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Abstract: This research proposes an ordinary least squares (OLS)-based model aver-

aging estimator using the Mallows model averaging (MMA) criterion for the MIxed

DAta Sampling (MIDAS) model. We use a Vandermonde matrix to approximate

the unknown weighting functions for the MIDAS model, enabling us to semipara-

metrically estimate each candidate model for averaging with the OLS estimator.

We show that the proposed MMA estimator possesses the same asymptotic opti-

mality properties considered in the literature under suitable regularity conditions,

even though the data-generating process is much more general than the previously

considered cross-sectional data structure. In addition to the simplicity of imple-

menting the proposed MMA approach for the MIDAS model, our method delivers

great numerical performance under various configurations considered in our Monte

Carlo simulations.

Key words and phrases: Aggregate impact parameter, asymptotic optimality, model

averaging, semiparametric MIDAS model.

1. Introduction

Improving macroeconomic forecasting is of great importance to policymak-

ers and investors with regard to daily decision-making. Recent developments in

econometric methods are making this possible by considering the presence of a

huge set of real-time high-frequency economic and financial time series. Among

them, Aruoba and Diebold (2010) and Giannone, Reichlin and Small (2008) pro-

pose the concept of “nowcast” to popularize the idea that one can estimate current

unavailable low-frequency (usually monthly or quarterly) real economic activity

using timely higher frequency (such as daily) variables.

The concept of nowcasting has attracted a growing strand of the literature

based on the MIxed DAta Sampling (MIDAS) model. In fact, MIDAS meth-

ods have been proposed by Ghysels, Santa-Clara and Valkanov (2005, 2006) and
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Ghysels and Valkanov (2012) for forecasting volatility. Andreou, Ghysels and

Kourtellos (2013), Carriero, Clark and Marcellino (2015), Clements and Gal-

vao (2008, 2009), Engle, Ghysels and Sohn (2013), Ghysels, Sinko and Valkanov

(2007), Ghysels and Valkanov (2012), Kuzin, Marcellino and Schumacher (2011,

2013), and Foroni, Marcellino and Stevanovic (2019) also consider many inter-

esting issues using MIDAS approaches, including GDP growth, stock market

volatility, U.S. inflation, and the relation between stock market volatility and

macroeconomic activity, to name a few.

The key insight behind the MIDAS methodology is to weight over higher

frequency explanatory variables in order to construct a new time series so as to

match the length of the lower frequency dependent variable. Doing this allows

one to run a parsimoniously parameterized regression of data observed at different

frequencies, as advocated by Ghysels, Santa-Clara and Valkanov (2005). This also

implies different estimators might be pursued under varying weighting schemes.

For example, Ghysels, Santa-Clara and Valkanov (2006) employ the nonlinear

least squares (NLS) estimator, because they use the exponential Almon weighting

function to ensure all the weights are positive. Conversely, without imposing such

a constraint, Chen and Tsay (2011) suggest an ordinary least squares (OLS)-based

MIDAS model with a close link to the traditional autoregressive distributed lag

(ADL) literature. The computational burden of the OLS-based MIDAS model is

certainly much lower than that of NLS-based counterparts.

There is no doubt that the coverage of MIDAS models is tremendous. How-

ever, the issue of model uncertainty is never touched upon in the MIDAS lit-

erature. Scholars of various fields have investigated the theoretical foundations

of using model selection techniques in the time series literature. For example,

one might resort to information criteria, such as the Akaike information criterion

(AIC), Bayesian information criterion (BIC), or Hannan–Quinn (HQ) principle.

In this paper, we propose an easy-to-implement forecast combination procedure

based on the Mallows model averaging (MMA) criterion for the MIDAS model

by generalizing the results in Hansen (2007). Compared with the Bayesian model

averaging approaches considered in Hoeting et al. (1999) and Raftery, Madigan

and Hoeting (1997), the MMA method is a frequency model averaging technique.

Using simulations, Hansen (2007) demonstrates that the MMA estimator outper-

forms the AIC and BIC model selection methods and other averaging methods

in terms of risk (expected squared error).

Hansen (2007) uses an OLS-based model averaging estimator, with the weights

selected by minimizing a criterion in the spirit of Mallows’ Cp (Mallows (1973)).

Hansen (2008) also considers the asymptotic properties of a least squares fore-



MALLOWS AVERAGING AND MIDAS MODEL 1813

cast averaging method based on the MMA criteria for stationary time series

observations. Since then, the MMA methodology has been applied to other

regression models. For example, Wan, Zhang and Zou (2010) investigate non-

nested models, Hansen and Racine (2012) study a jackknife averaging approach

under heteroskedastic error settings, and Cheng and Hansen (2015) discuss factor-

augmented regression models. Other works on the time series framework include

Zhang, Wan and Zou (2013) and Cheng, Ing and Yu (2015).

The main objective of this research is to deal with the important issue of

weighting over different candidate models constructed using various explanatory

variables included in the MIDAS model, because, a priori, we do not know the

exact model specification. In this study, we also use the Vandermonde matrix of

Almon (1965) to parameterize the weighting functions for the higher frequency

explanatory variables. This enables us to estimate each candidate model for

averaging with the OLS estimator, as is required for the original MMA estimator

of Hansen (2007). In addition to its excellent numerical performance, we show

that the proposed MMA estimator possesses the same asymptotic optimality

properties considered in Hansen (2007), who focuses on the regression model

with a cross-sectional data structure.

The rest of the paper proceeds as follows. Section 2 introduces the semi-

parametric MIDAS model, providing full details of the model’s features. Section

3 deals with theoretical foundations for the development of the research. Sec-

tion 4 conducts simulations to demonstrate the finite-sample performance of our

method. Section 5 concludes the paper. All proofs are given in the Supplementary

Material.

2. Model Set-up

2.1. Semiparametric MIDAS regression

Suppose we are interested in forecasting some variable yt+h, observed only

at discrete times t − 1, t, t + 1, . . . , while data on a predictor variable, x
(m)
t ,

are observed m times between t − 1 and t. In financial data applications, these

predictors can be generated from high-frequency shocks and behave like an au-

toregressive conditional heteroskedastic (ARCH) process. We intend to use the

current and lagged values of x
(m)
t to forecast yt+h, in which the m superscript

makes explicit the higher sampling frequency of x
(m)
t relative to yt+h. In this

paper, we focus on the case of h = 1. Our proposed method can be extended to

long-horizon forecasts.

For ease of illustration, we first discuss the model with one higher frequency
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explanatory variable:

yt+1 = β0 +
A(z)

B(z)
x
(m)
t + εt+1, (2.1)

where t = 0, 1, . . . , n− 1 and z = L1/m, and the two components of the transfer

function, A(z)/B(z), that is, A(·) and B(·), have no common zeros. Characteriz-

ing the asymptotic properties of yt+1 with the aforementioned transfer function is

normal in the time series literature, including that on the widely known ARMA

model. In fact, the same function has also been suggested by Pettenuzzo, Tim-

mermann and Valkanov (2016) for their MIDAS approach to model first- and

second-moment dynamics, and Bonino-Gayoso and Garćıa-Hiernaux (2021) dis-

cuss the relationship between MIDAS polynomials and transfer functions.

Note that the transfer function can be expressed as an infinite series:

A(z)

B(z)
x
(m)
t =

∞∑
k=0

ξkL
k/mx

(m)
t , (2.2)

and the exact value of ξk is unknown to the empirical users. Accordingly, we need

to use a finite number K to approximate the infinite high-frequency explanatory

variable in practice; that is, K − 1 is the maximum lag length for the included

predictors, and there are K higher frequency observations used for forecasting.

Following the MIDAS literature, we employ equal-interval higher frequency data

x
(m)
t (K) to predict yt+h, where

x
(m)
t (K) = (x

(m)
t , x

(m)
t−1/m, x

(m)
t−2/m, . . . , x

(m)
t−(K−1)/m)′. (2.3)

Thus, we can re-express the original model as

yt+1 = β0 + ξ′(K)x
(m)
t (K) + gt+1(K) + εt+1, (2.4)

where

ξ(K) = (ξ0, ξ1, . . . , ξK−1)
′ (2.5)

and

gt+1(K) =

∞∑
k=K

ξkL
k/mx

(m)
t . (2.6)

This research proposes estimating the coefficient ξ semiparametrically by

adopting the Almon polynomial suggested by Chen and Tsay (2011) to approx-

imate the unknown weighting function A(z)/B(z). The rationale is that each

candidate model thus considered for averaging can be estimated with the OLS
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estimator as the original MMA estimator of Hansen (2007). We show later that

the combination of the Almon lag polynomial and the MMA methodology of

Hansen (2007) not only delivers promising numerical performance, but also pos-

sesses the same theoretical optimality properties obtained in Hansen (2007) for

cross-sectional data.

The Almon approach is based on the following K × p V(K, p) Vandermonde

matrix:

V(K, p) =


1 1 1 · · · 1

1 2 22 · · · 2p−1

1 3 32 · · · 3p−1

...
...

...
. . .

...

1 K K2 · · · Kp−1

 , (2.7)

which is employed to transfer the (K×1) vector of higher frequency data x
(m)
t (K)

as a lower frequency (1× p) vector of transformed regressors:

(x̃
(m)
t )′ = (x

(m)
t (K))′V(K, p). (2.8)

We adopt the Vandermonde matrix to approximate ξ so that (2.4) can be rewrit-

ten as

yt+1 = β0 + α′(p)x̃
(m)
t + g̃t+1(K, p) + εt+1, (2.9)

where

g̃t+1(K, p) = gt+1(K) +
(
ξ′(K)−α′(p)V′(K, p)

)
x
(m)
t (K) (2.10)

and

α(p) = (α0, . . . , αp−1)
′. (2.11)

There are several advantages to using the Almon lag structure. First, owing

to the linearity nature shown in (2.8), we can estimate this model with the OLS

estimator. Second, the OLS estimator of α(p) can be written as

n−1∑
t=0

(
x̃
(m)
t (x̃

(m)
t )′

)−1 (
x̃
(m)
t

)
yt+1, (2.12)

where the lag coefficient is approximated by a polynomial of degree p < K,

thereby reducing the number of parameters to be estimated from K to p. Third, it

delivers excellent numerical performance under various configurations considered

in our Monte Carlo simulations; see Section 4.
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2.2. Multiple high-frequency regressors

We now discuss our main findings, where we are interested in a MIDAS model

with infinite sets of mixed-frequency predictors.

Let (yt+1, X
(m)
t ) be a sample, where yt+1 is real valued, and X

(m)
t = (1, x

(m)
1,t ,

x
(m)
2,t , . . .)

′ is countably infinite. For multiple high-frequency regressor cases, we

have:

yt+1 = β0 +

∞∑
i=1

Ai(z)

Bi(z)
x
(m)
i,t + εt+1

= β0 +

∞∑
i=1

∞∑
k=0

ξi,kL
k/mx

(m)
i,t + εt+1

=

∞∑
i=0

βi(L
1/m)x

(m)
i,t + εt+1 =: µt + εt+1, (2.13)

where x
(m)
0,t = 1, β0(L

1/m) = β0, and βi(L
1/m) = Ai(L

1/m)/Bi(L
1/m) for i ∈ N.

Before displaying our theoretical findings, we present the regularity condi-

tions for our model.

Assumption 1. {εt, t ≥ 1} is a sequence of independent and identically dis-

tributed (i.i.d.) random variables with zero mean and finite variance, σ2. More-

over, εt is independent of µs, for all t, s ∈ N.

Assumption 2.

1. Each high-frequency x
(m)
i,t , for all i ∈ N, is weakly stationary.

2. For all i ∈ N, Bi(z) = 1 + bi,1z+ · · · and Ai(z) = 1+ai,1z+ · · · are nonzero

for |z| < 1. Moreover, Ai(e
iλ), for all i ∈ N, is nonzero for −π < λ ≤ π.

3. Eµ2t <∞, for all t ∈ R+.

4.
∑n−1

t=0 µ
2
t /n = O(1).

Assumptions 1 and 2 ensure that (Ai(z)/Bi(z))x
(m)
i,t is weakly stationary

for all i. Moreover, Assumption 1 allows the high-frequency variable x
(m)
t to

exhibit the characteristics depicted by autoregressive (AR) and ARCH processes.

We choose Assumption 1 to cover these important time series processes, while

requiring the noise to be independent of the regressors. This condition is imposed

regularly in the time series literature.

Assumption 2 contains the regularity conditions used to establish the asymp-

totic properties of the in-sample fit of the averaging estimator. This assumption
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is essential for deriving the asymptotic optimality property for our proposed

method. The assumption concerning the average of µ2t can be found in Shao

(1997) and Wan, Zhang and Zou (2010), and Wan, Zhang and Zou (2010, Exam-

ple 1) explain why the assumption of the average of µ2t is reasonable.

3. The Averaging Estimator

3.1. Transformed regressors

Because we only observe a finite sample size, a finite-dimensional approxi-

mating model is estimated in practice. Therefore, we consider a sequence of ap-

proximating models q = 1, . . . , Q, where the qth model uses the first kq elements

of X
(m)
t , as 0 ≤ k1 < · · · < kQ. The leading case sets kq = q, for q = 1, . . . , Q.

The qth approximating model is

yt+1 =

kq∑
i=0

βi(L
1/m)x

(m)
i,t + eq,t + εt+1, (3.1)

where the approximation error is eq,t =
∑∞

i=kq+1 βi(L
1/m)x

(m)
i,t .

As shown in Section 2, the use of the transfer function transforms each high-

frequency explanatory variable into an infinite series itself. However, we only

observe a finite number of K high-frequency observations. To illustrate this

phenomenon, we need to re-express the model in (3.1) as

yt+1 =

kq∑
i=0

βi(L
1/m)x

(m)
i,t + eq,t + εt+1

= β0 +

kq∑
i=1

ξ′i(Ki)x
(m)
i,t (Ki) + Eq,t(K) + εt+1, (3.2)

where x
(m)
i,t (Ki) = (x

(m)
i,t , x

(m)
i,t−1/m, . . . , x

(m)
i,t−(Ki−1)/m)′, ξi(Ki) = (ξi,0, ξi,1, . . . ,

ξi,Ki−1)
′, and Eq,t(K) = eq,t +

∑kq
i=1

∑∞
j=Ki

ξi,jL
j/mx

(m)
i,t .

As mentioned in Section 2.1, we adopt the Vandermonde matrix to approxi-

mate ξ, yielding

yt+1 = β0 +

kq∑
i=1

α′i(pi)x̃
(m)
i,t + Ẽq,t(K) + εt+1, (3.3)

where Ẽq,t(K) = Eq,t(K) +
∑kq

i=1 ξ
′
i(Ki)x

(m)
i,t (Ki)−

∑kq
i=1α

′
i(pi)x̃

(m)
i,t . Remember
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that x̃
(m)
i,t is defined in (2.8), and it has Ki observations and a corresponding

degree pi; that is, the sequence {(Ki, pi)} is indexed by i. In matrix notation, we

have

Y = X̃qΓq + Ẽq + ε, (3.4)

where Γ′q = (β0,α
′
1(p1), . . . ,α

′
kq

(pkq)) is a 1× (1 +
∑kq

i=1 pi) vector of parameters

to be estimated,

Ẽq = (Ẽq,1(K), . . . , Ẽq,n(K))′, (3.5)

and X̃q = (1n×1, X̃
(m)
1 , . . . , X̃

(m)
kq

) is the n× (1 +
∑kq

i=1 pi) matrix, where X̃
(m)
i =

(x̃
(m)
i,0 , x̃

(m)
i,1 , . . . , x̃

(m)
i,n−1)

′ is the n × pi matrix, for i = 1, . . . , kq, and 1n×1 =

(1, 1, . . . , 1)′ is an n× 1 matrix.

Before estimating the parameters in (3.4), we need to define Uq

Uq :=


1 01×p1 01×p2 · · · 01×pkq

0K1×1 V(K1, p1) 01×p2 · · · 0K1×pkq

0K2×1 0K2×p1 V(K2, p2) · · · 0K2×pkq

...
...

. . .
...

0Kkq×1 0Kkq×p1 0Kkq×p2 · · · V(Kkq , pkq)

 , (3.6)

which is a (1 +
∑kq

i=1Ki) × (1 +
∑kq

i=1 pi) matrix. By the definition of (2.8), we

now obtain

XqUq = X̃q, (3.7)

where

Xq = (1n×1,X
(m)
1 , . . . ,X

(m)
kq

) (3.8)

is the n× (1 +
∑kq

i=1Ki) matrix, with

X
(m)
i = (x

(m)
i,0 (Ki),x

(m)
i,1 (Ki), . . . ,x

(m)
i,n−1(Ki))

′, (3.9)

for i = 1, . . . , kq.

3.2. An OLS-based model averaging estimator

We now introduce our estimator. Note that this research adopts an OLS-

based model averaging estimator.

Let Q = Qn ≤ n be an integer for which XQ have full rank. Assume for the

moment that X̃′qX̃q is invertible, and the least squares estimator of Γq is

Γ̂q =
(
X̃′qX̃q

)−1
(X̃q)

′Y, (3.10)
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for all q ≤ Q. The following lemma verifies the invertible property of X̃′qX̃q for

all q ≤ Q.

Lemma 1. Suppose that XQ have full rank and that Ki, for i ∈ N, are finite

numbers. X̃′qX̃q is then invertible for all q ≤ Q.

We now introduce the model averaging estimator. Let w = (w1, . . . , wQ)′ be

a weight vector in the unit simplex of RQ:

Hn =

w ∈ [0, 1]Q :

Q∑
q=1

wq = 1

 .

A model averaging estimator of ΓQ is

Γ̂ =

Q∑
q=1

wq

(
Γ̂q
0

)
. (3.11)

In the qth approximating model of (3.2), we denote µq = X̃qΓq, so that

µ = µq + Ẽq, (3.12)

where µ = (µ0, µ1, . . . , µn−1)
′ and Ẽq is defined in (3.5). To estimate µ in the

qth approximating model, we proceed as follows:

µ̂q = X̃qΓ̂q = PqY, where Pq = X̃q

(
X̃′qX̃q

)−1
X̃′q. (3.13)

The model averaging estimate of µ is then computed as

µ̂(w) = X̃QΓ̂ = P(w)Y, (3.14)

where

P(w) =

Q∑
q=1

wqPq (3.15)

is the implied “hat” matrix.

To derive the asymptotic properties of the aforementioned estimator, we

extend the results of Hansen (2007, Lemma 1) under the MIDAS model to in-

vestigate the properties of P(w) above. Indeed, P(w) plays an important role

in computing the penalty term for the selected weights considered here. The

difficulty of deriving the properties of P(w) hinges on the observation that the

transformed regressors build on the Vandermonde matrix. We thus need to show
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the invertible property of X̃′qX̃q in Lemma 1 before we can clarify the properties

of P(w) in Lemma 2. Before showing the details of Lemma 2, we denote λmax(A)

as the largest eigenvalue of A, and define

Υ
(p)
Q =


1 +

∑k1
i=1 pi 1 +

∑k1
i=1 pi 1 +

∑k1
i=1 pi · · · 1 +

∑k1
i=1 pi

1 +
∑k1

i=1 pi 1 +
∑k2

i=1 pi 1 +
∑k2

i=1 pi · · · 1 +
∑k2

i=1 pi
1 +

∑k1
i=1 pi 1 +

∑k2
i=1 pi 1 +

∑k3
i=1 pi · · · 1 +

∑k3
i=1 pi

...
...

...
. . .

...

1 +
∑k1

i=1 pi 1 +
∑k2

i=1 pi 1 +
∑k3

i=1 pi · · · 1 +
∑kQ

i=1 pi

 . (3.16)

Lemma 2. Suppose that XQ have full rank and that Ki, for i ∈ N, are finite

numbers. We then have

(i) tr (P(w)) = 1 +
∑Q

q=1

∑kq
i=1wqpi ≡ k(p)(w);

(ii) tr (P(w)P(w)) =
∑Q

m=1

∑Q
l=1wmwl

[
1 +

∑kmin{m,l}
i=1 pi

]
= w′Υ

(p)
Q w;

(iii) λmax (P(w)) ≤ 1.

3.3. The Mallows criterion

This subsection presents the proposed MMA approach, and shows it possesses

the same asymptotic optimality as that of Hansen (2007) for a cross-sectional data

structure.

For the model averaging principle, the main problem is how to select the

weights for all candidate models. Theoretically, we are concerned with a real

number representing a measure of the “cost” associated with a particular decision.

An acceptable function for depicting such a cost is the mean squared error (MSE)

of a particular estimator. Here, we express the MSE associated with such a model

averaging estimator, and then present its statistical properties.

Define the sum of the squared error as

Ln(w) = (µ̂(w)− µ)′(µ̂(w)− µ), (3.17)

and let

Rn(w) = E[Ln(w)|X(m)], (3.18)

where X(m) = {x(m)
0 , . . . ,x

(m)
n−1}. Note that

Rn(w) = |µ′ (I−P(w)) (I−P(w))µ|+ σ2tr (P(w)P(w)) , (3.19)

so that
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Rn(w) ≥ |µ′ (I−P(w)) (I−P(w))µ|, (3.20)

and

Rn(w) ≥ σ2tr (P(w)P(w)) . (3.21)

We now consider the asymptotic properties of the MMA estimator for the

MIDAS model. The Mallows criterion for the model averaging estimator is

Cn(w) =(Y − X̃QΓ̂)′(Y − X̃QΓ̂) + 2σ2tr (P(w)) . (3.22)

For the penalty term, tr (P(w)), in (3.22), by item (i) of Lemma 2, the Mallows

criterion becomes

Cn(w) = (Y − X̃QΓ̂)′(Y − X̃QΓ̂) + 2σ2k(p)(w)

= w′Ψ′Ψw + 2σ2K′w, (3.23)

where k(p)(w) is defined in Lemma 2 and represents the effective number of

parameters. Here, ε̂q denotes the n× 1 residual vector for the qth model, where

Ψ = (ε̂1, . . . , ε̂Q) (3.24)

is the n×Q matrix collection of these residuals, and

K =

(
1 +

k1∑
i=1

pi, . . . , 1 +

kQ∑
i=1

pi

)′
(3.25)

is the Q × 1 vector of the number of parameters in the Q models. The Mallows

criterion is used to select the weight vector w.

There are two justifications for using the Mallows criterion. The following

proposition expresses the first justification that the Mallows criterion Cn(w) is

an unbiased estimate of the expected squared error plus a constant.

Proposition 1. Suppose that XQ have full rank and that Ki, for i ∈ N, are finite

numbers. Assume that Assumption 1 holds. We then have

ECn(w) = ELn(w) + nσ2,

which means that Cn(w) is an unbiased estimator of the expected in-sample

squared error plus a constant.

Remark 1. Proposition 1 shows that Cn(w) is an unbiased estimator for the

expected in-sample squared error plus a constant. This result is consistent with

Lemma 3 of Hansen (2007).
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We now discuss the second justification for using the Mallows criterion. Be-

cause σ2 is unknown in practice, we need to estimate it using sample observations.

We use the largest approximating model to estimate σ2, and the estimator is

σ̂2Q =
1

n− (1 +
∑kQ

i=1 pi)
(Y − X̃QΓ̂Q)′(Y − X̃QΓ̂Q), (3.26)

where Q corresponds to the largest approximating model, and Γ̂Q is defined in

(3.10). Therefore, we define the proposed MMA criterion as

Ĉn(w) = (Y − X̃QΓ̂)′(Y − X̃QΓ̂) + 2σ̂2Qk
(p)(w), (3.27)

and we select w using the following criterion:

ŵ = argmin
w∈Hn

Ĉn(w), (3.28)

where ŵ is the empirical Mallows selected weight vector.

The following theorem proves that the Mallows weight vector is asymptot-

ically equivalent to the infeasible optimal weight vector, and that the empirical

Mallows weight vector asymptotically minimizes the squared error. We empha-

size here that these findings differ from those of Hansen (2007), because we need

to transfer the higher frequency explanatory variables to match the lower fre-

quency of the dependent variable. Therefore, the result in Theorem 1 is new, and

is one possible solution to the MIDAS model using the MMA criterion.

Theorem 1. Suppose that XQ have full rank and that Q is chosen as a function

of n, so that Q→∞ and kQ →∞ as n→∞. Assume the following:

1. Assumptions 1 and 2 hold.

2. For some fixed integer 1 ≤ N <∞, as n→∞:

Ξ−2Nn Q

Q∑
q=1

[
Rn(w0

q)
]N → 0, (3.29)

where Ξn = infw∈Hn
Rn(w), and w0

q is a Q × 1 vector, in which the qth

element is one and the others are zeros.

3. For some fixed integer N <∞,

E[ε4Nt ] <∞. (3.30)
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4. As n→∞, (
1 +

∑kQ
i=1 pi

)2
n

= O(1). (3.31)

We then have that as n→∞,

Ln(ŵ)

infw∈Hn
Ln(w)

p−→ 1,

where ŵ = argminw∈Hn
Ĉn(w), and Ĉn(w) is defined in (3.27).

Remark 2. Hansen (2007, Thm. 1) and Theorem 1 have certain aspects in

common. First, Condition (3.30) places a bound on the conditional moments.

Second, Condition (3.29) means that, because of Ξn → ∞, there is no finite ap-

proximating model for which the bias is zero. Thus, the condition in (3.29) is the

same as the one used in Wan, Zhang and Zou (2010). Additionally, Assumption 2

and (3.31) guarantee that the asymptotic optimality property holds, in which the

condition in (3.31) places a constraint on the number of regressors in the largest

approximating model. Generally speaking, we adopt the idea of Wan, Zhang and

Zou (2010) to prove Theorem 1 of this study.

4. Simulation Study

In this section we employ the following DGP for the Monte Carlo experi-

ments:

yt+1 = β0 +

Q′∑
i=1

βiBi(L1/m;θi)x
(m)
i,t + εt+1, t = 0, 1, . . . , n− 1, (4.1)

where Q′ ∈ N, and {εt, t ∈ Z} is i.i.d. with N(0, σ2). Here, for i = 1, 2, . . . , 12,

Bi(L1/m;θi) =
∑K′

i−1
k=0 Bi(k;θi)L

k/m and βi measures the aggregate impact x
(m)
i,t

on yt+1, provided that
∑K′

i−1
k=0 Bi(k;θi) = 1. In other words, we impose a re-

striction that the polynomial weights add up to one. Note that our theoretical

findings do not impose any restriction on the polynomial weights.

We also state that each high-frequency explanatory variable is an infinite

sequence, by design; that is, K ′i = ∞, for i = 1, 2, . . . , 12. However, for ease of

simulation, we choose K ′ = K ′i = 100 and Bi(k;θi) = B(k;θ), for i = 1, . . . , 12

and k = 0, 1, . . . , 99. To mimic the scenario usually encountered in practice, we

use a finite number K, where K < K ′ = 100, to approximate the 100 (= K ′)

observations of each high-frequency explanatory variable.

Note that εt is sampled at a low frequency with sample size n, whereas the
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regressors x
(m)
i,t , for i = 1, . . . , 12, are sampled 100 (= K ′) times between t and

t− 1 from

x
(m)
i,s = 0.5x

(m)
i,s−1/m + ei,s for i = 1, 2, . . . , 12, (4.2)

where s = 1/m, 2/m, . . . , 100/m and ei,s
i.i.d.∼ N(0, 1), for i = 1, 2, . . . , 12. Thus,

each higher frequency sample size is 100 × n. In the following Monte Carlo

simulations, the lag coefficients in B(k;θ) adopt a two-parameter (θ = (θ1, θ2))

exponential Almon lag polynomial:

B(k;θ) =
exp{θ1(k + 1) + θ2(k + 1)2}∑99
k=0 exp{θ1(k + 1) + θ2(k + 1)2}

, (4.3)

so that
∑99

k=0B(k;θ) = 1. We consider two weighting schemes: (θ1, θ2) = (7 ×
10−4,−5 × 10−2) corresponds to a fast decaying pattern, and (θ1, θ2) = (7 ×
10−4,−6 × 10−3) reflects slowly decaying weights. The number of trials in each

simulation is 10,000.

4.1. An estimator for the aggregate impact parameter

This subsection illustrates the performance of using the Almon polynomial

method as a weighting function for higher frequency observations. We set Q′ = 1,

and (4.1) becomes

yt+1 = β0 + β1B(L1/m;θ)x
(m)
t + εt+1, t = 0, 1, . . . , n− 1. (4.4)

We focus on the accuracy of estimating the aggregate impact of each high-

frequency variable; the results are displayed in Tables 1 and 2.

Recall from (3.7) that XqUq = X̃q. Note that the estimators of the aggregate

impact β := (β0, β1) adopt the following formula

β̂ = JU1Γ̂1, (4.5)

where Γ̂1 =
(
X̃′1X̃1

)−1
(X̃1)

′Y and

J =

[
1 01×K
0 11×K

]
, (4.6)

with 1t×k as an all-ones matrix in which every element is equal to one. We

report the mean and root of the mean squared errors (RMSE) of the estimated

coefficients, (β0, β1), proposed by (4.5), based on 10,000 replications.

Tables 1 and 2 list the simulation results for two decaying patterns, in which
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every decaying pattern contains K = 14, 34 and p = 4, 5. These tables clearly

show that the OLS estimators (β̂0, β̂1) proposed by (4.5) are very close to the true

values. Because our aggregate estimators are evaluated using (4.5), they are es-

timated without knowing the true weighting function. Moreover, each estimated

coefficient’s RMSE is found to be monotonically decreasing with the sample span

n, supporting that our estimator possesses well-behaved asymptotic properties.

We also document that the aforementioned RMSE increases with the value of K,

but we do not find such a pattern for the magnitude of p. These results reveal

that our OLS-based estimator provides excellent performance, even though the

data are generated using a nonlinear exponential Almon lag model.

4.2. The relative performance of the MMA estimator

We now investigate the finite-sample performance of the proposed model

averaging estimator, and compare the performance of the MMA method to that of

alternative OLS-based estimators under the DGP specified in (4.1) with Q′ = 12;

that is, the DGP in this subsection is

yt+1 = β0 +

12∑
i=1

βiB(L1/m;θ)x
(m)
i,t + εt+1, t = 0, 1, . . . , n− 1. (4.7)

Recall that XQ is the original data. The first alternative OLS-based method is

built on the largest candidate model, but it does not adopt the Almon polynomial.

This model is called the unrestricted MIDAS model, or UR-OLS(Q), because it

treats higher frequency data xmi,t as separate regressors, and can be estimated as

µ̂UR−OLS(Q) = XQ

(
X′QXQ

)−1
X′QY. (4.8)

Note that Foroni, Marcellino and Schumacher (2015) introduce the unrestricted

MIDAS model.

In addition to the proposed MMA estimator, we analyze three other model

averaging methods to illustrate the advantage of using Almon polynomials for the

MIDAS model. We first implement a simple combination method that assigns an

equal weighting function to the higher frequency observations; we refer to this as

the equal weights (EW) method. The estimate of µ generated is µ̂(EW).

The second alternative method is the smoothed AIC (S-AIC) introduced by

Buckland, Burnham and Augustin (1997) and embraced by Hjort and Claeskens

(2003), in which the weights of the model averaging estimator (3.11) are written
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Table 1. OLS estimators for the MIDAS model: Fast decay.

K = 14, p = 4 K = 14, p = 5 K = 34, p = 4 K = 34, p = 5

β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

Panel A: Time span n = 100

Mean 0.5002 3.0196 0.5001 3.0029 0.5005 2.9205 0.5001 3.0182

RMSE 0.1026 0.2065 0.1028 0.2066 0.1135 0.3541 0.1045 0.3204

Panel B: Time span n = 300

Mean 0.5006 3.0180 0.5005 3.0014 0.5004 2.9170 0.5005 3.0157

RMSE 0.0580 0.1185 0.0579 0.1174 0.0638 0.2100 0.0585 0.1783

Panel C: Time span n = 500

Mean 0.5000 3.0178 0.5000 3.0013 0.4997 2.9180 0.4999 3.0170

RMSE 0.0456 0.0921 0.0455 0.0904 0.0502 0.1691 0.0460 0.1373

Panel D: Time span n = 1000

Mean 0.5003 3.0178 0.5003 3.0012 0.5002 2.9195 0.5002 3.0183

RMSE 0.0320 0.0658 0.0319 0.0634 0.0353 0.1320 0.0324 0.0983

Notes: This table presents the mean and root of the mean squared errors (RMSE) of
the estimated coefficients proposed by (4.5). The parameters for the DGP in (4.4) are
σ = 1, (θ1, θ2) = (7× 10−4,−5× 10−2), and (β0, β1) = (0.5, 3.0). The simulation studies
are based on 10,000 replications.

Table 2. OLS estimators for the MIDAS model: Slow decay.

K = 14, p = 4 K = 14, p = 5 K = 34, p = 4 K = 34, p = 5

β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

Panel A: Time span n = 100

Mean 0.5004 2.7035 0.5003 2.7078 0.5001 3.0171 0.5002 3.0009

RMSE 0.1043 0.3629 0.1047 0.3605 0.1025 0.3133 0.1027 0.3146

Panel B: Time span n = 300

Mean 0.5006 2.7020 0.5007 2.7064 0.5004 3.0140 0.5005 2.9976

RMSE 0.0593 0.3208 0.0593 0.3171 0.0578 0.1755 0.0577 0.1750

Panel C: Time span n = 500

Mean 0.4999 2.7017 0.5000 2.7062 0.4999 3.0152 0.4999 2.9989

RMSE 0.0464 0.3119 0.0465 0.3078 0.0454 0.1348 0.0454 0.1341

Panel D: Time span n = 1000

Mean 0.5002 2.7018 0.5003 2.7062 0.5002 3.0164 0.5003 3.0000

RMSE 0.0326 0.3051 0.0326 0.3008 0.0319 0.0964 0.0318 0.0950

Notes: This table presents the mean and root of the mean squared errors (RMSE) of
the estimated coefficients proposed by (4.5). The parameters for the DGP in (4.4) are
σ = 1, (θ1, θ2) = (7× 10−4,−6× 10−3), and (β0, β1) = (0.5, 3.0). The simulation studies
are based on 10,000 replications.
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as

wq(AIC) =
exp {(−1/2)AICq}∑Q
q=1 exp {(−1/2)AICq}

, (4.9)

where AICq = n ln σ̂2q + 2q, with

σ̂2q =
1

n− (1 +
∑kq

i=1 pi)
(Y − X̃qΓ̂q)

′(Y − X̃qΓ̂q), (4.10)

and X̃q is defined in (3.7).

The third alternative method is the smoothed BIC (S-BIC) proposed by

Hansen (2007). As mentioned in Hansen (2007), the S-BIC is a simplified form

of the Bayesian model averaging estimator, with the weights

wq(BIC) =
exp {(−1/2)BICq}∑Q
q=1 exp {(−1/2)BICq}

, (4.11)

where BICq = n ln σ̂2q + ln(n)q.

Tables 3 and 4 present the simulation results of the abovementioned five

estimators under two decaying patterns in the higher frequency observations.

The focus of our experimental design is on the relative MSE among the five

estimators for estimating the true µ. The configurations of these tables are

n = 300, 500, 1000, K = Ki = 14, 34, and p = pi = 4, 5, for i = 1, 2, . . . , Q.

The condition in (3.29) implies that there is no finite approximating model for

which the bias is zero. Accordingly, the candidate models selected are all biased.

To fulfill this requirement, we consider only the first six explanatory variables in

the DGP to be included in the candidate models. Without loss of generality and

to limit the computational burden, all the candidate models selected are nested

with each other. Given such an experimental design, the model with the first six

regressors becomes the largest candidate model with Q = 6. Under this circum-

stance, the weight vector for the EW method is (1/6, 1/6, 1/6, 1/6, 1/6, 1/6).

The simulation results for the MMA, UR-OLS(Q), EW, S-AIC, and S-BIC

methods appear in the second, third, fourth, fifth, and sixth columns, respectively,

of Tables 3 and 4. For ease of comparison, we compute the relative performance

of the MMA estimators against that of the other four approaches in these ta-

bles. More specifically, the basis of comparison is the relative difference defined

by (“X”-MSE(MMA))/MSE(MMA), where X can be the MSE of UR-OLS(Q),

EW, S-AIC, or S-BIC. They are shown in the seventh, eighth, ninth, and tenth

columns, respectively.

We find that the MMA technique systematically outperforms UR-OLS(Q),



1828 WONG AND TSAY

except for the cases of fast decay with (n,K, p) = (1000, 34, 4), revealing the

advantage of transferring the high frequency variables using Almon weights. It

is interesting to note that the EW method outperforms the UR-OLS(Q) method

when the sample size is small, thus highlighting again the advantage of using the

model averaging approach.

With regard to the performance among the family of model averaging es-

timators, we find that the MMA method outperforms the EW method. This

observation supports the merit of our Theorem 1 in that the MMA method will

pick an optimal weight for aggregating our candidate models. In addition, we ob-

serve that the performance of the proposed MMA method is very close to those

of the S-AIC and S-BIC methods in most configurations considered in our ex-

periments. Note that in the model selection literature, the Akaike and Mallows

methods provide the asymptotic optimality of the out-of-sample forecast, from

the seminal work of Ing and Wei (2005). However, we do not know whether,

in the MIDAS model or the setting of Hansen (2007), the S-AIC method has

the same asymptotic optimality as that of the MMA method. Thus, it could be

fruitful to further explore the usefulness of the S-AIC and S-BIC methods under

this setting.

There are another two findings to be drawn from Tables 3 and 4. First, the

MMA estimator performs better for the slow decay scenario than for the fast

one. Second, the MMA performs best among all methods when p = 5 and for the

slow decay scenario. These results are consistent with the conditions imposed in

Theorem 1, where all candidate models are biased, and the slow decay scenario

is better at characterizing this pattern than is the fast decay one.

Furthermore, the simulation results in Tables 3 and 4 do not exhibit a sys-

tematic pattern related to the value of p, given K = 14 or 34. This pattern is

consistent with the asymptotic properties of our estimators, which do not de-

pend on the number of high-frequency variables, K, or the order of the Almon

polynomials, p.

5. Conclusion

This research proposes an MMA approach to the well-known MIDAS model

in order to fill a gap in the time series literature. We do so by establish-

ing the asymptotic optimality of the MMA estimator under the MIDAS frame-

work, where the high-frequency predictors can be weakly dependent or ARCH

(GARCH) processes. Accordingly, we extend the coverage of Hansen (2007), who

mainly considers a cross-sectional data structure. The Monte Carlo experiments
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Table 3. Relative mean squared error: Fast decay.

MSE Relative difference

(1) (2) (3) (4) (in percent)

n MMA UR-OLS EW S-AIC S-BIC (1) (2) (3) (4)

Panel A: Ki = 14 and pi = 4 for i = 1, . . . , 6

300 1.0251 1.6526 2.5887 1.0238 1.0245 61.21 152.53 -0.13 -0.05

500 0.9159 1.2795 2.5747 0.9153 0.9153 39.70 181.12 -0.07 -0.06

1,000 0.8348 1.0012 2.5649 0.8345 0.8345 19.93 207.27 -0.03 -0.03

Panel B: Ki = 14 and pi = 5 for i = 1, . . . , 6

300 1.0660 1.6526 2.5763 1.0681 1.0689 55.02 141.67 0.19 0.27

500 0.9323 1.2795 2.5592 0.9329 0.9329 37.24 174.51 0.06 0.07

1,000 0.8314 1.0012 2.5468 0.8315 0.8315 20.41 206.32 0.00 0.00

Panel C: Ki = 34 and pi = 4 for i = 1, . . . , 6

300 1.6800 2.9636 3.1797 1.6761 1.6778 76.40 89.26 -0.24 -0.13

500 1.5934 2.0669 3.1835 1.5916 1.5916 29.71 99.80 -0.11 -0.11

1,000 1.5294 1.3939 3.1862 1.5289 1.5289 -8.86 108.33 -0.04 -0.04

Panel D: Ki = 34 and pi = 5 for i = 1, . . . , 6

300 1.1517 2.9636 2.6538 1.1537 1.1545 157.32 130.42 0.17 0.24

500 1.0207 2.0669 2.6391 1.0211 1.0211 102.49 158.55 0.04 0.04

1,000 0.9228 1.3939 2.6285 0.9228 0.9228 51.05 184.83 -0.00 -0.00

Notes: This table presents the mean squared error for four model averaging meth-

ods that estimate the true µ. The parameters for the DGP in (4.7) are σ = 2,

(θ1, θ2) = (7 × 10−4,−5 × 10−2), and (β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β11, β12) =

(0.5, 3.0, 2.8, 2.5, 2.0, 1.2, 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1). The simulation studies are based on

10,000 replications. The relative difference is defined by (“X”-MSE(MMA))/MSE(MMA), where

X can be the MSE of EW, S-AIC, or S-BIC, which appear in the sixth, seventh, and eighth

columns, respectively.

demonstrate the promising performance of the MMA estimator relative to other

estimators for the MIDAS models.

Note that the Almon polynomial method of the weighting function may also

be useful for forecasting daily financial data. In fact, Mitchell (2020) employs the

Almon polynomials to weight higher frequency data, yielding promising empirical

results.

As with our MMA method and the U-MIDAS of Foroni, Marcellino and

Schumacher (2015), the works of Ghysels, Sinko and Valkanov (2007) and Ghysels

and Qian (2019) are also OLS-based MIDAS approaches. Further research should

investigate the relative performance of these methods using theoretical research

and numerical comparison in order to give us more information to design optimal

weights for the model averaging approaches.
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Table 4. Relative mean squared error: Slow decay

MSE Relative difference

(1) (2) (3) (4) (in percent)

n MMA UR-OLS EW S-AIC S-BIC (1) (2) (3) (4)

Panel A: Ki = 14 and pi = 4 for i = 1, . . . , 6

300 0.7353 1.4481 1.2630 0.7405 0.7506 96.93 71.76 0.71 2.07

500 0.6179 1.0427 1.2245 0.6185 0.6206 68.75 98.18 0.10 0.44

1,000 0.5295 0.7402 1.1968 0.5293 0.5294 39.79 126.00 -0.04 -0.03

Panel B: Ki = 14 and pi = 5 for i = 1, . . . , 6

300 0.7958 1.4481 1.2820 0.8097 0.8187 81.97 61.10 1.74 2.88

500 0.6560 1.0427 1.2356 0.6598 0.6619 58.95 88.37 0.59 0.90

1,000 0.5483 0.7402 1.2014 0.5489 0.5489 35.00 119.10 0.10 0.10

Panel C: Ki = 34 and pi = 4 for i = 1, . . . , 6

300 0.6222 2.8289 1.1611 0.6280 0.6370 354.63 86.59 0.93 2.38

500 0.5004 1.8163 1.1192 0.5013 0.5029 262.99 123.68 0.19 0.51

1,000 0.4088 1.0563 1.0890 0.4087 0.4088 158.37 166.36 -0.02 -0.01

Panel D: Ki = 34 and pi = 5 for i = 1, . . . , 6

300 0.6710 2.8289 1.1689 0.6858 0.6939 321.61 74.21 2.21 3.41

500 0.5244 1.8163 1.1173 0.5287 0.5303 246.34 113.06 0.82 1.11

1,000 0.4129 1.0563 1.0802 0.4136 0.4137 155.81 161.59 0.17 0.18

Notes: This table presents the mean squared error for four model averaging meth-

ods that estimate the true µ. The parameters for the DGP in (4.7) are σ = 2,

(θ1, θ2) = (7 × 10−4,−6 × 10−3), and (β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β11, β12) =

(0.5, 3.0, 2.8, 2.5, 2.0, 1.2, 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1). The simulation studies are based on

10,000 replications. The relative difference is defined by (“X”-MSE(MMA))/MSE(MMA), where

X can be the MSE of EW, S-AIC, or S-BIC, which appear in the sixth, seventh, and eighth

columns, respectively.

It would also be interesting to address the inference problems after model

averaging. A valid confidence interval for the MIDAS model using the MMA

approach is certainly important for this literature. Another extension is to study

the forecast averaging by extending the result in Hansen (2008) to the MIDAS

model.

Supplementary Material

The online Supplementary Material shows that the MMA estimator for the

MIDAS model using an Almon polynomial weight has the property of asymp-

totic optimality by extending the method of Wan, Zhang and Zou (2010). The

proofs of Lemmas 1-2 and Proposition 1, which contain the properties of the

OLS estimator, penalty term, and proposed MMA estimator, respectively, are
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also given.
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