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NONPARAMETRIC BAYESIAN TWO-LEVEL CLUSTERING

FOR SUBJECT-LEVEL SINGLE-CELL EXPRESSION DATA
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Abstract: The advent of single-cell sequencing opens new avenues for personalized

treatment. In this study, we address a two-level clustering problem of simultaneous

subject subgroup discovery (subject level) and cell type detection (cell level) for

single-cell expression data from multiple subjects. Current statistical approaches

either cluster cells without considering the subject heterogeneity, or group subjects

without using the single-cell information. To bridge the gap between cell clustering

and subject grouping, we develop a nonparametric Bayesian model, Subject and

Cell clustering for Single-Cell expression data (SCSC) model, to achieve subject

and cell grouping simultaneously. The SCSC model does not need to prespecify

the subject subgroup number or the cell type number. It automatically induces

subject subgroup structures and matches cell types across subjects. Moreover,

it directly models the single-cell raw count data by deliberately considering the

data’s dropouts, library sizes, and over-dispersion. A blocked Gibbs sampler is

proposed for the posterior inference. Simulation studies and an application to a

multi-subject induced pluripotent stem cell single-cell RNA sequencing data set

validate the ability of the SCSC model to simultaneously cluster subjects and cells.

Key words and phrases: Markov chain Monte Carlo, mixture of mixtures, model-

based clustering, nonparametric Bayes, single-cell RNA sequencing.

1. Introduction

Advancements in biological sequencing technology, such as single-cell RNA-

sequencing (scRNA-seq), have enabled the expression profiling of single cells.

ScRNA-seq data are often organized into a data matrix, illustrated in Figure

1(a), where the columns are cells and the rows represent genes. Based on the

scRNA-seq data matrix, discovering cell types is simply formulated as a clustering

problem. Going further, if we can integrate the scRNA-seq data from multiple

subjects, this presents unprecedented opportunities to investigate subject het-

erogeneity at the single-cell resolution. Subject heterogeneity refers to human

subpopulations, patient disease subtypes, or other differentiable human biologi-

cal characteristics, according to different contexts. Using disease subtypes as an
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illustration, biological studies have found differences in tumor cell proportions

among subtypes of breast cancers (Makki (2015)), lung cancers (Busch et al.

(2016)), and other diseases. These subtle observations can be captured by the

scRNA-seq data, but may be missed when using the traditional bulk expression

data, which are the aggregated expression signals from diverse cell types. Con-

sequently, it is imperative to employ subject-level single-expression data (Figure

1(a)) to understand cellular and subject heterogeneity.

In this study, we address a two-level clustering statistical problem by directly

modeling multi-subject scRNA-seq data. An artificial demonstration of the two-

level clustering is shown in Figure 1(b). At the cell level, cells with similar

expression values are clustered together, and at the subject level, subjects with

similar cellular distributions are grouped together. Two subjects are said to

have the same cellular distribution if they share the same cell type proportions

and expression levels for each cell type. In addition, to obtain valid biological

results, cell types must be matched across subjects by considering the effects

caused by the subject subgroups (Figure 1(b)). Note that our two-level clustering

problem differs from the bi-clustering approaches (Cheng and Church (2000);

Turner, Bailey and Krzanowski (2005)), which group subjects and genes using

the aggregated expression data matrix.

There has been a large amount of statistical literature on cell clustering or

subject clustering. On the one hand, cell clustering methods fit heterogeneous

scRNA-seq data using the latent variable model (Buettner et al. (2015)), hierar-

chical clustering (žurauskienė and Yau (2016)), consensus approach (Kiselev et al.

(2017)), or model-based mixture models (Prabhakaran et al. (2016); Sun et al.

(2017); Song, Chan and Wei (2020); Liu, Warren and Zhao (2019)). Nevertheless,

when applied to multi-subject scRNA-seq data, these methods do not consider

subject heterogeneity, and ignore the fact that the gene expression levels may

change with subjects, thus possibly leading to incorrect cell clustering results.

On the other hand, subject clustering methods are based on the aggregated

expression matrix, with genes in rows and subjects in columns, where the ex-

pression vector of one subject can be viewed as the row averages of the sub-

ject’s gene-cell expression matrix in Figure 1(a). Pan and Shen (2007) adopted a

normal mixture model and developed an L1-penalized expectation-maximization

algorithm to distinguish subjects and detect differentially expressed (DE) genes.

Wang and Zhu (2008) instead used the L∞ and hierarchical penalties to refine the

clustering results. The sparse k-means proposed by Witten and Tibshirani (2010)

simultaneously extracted a few DE genes and grouped subjects by maximizing

the weighted between-cluster sum-of-squares. Huo et al. (2016) subsequently
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Figure 1. Artificial illustration of the data structure and study goal. (a) Subject-level
single-cell expression data. (b) An illustration of a two-level clustering problem. In
subgroup 1, cell type 1 proportion is 70%, shown in green triangles, and cell type 2 pro-
portion is 30%, shown in blue dots. Compared with subgroup 1, the cellular distribution
in subgroup 2 can change in two ways: cell proportions and cell locations. For a good
visualization, only two gene dimensions are illustrated (expression in log scale). The
orange and purple arrows represent the effects of subgroups 2 and 3, respectively, when
subgroup 1 is treated as a reference.

generalized the sparse k-means to expression data from multiple studies. Luo

and Wei (2019) proposed a more efficient and flexible Bayesian framework to

conduct integrative subject clustering. Because these methods do not employ

single-cell expression information, subtle differences (e.g., cellular composition

changes) cannot be detected.

All the methods mentioned above, except that of Prabhakaran et al. (2016),

require predetermination of the number of clusters and trials of multiple choices,

which may be practically difficult and computationally expensive. The Dirichlet

process (DP) is a nonparametric Bayesian prior (Ferguson (1973); Sethuraman
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(1994)), and is well known for its flexibility in automatically selecting the number

of clusters in a data-driven manner. However, the DP only addresses one-level

clustering, motivating two extensions—the hierarchical DP (HDP) (Teh et al.

(2006)) and the nested DP (NDP) (Rodriguez, Dunson and Gelfand (2008))—

that are close to our two-level clustering problem. Unfortunately, using the terms

in our context, the HDP assigns a cell mixture distribution to each subject, but

with different mixture weights; thus, the subjects cannot form a group structure.

Although the NDP promotes the subject group structure, subjects in different

groups do not share cell components, causing difficulty in matching cell types

across subjects. In other words, if two distributions from the NDP share one

cell component, the two distributions must be the same almost surely, which is

not realistic in our problem. To deal with the degeneracy issue of the NDP,

Camerlenghi et al. (2019) developed a latent nested nonparametric prior that

allows common and group-specific cell types across subject subgroups, but their

method meets practical computational challenges when applied to more than two

subject subgroups or to high-dimensional expression data. When more than two

subject subgroups need to be considered, Beraha, Guglielmi and Quintana (2021)

extended the HDP to the semi-HDP to induce subject dependence and grouped

distributions using a finite-dimensional distribution over cluster indicators.

Actually, in the discussion of the NDP paper (Rodriguez, Dunson and Gelfand

(2008)), James (2008) has constructed a fully nonparametric prior to combine

the NDP and the HDP that can address the degeneracy problem of the NDP

and achieve two-level clustering for nested data. We follow Section 4 in his

discussion and call his prior the hybrid NDP-HDP prior. In the field of text

analysis, the hybrid prior has been employed to conduct entity-topic modeling

(Tekumalla, Agrawal and Bhattacharya (2015)), and its multi-level extension

introduced in (Paisley et al. (2015)) allows for tree-structured topic hierarchies.

Recently, Denti et al. (2020) proposed a common atoms model built upon a similar

nonparamemtric prior to analyze microbiome data. The model does not intro-

duce an additional HDP part, but constrains the common atoms of the sampled

distributions.

To the best of our knowledge, there is no statistical approach to simultane-

ously tackle subject and cell clustering on multi-subject scRNA-seq data. For

the two-level clustering part, we take advantage of the hybrid NDP-HDP prior

(James (2008)), inducing shared components for cells and group structures for

subjects. For the data modeling part, we exploit the zero-inflated Poisson-log-

normal (ZIPLN) distribution with a Probit dropout mechanism, which accounts

for the zero-inflation, over-dispersion, and count nature of the scRNA-seq data.
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Integrating the nonparametric Bayesian prior with the ZIPLN distribution results

in the proposed model, Subject and Cell clustering for Single-Cell expression data

(SCSC) model. This model enables simultaneous subject and cell clustering for

scRNA-seq raw count data, and does not require specifying the subject or cell

cluster numbers in advance. For the posterior inference of the SCSC model, we

designed an efficient blocked Gibbs sampler (Ishwaran and James (2001)) based

on an approximation to the SCSC model. The approximation accuracy is guar-

anteed theoretically, as long as the truncation levels and related parameters are

chosen appropriately.

The remainder of this paper is organized as follows. Section 2 presents a

brief review of the DP and its two extensions, the HDP and the NDP, which are

prerequisites to introducing the hybrid NDP-HDP prior that enjoys the strengths

of the HDP and the NDP. In Section 3, we bring in the hybrid NDP-HDP prior,

derive theoretical results about the distributions sampled from the prior, and

present the SCSC model built on the hybrid prior and tailored to the scRNA-seq

data. In Section 4, we introduce a truncated SCSC model to ease the posterior

computing, and provide a theorem to quantify its approximation error. An ef-

ficient posterior sampling scheme for the SCSC model is discussed in Section 5,

and the model is applied to synthetic and real-world data in Section 6. Finally,

we conclude the paper in Section 7.

2. Preliminaries on Nonparametric Priors

Suppose that the scRNA-seq data are collected for m subjects, with subject

j having nj sequenced cells in some tissue, and in each cell, the expression levels

for D genes are measured. We denote the observed read count mapped to gene g

in cell i for subject j by X
(j)
gi . All the read counts for subject j can be wrapped

up using a data matrix X(j) with D genes in rows and nj cells in columns. To

describe the subject heterogeneity, we assume that subjects can be separated

to form several subgroups, where subjects in the same subgroup share similar

characteristics, and subjects in different subgroups have distinct features. We

use S(j) to represent the subgroup to which subject j belongs. Similarly, the cell

heterogeneity is characterized by cell types, and the cell type of cell i for subject

j is denoted by C
(j)
i . Here, X(j) are observed, but the subject subgroup and cell

type indicators need to be estimated.
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2.1. Dirichlet process

The DP mixture model (Lo (1984)) based on the DP prior (Ferguson (1973))

can be considered a generalized version of the finite-mixture model. For nota-

tional simplicity, we temporarily consider only the cell data from subject 1 and

let the gene number D be one. Thus, the column vectors X
(1)
1 , . . . ,X

(1)
n1 of X(1)

can be simplified to univariate samples X1, . . . , Xn1
, and the cell type indicators

C
(1)
i simplify to Ci. The finite-mixture model allocates each cell to one of K

cell types, with the probability of cell type k being πk; that is, P(Ci = k) = πk
and

∑K
k=1 πk = 1. Given that cell i is assigned to cell type k, Xi is assumed

to be from the distribution f(x|µk), where f is a probability density (or mass)

function, which will be specified in the next section, and µk is a parameter de-

scribing the cell-type-k effect. Usually, the total cell type number K is unknown

to data analysts, and it is challenging to accurately estimate its value. The DP

mixture overcomes this challenge by generalizing K to infinity and allowing finite

nonempty components, thereby not requiring a prespecification of K.

The DP is constructed using the stick-breaking process (Sethuraman (1994)).

Imagine that we have a stick of length 1 unit, and we intend to break this stick into

infinite pieces. We first sample a value ψ1 from the beta distribution Beta(1, α)

(α > 0), and then cut the stick at point ψ1 away from its left endpoint. Ac-

cordingly, the piece of length π1(:= ψ1) is retained, and we continue to break

the remaining stick with length 1 − π1. Once again, we generate a value ψ2

from Beta(1, α), cut off ψ2 proportion of the remaining length 1−π1, and obtain

a new piece with length π2 := (1 − π1)ψ2. Repeating the breaking procedure

on the stick, we have an infinite number of pieces, with the kth piece’s length

πk := (1−
∑k−1

i=1 πi) · ψk (ψk ∼ Beta(1, α)). Each piece k is further given a mark

(parameter) µk, sampled from a distribution H. In this way, we construct a prob-

ability measure, P =
∑∞

k=1 πkδµk
(δµ indicates the Dirac measure at µ), with

infinite weights {πk}∞k=1 and support on infinite atoms {µk}∞k=1. The measure P

is said to be from a DP with concentration parameter α and base distribution H,

written as P ∼ DP(α,H). Under P , each cell i has the probability πk of being

from cell type k, for any positive integer k, without a constraint K.

2.2. Hierarchical Dirichlet process and nested Dirichlet process

The DP is only applicable for one-level clustering. When another subject

level exists, the HDP (Teh et al. (2006)) aims to cluster cells for each subject,

and is able to match cell types in different subjects. In other words, if the cell

type indicators C
(j1)
i1

and C
(j2)
i2

are equal (j1 may not be j2), then cell i1 in subject
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j1 and cell i2 in subject j2 must be from the same cell type. Assume G(j) is the

subject-j-specific distribution having the form
∑∞

k=1 π
(j)
k δµ(j)

k
, based on which

the cells in subject j are clustered. To encourage a common support set across

G(j), the HDP adopts a hierarchy structure. At the higher level G0 ∼ DP(α,H),

and then at the lower level, G(j) are independent and identically distributed

(i.i.d.) and generated from DP(γ,G0). Because G0 from DP(α,H) is a discrete

distribution and plays the role of the base distribution in DP(γ,G0), the atoms

µ
(j)
k of the support of G(j) must be consistent with those of G0. This characteristic

guarantees the shared cell types across G(j) in the HDP.

Nevertheless, in the HDP, any two subjects have distinct cell distributions

owing to different weights (cell proportions), that is, P(G(j1) = G(j2)) = 0 if

j1 6= j2; thus, no group structure exists among subjects (Figure 2(a)). The

NDP (Rodriguez, Dunson and Gelfand (2008)) permits subject grouping while

clustering cells. This is achieved by replacing the base measure G0 in DP(γ,G0)

with a Dirichlet process DP(α,H), written as DP(γ,DP(α,H)). Specifically, if we

let Q = DP(γ,DP(α,H)), Q takes the form of
∑∞

k=1 φkδG∗k , where the atoms of

Q are not numerical values, but distributions G∗k from DP(α,H). Subsequently,

G(j) are i.i.d. sampled from Q, and P(G(j) = G∗k) = φk. Rodriguez, Dunson and

Gelfand (2008) showed that there is a positive probability that two distributions

G(j1) andG(j2) are identical, thus inducing group structures forG(j) (Figure 2(b)).

Despite the simultaneous clustering on subjects and cells enjoyed by the NDP, its

assumed continuous measure H leads to distinct supports between two subject

subgroups (Figure 2(b)). The distributions of the two subjects from the NDP

either share all atoms in the support and cell proportions, or lack any common

atom. Specifically, if G(j1) and G(j2) from the NDP have one shared atom, then

the whole distribution G(j1) is equal to G(j2) almost surely. This is called the

degeneracy issue of the NDP, outlined in Camerlenghi et al. (2019), which causes

the difficulty of cell-type-matching for two different subject subgroups in our

study.

3. The SCSC Model

The hybrid NDP-HDP prior proposed by James (2008) succeeds in promoting

subject subgroups with shared cell types. The nonparametric prior is constructed

by assigning a DP prior to the base measure in the NDP,

G0 ∼ DP(α,H),

G(j) i.i.d.∼ DP(ν,DP(γ,G0)), j = 1, . . . ,m. (3.1)
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Figure 2. A simple demonstration of three nonparametric Bayesian priors: the HDP,
NDP, and hybrid NDP-HDP. (a) The HDP can make subject-specific distributions G(1),
G(2), G(3), and G(4) share the distribution support. However, each distribution G(k) has
its own bar heights (weights). (b) The NDP can achieve the subject subgroup structures;
however, two distributions in different subgroups do not have the same support, making
it difficult to match cell types across subgroups. (c) The hybrid NDP-HDP prior not
only groups subject-specific distributions, but also enables cell-type-matching between
any two subject subgroups.

On the one hand, because G0 is drawn from DP(α,H), it has a countable

support set. This property of G0 makes the child distributions G(j) share the

same support, thus enabling cell-type matching across subjects, an important

aspect the NDP lacks. On the other hand, given G0, the NDP helps to form
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Table 1. Comparing the capabilities of the HDP, NDP, and hybrid NDP-HDP priors.

Prior Subject subgroup structures Shared support

HDP ×
√

NDP
√

×
Hybrid NDP-HDP prior

√ √

subgroups for subjects. Therefore, the hierarchical and nested nonparametric

prior (3.1) integrates the strengths of the HDP and the NDP (Figure 2(c) and

Table 1).

For the nonparametric prior (3.1), we assume the base measure H is a non-

atomic probability measure on the measurable space (U,B), where U is a D-

dimensional subset of RD (U ⊂ RD), H({y}) = 0 for any y ∈ U , and B is the

Borel σ-field of U . Denote the correlation matrix of the distribution H by RH .

We then have the following results for the distributions G(j) from the prior (3.1).

Proposition 1. For any Borel set A ∈ B, we have

(1) E
(
G(j)(A)|H

)
= H(A).

(2) V
(
G(j)(A)|H

)
= ((α+ γ + 1)H(A) (1−H(A)))/((α+ 1) (γ + 1)).

(3) Cor
(
G(j)(A), G(j′)(A)|H

)
= (1/(1 + ν))(νγ + α+ γ + ν + 1)/(α+ γ + 1)

for j 6= j′.

(4) When D = 1, let µ
(j)
i and µ

(j′)
i′ denote random variables from G(j) and G(j′),

respectively. The correlation between µ
(j)
i and µ

(j′)
i′ is

Cor
(
µ
(j)
i , µ

(j′)
i′

)
=


α+ γ + 1

(α+ 1)(γ + 1)
for j = j′, i 6= i′

νγ + α+ γ + ν + 1

(ν + 1)(α+ 1)(γ + 1)
for j 6= j′

.

(5) When D ≥ 2, let µ
(j)
i and µ

(j′)
i′ denote the random vectors from G(j) and

G(j′), respectively. The correlation matrix between µ
(j)
i and µ

(j′)
i is

Cor
(
µ
(j)
i ,µ

(j′)
i′

)
=


α+ γ + 1

(α+ 1)(γ + 1)
RH for j = j′, i 6= i′

νγ + α+ γ + ν + 1

(ν + 1)(α+ 1)(γ + 1)
RH for j 6= j′

.

Note that when α goes to infinity, G0 in the hybrid NDP-HDP prior ap-

proaches its centering measure H. In this limiting case α → +∞, the hybrid
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prior degenerates to the NDP, so the results above are consistent with those for

the NDP (Rodriguez, Dunson and Gelfand (2008)). The proof of the proposition

can be found in Supplementary Material, Section S1.

We also tailor a zero-inflated distribution to the scRNA-seq raw count data

and connect the data-modeling part to the hybrid NDP-HDP prior. One impor-

tant feature of the scRNA-seq count data is that it contains a relatively large

proportion of zeros compared with the bulk RNA-seq data. This zero-inflation

phenomenon, also called dropouts, is mainly caused by a low number of mRNA

molecules in one cell. As a result, the expression levels on some genes do not

surpass the measurable threshold of the sequencing technology, thus leading to

the zero observations.

To model dropout events, we assume that Y
(j)
gi is the underlying true read

count mapped to gene g in cell i for subject j; however, these Y
(j)
gi are only

partially observed through the collected data X
(j)
gi , owing to the dropouts. Be-

cause the probability of a dropout occurring relies on the value of Y
(j)
gi , (i.e.,

the larger the value of Y
(j)
gi , the less likely we are to observe a zero value), the

dropout mechanism is “nonignorable,” in the terminology of the field of missing

data analysis,

X
(j)
gi =

{
0 with probability p(Y

(j)
gi )

Y
(j)
gi with probability 1− p(Y (j)

gi )
.

The dropout rate p(y) is modeled as Φ(λg0 + λg1 log2(y + 1)) using a Probit

link, in which λg1 < 0 and Φ is the cumulative distribution function of the

standard normal distribution. A negative λg1 guarantees a negative correlation

between y and p(y), and its dependence on the gene index g accurately models the

biological observation that the dropout rate may be associated with the gene’s

features, such as the gene length (Liu, Warren and Zhao (2019)).

Owing to the count nature and over-dispersion of the scRNA-seq data, we

adopt the Poisson-log-normal (PLN) distribution for the variable Y
(j)
gi . The

PLN distribution has two parameters, η and σ2, corresponding to the mean

and variance, respectively, of the logarithmic Poisson rate. Mathematically,

Y ∼ PLN(η, σ2) if and only if Y ∼ Poi(eθ), θ ∼ N(η, σ2). The equivalence

implies that the PLN accounts for the over-dispersion (Supplementary Material,

Section S2).

Moreover, a technical factor that can bias the analysis of sequencing data

is the library size, which differs from one cell to another, and is defined as the

total number of mapped reads to that cell (a detailed description of the library
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size is given in the Supplementary Material, Section S3 and Figure S1). To

consider the effect of cells’ library sizes, we model Y
(j)
gi using Y

(j)
gi ∼ Poi(s

(j)
i eθ

(j)
gi )

and θ
(j)
gi ∼ N(η

(j)
gi , σ

2
g), written as Y

(j)
gi ∼ PLN(s

(j)
i , η

(j)
gi , σ

2
g) for simplicity, where

s
(j)
i is a scaling factor that considers different library sizes of cells. Specifically,

if we denote the library size of cell i in subject j by l
(j)
i , s

(j)
i is calculated as

l
(j)
i /mediani l

(j)
i and l

(j)
i =

∑D
g=1X

(j)
gi , based on the definition of the library size.

Here, η
(j)
gi represents the effects on gene g caused by cell i and subject j, and σ2g

reflects the variation. We separate cell effects from subject effects, and let η
(j)
gi

be the addition of the cell-specific effect µ
(j)
gi and the subject-specific effect β

(j)
g .

Combining the dropout mechanism and the PLN distribution for Y
(j)
gi gives

the zero-inflated PLN (ZIPLN) distribution for the observed data X
(j)
gi , which can

be expressed as X
(j)
gi ∼ ZIPLN(λg0, λg1, s

(j)
i , µ

(j)
gi +β

(j)
g , σ2g). Finally, we assign the

nonparametric prior (3.1) to the cell-specific effect vector µ
(j)
i = (µ

(j)
1i , . . . , µ

(j)
Di)
>,

and arrive at the following SCSC model,

G0 ∼ DP(α,H),

G(j) i.i.d.∼ DP(ν,DP(γ,G0)), j = 1, . . . ,m,

µ
(j)
i

i.i.d.∼ G(j), i = 1, . . . , nj for each j,

X
(j)
gi ∼ ZIPLN(λg0, λg1, s

(j)
i , µ

(j)
gi + β(j)g , σ2g) for each j, i, and g. (3.2)

Here, the base measure H is a non-atomic probability measure on the mea-

surable space (RD,B), where RD is a real coordinate space of dimension D, and B
is the Borel σ-field of RD. We constrain the subject-specific effects β

(j1)
g = β

(j2)
g ,

for any g, if G(j1) = G(j2), because subjects from the same subgroup usually

exhibit the same characteristics. Moreover, to make the parameters µ and β es-

timable, we let one subject subgroup act as the “reference” group, and constrain

the subject effects β(j) of the reference group to be zero.

4. The Truncated SCSC Model

Exact posterior sampling for the SCSC model can be performed using the

Polya-urn scheme (Pitman (1996)), which marginalizes the distributions G0 and

G(j) (j ≥ 1). However, the marginalization procedure introduces extra depen-

dence among the cells, and causes the cell-type allocation update for one cell to

rely on all other cells. Such a sequential update scheme results in unnecessary

and heavy computations. Therefore, to enhance the posterior sampling efficiency

of the SCSC model, we use the blocked Gibbs sampler (Ishwaran and James
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(2001)), where the updates in each parameter block are independent, by taking a

truncation strategy (Ishwaran and James (2001); Rodriguez, Dunson and Gelfand

(2008)) in which we set the upper bounds L for the number of subject subgroups

and K for the cell type number. Moreover, the blocked Gibbs sampler favors the

use of parallel computing to further speed up posterior inference. The truncated

SCSC model is

G0 ∼ DP(α,H),

G(j) i.i.d.∼ DPL(ν,DPK(γ,G0)), j = 1, . . . ,m,

µ
(j)
i

i.i.d.∼ G(j), i = 1, . . . , nj for each j,

X
(j)
gi ∼ ZIPLN(λg0, λg1, s

(j)
i , µ

(j)
gi + β(j)g , σ2g), for each j, i, and g. (4.1)

Using the stick-breaking process metaphor, DPK(γ,G0) indicates that we

break the unit stick into K pieces, rather than infinite pieces. The following

theorem states that the truncation model (4.1) is an accurate approximation

to the original model (3.2), as long as the concentration parameters γ and ν

and the truncation numbers L and K are selected appropriately. The choice of

(ν, γ,K,L) is discussed later. See the Supplementary Material, Section S4, for

the proof, which is based on Theorem B1 in the NDP paper (Rodriguez, Dunson

and Gelfand (2008)).

Theorem 1. Denote the prior distributions of the cell effects µ from the SCSC

model and the truncated SCSC model by p∞∞(µ) and pKL(µ), respectively. Based

on the priors, we have the marginal distributions p∞∞(x) and pKL(x), respec-

tively, for the observed data x by integrating out all the parameters. We then

have

1

4

∫ ∣∣pKL(x)− p∞∞(x)
∣∣ dx ≤ 1−

{
1−

(
ν

ν + 1

)L−1}m{
1−

(
γ

γ + 1

)K−1} m∑
j=1

nj

.

If we expand the implicit distributions G(j) in model (4.1) in terms of the

subject cluster indicators S(j) and the cell type indicators C
(j)
i , then we obtain a

more concrete and interpretable model:

ξ = (ξ1, ξ2, . . . , ξK) ∼ GEMK(α),

µk
i.i.d.∼ H, for k = 1, . . . ,K,

π` = (π1`, . . . , πK`)
i.i.d.∼ Dir(γξ1, γξ2, . . . , γξK), for ` = 1, . . . , L,

φ = (φ1, φ2, . . . , φL) ∼ GEML(ν),
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S(j) i.i.d.∼ MN(1;φ1, φ2, . . . , φL), for j = 1, . . . ,m,

C
(j)
i |S

(j) = `
i.i.d.∼ MN(1;π1`, . . . , πK`), for i = 1, . . . , nj for each j,

X
(j)
gi |S

(j) = `, C
(j)
i = k ∼ ZIPLN(λg0, λg1, s

(j)
i , µgk + βg`, σ

2
g),

for each j, i, and g. (4.2)

MN is the multinomial distribution and Dir indicates the Dirichlet distribu-

tion. GEML(ν) refers to the truncated stick-breaking process in which the

stick proportions {φ′1, φ′2, . . . , φ′L−1} are i.i.d. from Beta(1, ν), and φ1 = φ′1,

φ` = φ′`
∏`−1
t=1(1− φ′t), for 2 ≤ ` ≤ L− 1, and φL = 1−

∑L−1
`=1 φ`. This is similar

for GEMK(α). Again, we note that the subgroup-one effect vector β1 is fixed at

zero for identifiability. We prove that model (4.2) is equivalent to model (4.1) in

Supplementary Material, Section S5. Subsequently, we focus on model (4.2) to

perform the Bayesian inference.

Note that in the stick-breaking process, the prior expectation of the first

stick’s length is always larger than others and, in practice, we usually assign

the first subgroup as the reference group. Thus, we need to be cautious about

the choice of ν that reflects our prior belief for the relative weight of the ref-

erence group (1/(1 + ν) in expectation). If we replace the truncated stick-

breaking prior in model (4.2) φ = (φ1, φ2, . . . , φL) ∼ GEML(ν) with a finite-

dimensional Dirichlet prior (Ishwaran and James (2001)) φ = (φ1, φ2, . . . , φL) ∼
Dir(ν/L, ν/L, . . . , ν/L), this would mitigate the effect of the prior weight bias in-

duced by the truncated stick-breaking process. However, this replacement breaks

the equivalence between models (4.1) and (4.2).

In model (4.2), a larger ν encourages more subject subgroups, and a larger γ

reflects that the cell proportions across subject subgroups have more concentra-

tion on the normalized (ξ1, ξ2, . . . , ξK), the assignments of which are determined

by α. Thus, we first choose γ and ν to reflect our prior belief, and then choose K

and L appropriately to guarantee a small approximation error. Throughout the

paper, we use ν = γ = 0.5 and K = L = 15, giving a small approximation error

in the simulation and the real application.

Because we cluster high-dimensional expression data, it is important to con-

duct feature selection. Tadesse, Sha and Vannucci (2005) proposed a Bayesian

variable selection method to cluster high-dimensional samples and identify dis-

criminating variables simultaneously. Therefore, we incorporate this idea into

the proposed SCSC model, resulting in a variable selection version, which we call

SCSC-vs. Further details can be found in the Supplementary Material, Section

S6.
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5. Bayesian Posterior Inference

We next specify the priors for the unknown parameters in model (4.2).

The prior for the concentration parameter α (α > 0) is a gamma distribution,

α ∼ Γ(aα1
, aα2

). The baseline distribution H of cell-type-k effects µgk is set

as the Cartesian product of D normal distributions N(ηµ, τ
2
µ), and we assign

hyper-priors ηµ ∼ N(uµ, ω
2
µ) and τ2µ ∼ InvΓ(bµ1, bµ2) to ηµ and τ2µ, respectively.

Similarly, we assign a normal distribution N(ηβ, τ
2
β) to the subgroup effect βg`,

and assign ηβ and τ2β hyper-priors ηβ ∼ N(uβ, ω
2
β) and τ2β ∼ InvΓ(bβ1, bβ2) to

introduce the hierarchy for subject effects. This enables information to be bor-

rowed across genes. The prior distribution of the variance σ2g is an inverse-gamma

distribution σ2g ∼ InvΓ(bσ1, bσ2), and the priors for the zero-inflation-related pa-

rameters λg0 and λg1 are given by the weakly informative priors N(ηλg0
, τ2λg0

) and

N(ηλg1
, τ2λg1

)I(λg1 < 0), respectively.

Finally, given the priors and model (4.2), we use the blocked Gibbs sam-

pler (Ishwaran and James (2001)) to perform the posterior sampling. Sampling

directly from a ZIPLN distribution suffers from an intractable infinite sum and

integral. Therefore, we augment the model with the auxiliary variables θ
(j)
gi and

Y
(j)
gi (Tanner and Wong (1987)) specified in Section 3 to make the sampling for

the ZIPLN feasible. The Gibbs sampling scheme is presented in detail in the Sup-

plementary Material, Section S7. Some steps of the blocked Gibbs sampler do

not correspond to tractable distributions; hence, we adopt a Metropolis-within-

Gibbs framework in such cases. The proposal distributions and the calculations

of the acceptance rates are contained in the Supplementary Material, Section

S8. For each iteration of the Gibbs sampler, the computational complexity is

O(DKL
∑m

j=1 nj), which increases linearly with the gene number D, the total

cell number
∑m

j=1 nj , and the upper bounds K and L. Thus, the MCMC algo-

rithm can scale well on a large volume of scRNA-seq data.

After the burn-in period, defined as the first half of the iterations, we collect

the posterior samples from the last half of the iterations for statistical inference.

Furthermore, we estimate the subgroup and cell-type indicators, S(j) and C
(j)
i ,

respectively, using the mode of the posterior samples to keep the integer nature.

For the subgroup effects and cell-type-specific effects, βg` and µgk, respectively,

the posterior mean is used for estimation.
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Figure 3. Performance of the SCSC model in the simulation. (a) Heatmap of the true
cell effects µgk, and (b) heatmap of cell effect estimations. In both (a) and (b), one row
represents one gene, and each column represents one cell type. (c) Heatmap of the true
subject subgroup effects, and (d) heatmap of subject subgroup effect estimations. In
both (c) and (d), one row represents one gene, and each column represents one subject
subgroup. (e) Heatmap of the true cell proportions for each subgroup. (f) The cell
proportion estimates. (g–h) Posterior similarity matrix heatmaps for (g) cells and (h)
subjects. In the similarity matrix, the (i, j) element is the posterior probability that
objects i and j are in the same cluster, for i 6= j.

6. Results

6.1. Simulation

We generated data following model (4.2); for a detailed description, see the

Supplementary Material, Section S9. We then applied our SCSC model to this

data set using γ = ν = 0.5, the subject subgroup upper bound L = 15, and

cell type number upper bound K = 15, which guarantees a small approximation

error 0.0011, based on Theorem 1. We performed 10,000 iterations. By correct-

ing the label switching (Supplementary Material, Section S10), we evaluated the

estimates of the SCSC model for the cell type effects µ, subgroup effects β, and

cellular proportions for each subject subgroup π. The comparison between the

true parameter values and the estimates is shown in Figure 3(a–f), indicating that

the SCSC model estimated these parameters well. Figure 3(g–h) display the pos-

terior similarity matrices for cell clustering and subject clustering, respectively,

showing clear clustering structures for cells and subjects. Hence, the SCSC model

automatically and accurately identifies the underlying heterogeneity for subjects

and cells.



1850 WU AND LUO

1

0.8

0.6

0.4

0.2

0

A
R
I

1

0.8

0.6

0.4

0.2

0

A
R
I

(a) Cell clustering comparison (b) Subject clustering comparison

SCSC  Seurat        Kmeans DIMM-SC     SC3 SCSC  Kmeans SparseKmeans BCPlaid

Figure 4. Clustering performance of the SCSC model and competing methods in the cell
clustering and subject clustering settings based on 10 realizations. (a) ARI box plots
for the SCSC model and other cell clustering approaches. (b) ARI box plots for the
SCSC model and other subject clustering approaches. The implementation details of the
competing methods are provided in the Supplementary Material, Section S11.

Because there is no statistical approach to simultaneously cluster subjects

and cells, we compared the SCSC against several popular cell and subject cluster-

ing approaches, respectively. We selected the cell clustering approaches k-means

(MacQueen (1967)), SC3 (Kiselev et al. (2017)), DIMM-SC (Sun et al. (2017)),

and Seurat (Butler et al. (2018); Stuart et al. (2019)), and the subject clustering

approaches kmeans (MacQueen (1967)), SparseKmeans (Witten and Tibshirani

(2010)), and BCPlaid (Turner, Bailey and Krzanowski (2005)). Box plots for the

adjusted Rand index (ARI) values (Hubert and Arabie (1985)) of all methods

under the cell and subject clustering settings based on 10 realizations are shown

in Figure 4. Overall, the SCSC model performed better in terms of both cell

clustering and subject clustering. When clustering cells, the SCSC model bor-

rows information across multiple subjects, and considers the subject differences.

When grouping subjects, the model exploits the cell information of each sub-

ject to discover the subtle difference. Owing to the two-way information-sharing

strategy, the SCSC model outperforms competing methods in terms of both cell

clustering and subject grouping.

The performance of the SCSC and SCSC-vs on low-signal scenarios and

model misspecification cases is discussed in the Supplementary Material, Section

S12.
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6.2. Real application

Sarkar et al. (2019) collected scRNA-seq data sets from 7,585 induced pluripo-

tent stem cells (iPSCs) from a total of 54 Yoruba subjects in Nigeria. The data

sets are publicly available with the accession code GSE118723 in GEO (Edgar,

Domrachev and Lash (2002)). Although the purpose of the study (Sarkar et al.

(2019)) was to detect variance QTLs, we can use the same data set to mine

other interesting information, such as the cell and subject heterogeneity presented

here. At the subject level, Yoruba is one of Nigeria’s largest ethnic groups, and

the Yorubas in the same lineage are more likely to suffer from the same genetic

diseases (Olaitan et al. (2014)). Therefore, analyzing the heterogeneity of the

Yorubas can clarify their family relationships or find Yoruba sub-races. At the

cell level, the iPSCs are reprogrammed from the somatic cells in adult tissues, and

have the ability to differentiate into several cell types. Hence, they can poten-

tially be used to make personalized treatments for patients. The iPSCs derived

from different somatic cell types may demonstrate heterogeneous differentiation

abilities (Kim et al. (2011)). Our aim is to apply the SCSC model to the data

set to distinguish Yoruba individuals and, at the same time, separate the iPSC

heterogeneity.

Our analysis focused on the scRNA-seq counts from batch 6 in Sarkar et al.

(2019), which includes 20 subjects and 1,152 cells. In the preprocessing procedure,

we filtered out cells with a zero proportion of more than 80%, and genes with

a zero proportion of more than 30%. We further removed subjects having less

than five cells, resulting in a scRNA-seq data set with 14 subjects, 1,028 cells,

and 4,178 genes. The cell numbers of the 14 selected subjects ranged from 29

to 129. During the analysis, the scaling factors were computed to adjust for the

effects of the library sizes.

We then implemented the SCSC model with (γ, ν,K,L) = (0.5, 0.5, 15, 15),

resulting in a small approximation error of 0.0009. The blocked Gibbs sampler

performed 10,000 iterations, with the first half as the burn-in period, taking

about 21.66 hours using 24 CPU cores. The trace plots in the Supplementary

Material, Figure S2 show that the chains attained convergence during burn-in.

Two Yoruba subgroups and two iPSC types were identified. The posterior sim-

ilarity matrix heatmaps for cells and subjects are given in the Supplementary

Material, Figure S3. Yoruba subgroup 1 contained 4 subjects and had cellular

compositions of 23.68% and 76.32% for cell types 1 and 2, respectively. Yoruba

subgroup 2 contained 10 subjects, with cell type compositions of 21.55% and

78.45%. The heatmaps for the logarithm-transformed and row-scaled expression
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Figure 5. Performance of the SCSC model on the Yoruba iPSC scRNA-seq data. (a)
Heatmap for the logarithm-transformed and row-scaled gene expression values of the cells
in subject subgroup 1. There are 2,698 DE genes, 94 type-1 cells, and 303 type-2 cells.
Cells under the same color are from the same cell type. (b) Heatmap for the logarithm-
transformed and row-scaled gene expression values of the cells in subject subgroup 2.
There are 2,698 DE genes, 136 type-1 cells, and 495 type-2 cells. (c–d) Scatter plots by
projecting cells in subject subgroups 1 and 2 onto a two-dimensional space using UMAP
via the R package umap (Konopka (2019)). Cells are colored by the estimated cell types:
cell type 1 (orange), cell type 2 (green).

values in Yoruba subgroups 1 and 2, are shown in Figures 5(a) and 5(b), respec-

tively. We observed clearly differential expression patterns between cell types 1

and 2 on the detected cell type DE genes, indicating the existence of heterogeneity

among the iPSCs. In addition to, the cellular compositions, the estimated effects

of the Yoruba subgroups also demonstrated the heterogeneity of the Yoruba in-

dividuals (Supplementary Material, Figure S4). A clear cell pattern in Yoruba

subgroups 1 and 2 is observed in Figure 5(c–d): cells of type 1 (orange) and

type 2 (green) are well separated. Sensitivity analyses (Supplementary Material,

Section S13, and Supplementary Material, Figures S5–7) demonstrate that the
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clustering result obtained by the SCSC model is robust to the choices of the hy-

perparameters. The validation of the SCSC model clustering results are provided

in the Supplementary Material, Section S14.

7. Conclusion

In this study, we developed a nonparametric Bayesian model, SCSC, to si-

multaneously discover subject and cell heterogeneity in a two-level clustering

approach. The SCSC model has the flexibility of learning the subject subgroup

or cell type number from the data without a prespecification. Unlike priors such

as the HDP or the NDP, we employed the hybrid NDP-HDP prior (James (2008))

to induce group structures in subjects, cluster cells in each subject, and match

cell types across subjects. The ZIPLN distribution developed in the SCSC model

directly models the count nature, over-dispersion, and dropouts of the scRNA-seq

data. Owing to these two features, the SCSC model achieves subject-level and

cell-level clustering on the multi-subject scRNA-seq data. When clustering sub-

jects, the SCSC model takes advantage of the cell resolution differences; when

clustering cells, it borrows information across multiple subjects. The two-way

information-sharing strategy enables SCSC to obtain more accurate clustering

results than competing methods do in the domain of either subject clustering

using bulk expression data or cell clustering based on scRNA-seq data.

To the best of our knowledge, the SCSC model is the first unified approach to

address the two-level clustering for scRNA-seq data. Notably, the SCSC model

bridges the methodology gap between subject clustering based on aggregated

gene expression data and scRNA-seq cell clustering. The framework in the SCSC

model can be further adapted to situations where the observed data are sparse

and count-valued, and two-level clustering is of interest. The following are possi-

ble directions to extend the SCSC model. All distributions induced by the hybrid

NDP-HDP prior have the same atoms. However, one subject subgroup may have

its own cell type. For example, one tumor subtype can have a unique tumor

cell subclone. Thus, incorporating the semi-HDP (Beraha, Guglielmi and Quin-

tana (2021)) can help generate distributions in which there exist both shared and

unique atoms. Additionally, the DP is a special case of the Pitman–Yor process

(Pitman and Yor (1997)), which has many desirable features in practice. Thus

replacing the HDP with hierarichical Pitman–Yor processes would create more

realistic clustering behavior, especially in the scRNA-seq data analysis (Camer-

lenghi et al. (2020)).

Considering the continuous progress of sequencing technology, single-cell
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RNA sequencing will become affordable and available to more persons. We thus

envision that the SCSC model will be a useful method to facilitate the develop-

ment of personalized treatment in a time of single-cell genomics.

Supplementary Material

Supplementary Material provides the proofs, MCMC derivations, and simu-

lation and application results. The R package to implement the SCSC model is

available on GitHub https://github.com/WgitU/SCSC.
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