotent

matrices of ranks k and q, respectively.

In high-dimensional linear regression settings, where the sample size n is
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much smaller than the data dimension p, the associated Se : p× p is, in general,

degenerate, because its rank is not more than n − k, and hence is much smaller

than p. Hence, the classical likelihood-ratio tests, such as Lawley–Hotelling’s and

Bartlett–Nanda–Pillai’s trace tests, cannot be applied. Even when these tests can

be well defined, they are no longer powerful (Bai and Saranadasa (1996)). To

overcome this difficulty, several scale-invariant and non-scale-invariant tests have

been proposed. Throughout this paper, a test is called scale-invariant if it is

invariant under a scale transformation of the p-variables. Scale-invariant tests

include those of Srivastava (2007), Yamada and Srivastava (2012), and Srivas-

tava and Kubokawa (2013), among others, while non-scale-invariant tests include

those of Takeda (1999), Fujikoshi, Himeno and Wakaki (2004), Srivastava and

Fujikoshi (2006), Schott (2007), and Zhang, Guo and Zhou (2017), among oth-

ers. Because it is quite common that the p-variables of high-dimensional data

may have different scales, a scale-invariant test often has greater power than a

non-scale-invariant test. Therefore, a scale-invariant test may be preferred to

a non-scale-invariant test, although the former often requires some stronger as-

sumptions. Except for Zhang, Guo and Zhou (2017), who proposed a simple and

adaptive non-scale-invariant test for a GLHT problem in the one-way MANOVA

setting without imposing strong assumptions on the underlying covariance ma-

trix, most of the above tests impose strong assumptions on the underlying covari-

ance or correlation matrix to ensure that their test statistics are asymptotically

normally distributed. In practice, however, these assumptions are rarely satisfied

or hardly checked. This means that, in practice, these tests may not maintain

their size well, causing misleading conclusions.

To appreciate this, let us consider the scale-invariant one-way MANOVA test

proposed by Yamada and Srivastava (2012) as an example. Let Σ̂ = (n− k)−1Se
be the usual unbiased estimator of Σ, and let D̂ = diag(Σ̂) be a diagonal matrix

formed by the diagonal entries of Σ̂. Let tr(·) denote the usual trace operation.

Then, the test statistic of Yamada and Srivastava (2012) can be expressed as

TYS =
tr(ShD̂

−1
)− (n− k)pq/(n− k − 2)

{2q[tr(R̂2
)− p2/(n− k)]cn,p}1/2

, (1.4)

where

R̂ = D̂
−1/2

Σ̂D̂
−1/2

and cn,p = 1 +
tr(R̂

2
)

p3/2
(1.5)

are the sample correlation matrix and the so-called adjustment coefficient, re-

spectively, used to improve the convergence of TYS to the standard normal dis-
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tribution. Yamada and Srivastava (2012) showed that under some regularity

conditions, TYS is asymptotically normally distributed. However, in a real data

analysis, as indicated by the histograms of the simulated TYS presented in Sec-

tion S1 of the Supplementary Material, TYS may not always be asymptotically

normally distributed if it is blindly applied.

To overcome the above problem, we consider an extension of Zhang, Zhu

and Zhang (2020, ZZZ) to the GLHT problem (1.2) in high-dimensional linear

regression, resulting in a new scale-invariant test with the following test statistic:

Tn,p =
n− k − 2

(n− k)pq
tr(ShD̂

−1
), (1.6)

where Sh and D̂ are defined as in (1.3) and (1.4), respectively. It is seen from (1.4)

and (1.6) that Tn,p has a close relation with TYS, and Tn,p is always nonnegative,

but TYS takes both positive and negative values.

The main contributions of this work, compared with ZZZ, are as follows.

First, we consider the GLHT problem in high-dimensional linear regression, which

not only includes the two-sample problem of ZZZ as a special case, but also

includes one-way and two-way MANOVA tests and their post hoc and contrast

tests as special cases. Therefore, the application range of this work is much

larger than that of ZZZ. Second, the test statistic (1.6) presented here is more

complicated than that in ZZZ, and includes a constant factor (n− k− 2)/(n− k)

that does not appear in the test statistic of ZZZ. This constant factor is used to

take the sample size n and the number of the predictors k into account. It has

a strong impact on the performance of the proposed test. It allows the proposed

test to work well, even when the sample size is not that large compared with

log(p), as demonstrated in a simulation study presented in the Supplementary

Material. Third, following ZZZ, we assume Condition (2.3), which guarantees

that the test statistic Tn,p can be well approximated by its simplified version

T ∗n,p, obtained by replacing the diagonal matrix D̂ with the underlying diagonal

matrix D. This condition requires that the sample size n should not be too small

compared with log(p). However, in constrast to ZZZ, we establish (2.1) and

(2.2) under our own Conditions C1–C4, with their nontrivial proofs presented

in Section S2 of the Supplementary Material. Fourth, following ZZZ, we show

that the test statistic Tn,p and a χ2-type mixture have the same normal and

nonnormal limiting distributions. However, the χ2-type mixture (2.8) obtained

here is much more complicated than that of ZZZ, as is the resulting nonnormal

limiting distribution. Furthermore, the proof of Theorem 1 is much more involved

than that of Theorem 1 of ZZZ. Fifth, intensive simulation studies presented
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here and in the Supplementary Material demonstrate that, in general, in terms

of size control and power, the proposed test outperforms the tests proposed by

Fujikoshi, Himeno and Wakaki (2004), Srivastava and Fujikoshi (2006), Yamada

and Srivastava (2012), and Li, Aue and Paul (2020).

The rest of the paper is organized as follows. The main results are presented

in Section 2. As two special cases of the GLHT problem, one-way and two-way

MANOVA tests are briefly discussed in Section 3. Simulation studies and an

application to the corneal surface data set are given in Sections 4 and 5, respec-

tively. We conclude the paper in Section 6. Additional discussions, additional

simulation studies, and technical proofs of the main results are relegated to the

Supplementary Material.

2. Main Results

2.1. Asymptotic null distribution

To test the GLHT problem (1.2), it is necessary to derive the null distribution

of Tn,p. To this end, we first consider T ∗n,p = (n− k − 2)/((n− k)pq)tr(ShD
−1),

which is obtained by replacing D̂ in the expression (1.6) with D = diag(Σ), the

population version of D̂. Let σ̂rr, for r = 1, . . . , p, and σrr, for r = 1, . . . , p, be

the diagonal entries of Σ̂ and Σ, respectively. Then, D̂ = diag(σ̂11, . . . , σ̂pp) and

D = diag(σ11, . . . , σpp). Under Conditions C1–C4, it is shown in Section S6.1 of

the Supplementary Material that as n, p→∞, we have

max
1≤r≤p

∣∣∣σrr
σ̂rr
− 1
∣∣∣ = Op

[
n−1 log(p)

]
, (2.1)

and

Tn,p = T ∗n,p
{

1 +Op
[
n−1 log(p)

]}
, (2.2)

where Op(·) denotes the “bounded in probability” operation. That is, Tn,p and

T ∗n,p have the same distribution asymptotically, provided that

log(p) = o(n). (2.3)

Remark 1. Condition (2.3) requires that the sample size n should not be too

small compared with log(p). This condition is actually weaker than the condition

n = O(pδ), δ >
1

2
, as p→∞, (2.4)

imposed as Assumption A0 in Yamada and Srivastava (2012), because in this

case, we have log(p)/n = [log(p)/pδ][pδ/n]→ 0 as p→∞. It is also weaker than
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the condition as n, p→∞, p/n→ c, where c is some constant, as imposed in Bai

and Saranadasa (1996, Theorem 2.1) and Li, Aue and Paul (2020, Condition C2)

for high-dimensional hypothesis testing, because in this case, as n, p → ∞, we

have log(p)/n = [log(p)/p](p/n) → 0. Condition (2.3) is crucial to the proposed

test. When it is not satisfied, we cannot estimate the component variances σrr
accurately, as indicated by (2.1), and the study of the distribution of Tn,p cannot

be reduced to that of T ∗n,p, as indicated by (2.2). That is, the resulting test will

be less accurate in terms of size control. This is partially verified by a small

simulation study presented in Section S2 of the Supplementary Material.

For further study, we can write

T ∗n,p =
n− k − 2

n− k
[
T ∗n,p,0 + 2Sn,p + (pq)−1tr( ΩD−1)

]
, (2.5)

where

T ∗n,p,0 = (pq)−1tr(ε>HεD−1), Sn,p = (pq)−1tr[(XΘ)>HεD−1],

Ω = (CΘ)>[C(X>X)−1C>]−1(CΘ). (2.6)

It is clear that under the null hypothesis, as n→∞, we have

T ∗n,p
d
=
n− k − 2

n− k
T ∗n,p,0 = T ∗n,p,0[1 + o(1)], (2.7)

where
d
= denotes equality in distribution. Therefore, studying the asymptotic dis-

tribution of T ∗n,p under the null hypothesis is equivalent to studying the asymp-

totic distribution of T ∗n,p,0. Let R = D−1/2ΣD−1/2 be the population corre-

lation matrix associated with Σ. Let λp,1, . . . , λp,p be the eigenvalues of R in

descending order. When the rows of the measurement error matrix ε are nor-

mally distributed, the distribution of T ∗n,p,0 is the same as that of the following

chi-square-type mixture,

T ∗p,0
d
= (pq)−1

p∑
r=1

λp,rAr, Ar
i.i.d.∼ χ2

q , (2.8)

where χ2
v denotes a chi-square distribution with v degrees of freedom. Note that

the distribution of T ∗p,0 is not connected to the sample size n. For further study,

the first three cumulants of T ∗p,0 are given by E(T ∗p,0) = 1,

Var(T ∗p,0) =
2tr(R2)

p2q
, and E[T ∗p,0 − E(T ∗p,0)]

3 =
8tr(R3)

p3q2
. (2.9)
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In addition, the skewness of T ∗p,0 is given by

E[T ∗p,0 − E(T ∗p,0)]
3

Var3/2(T ∗p,0)
=

√
8

d∗
, where d∗ = q

tr3(R2)

tr2(R3)
. (2.10)

To derive the limiting distributions of T ∗n,p,0 and T ∗p,0 when both n and p tend to

infinity, we set ρp,r = λp,r/[tr(R
2)]1/2, for r = 1, . . . , p, which are the eigenvalues

of R/[tr(R2)]1/2 in descending order, and impose the following conditions:

C1. In the linear regression model (1.1), we can write ε = VΓ, where Γ is a p×p
matrix such that Γ>Γ = Σ, and V = (v1, . . . ,vn)>, with v1, . . . ,vn being

i.i.d. with E(v1) = 0 and Cov(v1) = Ip.

C2. Assume E(v41r) = 3 + ∆ < ∞ where v1r is the rth component of v1, ∆ is

some constant, and E(v`111 · · · v
`p
1p) = 0 (or 1) when there is one `r equal to

one or there are two vk equal to two whenever `1 + · · · + `p = 4, where

`1, . . . , `p are nonnegative integers.

C3. For H = (hij), hij = O(n−1), for i, j = 1, . . . , n.

C4. There exist two constants c1 and c2 such that 0 < c1 ≤ min1≤r≤p σrr ≤
max1≤r≤p σrr ≤ c2 <∞, for all p.

C5. There exist real numbers ρr, r = 1, 2, . . . , such that limp→∞ ρp,r = ρr, r =

1, 2, . . . , uniformly and limp→∞
∑p

r=1 ρp,r =
∑∞

r=1 ρr <∞.

C6. lim
p→∞

tr(R2)/p = a ∈ (0,∞) and lim
p→∞

tr(R4)/p2 = 0.

Condition C1 specifies a factor model for the measurement error matrix ε.

Condition C2 assumes that the components of v1 have finite fourth moments

and are nearly independent. For normally distributed vi, for i = 1, . . . , n, with

zero mean vector and identity covariance matrix, Condition C2 is satisfied with

∆ = 0. Condition C3 is satisfied as long as n−1X>X tends to a positive-definite

matrix. Condition C4 is regular for scale-invariant tests. Condition C5 ensures

the existence of the limits of the eigenvalues of R/[tr(R2)]1/2 as n, p → ∞, and

that the limit and summation operations in limn,p→∞
∑p

r=1 ρp,r are exchangeable.

It guarantees that the distributions of the normalized T ∗n,p,0 and T ∗p,0, namely,

T̃ ∗n,p,0 =
T ∗n,p,0 − 1√

2p−2q−1tr(R2)
, and T̃ ∗p,0 =

T ∗p,0 − 1√
2p−2q−1tr(R2)

,

are not normally distributed. Condition C6 is imposed by Srivastava and Kubokawa

(2013), and is a key condition for the asymptotic normality of T̃ ∗n,p,0 and T̃ ∗p,0. In
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practice, Condition C6 may not be satisfied or is rarely be checked. Fortunately,

Condition C6 is not a necessary condition for us to conduct the proposed test

with the W–S χ2-approximation. Let
L−→ denote convergence in distribution.

Theorem 1.

(a) Under Conditions C1–C5, as n, p→∞, we have

T̃ ∗n,p,0
L−→ ζ, and T̃ ∗p,0

L−→ ζ, (2.11)

where ζ
d
=
∑∞

r=1 ρr(Ar − q)/
√

2q, Ar
i.i.d.∼ χ2

q .

(b) Under Conditions C1–C4 and C6, as n, p→∞, we have

T̃ ∗n,p,0
L−→ N(0, 1), and T̃ ∗p,0

L−→ N(0, 1). (2.12)

Therefore, under the conditions of either (a) or (b), as n, p→∞, we have

sup
x
|Pr(T ∗n,p,0 ≤ x)− Pr(T ∗p,0 ≤ x)| → 0. (2.13)

Theorem 1 provides a theoretical justification for us to use the distribution

of T ∗p,0 to approximate the distribution of T ∗n,p,0. Note that T ∗p,0 is obtained when

the rows of the measurement error matrix ε are i.i.d. normally distributed. Thus,

we call the distribution of T ∗p,0 the normal-reference distribution of T ∗n,p,0, and the

resulting test the normal-reference scale-invariant test.

2.2. Implementation

To implement the proposed normal-reference scale-invariant test, under Con-

ditions C1–C4, (2.3), and the null hypothesis, by (2.2), we may approximate the

distribution of Tn,p with that of T ∗n,p, and by (2.7), we may approximate the distri-

bution of T ∗n,p with that of T ∗n,p,0. Theorem 1 shows that under Conditions C1–C4

and (2.3), if Condition C5 or C6 is satisfied, we may approximate the distribution

of T ∗n,p,0 with that of T ∗p,0; see the numerical comparison of the distributions of

Tn,p, T
∗
n,p, T

∗
n,p,0, and T ∗p,0 in Section S3 of the Supplementary Material. Note that

T ∗p,0 is a χ2-type mixture with unknown coefficients λp,r, for r = 1, . . . , p, and it

is always nonnegative and usually skewed. This indicates that the null distribu-

tion of Tn,p is generally skewed, although it may be asymptotically normal under

some regularity conditions. Therefore, the normal approximation to the null dis-

tribution of Tn,p as used in Fujikoshi, Himeno and Wakaki (2004), Srivastava and

Fujikoshi (2006), Yamada and Srivastava (2012), and Srivastava and Kubokawa
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(2013) is not always appropriate because a normal distribution is always sym-

metric and bell-shaped. To overcome this difficulty, we suggest approximating

the null distribution of Tn,p by the well-known W–S χ2-approximation. Under

Conditions C1–C4, (2.3) and the null hypothesis, by (2.2), as n, p→∞, we have

that E(Tn,p) tends to E(T ∗n,p) = 1. Hence, by the W–S χ2-approximation, the

distribution of Tn,p can be approximated by that of the following random variable:

G
d
=
χ2
d

d
, (2.14)

the expectation of which is also one. The approximation parameter d is usually

called the approximate degrees of freedom of Tn,p. It can be determined by

matching the variances of Tn,p and G under the null hypothesis. By (2.14),

it is easy to find that Var(G) = 2/d, and if the conditions of Theorem 1(a)

or (b) are satisfied, under Condition (2.3) and the null hypothesis, using the

information from (2.9), for large samples, we have Var(Tn,p) = 2(n−k−2)2/[(n−
k)2p2q]tr(R2) approximately. Thus, equating the variances of Tn,p and G under

the null hypothesis approximately leads to

d =
(n− k)2p2q

(n− k − 2)2tr(R2)
. (2.15)

For any nominal significance level α > 0, let χ2
v(α) denote the upper 100α per-

centile of the χ2
v distribution. Let d̂ be the ratio-consistent estimator of d in

(2.15). Then, the proposed test can be conducted using the approximate critical

value χ2
d̂
(α)/d̂ or the approximate p-value Pr(χ2

d̂
/d̂ ≥ Tn,p).

By Theorem 5 of Zhang et al. (2020), we have q ≤ d∗ ≤ p2q/tr(R2) ≤ pq

where d∗ is given in (2.10). This indicates that when the dimension p is finite,

both d∗ and d are finite. In addition, by Theorem 4 of Zhang et al. (2020), T ∗p,0
is asymptotically normal if and only if d∗ →∞. Therefore, when T ∗p,0 is asymp-

totically normal, the associated d→∞ as well, so that G is also asymptotically

normal. When d is finite, on the other hand, we have that d∗ is also finite, in which

case, neither G nor T ∗p,0 is asymptotically normal. Thus, the proposed test with

the W–S χ2-approximation is adaptive to the shape of its null distribution. This

advantage is not shared by the tests studied by Fujikoshi, Himeno and Wakaki

(2004), Srivastava and Fujikoshi (2006), Yamada and Srivastava (2012), and Sri-

vastava and Kubokawa (2013), where only the asymptotic normal distributions

of their test statistics are considered.

We now briefly describe how to implement the proposed normal-reference

scale-invariant test in practice. To this end, all we need is to find a ratio-consistent
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estimator of d or tr(R2), as in the following theorem.

Theorem 2. Under Conditions C1–C4 and (2.3), as n, p→∞, we have t̂r(R2)/

tr(R2)→ 1 and d̂/d→ 1 in probability, where

t̂r(R2) =
(n− k)2

(n− k − 1)(n− k + 2)

[
tr(R̂

2
)− p2

n− k

]
, (2.16)

where R̂ is given in (1.5) and

d̂ =
(n− k)2p2q

(n− k − 2)2t̂r(R2)
. (2.17)

The proof of Theorem 2 is given in Section S6.3 of the Supplementary Ma-

terial. When n → ∞, the constant factor (n − k)2(n − k − 1)−1(n − k + 2)−1

in (2.16) tends to one, and hence can be replaced with one, as in Yamada and

Srivastava (2012) and Srivastava and Kubokawa (2013), among others.

2.3. Asymptotic power

In this section, we investigate the asymptotic power of Tn,p based on (2.2),

(2.5), and (2.6), where T ∗n,p,0, Sn,p, and Ω are defined. Following ZZZ, the asymp-

totic power of Tn,p is studied under the following local alternative:

as n, p→∞, Var(Sn,p) = o[Var(T ∗n,p,0)], (2.18)

where Var(Sn,p) = (pq)−2tr(RD−1/2 ΩD−1/2). This is the case when the infor-

mation in the local alternative is weak compared with the variance of T ∗n,p,0, so

that the variance of Tn,p is about the same as that of T ∗n,p,0.

Theorem 3.

(a) Under Conditions C1–C5, (2.3), and the local alternative (2.18), as n, p →
∞, we have

Pr
[
Tn,p ≥ χ2

d̂
(α)/d̂

]
= Pr

ζ ≥ χ2
d(α)− d√

2d
− tr( ΩD−1)√

2qtr(R2)

 [1 + o(1)],

where ζ is defined in Theorem 1 and d is given in (2.15).

(b) Under Conditions C1–C4, C6, (2.3), and the local alternative (2.18), as

n, p→∞, we have
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Pr

[
Tn,p ≥

χ2
d̂
(α)

d̂

]
= Φ

−zα +
tr( ΩD−1)√

2qtr(R2)

 [1 + o(1)], (2.19)

where zα denotes the upper 100α-percentile of N(0, 1).

Remark 2. Under the conditions of Theorem 3(b), the asymptotic power (2.19)

of Tn,p is identical to that of TYS (Yamada and Srivastava (2012, Theorem 3.1)).

Yamada and Srivastava (2012, Proposition 4.1) showed that in this case, when

the p-variables of the high-dimensional data are independent and have different

variances, the asymptotic power of TYS is greater than that of the non-scale-

invariant test TSF proposed by Srivastava and Fujikoshi (2006). It follows that

the asymptotic power of Tn,p is also greater than that of TSF. However, under the

conditions of Theorem 3(a), such a theoretical power comparison is not immedi-

ately available, because the associated asymptotic power of TSF is not available.

Nevertheless, the simulation results presented in Section 4 and in Section S4 of

the Supplementary Material indicate that when the variances of the p-variables of

the high-dimensional data are different and these p-variables are not necessarily

independent, the empirical power of Tn,p is, in general, larger than that of TSF

under various simulation settings.

3. Two Special Cases

As mentioned in Section 1, the GLHT problem (1.2) under the high-dimensional

linear regression model (1.1) includes the one-way and two-way MANOVA prob-

lems as special cases. In this section, we briefly describe the two problems, and

show how to re-write them in the form of the GLHT problem (1.2) under the high-

dimensional linear regression model (1.1) so that the associated normal-reference

scale-invariant tests can be obtained easily.

3.1. One-way MANOVA

The one-way MANOVA problem for high-dimensional data aims to check

whether g high-dimensional samples have the same mean vector. It can be briefly

described as follows. Suppose for each i = 1, . . . , g, we have the following p-

dimensional sample:

yi1, . . . ,yini
are i.i.d. with E(yi1) = µi and Cov(yi1) = Σ, (3.1)

and the above g samples are independent of each other. Of interest is to test the

following hypotheses:
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H0 : µ1 = · · · = µg, versus H1 : H0 is false. (3.2)

The above one-way MANOVA problem can be re-written into the form of the

GLHT problem (1.2) under the high-dimensional linear regression model (1.1).

To re-write (3.2) into the form of the GLHT problem (1.2), we need only set Θ =

( µ1, . . . , µg)
> and C = (Iq,−1q), with q = g − 1. Accordingly, the associated

high-dimensional linear regression model (1.1) can be defined as follows. The

sample size is n =
∑g

i=1 ni, the response matrix Y and the design matrix X are

given by Y = (y11, . . . ,y1n1
, . . . ,yg1, . . . ,ygng

)> and X = diag(1n1
,1n2

, . . . ,1ng
),

a block diagonal matrix of size n× g, respectively, while the measurement error

matrix is defined as ε = (y11− µ1, . . . ,y1n1
− µ1, . . . ,yg1− µg, . . . ,ygng

− µg)
>.

With Y, X, and C as defined above, the associated variation matrices due to

the hypothesis and error in (1.3) are then given by Sh =
∑g

i=1 ni(ȳi− ȳ)(ȳi− ȳ)>

and Se =
∑g

i=1

∑ni

j=1(yij − ȳi)(yij − ȳi)
>, where ȳi = n−1i

∑ni

j=1 yij , for i =

1, . . . , g, and ȳ = n−1
∑g

i=1 niȳi. Thus,

R̂ = D̂
−1/2

Σ̂D̂
−1/2

, (3.3)

with Σ̂ = (n − g)−1Se = (n − g)−1
∑g

i=1

∑ni

j=1(yij − ȳi)(yij − ȳi)
> and D̂ =

diag(Σ̂). It follows that the test statistic Tn,p (1.6) can be simplified as Tn,p =

(n− g − 2)
∑g

i=1 ni(ȳi − ȳ)>D̂
−1

(ȳi − ȳ)/((n − g)p(g − 1)). Note that a ratio-

consistent estimator of t̂r(R2) is still given by (2.16), but with R̂ defined in (3.3).

Accordingly, with the current t̂r(R2), a ratio-consistent estimator d̂ of d is still

given by (2.17), with k = g and q = g − 1. The proposed normal-reference

scale-invariant test with the W–S χ2-approximation for the one-way MANOVA

problem (3.2) can then be conducted accordingly, as described in Section 2.2.

3.2. Two-way MANOVA

The two-way MANOVA problem aims to test whether one of the main effects

or the interaction effects of two factors are the same. It can be briefly defined as

follows. Consider an experiment with two factors A and B, each having a and b

levels, with a total of ab factorial combinations or cells. Suppose at the (i, j)th

cell, we have the following p-dimensional sample:

yij1, . . . ,yijnij
are i.i.d. with E(yij1) = µij and Cov(yij1) = Σ, (3.4)

for i = 1, . . . , a; j = 1, . . . , b. All ab samples are independent of each other. In the

two-way MANOVA problem, the cell mean vectors µij are usually decomposed
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into the form

µij = µ0 + αi + βj + γij , i = 1, . . . , a; j = 1, . . . , b, (3.5)

where µ0 is the grand mean vector, αi and βj are the ith and the jth main

effects of the factors A and B, respectively, and γij is the (i, j)th interaction effect

between factors A and B. Consider the following three null hypotheses:

H0A : α1 = · · · = αa,

H0B : β1 = · · · = βb, (3.6)

H0AB : γ11 = · · · = γ1b = · · · = γa1 = · · · = γab,

against their usual alternative hypotheses that invalidate their associated null

hypotheses. The first two hypotheses aim to test whether the main effects of

the two factors are statistically significant, while the last one tests whether the

interaction effect between the two factors is statistically significant.

Similarly, the above three two-way MANOVA problems can be re-written

in the form of the GLHT problem (1.2) under the high-dimensional linear re-

gression model (1.1). First, we express the three hypotheses (3.6) in the form

of the GLHT problem (1.2). To this end, we set Θ = ( µ11, µ12, . . . , µab)
>

and, based on Section 2 of Zhang (2011), the coefficient matrix C for the three

hypotheses (3.6) can be set as Ca = HaAa, Cb = HbAb, and Cab = HabAab,

with Ha = (Ia−1,−1a−1), Hb = (Ib−1,−1b−1), Hab = Ha ⊗ Hb, and Aa =

(Ia−1au
>)⊗v>, Ab = u>⊗(Ib−1bv

>), Aab = (Ia−1au
>)⊗(Ib−1bv

>), where ⊗
is the Kronecker product operation, and u = (u1, . . . , ua)

> and v = (v1, . . . , vb)
>

are two vectors used to impose constraints on the parameters µ0,αi, βj , and

γij in (3.5), because otherwise they are not uniquely defined (Zhang (2011)).

There are two methods for specifying the weight vectors u and v: the equal-

weight method, which specifies u and v as ui = 1/a, vj = 1/b, for i = 1, . . . , a

and j = 1, . . . , b, and the size-adapted-weight method, which specifies u and v

as ui =
∑b

j=1 nij/n, for i = 1, . . . , a, and vj =
∑a

i=1 nij/n, for j = 1, . . . , b.

When the two-way MANOVA design is balanced, that is, when all the cell sizes

nij , for i = 1, . . . , a and j = 1, . . . , b, are the same, the size-adapted-weight

method reduces to the equal-weight method. The matrices Ca,Cb, and Cab

are full rank, having ranks a − 1, b − 1, and (a − 1)(b − 1) respectively. The

two-way MANOVA hypotheses (3.6) can then be written in the form of the

GLHT problem (1.2) using Ca, Cb, and Cab. Second, the associated high-

dimensional linear regression model (1.1) can be defined as follows. The sam-
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ple size is n =
∑a

i=1

∑b
j=1 nij . The observation matrix Y and the design ma-

trix X are defined as Y = (y111, . . . ,y11n11
,y121, . . . ,y12n12

, . . . ,yab1, . . . ,yabnab
)>

and X = diag(1n11
,1n12

, . . . ,1nab
), a block diagonal matrix of size n × (ab), re-

spectively, while the measurement error matrix is ε = (y111 − µ11, . . . ,y11n11
−

µ11,y121 − µ12, . . . ,y12n12
− µ12, . . . ,yab1 − µab, . . . ,yabnab

− µab)
>.

With Y,X, and C (which can be Ca,Cb, or Cab) defined above, the variation

matrices due to the hypothesis and error, as defined in (1.3), can be simplified

as Sh = (CΘ̂)>(CWnC
>)−1CΘ̂ and Se =

∑a
i=1

∑b
j=1

∑nij

k=1(yijk − µ̂ij)(yijk −
µ̂ij)

>, where Θ̂ = ( µ̂11, µ̂12, . . . , µ̂ab)
> with µ̂ij = n−1ij

∑nij

k=1 yijk, for i =

1, . . . , a and j = 1, . . . , b, and Wn = (X>X)−1 = diag(n−111 , . . . , n
−1
ab ). Then, we

have

R̂ = D̂
−1/2

Σ̂D̂
−1/2

, (3.7)

with Σ̂ = (n − ab)−1Se and D̂ = diag(Σ̂). With the above, the test statistic

Tn,p can be simplified as Tn,p = (n − k − 2)/((n − k)pq)tr[(CΘ̂)>(CWnC
>)−1

CΘ̂D̂
−1

], where k = ab and q = rank(C). Then, a ratio-consistent estimator

of t̂r(R2) is still given by (2.16), but with R̂ defined in (3.7) and with k =

ab. Accordingly, with the current t̂r(R2), a ratio-consistent estimator d̂ of d

is still given by (2.17) with the current q and k = ab. The proposed normal-

reference scale-invariant test with the W–S χ2-approximation for any of the two-

way MANOVA problems (3.6) can then be conducted accordingly.

4. Simulation Studies

In this section, we conduct two simulation studies to evaluate the perfor-

mance of the proposed test Tn,p in terms of size control and power against several

existing competitors for the GLHT problem (1.2).

Our simulation data are generated from the data structure specified in Con-

dition C1. Given X and Θ, we generate Y by Y = XΘ + (v1, . . . ,vn)>Σ1/2,

where vi = (vi1, . . . , vip)
>, for i = 1, . . . , n, are i.i.d. random variables, with

entries generated from the following three models:

Model 1: vir, r = 1, . . . , p
i.i.d.∼ N(0, 1).

Model 2: vir = zir/
√

2, with zir, r = 1, . . . , p
i.i.d.∼ t4.

Model 3: vir = (zir − 2)/2, with zir, r = 1, . . . , p
i.i.d.∼ χ2

2.

It is clear that the above three models generate the variables vir with three dis-

tributions: normal; nonnormal, but symmetric; and nonnormal and skewed. To

specify the covariance matrix Σ, we set Σ = D1/2RD1/2, where D = diag(d21, . . . ,
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d2p) with di = (p − i + 1)/p, for i = 1, . . . , p, and R = (rij) : p × p with

rij = (−1)i+jρ0.2|i−j|. Note that the value of the tuning parameter ρ ∈ (0, 1)

controls the correlation between the p-variables of the simulated data: the larger

the value of ρ, the larger is the correlation between the p-variables. Note too that

for i, j ∈ {1, . . . , p}, rij decreases with increasing |i−j|. The other tuning parame-

ters are specified as follows. We set p ∈ {200, 500, 1000} and ρ ∈ {0.01, 0.55, 0.95}
so that the p-variables of the simulated data are nearly uncorrelated, moderately

correlated, and highly correlated. To measure the overall performance of the

tests in terms of size control, we adopt the average relative error (Zhang (2011)):

ARE = 100M−1
∑M

j=1 |α̂j − α|/α, where α̂j , for j = 1, . . . ,M , are the empiri-

cal sizes under consideration. Throughout, the nominal size is α = 5% and the

number of replications is 10,000.

4.1. Simulation 1

In this simulation, we aim to evaluate the performance of Tn,p against the

non-scale-invariant tests developed by Fujikoshi, Himeno and Wakaki (2004) and

Srivastava and Fujikoshi (2006), and against one scale-invariant test studied by

Yamada and Srivastava (2012) and Srivastava and Kubokawa (2013), denoted as

TFHW, TSF, and TYS, respectively, for the one-way MANOVA problem described

in (3.1) and (3.2) in Section 3.1. We also include an alternative version of TYS,

denoted as T ∗
YS

, obtained by removing the adjustment coefficient cn,p from the

definition (1.4) of TYS, that is,

TYS =
T ∗

YS√
cn,p

, (4.1)

which assesses the impact of cn,p on the performance of TYS. For simplicity, con-

sider g = 3 and set n1 = 0.8n0, n2 = n0, and n3 = 1.2n0, with n0 ∈ {80, 100, 120}.
Furthermore, set µ1 = µ2 = µ3 = 0 for the null hypothesis, and µ1 = 0, µ2 =

δh, and µ3 = 1.5δh for the alternative hypothesis, where the tuning parameter

δ controls the difference between µ1, µ2, and µ3, while h = h0/
√

h>0 h0, with

h0 = (1, . . . , p)>. The values of δ are chosen as 0.02, 0.04, and 0.06, respectively

for ρ = 0.01, 0.55, and 0.95.

Table 1 displays the empirical sizes of TFHW, TSF, TYS, T
∗
YS

, and Tn,p with

the associated ARE values listed in the last row. In terms of size control, Tn,p
performs well in all the configurations, and outperforms the other four tests, es-

pecially when ρ = 0.55 and 0.95. When ρ = 0.01, all five tests perform reasonably

well. However, when ρ = 0.55 and 0.95, in terms of size control, TFHW, TSF, and
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Table 1. Empirical sizes (in %, Simulation 1).

ρ = 0.01 ρ = 0.55 ρ = 0.95

Model p n0 TFHW TSF TYS T ∗
YS Tn,p TFHW TSF TYS T ∗

YS Tn,p TFHW TSF TYS T ∗
YS Tn,p

1

200

80 5.69 5.72 5.10 6.24 5.75 6.38 6.39 3.17 6.48 5.48 7.57 7.58 0.74 7.66 5.75

100 5.78 5.82 4.93 6.04 5.41 6.69 6.70 3.45 6.71 5.64 7.04 7.05 0.56 6.77 5.20

120 5.68 5.71 4.58 5.73 5.15 6.42 6.42 3.16 6.17 5.32 7.74 7.74 0.67 7.25 5.58

500

80 5.35 5.40 4.34 5.59 5.19 6.10 6.16 3.18 5.84 5.22 6.93 6.96 0.57 6.97 5.44

100 5.18 5.21 4.15 5.17 4.85 6.06 6.06 3.40 6.19 5.43 6.73 6.77 0.47 6.67 5.14

120 5.65 5.71 4.62 5.61 5.18 6.60 6.62 3.62 6.31 5.62 7.15 7.21 0.70 7.23 5.94

1,000

80 5.48 5.52 4.40 5.57 5.45 6.24 6.28 3.73 6.20 5.69 6.92 6.95 0.59 7.14 5.76

100 5.70 5.71 4.65 5.81 5.62 5.92 5.97 3.51 5.96 5.48 6.91 6.93 0.57 7.00 5.68

120 5.31 5.34 4.21 4.98 4.81 6.02 6.03 3.80 6.14 5.68 6.98 6.99 0.69 7.21 5.86

2

200

80 5.46 5.50 4.89 5.97 5.52 6.61 6.62 3.23 6.52 5.49 7.30 7.32 0.63 7.63 5.85

100 5.58 5.59 4.75 5.88 5.27 6.68 6.71 3.34 6.84 5.76 7.37 7.38 0.64 7.26 5.35

120 5.54 5.55 4.44 5.56 5.00 6.81 6.84 3.15 6.31 5.43 7.45 7.45 0.53 7.30 5.58

500

80 4.84 4.87 4.38 5.55 5.25 6.43 6.47 3.24 5.93 5.26 7.05 7.06 0.70 6.87 5.44

100 5.43 5.46 4.77 5.76 5.46 5.78 5.78 3.48 5.93 5.26 6.99 7.01 0.64 7.07 5.79

120 5.09 5.11 4.43 5.37 4.94 6.59 6.62 3.57 5.97 5.43 7.11 7.15 0.49 7.00 5.33

1,000

80 5.00 5.07 3.92 5.39 5.13 5.95 6.00 3.44 5.77 5.38 6.76 6.78 0.63 6.87 5.66

100 5.11 5.12 4.79 5.98 5.67 5.90 5.94 4.00 6.52 5.95 7.04 7.08 0.64 7.01 5.55

120 5.23 5.25 4.09 5.10 4.82 5.65 5.69 3.24 5.24 4.86 7.30 7.31 0.70 6.74 5.45

3

200

80 5.33 5.36 4.56 5.66 5.20 6.88 6.90 3.31 6.80 5.74 6.59 6.61 0.56 6.60 4.99

100 5.59 5.60 5.00 6.17 5.41 6.63 6.67 3.63 7.01 5.85 7.23 7.25 0.61 7.19 5.32

120 5.51 5.52 4.51 5.49 4.93 6.89 6.91 3.54 6.73 5.75 7.13 7.17 0.49 7.43 5.56

500

80 5.75 5.79 4.44 5.77 5.51 6.17 6.20 3.53 6.05 5.39 7.51 7.54 0.58 7.01 5.59

100 5.10 5.12 4.38 5.35 5.01 6.19 6.24 3.55 6.30 5.50 6.95 6.97 0.64 7.00 5.69

120 5.58 5.59 4.69 5.85 5.42 6.59 6.63 3.57 6.32 5.66 6.89 6.90 0.70 6.83 5.42

1,000

80 5.37 5.44 4.38 5.79 5.60 5.63 5.65 3.35 5.62 5.12 7.16 7.19 0.86 7.08 5.94

100 5.29 5.33 4.48 5.42 5.20 5.69 5.74 3.26 5.62 5.19 6.78 6.84 0.76 6.54 5.31

120 5.51 5.54 4.55 5.67 5.46 6.00 6.02 3.81 6.20 5.71 6.72 6.76 0.54 7.15 5.67

ARE 8.48 9.04 9.46 12.97 6.30 25.56 26.12 30.92 24.21 10.05 41.70 42.19 87.48 41.10 11.01

T ∗
YS

are all rather liberal, while TYS is very conservative. In particular, when

ρ = 0.95, the empirical sizes of TYS are less than 1%, which are unacceptable.

Therefore, TFHW, TSF, TYS, and T ∗
YS

are less or no longer applicable when the data

are moderately or highly correlated, but that is not the case for Tn,p.

To explore, in terms of size control, why TFHW, TSF, TYS, and T ∗
YS

perform

well when ρ = 0.01, but perform much worse when ρ = 0.55 and 0.95, we list

the values of d̂ and cn,p under Model 1 in Table 2. Because the values of d̂ and

cn,p do not depend on the model, we do not present their values under Models

2 and 3 for in order to conserve space. When ρ = 0.01, the values of d̂ are

large (296 ∼ 1,494) and the values of cn,p are small (1.13 ∼ 1.18), showing that

the underlying distributions of the five tests are nearly normal. In this case,

the normal approximations to the associated underlying null distributions are

adequate, so that all five tests perform well in terms of size control. However,
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Table 2. Values of d̂ and cn,p under Model 1 (Simulation 1)

ρ = 0.01 ρ = 0.55 ρ = 0.95

p n0 d̂ cn,p d̂ cn,p d̂ cn,p

200

80 299.10 1.16 50.11 1.64 5.58 6.25

100 297.44 1.14 49.79 1.63 5.54 6.25

120 296.37 1.14 49.58 1.62 5.51 6.26

500

80 747.16 1.16 123.62 1.46 11.74 4.99

100 742.89 1.14 122.87 1.45 11.66 4.99

120 740.17 1.12 122.38 1.43 11.61 4.97

1,000

80 1493.57 1.18 246.17 1.40 22.23 4.04

100 1485.20 1.15 244.73 1.37 22.10 4.02

120 1479.88 1.13 243.76 1.35 22.01 4.01

when ρ = 0.55 and 0.95, the values of d̂ are small or moderate (5 ∼ 247), but the

values of cn,p are large (1.35 ∼ 6.26), showing that the underlying distributions

of the five tests are less or not normal. In these cases, the normal approximations

to the associated underlying null distributions are less or not adequate. This

explains why TFHW, TSF, TYS, and T ∗
YS

do not perform well. In particular, the poor

performance of TYS when ρ = 0.55 and 0.95 is also due to the blind application

of the adjustment coefficient cn,p. This can be seen clearly by comparing the

empirical sizes of TYS and T ∗
YS

under various settings.

Now, we compare the empirical powers of the five tests. Figure 1 displays

the empirical powers of the five tests under consideration (TFHW: black solid

curves with triangles, TSF: red dashed curves with diamonds, TYS: green dotted

curves with squares, T ∗
YS

: orange long-dashed curves with crosses, and Tn,p: blue

dot-dashed curves with circles). It is seen that the two non-scale-invariant tests

TFHW and TSF have almost no power, while the three scale-invariant tests TYS, T
∗
YS

,

and Tn,p have nontrivial power under various configurations. This is because

the diagonal entries of Σ are not equal, and the two scale-invariant tests do

not take this information into account, while the three scale-invariant tests do.

In addition, when ρ = 0.01, the empirical powers of TYS, T
∗
YS

, and Tn,p are, in

general, comparable, because their empirical sizes are also comparable, in gerenal.

Furthermore, when ρ = 0.55 and 0.95, the empirical powers of T ∗
YS

are slightly

(res., much) larger than those of Tn,p (res., TYS) because the empirical sizes of T ∗n,p
are also slightly (res., much) larger than those of Tn,p (res., TYS). Thus, when the

underlying null distributions of T ∗
YS

and TYS are actually not normal, the empirical

size and power of T ∗
YS

may be artificially enlarged by the blind application of the

normal approximation, while that of TYS may be substantially reduced by the
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Figure 1. Empirical power (in %, Simulation 1) of the five tests (TFHW: solid curves
with triangles, TSF: dashed curves with diamonds, TYS: dotted curves with squares, T ∗

YS:
long-dashed curves with crosses, and Tn,p: dot-dashed curves with circles) associated
with parameters [p, n0] from the settings under Model 1 (first row), Model 2 (second
row), and Model 3 (third row).

blind use of the adjustment coefficient cn,p. A theoretical explanation of the

effect of cn,p on TYS can be found in Section S5 of the Supplementary Material.

4.2. Simulation 2

In this simulation study, we continue to compare the performance of Tn,p
against TFHW, TSF, TYS, and T ∗

YS
for the two-way MANOVA problem, as described

in (3.4) and (3.6) in Section 3.2. To this end, we set a = 2, b = 3, and

n = (n11, n12, . . . , nab) ∈ {n1,n2,n3}, with n1 = (30, 45)3, n2 = (40, 60)3, and

n3 = (50, 75)3, where vr denotes the vector obtained by repeating the vector v

r times. For example, (30, 45)3 = (30, 45, 30, 45, 30, 45). For the null hypothesis,
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Table 3. Empirical sizes (in %, Simulation 2) for testing the interaction effect.

ρ = 0.01 ρ = 0.55 ρ = 0.95

Model p n TFHW TSF TYS T ∗
YS Tn,p TFHW TSF TYS T ∗

YS Tn,p TFHW TSF TYS T ∗
YS Tn,p

1

200

80 5.87 5.88 4.66 6.09 5.29 6.69 6.71 3.30 6.46 5.56 7.03 7.06 0.62 6.83 5.05

100 5.93 5.96 4.65 5.75 5.20 6.55 6.58 3.60 7.07 6.02 6.88 6.89 0.61 7.01 5.46

120 5.61 5.64 4.84 5.77 5.35 6.94 6.96 3.30 6.39 5.54 7.32 7.36 0.35 7.13 5.27

500

80 5.66 5.73 4.25 5.46 5.13 6.49 6.53 3.28 6.31 5.62 6.84 6.87 0.53 7.01 5.48

100 5.96 5.98 4.84 5.88 5.47 6.23 6.28 3.69 6.33 5.72 7.09 7.09 0.59 6.91 5.32

120 5.66 5.70 4.77 5.66 5.36 6.16 6.18 3.64 6.49 5.80 7.07 7.11 0.56 7.06 5.61

1,000

80 5.08 5.11 4.19 5.76 5.52 5.88 5.92 3.40 5.74 5.31 7.24 7.28 0.81 7.17 5.98

100 4.93 4.98 3.95 5.15 4.73 5.66 5.67 3.73 6.19 5.63 6.63 6.67 0.71 6.75 5.54

120 5.28 5.30 4.61 5.52 5.27 5.98 6.02 3.55 5.65 5.17 6.88 6.91 0.57 6.67 5.51

2

200

80 5.19 5.20 4.66 5.83 5.23 6.75 6.79 3.63 7.19 6.24 6.94 6.97 0.40 6.94 5.20

100 5.55 5.56 4.72 5.67 5.11 6.59 6.60 3.24 6.51 5.48 7.04 7.06 0.63 7.19 5.42

120 5.67 5.68 4.41 5.37 4.99 6.54 6.56 3.44 6.59 5.80 7.21 7.24 0.60 6.86 5.32

500

80 5.41 5.47 4.45 5.84 5.42 6.51 6.52 3.45 6.11 5.57 7.36 7.39 0.68 7.51 5.98

100 5.38 5.39 4.46 5.46 5.05 6.11 6.11 3.42 6.33 5.55 6.60 6.62 0.69 6.80 5.22

120 5.23 5.24 4.80 5.97 5.49 5.90 5.94 3.24 5.71 5.12 7.21 7.22 0.60 7.21 5.64

1,000

80 5.14 5.20 4.05 5.37 5.18 6.23 6.26 3.47 5.87 5.35 7.21 7.22 0.67 7.33 6.03

100 5.24 5.27 4.52 5.73 5.42 5.90 5.94 3.61 5.95 5.48 6.55 6.57 0.54 6.53 5.36

120 5.51 5.56 4.67 5.68 5.42 6.20 6.22 3.89 6.22 5.72 7.13 7.15 0.43 6.92 5.66

3

200

80 5.84 5.86 4.51 5.55 4.99 6.73 6.75 3.54 7.23 6.23 7.22 7.24 0.55 7.32 5.48

100 5.74 5.75 5.07 6.25 5.61 6.61 6.67 3.45 6.65 5.79 7.46 7.46 0.72 7.05 5.57

120 5.33 5.34 4.40 5.41 4.98 6.43 6.45 3.35 6.41 5.63 7.61 7.62 0.66 7.28 5.49

500

80 5.11 5.16 4.14 5.33 5.08 5.98 6.02 3.28 6.26 5.69 7.08 7.11 0.70 7.42 5.62

100 5.37 5.40 4.54 5.68 5.19 6.28 6.33 3.43 6.01 5.28 7.00 7.02 0.65 7.16 5.82

120 5.56 5.59 4.90 6.02 5.60 6.31 6.33 3.42 6.16 5.45 6.82 6.83 0.60 7.14 5.79

1,000

80 5.23 5.28 4.12 5.49 5.23 6.12 6.18 3.70 6.00 5.55 7.60 7.63 0.65 6.75 5.57

100 5.43 5.47 4.21 5.19 4.99 6.15 6.17 3.46 5.72 5.30 6.88 6.90 0.80 6.60 5.58

120 5.45 5.47 4.55 5.63 5.30 6.26 6.28 4.17 6.20 5.69 7.11 7.12 0.89 6.84 5.70

ARE 9.26 9.79 9.78 12.97 5.36 26.06 26.64 29.87 25.74 12.07 41.49 41.93 87.55 40.29 10.87

µij = 0, for i = 1, . . . , a and j = 1, . . . , b, while for the alternative hypothe-

sis, µij = ijδh/(ab), for i = 1, . . . , a and j = 1, . . . , b, where h is defined as

in the previous simulations. The values of δ are set as follows. To test H0A

in (3.6), δ = 0.23, 0.35, 0.65 respectively for ρ = 0.01, 0.55, 0.95; to test H0B in

(3.6), δ = 0.04, 0.06, 0.11 respectively for ρ = 0.01, 0.55, 0.95; and to test H0AB

in (3.6), δ = 0.035, 0.055, 0.10 respectively for ρ = 0.01, 0.55, 0.95. Finally, to

specify the C-matrices for the three hypotheses (3.6), the size-adapted-weight

method described in Section 3.2 is employed.

To save space, we report only the empirical sizes of TFHW, TSF, TYS, T
∗
YS

, and

Tn,p when testing the interaction effects between the two factors in Table 3. In

terms of size control, Tn,p again performs well and, in general, outperforms the

other four tests, especially when ρ = 0.55 and 0.95. The other four tests perform

well when ρ = 0.01, but not when ρ = 0.55 and 0.95. In particular, when ρ = 0.95,
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Table 4. One-way MANOVA for the corneal surface data.

method statistic p-value d̂ cn,p
TFHW 6.40 7.69× 10−11 - -

TSF 6.42 6.68× 10−11 - -

TYS 2.35 0.01 - 16.78

T ∗
YS 9.64 2.82× 10−22 - -

Tn,p 5.57 1.08× 10−7 8.97 -

TYS performs poorly. These conclusions are similar to those drawn from Table 1.

Based on the above simulation studies, in terms of size control and power, our

test Tn,p outperforms its competitors, in general, and is recommended, regardless

of whether the data are nearly uncorrelated, moderately correlated, or highly

correlated.

5. Application to the corneal surface data set

We now apply Tn,p, TFHW, TSF, TYS, and T ∗
YS

, to the corneal surface data set

introduced in Section 1, which contains four cornea groups. The first is a normal

cornea group with 43 healthy corneas. The other three nonnormal cornea groups

are unilateral suspect, suspect map, and clinical keratoconus groups, consisting

of 14, 21, and 72 corneas, respectively, with varying degrees of keratoconus, a

disease that misshapes the cornea.

In the keratoconus study that yielded the above data set, each corneal surface

has 6,912 measurements taken at a polar grid of 256× 27 points, with 256 radial

directions and 27 locations at each radial. Because not all 6,912 measurements

for each corneal surface were obtained, the measurements were often subject to

measurement errors, and the polar grids may be different for different corneas.

Therefore, before further analysis, the corneal surfaces were reconstructed using

a Legendre–Fourier basis system (Locantore et al. (1999)), and were evaluated at

a given common polar grid of 100× 20 points, resulting in 150 vectors of length

2,000, which represent well the corneal surface data set.

To apply Tn,p, TFHW, TSF, TYS, and T ∗
YS

, to check whether the four corneal

surface groups have the same mean corneal surface, we first check the equality of

the covariance matrices of the four groups using the test proposed by Srivastava

and Yanagihara (2010). The resulting p-value is nearly one, showing that it may

be reasonable to assume that the four groups of the corneal surface data set have

the same covariance matrix.

Table 4 displays the test results of the one-way MANOVA for the corneal
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Table 5. P -values of some contrast tests for the corneal surface data.

hypothesis TFHW TSF TYS T ∗
YS Tn,p

Nor vs Uni 0.75 0.75 0.54 0.67 0.59

Nor vs Sus 0.27 0.27 0.51 0.52 0.41

Uni vs Sus 0.73 0.73 0.55 0.69 0.62

Uni vs Cli 0.04 0.04 0.26 3.5× 10−3 0.02

Sus vs Cli 1.82× 10−14 1.50× 10−14 0.01 1.47× 10−21 8.49× 10−6

Nor vs Cli 3.73× 10−13 3.12× 10−13 1.14× 10−3 3.51× 10−36 2.29× 10−7

surface data using TFHW, TSF, TYS, T
∗
YS

, and Tn,p. Although all five tests strongly

reject the null hypothesis, their p-values are very different: the p-value of T ∗
YS

is the smallest, followed by those of TFHW, TSF, and Tn,p; the p-value of TYS is

the largest. Because d̂ = 8.97 is very small and cn,p = 16.78 is very large, the

normal approximation to the underlying null distributions of these test statistics

is unlikely to be adequate. Thus, only the p-value of Tn,p is reliable, as suggested

by the simulation results presented in Section 4.

Because the above one-way MANOVA test is highly significant, it is now

of interest to consider some post hoc or contrast tests for the corneal surface

data. Here, several contrast tests are considered to check whether any two cornea

groups have different mean corneal surfaces. The test results of these contrast

tests using T FHW, TSF, TYS, T
∗
YS

, and Tn,p are displayed in Table 5, where the

normal, unilateral suspect, suspect map, and clinical keratoconus cornea groups

are labeled as “Nor,” “Uni,” “Sus,” and “Cli,” respectively. All five tests suggest

that the contrast tests “Nor vs. Uni,” “Nor vs. Sus,” and “Uni vs. Sus” are not

significant, while the contrast tests “Sus vs. Cli” and “Nor vs. Cli” are highly

significant. However, for the contrast test “Uni vs. Cli,” TYS fails to reject the

null hypothesis at the 5% significance level, whereas the other four tests do reject

the hypothesis. Thus, all five tests, except TYS, give largely consistent conclusions

about these contrast tests. Nevertheless, their p-values for these contrast tests

can be substantially different. For example, for the contrast tests “Sus vs. Cli”

and “Nor vs. Cli,” the p-values of TFHW, TSF, and T ∗
YS

are 1,000,000 times smaller

than those of Tn,p. Fortunately, it is again very easy to conclude that the p-values

of Tn,p for these contrast tests are more trustworthy than those of the other four

tests. This is because d̂ = 2.99 is very small and cn,p = 16.78 is much larger than

one, showing that the normal approximation to the underlying null distributions

of the other four tests are unlikely to be adequate.
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6. Conclusion

In this paper, we have proposed and studied a normal-reference scale-invariant

test for the GLHT problem in high-dimensional linear regression, where the di-

mension of the data can be much larger than the total sample size. Simulation

studies and a real-data example demonstrate that under some mild conditions,

the proposed test performs well, regardless of whether the data are nearly un-

correlated, moderately correlated, or highly correlated, and it has much better

size control and power than several existing competitors. Therefore, it is rec-

ommended for real-data applications. Admittedly, the good performance of the

proposed test requires the condition “log(p) = o(n)” be satisfied, while for a non-

scale-invariant test, this condition is not required. This implies that the proposed

test requires a relatively larger sample size to work well than a non-scale-invariant

test does, as demonstrated by the simulation results presented in Section S2 of

the Supplementary Material. Thus, when the sample size n is too small compared

with log(p), a non-scale-invariant test can outperform the proposed test in terms

of size control.

Supplementary Material

The online Supplementary Material provides histograms of simulated TYS,

several additional simulation studies, a discussion about some asymptotic prop-

erties of the adjustment coefficient cn,p, and technical proofs of the main results.
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