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The Supplementary Material shows that the proposed MMA estimator

has the property of asymptotic optimality. The Supplementary Material

is structured as follows. In S1-S3 we deal with the properties of the OLS

estimator, the penalty term, and the proposed MMA, respectively. We then

prove Theorem 1 by extending the method of Wan et al. (2010) in the last

section.

S1 Proof of Lemma 1

Proof of Lemma 1. To start with, it is known that:

rank [A′A] = rank [AA′] = rank [A] = rank [A′] ,
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for any matrix A. From this, for all q ≤ Q we have:

rank
[

X̃′
qX̃q

]

= rank
[

X̃q

]

= rank [XqUq] , (S1.1)

where the second step follows from equation (3.7). Since XQ have full rank,

Xq have full rank for all q ≤ Q. Hence, we observe:

rank [XqUq] = rank [Uq] , (S1.2)

whereby Xq is an n × (1 +
∑kq

i=1Ki) matrix with rank (1 +
∑kq

i=1Ki). By

combining (S1.1) and (S1.2), we have:

rank
[

X̃′
qX̃q

]

= rank [Uq] .

Remember that the matrix V(K, p) defined in (2.7) stands for a Van-

dermonde matrix. It is also widely known that:

det (V(N,N)) =
∏

1≤i<j≤N

(j − i),

which means that the N rows of V(N,N) are linearly independent. Recall

from the assumption that pi < Ki for i ∈ N. Since Ki is a finite number,

we have rank [V(Ki, pi)] = pi for i ∈ N. Thus, we obtain:

rank
[

X̃′
qX̃q

]

= rank [Uq] = 1 +

kq
∑

i=1

pi.

Note that X̃′
qX̃q is an

(

1 +
∑kq

i=1 pi

)

×
(

1 +
∑kq

i=1 pi

)

matrix. Therefore,

we conclude that the matrix X̃′
qX̃q has full rank and is invertible for all

q ≤ Q.
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S2 Proof of Lemma 2

Proof of Lemma 2. For item (i), note that we have the invertible property

of X̃′
qX̃q by Lemma 1. Thus, we obtain that:

tr (Pq) =tr

(

X̃q

(

X̃′
qX̃q

)−1

X̃′
q

)

=tr

(

(

X̃′
qX̃q

)−1 (

X̃′
qX̃q

)

)

=tr
(

I
(1+

∑kq
i=1

pi)

)

= 1 +

kq
∑

i=1

pi,

and tr (P(w)) = tr
(

∑Q
q=1wqPq

)

=
∑Q

q=1wqtr (Pq) = 1 +
∑Q

q=1

∑kq
i=1wqpi.

Item (ii) follows from the fact that tr (PmPl) = 1 +
∑kmin{m,l}

i=1 pi and

simple algebra. For item (iii), we have:

λmax (P(w)) = max
η

η
′P(w)η

η′η
≤

Q
∑

q=1

wq max
η

η
′Pqη

η′η
= 1,

because Pq is an idempotent matrix.

S3 Proof of Proposition 1

Proof of Proposition 1. Observe that:

Cn(w)− Ln(w) = ǫ
′
ǫ+ 2ǫ′ (I−P(w))µ− 2

(

ǫ
′P(w)ǫ− σ2k(p)(w)

)

(S3.3)
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and:

E[ǫ′P(w)ǫ|X(m)] = E

[

tr (ǫ′P(w)ǫ)

∣

∣

∣

∣

X(m)

]

= E

[

tr (P(w)ǫǫ′)

∣

∣

∣

∣

X(m)

]

= tr
(

P(w) · E
[

ǫǫ
′|X(m)

])

.

Recall that E
[

ǫǫ
′|X(m)

]

= σ2I. Thus, we have:

E[ǫ′P(w)ǫ|X(m)] = σ2tr (P(w) · I) = σ2k(p)(w).

This result therefore follows by taking the expectation of (S3.3).

S4 Proof of Theorem 1

We now shall prove Theorem 1. The proof is adapted from Wan et al.

(2010, Theorems 1 and 2). Let us now outline the way to prove Theorem

1, which is basically split into Step I and Step II.

For Step I, we extend the idea of the proof by Wan et al. (2010), which

is identical to that of Li (1987). Indeed, Theorem 2.1 of Li (1987) presents

asymptotic optimality for a broad class of linear estimators. More specifi-

cally, we recall from (3.22) that:

Cn(w) = Ln(w) + ǫ
′
ǫ + 2ǫ′ (I−P(w))µ− 2

(

ǫ
′P(w)ǫ− σ2k(p)(w)

)

.

(S4.4)
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The first step is to thus show that as n → ∞:

sup
w∈Hn

|2ǫ′ (I−P(w))µ|

Rn(w)

p
−→ 0, (S4.5)

sup
w∈Hn

∣

∣ǫ
′P(w)ǫ− σ2k(p)(w)

∣

∣

Rn(w)

p
−→ 0, (S4.6)

and:

sup
w∈Hn

∣

∣

∣

∣

Ln(w)

Rn(w)
− 1

∣

∣

∣

∣

p
−→ 0. (S4.7)

Therefore, the proof of the first step will be split into three parts. Never-

theless, a similar strategy is adopted to deal with each part, respectively. In

other words, we first provide an upper bound for the case of non-stochastic

X(m). We then complete the proof by removing this constraint for the case

of non-stochastic X(m).

For Step II, we prove that as n → ∞:

sup
w∈Hn

tr (P(w))
(

σ̂2
Q − σ2

)

Rn(w)

p
−→ 0, (S4.8)

because:

Ĉn(w) = Cn(w) + 2tr (P(w))
(

σ̂2
Q − σ2

)

. (S4.9)

Proof of Theorem 1. Part I of Step I. First, for any δ > 0 and the case

of non-stochastic X(m), we observe:
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P

[

sup
w∈Hn

|ǫ′ (I−P(w))µ|

Rn(w)
> δ

]

≤ P

[

sup
w∈Hn

|ǫ′ (I−P(w))µ| > δΞn

]

≤ P

[

sup
w∈Hn

Q
∑

q=1

wq|ǫ
′
(

I−P(w0
q)
)

µ| > δΞn

]

≤ P

[

Q
⋃

q=1

{

|ǫ′
(

I−P(w0
q)
)

µ| > δΞn

}

]

≤

Q
∑

q=1

P
[

|ǫ′
(

I−P(w0
q)
)

µ| > δΞn

]

≤

Q
∑

q=1

E|ǫ′
(

I−P(w0
q)
)

µ|2N

δ2NΞ2N
n

, (S4.10)

in which the last step follows by Chebyshev’s inequality. Through Theorem

2 of Whittle (1960), we next obtain:

Q
∑

q=1

E|ǫ′
(

I−P(w0
q)
)

µ|2N

δ2NΞ2N
n

≤ C1δ
−2NΞ−2N

n

Q
∑

q=1

∣

∣µ
′
(

I−P(w0
q)
) (

I−P(w0
q)
)

µ

∣

∣

N
, (S4.11)

for some constant C1 > 0. Recall from (3.19) that:

Rn(w) = |µ′ (I−P(w)) (I−P(w))µ|+ σ2tr (P(w)P(w)) ,

and so we have Rn(w) ≥ |µ′ (I−P(w)) (I−P(w))µ|. Therefore, we ob-

tain:

P

[

sup
w∈Hn

|ǫ′ (I−P(w))µ|

Rn(w)
> δ

]

≤ C1δ
−2NΞ−2N

n

Q
∑

q=1

[

Rn(w
0
q)
]N

. (S4.12)
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Finally, when X(m) is random, with the dominated convergence theorem

(DCT), the result (S4.5) is claimed by combining (3.29) and (S4.12).

Part II of Step I. For the case of non-stochastic X(m), by Chebyshev’s

inequality, Theorem 2 of Whittle (1960), and the fact (3.21) that Rn(w) >

σ2tr (P(w)P(w)), we similarly have:

P

[

sup
w∈Hn

∣

∣ǫ
′P(w)ǫ− σ2k(p)(w)

∣

∣

Rn(w)
> δ

]

≤ P

[

sup
w∈Hn

∣

∣ǫ
′P(w)ǫ− σ2k(p)(w)

∣

∣ > δΞn

]

≤

Q
∑

q=1

E
∣

∣ǫ
′P(w0

q)ǫ− σ2k(p)(w0
q)
∣

∣

2N

δ2NΞ2N
n

≤ C2δ
−2NΞ−2N

n

Q
∑

q=1

[

tr
(

P(w0
q)P(w0

q)
)]N

≤ C ′
2δ

−2NΞ−2N
n

Q
∑

q=1

[

Rn(w
0
q)
]N

, (S4.13)

where C2 > 0 and C ′
2 > 0 are constants. When X(m) is random, by com-

bining (3.29) and (S4.13), the result (S4.6) is thus proved by DCT.

Part III of Step I. To start with, we note that the result (S4.7) is

equivalent to:

sup
w∈Hn

∣

∣

∣

∣

|ǫ′P(w)P(w)ǫ|2 − σ2tr (P(w)P(w))− 2 (ǫ′P(w) (I−P(w))µ)

Rn(w)

∣

∣

∣

∣

p
−→ 0.

(S4.14)
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Therefore, to prove (S4.7), it suffices to show that as n → ∞:

sup
w∈Hn

∣

∣

∣

∣

ǫ
′P(w) (I−P(w))µ

Rn(w)

∣

∣

∣

∣

p
−→ 0, (S4.15)

and:

sup
w∈Hn

∣

∣

∣

∣

|ǫ′P(w)P(w)ǫ|2 − σ2tr (P(w)P(w))

Rn(w)

∣

∣

∣

∣

p
−→ 0. (S4.16)

We now shall prove (S4.15). For the case of non-stochastic X(m), by

Chebyshev’s inequality and Theorem 2 of Whittle (1960), we observe that
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for any δ > 0:

P

[

sup
w∈Hn

∣

∣

∣

∣

ǫ
′P(w) (I−P(w))µ

Rn(w)

∣

∣

∣

∣

> δ

]

≤ P

[

sup
w∈Hn

|ǫ′P(w) (I−P(w))µ| > δΞn

]

≤ P

[

sup
w∈Hn

∣

∣

∣

∣

∣

Q
∑

t=1

wtǫ
′P(w0

t )

Q
∑

q=1

wq

(

I−P(w0
q)
)

µ

∣

∣

∣

∣

∣

> δΞn

]

≤ P

[

sup
w∈Hn

Q
∑

t=1

Q
∑

q=1

wtwq

∣

∣ǫ
′P(w0

t )
(

I−P(w0
q)
)

µ

∣

∣ > δΞn

]

≤ P

[

Q
⋃

t=1

Q
⋃

q=1

{∣

∣ǫ
′P(w0

t )
(

I−P(w0
q)
)

µ

∣

∣ > δΞn

}

]

≤

Q
∑

t=1

Q
∑

q=1

P
[∣

∣ǫ
′P(w0

t )
(

I−P(w0
q)
)

µ

∣

∣ > δΞn

]

≤

Q
∑

t=1

Q
∑

q=1

E
∣

∣ǫ
′P(w0

t )
(

I−P(w0
q)
)

µ

∣

∣

2N

δ2NΞ2N
n

≤ C3δ
−2NΞ−2N

n

Q
∑

t=1

Q
∑

q=1

∣

∣µ
′
(

I−P(w0
q)
)

P(w0
t )P(w0

t )
(

I−P(w0
q)
)

µ

∣

∣

N
,

(S4.17)

where C3 > 0 is a constant. We further note that:

|µ′ (I−P(w))P(w)P(w) (I−P(w))µ|

≤ λ2
max (P(w)) · |µ′ (I−P(w)) (I−P(w))µ|

≤ |µ′ (I−P(w)) (I−P(w))µ| , (S4.18)

in which the second step holds by item (iii) of Lemma 2. By the fact of
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(3.20) that Rn(w) ≥ |µ′ (I−P(w)) (I−P(w))µ|, we thus have:

P

[

sup
w∈Hn

∣

∣

∣

∣

ǫ
′P(w) (I−P(w))µ

Rn(w)

∣

∣

∣

∣

> δ

]

≤ C3δ
−2NΞ−2N

n

Q
∑

t=1

Q
∑

q=1

∣

∣µ
′
(

I−P(w0
q)
) (

I−P(w0
q)
)

µ

∣

∣

N

≤ C3δ
−2NΞ−2N

n Q

Q
∑

q=1

[

Rn(w
0
q)
]N

, (S4.19)

for some constant C3 > 0. When X(m) is random, this completes the proof

of the result (S4.15) by using (3.29) and DCT.

By Chebyshev’s inequality, Theorem 2 of Whittle (1960), and the fact

that Rn(w) > σ2tr (P(w)P(w)), we thus obtain:

P

[

sup
w∈Hn

∣

∣

∣

∣

|ǫ′P(w)P(w)ǫ|2 − σ2tr (P(w)P(w))

Rn(w)

∣

∣

∣

∣

> δ

]

≤ P

[

sup
w∈Hn

Q
∑

t=1

Q
∑

q=1

wtwq

∣

∣|ǫ′P(w0
t )P(w0

q)ǫ|
2 − σ2tr

(

P(w0
t )P(w0

q)
)∣

∣ > δΞn

]

≤ P

[

Q
⋃

t=1

Q
⋃

q=1

{∣

∣|ǫ′P(w0
t )P(w0

q)ǫ|
2 − σ2tr

(

P(w0
t )P(w0

q)
)∣

∣ > δΞn

}

]

≤

Q
∑

t=1

Q
∑

q=1

P
[∣

∣|ǫ′P(w0
t )P(w0

q)ǫ|
2 − σ2tr

(

P(w0
t )P(w0

q)
)∣

∣ > δΞn

]

≤

Q
∑

t=1

Q
∑

q=1

E
∣

∣|ǫ′P(w0
t )P(w0

q)ǫ|
2 − σ2tr

(

P(w0
t )P(w0

q)
)∣

∣

2N

δ2NΞ2N
n

≤ C ′
3δ

−2NΞ−2N
n

∑

w∈Hn

[

tr
(

P(w0
q)P(w0

t )P(w0
t )P(w0

q)
)]N

, (S4.20)
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where C ′
3 > 0 is a constant. Again, we note that:

tr (P(w)P(w)P(w)P(w))≤ λ2
max (P(w)) · tr (P(w)P(w))

≤ tr (P(w)P(w)) , (S4.21)

in which the second step holds by item (iii) of Lemma 2. When X(m) is

random, the result (S4.16) is thus obtained by adopting (3.29) and DCT.

This proof is completed by combining Parts I-III.

Step II. The Mallows criterion can next be written as:

Ĉn(w) = Cn(w) + 2tr (P(w))
(

σ̂2
Q − σ2

)

, (S4.22)

where σ2 is replaced by σ̂2
Q. Hence, in this step, it suffices to prove that as

n → ∞ then:

sup
w∈Hn

tr (P(w))
(

σ̂2
Q − σ2

)

Rn(w)

p
−→ 0. (S4.23)

We observe that:

sup
w∈Hn

tr (P(w))
(

σ̂2
Q − σ2

)

Rn(w)
≤

(

1 +
∑kQ

i=1 pi

)

Ξn

∣

∣σ̂2
Q − σ2

∣

∣ . (S4.24)

Recall from (3.26) that:

σ̂2
Q =

(Y − X̃QΓ̂Q)
′(Y − X̃QΓ̂Q)

n−
(

1 +
∑kQ

i=1 pi

) =
Y ′(I−PQ)Y

n−
(

1 +
∑kQ

i=1 pi

) ,

where I is the n × n identity matrix, and Q corresponds to the largest
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approximating model. Thus, we have:

(

1 +
∑kQ

i=1 pi

)

Ξn

∣

∣σ̂2
Q − σ2

∣

∣

=

(

1 +
∑kQ

i=1 pi

)

Ξn

∣

∣

∣

∣

∣

∣

Y ′(I−PQ)Y

n−
(

1 +
∑kQ

i=1 pi

) − σ2

∣

∣

∣

∣

∣

∣

≤

(

1 +
∑kQ

i=1 pi

)

n−
(

1 +
∑kQ

i=1 pi

)

|µ′(I−PQ)µ|

Ξn
+

2
(

1 +
∑kQ

i=1 pi

)

|µ′(I−PQ)ǫ|

Ξn

(

n−
(

1 +
∑kQ

i=1 pi

))

+

(

1 +
∑kQ

i=1 pi

) ∣

∣

∣
ǫ
′(I−PQ)ǫ− σ2

(

1 +
∑kQ

i=1 pi

)∣

∣

∣

Ξn

(

n−
(

1 +
∑kQ

i=1 pi

))

=:J1 + J2 + J3. (S4.25)

Therefore, the remaining proof is to bound J1, J2, and J3. Here, w
0
Q is an

Q× 1 vector in which the Qth element is one, and the others are zeros, so

that:

PQ = P(w0
Q). (S4.26)

By (S4.26), we have that as n → ∞:

µ
′(I−PQ)µ

Ξ2
n

=
µ

′(I−P(w0
Q))µ

Ξ2
n

=
Rn(w

0
Q) + 2µ′(I−PQ)PQǫ + ǫ

′PQǫ

Ξ2
n

=
Rn(w

0
Q) + ǫ

′PQǫ

Ξ2
n

→ 0, (S4.27)

in which the last step holds by utilizing (3.29). By Assumption 2, we get
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that as n → ∞:

µ
′
µ

n
=

∑n−1
t=0 µ2

t

n
= O(1). (S4.28)

Combining (3.31), (S4.27), and (S4.28), we obtain that as n → ∞:

J1 ≤







(

1 +
∑kQ

i=1 pi

)2

n−
(

1 +
∑kQ

i=1 pi

)

µ
′(I−PQ)µ

Ξ2
n

µ
′
µ

n−
(

1 +
∑kQ

i=1 pi

)







1/2

→ 0.

(S4.29)

To bound J2, we first consider the case of non-stochastic X(m) and then

observe that for any δ > 0 and some constant C4 > 0,

P





2
(

1 +
∑kQ

i=1 pi

)

|µ′(I−PQ)ǫ|

Ξn

(

n−
(

1 +
∑kQ

i=1 pi

)) > δ





≤ |µ′(I−PQ)(I−PQ)µ|
4C4

(

1 +
∑kQ

i=1 pi

)2

δ2Ξ2
n

(

n−
(

1 +
∑kQ

i=1 pi

))2 , (S4.30)

in which this inequality holds by Chebyshev’s inequality and Theorem 2 of

Whittle (1960). When X(m) is random, by combining (3.29) and (S4.27),

we have that as n → ∞:

J2 → 0 (S4.31)

by DCT. Finally, because E[ǫ′(I−PQ)ǫ] = σ2[n−(1+
∑kQ

i=1 pi)], by Theorem

2 of Whittle (1960), we obtain that for any δ > 0, there exist a constant
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C5 > 0 and κ > 0 such that:

E

∣

∣

∣

∣

∣

∣

ǫ
′(I−PQ)ǫ− σ2



n−



1 +

kQ
∑

i=1

pi









∣

∣

∣

∣

∣

∣

2

≤ C5κ
1/(N+δ)tr ((I−PQ)(I−PQ))

= C5κ
1/(N+δ)



n−



1 +

kQ
∑

i=1

pi







 . (S4.32)

Thus, to bound J3, for any δ > 0, by Markov inequality we have that as

n → ∞:

P





∣

∣

∣

∣

∣

∣

1

n−
(

1 +
∑kQ

i=1 pi

)ǫ
′(I−PQ)ǫ− σ2

∣

∣

∣

∣

∣

∣

≥ δ





≤
E
∣

∣

∣
ǫ
′(I−PQ)ǫ− σ2

(

n−
(

1 +
∑kQ

i=1 pi

))∣

∣

∣

2

δ2
(

n−
(

1 +
∑kQ

i=1 pi

))2

≤
C5κ

1/(N+δ)

δ2
(

n−
(

1 +
∑kQ

i=1 pi

)) → 0. (S4.33)

Combining (S4.25), (S4.29), (S4.31), and (S4.33), we get that as n → ∞:

sup
w∈Hn

tr (P(w))
(

σ̂2
Q − σ2

)

Rn(w)

p
−→ 0.

Combining Steps I and II, Theorem 1 is now obtained.
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