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ESTIMATION FOR FUNCTIONAL SINGLE INDEX

MODELS WITH UNKNOWN LINK FUNCTIONS
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Abstract: This study examines an estimating problem in single index models with

functional predictors. An estimating approach is developed to estimate the slope

function in the single-index and the nonparametric link function. Optimal conver-

gence rates for the estimator of the slope function are established in a minimax

sense, under mild conditions, using a functional principal component analysis and

the estimating equation technique. For the estimator of the nonparametric link

function, both the uniform and mean squared convergence rates are obtained. An

error variance estimator is also defined and is proved to be asymptotically nor-

mal. The finite-sample performance of the proposed estimators is illustrated by

simulations and a real-data application.
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1. Introduction

Functional data analysis has received substantial interest in recent decades.

There have been extensive studies on functional linear models with a scalar re-

sponse (Cai and Hall (2006); Hall and Horowitz (2007); Yuan and Cai (2010);

Cai and Yuan (2012); Delaigle and Hall (2012); Hilgert, Mas and Verzelen (2013))

and nonlinear models with known link functions (James (2002); Dou, Pollard and

Zhou (2012)). For nonparametric models with functional predictors, Ferraty and

Vieu (2006) and Goia and Vieu (2016) provide comprehensive discussions on this

topic. However, because functional data are inherently infinite dimensional, the

statistical performance of full nonparametric methods is unfavorable owing to the

so-called curse of dimensionality.

To avoid the curse, we model scalar responses with functional covariates

as single-index models, which include a simple linear term and a flexible non-

parametric link function. Early works assumed that either the link function is

monotonic (Müller and Stadtmüller (2005)) or that the slope function lies in a
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predefined index set (Ait-Säıdi et al. (2008)), limiting the applicability of those

methods. Chen, Hall and Müller (2011) considered single-index functional re-

gression models with unknown slope functions and general nonparametric link

functions. They proposed a direct kernel-based estimating method and estab-

lished a polynomial rate of convergence of the estimator. However, as noted by

the authors, the convergence rate for the slope function in Chen, Hall and Müller

(2011) is not optimal. Therefore, it is natural to ask whether we can develop

a new estimating approach such that the convergence rate of the slope function

estimator in functional single-index models can achieve the rate of functional lin-

ear models. For an alternative approach based on sufficient dimension reduction

with functional predictors, see Ferré and Yao (2003), Ferré and Yao (2005), Cook,

Forzani and Yao (2010), Jiang, Yu and Wang (2014), Yao, Lei and Wu (2015),

Yao, Wu and Zou (2016), and Zhang, Wang and Wu (2018). Although we can

apply those approaches to functional single-index models, it may be difficult to

obtain the optimal rate.

In this paper, we introduce a functional version of the kernel estimators

considered in Wang et al. (2010) and Cui, Härdle and Zhu (2011). The most

attractive feature of the proposed estimator is that the convergence rate of the

slope function estimator and that of the mean squared prediction error of the

scalar single index are optimal in a minimax sense. The estimating procedure in-

cludes two steps. We first use a functional principal component analysis (FPCA)

to approximate the slope function using the leading empirical functional prin-

cipal components (FPCs). For more details about the FPCA, see, for example,

Ramsay and Silverman (2005), Horváth and Kokoszka (2012), Hsing and Eubank

(2015). Next, we use an alternating estimation procedure to estimate the slope

function and the link function. The proposed estimator is based on estimating

equation methods that take advantage of the unitary constraint on the slope

terms of the scalar single index and have a close relationship with the estimators

in Wang et al. (2010) and Cui, Härdle and Zhu (2011) for single-index models.

However, there are three main differences between the proposed method and the

approaches in Wang et al. (2010); Cui, Härdle and Zhu (2011). First, the number

of FPC scores in our estimation procedure diverges as the sample size increases.

Second, we include the variances of the FPC scores in the estimating equations.

Third, we truncate the denominators of the kernel estimators to avoid those clos-

ing to zero. These modifications help us to develop the optimal convergence rate

of the slope function estimator under mild conditions. We obtain the uniform

convergence rate and the mean squared convergence rate of the link function es-

timation, where the latter is faster than that in Chen, Hall and Müller (2011).
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We also provide the asymptotic normality of the error variance estimator.

The proof is challenging from a technical point of view. The approximation

step for the slope function leads to a cut-off bias. A plug-in error is also intro-

duced, because the true FPC basis functions and scores are not known, and have

to be replaced by their estimates. To overcome these difficulties, we introduce

a truncated version of the slope function that satisfies the unitary constraint,

which serves as a bridge between in the proof the true underlying slope function

and its estimator. The proof of the asymptotic results is based on the theory of

M-estimators with diverging numbers of covariates (e.g., see, Wang (2011)). We

also carefully verify whether the existing results for kernel estimators and single-

index models remain valid with a diverging number of covariates. Additionally,

we do not require the compact support assumption that the scalar single index

is defined on a compact support, which is widely used in the literature on kernel

smoothing methods. In our approach, the scalar single index may have positive

density on the whole real line. Removing the compact support assumption also

brings technical complications.

The rest of the paper is organized as follows. We introduce our estimation

methodology in Section 2, and then present the asymptotic results in Section 3.

The results of the simulation studies and an application to spectral data are

reported in Sections 4 and 5, respectively. Detailed proofs are deferred to the

supplementary material.

2. Methodology

2.1. Model and FPCA approximation

Suppose that (Xi, Yi), for i = 1, . . . , n, are independent and identically dis-

tributed (i.i.d.) observations of (X, Y ), where Y is a scalar, and X is a square

integrable random function defined on a compact interval I. We model the rela-

tionship between Y and X by imposing a single-index structure on the conditional

mean. Specifically, the model takes the form

Yi = η(Ui(β0)) + ei = η

(∫
I
[Xi(t)− µ(t)]β0(t) dt

)
+ ei, i = 1, . . . , n, (2.1)

where µ(·) = EX(·) is the mean function, β0 is an unknown square integrable

function defined on I, η is an unknown link function for the conditional mean,

and ei, for i = 1, . . . , n, are i.i.d. error terms with mean zero and variance σ2e
that are independent of Xi.

Letting Σ(t1, t2) = Cov(X(t1), X(t2)) be the covariance function of X, it
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admits the following spectral decomposition:

Σ(t1, t2) =

∞∑
j=1

λjφj(t1)φj(t2), (t1, t2) ∈ I2,

where λ1 ≥ λ2 ≥ · · · ≥ 0 are eigenvalues and (λj , φj), for j = 1, 2, . . . , are

(eigenvalue, eigenfunction) pairs for Σ. Then, the Karhunen–Loève expansion of

Xi is given by

Xi(t) = µ(t) +

∞∑
j=1

xijφj(t), t ∈ I, (2.2)

where the FPC scores

xij =

∫
I
[Xi(t)− µ(t)]φj(t) dt , j = 1, 2, . . . , (2.3)

have zero means and variances Ex2ij = λj , and are uncorrelated. Because the

sequences of eigenfunctions {φj}∞j=1 are complete in the class of square integrable

functions on I, the slope function β0 can be represented by

β0(t) =

∞∑
j=1

b0jφj(t), t ∈ I, (2.4)

where

b0j =

∫
I
β0(t)φj(t) dt , j = 1, 2, . . . , (2.5)

are expansion coefficients. Because the eigenfunctions are orthogonal, by substi-

tuting (2.2) and (2.4) into (2.1), we have

Yi = η(U(β0)) + ei = η

 ∞∑
j=1

xijb0j

+ ei. (2.6)

Therefore, the scalar single index in parentheses depends only on the FPC scores

xij and the expansion coefficients b0j . Note that xij depends on the unknown

eigenfunction φj , and hence needs to be estimated from samples. To ensure iden-

tifiability, we set an additional constraint on β0(t) that
∫
I [β0(t)]

2 dt =
∑∞

j=1 b
2
0j =

1. We also assume b01 > 0 (or b0r > 0, for some b0r 6= 0, if b01 = 0).

Because the model (2.6) is infinite dimensional, we approximate β0 by trun-

cation

β0(t) ≈
p∑
j=1

b0jφj(t), t ∈ I,
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where p denotes the frequency cut-off. In practice, the mean function µ, the

covariance function Σ, and its eigenfunctions {φj} are unknown, and thus need

to be estimated from samples. The estimate of the mean function µ is given by

µ̂(t) =
1

n

n∑
i=1

Xi(t), t ∈ I.

The sample versions of Σ and its spectral decomposition are

Σ̂(t1, t2) =
1

n

n∑
i=1

[Xi(t1)− µ̂(t1)][Xi(t1)− µ̂(t2)]

=

∞∑
j=1

λ̂jφ̂j(t1)φ̂j(t2), (t1, t2) ∈ I2,

where (λ̂j , φ̂j) are (eigenvalue, eigenfunction) pairs for Σ̂, ordered such that λ̂1 ≥
λ̂2 ≥ · · · and λ̂j = 0, for j ≥ n+1. By replacing (µ, φj) in (2.3) with its estimate

(µ̂, φ̂j), we obtain the estimates of the FPC scores as follows:

x̂ij =

∫
I
[Xi(t)− µ̂(t)]φ̂j(t) dt .

The nonlinear least squares estimator of (η, bp) is defined by minimizing

S(bp, η) =

n∑
i=1

[
Yi − η

(
x̂Tipbp

)]2
, subject to ‖bp‖2 = 1 and b1 > 0, (2.7)

with respect to (η, bp), where x̂ip = (x̂i1, . . . , x̂ip)
T . As long as we obtain b̂p, the

minimizer of (2.7), the estimator of β is given by

β̂p(t) =

p∑
j=1

b̂jφ̂j(t), t ∈ I. (2.8)

In practice, it is difficult to solve the minimization problem (2.7) because

η is an infinite-dimensional parameter. We hence develop the following two-

step estimating approach. Because η is not known, we first use the local linear

estimator to represent η as a function of bp in Section 2.2. Then, we estimate

bp by solving the estimating equations to obtain the estimator of (η, β); see

Section 2.3. The computation procedure is illustrated in Section 2.4.
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2.2. The local linear estimator for the link function

For a given bp, we can estimate η and its first derivative η′ at a point u by

minimizing the weighted sum of squares

n∑
i=1

[
Yi − ζ − ϑ(Ûi(bp)− u)

]2
Kh

[
Ûi(bp)− u

]
, (2.9)

with respect to the parameters (ζ, ϑ), where Kh(·) = h−1K(·/h), K(·) is a kernel

function, h > 0 is a bandwidth, and

Ûi(bp) =

∫
I
[Xi(t)− µ̂(t)][bTp φ̂p(t)] dt = x̂Tipbp,

where φ̂p = (φ̂1, . . . , φ̂p)
T . The minimizer (ζ̂, ϑ̂) of (2.9) is defined as the estima-

tors of (η, η′). For the estimator of η̂′, we use a different bandwidth h∗ in (2.9)

instead of h. We have the following explicit expressions for η̂ and η̂′:

η̂(u | bp) =

n∑
i=1

Wni(u | bp)Yi, (2.10)

and

η̂′(u | bp) =

n∑
i=1

W̃ni(u | bp)Yi, (2.11)

where

Wni(u | bp) =
ξi(u | bp, h)∑n
k=1 ξk(u | bp, h)

,

W̃ni(u | bp) =
ξ̃i(u | bp, h∗)∑n
k=1 ξk(u | bp, h∗)

,

ξi(u | bp, h) = [s2(u | bp, h)− s1(u | bp, h)(Ûi(bp)− u)]Kh

(
Ûi(bp)− u

)
,

ξ̃i(u | bp, h∗) = [s0(u | bp, h∗)(Ûi(bp)− u)− s1(u | bp, h∗)]Kh∗

(
Ûi(bp)− u

)
,

and

sl(u | bp, h) =
1

n

n∑
i=1

(Ûi(bp)− u)lKh

[
Ûi(bp)− u

]
, l = 0, 1, . . . .

2.3. The estimating equations for the expansion coefficients

In order to obtain b̂p, we take advantage of the constraint ‖bp‖2 = 1 to

transfer the restricted least squares (2.7) to an unrestricted least squares by
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reparametrization. Let

b̌p = (b̌2, . . . , b̌p)
T = (λ̂

1/2
2 b2, . . . , . . . , λ̂

1/2
p bp)

T .

We can write

bp = bp(b̌p) =


1−

p∑
j=2

λ̂−1j b̌2j

1/2

, λ̂
−1/2
2 b̌2, . . . , λ̂

−1/2
p b̌p


T

. (2.12)

This “remove-one-component” method is also used in Yu and Ruppert (2002),

Wang et al. (2010), and Cui, Härdle and Zhu (2011). However, the proposed

estimator differs from the latter methods in that we include the variance esti-

mates of the FPC scores, λ̂j , in the reparameterization (2.12). This modification

is essential for functional single-index models in both computation and theory,

because λj decreases to zero as j increases. We obtain b̂p by minimizing S[bp(b̌p)]

in (2.7) with respect to b̌p, which is an unrestricted least squares problem, and

then computing b̂p using (2.12). Let Ĵp(b̌p) = ∂bp
/
∂b̌p be the Jacobian matrix

of bp with respect to b̌p. A simple calculation yields

Ĵp(b̌p) = Λ̂−1/2p

(
−λ̂1/21 b−11 (λ̂−12 b̌2, . . . , λ̂

−1
p b̌p)

Ip−1

)
,

where Λ̂p = diag{λ̂1, . . . , λ̂p}. We have the following estimation equations with

respect to b̌p:

n∑
i=1

[
Yi − η̂

(
(x̂ip)

Tbp(b̌p) | bp(b̌p)
)]
η̂′
(
(x̂ip)

Tbp(b̌p) | bp(b̌p)
)
ĴTp (b̌p)x̂ip = 0,

(2.13)

where η̂(·|·) and η̂′(·|·) are defined in (2.10) and (2.11), respectively.

To avoid the boundary effect caused by the small values in the denominators

of η̂ and η̂′, we introduce a truncated version of (η̂, η̂′). For some positive constant

sequence dn tending to zero, let

gn(u | bp, h) =
1

nh2

n∑
i=1

ξi(u | bp, h),

and

gdn(u | bp, h) = max{gn(u | bp, h), ν2d
2
n},

where νl =
∫
ulK(u) du, for integer l ≥ 0. The truncated version of η̂(u) is defined
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by

η̂dn(u | bp) = η̂(u | bp)
gn(u | bp, h)

gdn(u | bp, h)
. (2.14)

Similarly, the truncated version of η̂′(u) is defined by

η̂′dn(u | bp) = η̂′(u | bp)
gn(u | bp, h∗)
gdn(u | bp, h∗)

. (2.15)

Replacing (η̂, η̂′) in (2.13) with (η̂dn , η̂
′
dn) yields

n∑
i=1

[
Yi − η̂dn

(
(x̂ip)

Tbp(b̌p) | bp(b̌p)
)]
η̂′dn

(
(x̂ip)

Tbp(b̌p) | bp(b̌p)
)
ĴTp (b̌p)x̂ip = 0.

(2.16)

Denote the solution of (2.16) by b̌p. The resulting estimator b̂p = bp(b̌p) is our

target estimator of bp. By replacing bp in (2.8) and (2.14) with the estimator b̂p,

we obtain the estimators of β and η.

The selection of the tuning parameters (p, h, h∗, dn) is important for the

estimators of η and bp. We discuss this issue in Section 2.4.

2.4. Algorithm

We compute the estimates of η and bp following an alternating estimating

strategy after initializing β. The algorithm is described as follows.

Algorithm 1

Step 1 Apply a functional dimension-reduction method for the regression of Yi versus
Xi to find an initial estimate β̂.

Step 2 Set h = n−1/4, h∗ = n−1/6, and dn = n−0.55. Smooth Yi versus
∫
I Xi(t)β̂(t) dt

using the truncated local linear estimator in (2.14) and (2.15) to obtain the initial
estimates of η and its first derivative η′.

Step 3 Given η̂dn
and η̂′dn

, compute b̌p by solving the estimating equations (2.16),

and then substitute b̌p into (2.12) to obtain b̂p.

Step 4 Given b̂p, select (p, h, h∗, dn) and smooth Yi versus Ûi(bp) = x̂T
ipb̂p using the

truncated local linear estimator in (2.14) and (2.15) to update the estimates of η
and η′.

Step 5 Iterate Steps 3 and 4 until b̂p fails to change or the number of interactions
reaches a predefined limit.

Step 6 Given the final estimate b̂p, compute β̂p in (2.8) as the final estimate of β.
Select the optimal (h, dn) and compute η̂dn

in (2.14) as the final estimate of η.

In Step 1, one can use any existing method to initialize β̂. We suggest using
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the functional cumulative slicing method of Yao, Lei and Wu (2015), which is

fast and performed well in our simulations. In Step 2, we use larger tuning

parameters to initialize η and η′, which helps to reduce the variance of the initial

estimators. For the final estimator η̂dn in Step 6, note that η̂dn(u0) = 0 for a

given u0 if |Ui(b̂p) − u0| ≥ h, for all i = 1, . . . , n. In this case, we may adopt a

linear extrapolation, or other extrapolation method to extend η̂dn to u0 if we are

concerned about the value of η(u0), although there is no theoretical assurance of

the extrapolation accuracy.

In Steps 4 and 6, we use K-fold cross-validation repeated over a few random

partitions to determine the optimal (p, h) that minimizes the cross-validated

mean squared prediction error. Because the proposed estimator is not sensitive

to dn, we simply set dn = p1/2h−1/2n−3/4 for each (p, h). We use the selected

(p̂opt, ĥopt) and the corresponding dn to compute η in Step 6. In Step 4, we set

ĥ = ĥoptn
−0.05, ĥ∗ = ĥ2/3, and d̂n = p̂

1/2
opt ĥ

−1/2n−3/4,

because this ensures that the tuning parameters (h, h∗, dn) are in the correct

orders in Condition (A4) in Section 3 for optimal asymptotic performance. Ac-

cording to the discussion after Theorem 2, the optimal bandwidth hopt ∼ (n−1pun
log n)1/5, where un = O(log n). This approach can also be found in Carroll et al.

(1997), Stute and Zhu (2005), and Wang et al. (2010).

3. Theoretical Properties

Our first aim is to show that the proposed estimator for the slope function β

achieves the optimal rates of convergence for both estimation and prediction of

the scalar single index under mild conditions. Suppose that i.i.d. data (Xi, Yi), for

i = 1, . . . , n, are generated by (2.1). Let X be an independent copy of X1. Denote

the jth PCA score of X by x·j =
∫
I X(t)φj(t) dt, and write x·p = (x·1, . . . , x·p)

T .

Below, we use c to denote a positive constant that may change depending in the

context. The following regularity conditions are required:

(A1) (i) For each r ≥ 2 and j ≥ 1, Ex2r·j ≤ c(r)λrj , where c(r) does not depend

on j.

(ii) Of the eigenvalues λj , it is required that λj −λj+1 ≥ cj−α0−1, for some

α0 > 1 and all j ≥ 1.

(iii) λj ≤ cj−α0 , for all j > 0.

(iv) The expansion coefficients |b0j | satisfy |b0j | ≤ cj−α1 , for some α1 >

α0/2 + 1 and all j ≥ 1.
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(A2) The cut-off frequency p satisfies p ∼ n1/(α0+2α1).

Conditions (A1)(ii) and (iv) are fundamental in the literature on functional re-

gression models based on the FPCA, and the rate of the cut-off frequency p in

condition (A2) is known as the optimal rate; see Hall and Horowitz (2007) for

details. Note that λj − λj+1 ≥ cj−α0−1, for all j ≥ 1, implies λj ≥ cj−α0 , for

some constant c ≥ 0 not depending on j. Conditions (A1)(i) and (A1)(iii) are

extracted from equations (4.3) and (4.2) in Cai and Hall (2006), respectively, and

are required to control E[x̂·j − x·j ]2 and E[
∫
I X(t)[β0(t)− β̂(t)] dt]2.

Before proceeding further, we first introduce a truncated version of the true

underlying slope function, which plays a central role in the derivation of the

theoretical results. For a given p, let b̃p = (b̃1, . . . , b̃p), where

b̃j = b0j , 1 ≤ j ≤ p− 1, and |b̃p| =

 ∞∑
j=p

b20j

1/2

,

such that b̃pb0p ≥ 0, and

β̃p(t) =

p∑
i=1

b̃jφ̂j(t), t ∈ I.

Clearly, ‖β̃p‖2 = ‖b̃p‖ = 1. We have the following result for β̃p.

Lemma 1. Under conditions (A1) and (A2), we have

E ‖β̃p − β0‖22 = O
(
n−(2α1−1)/(α0+2α1)

)
, (3.1)

and

E

[∫
I
(X(t)− µ̂(t))β̃p(t) dt−

∫
I
(X(t)− µ(t))β0(t) dt

]2
= O

( p
n

)
. (3.2)

It is known that the convergence rates on the right sides of (3.1) and (3.2)

achieve the minimax rates for the estimation error and the prediction error, re-

spectively, in functional linear models; see Cai and Hall (2006), Hall and Horowitz

(2007), Yuan and Cai (2010), and Cai and Yuan (2012) for details. Additionally,

define

Bp = Bp(n, C1) =

bp ∈ Rp : ‖bp‖ = 1,

p∑
j=1

λj(bj − b̃j)2 ≤
C1p

n

, (3.3)



FUNCTIONAL SINGLE INDEX MODELS 1799

where C1 < ∞ is a positive constant. With a slight abuse of notation, we also

write βp ∈ Bp if βp =
∑p

j=1 bjφ̂j , for some bp ∈ Bp. We have the following result.

Lemma 2. Under conditions (A1) and (A2), we have

sup
βp∈Bp

‖βp − β̃‖22 = Op

(
n−(2α1−1)/(α0+2α1)

)
, and (3.4)

E

{
sup
βp∈Bp

[∫
I
(X(t)− µ̂(t))(βp(t)− β̃(t)) dt

]2}
= E sup

bp∈Bp

[x̂T·p(bp − b̃p)]2 = O
(
n−(α0+2α1−1)/(α0+2α1)

)
. (3.5)

By using Lemmas 1 and 2, we find that in order to establish the minimax rates

for the proposed estimator, it suffices to show that there exists a bp ∈ Bp with

C1 < ∞ satisfying (2.16) in probability. To prove this, the following conditions

are also required. We use c1, c2, . . . to denote positive constants not depending

on n.

(A3) The kernel function K is a symmetric probability density function satisfying

the Lipschitz condition of order one with support [−1, 1].

(A4) (i) nh3/p→∞, n(α1−1/2)/(α0+2α1)−c1h→∞, and nh8 → 0.

(ii) There is a c2 > 0 such that dnn
1/2+c2 → 0, n1−c2hdn → ∞, h/h∗ =

o(n−c2), and (h∗)2/h = o(n−c2).

(iii) nh4/p = o(1). There is a c3 > 0 such that [nh(h∗)3]−1 = o(n−c3),

p2[n(h∗)3]−1 = o(n−c3), and p3[n2h(h∗)3dn]−1 = o(n−c3).

(A5) (i) The density function fβ0
(·) of U(β0) =

∫
I [X(t) − µ(t)]β0(t) dt has a

connected support and satisfies the Lipschitz condition of order one on

its support.

(ii) There exist c4, c5 > 0 and a constant u0 such that fβ0
(u) ≤ c4 exp{−c5|u|},

for |u| ≥ u0.

(iii) There exists a c6 > 0 such that (h∗|f ′β0
(u+h∗v)|)/(max{fβ0

(u), dn}) =

o(n−c6) holds uniformly over u ∈ R and v ∈ [−1, 1], where dn and h∗

satisfy conditions (A4)(ii) and (iii).

(A6) (i) Let Ax be the functional space such that X ∈ Ax almost surely. Then,

η(U(β0)) has bounded continuous derivatives up to the second order,

and η′(U(β0)) is not identical to zero for X ∈ Ax.
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(ii) Define η2j(u) = λ
−1/2
j E(x·j | U(β0) = u). For any u1, u2 ∈ R such

that fβ0
(u1) > 0 and fβ0

(u2) > 0, it follows that |η2j(u2) − η2j(u1)| ≤
c|u2 − u1| holds for all j ≥ 1, where c is a constant not depending on

j. In other words, for all j ≥ 1, η2j(·) satisfies the Lipschitz condition

of order one on {u : fβ0
(u) > 0} with the Lipschitz constant not larger

than c.

(A7) E ei = 0, E e4i <∞.

(A8) Let

Vp = E
{

[η′(U(β0))]
2J̃Tp (x·p − E[x·p | U(β0)])(x·p − E[x·p | U(β0)])

T J̃p

}
,

where

J̃p = Λ−1/2p

(
λ
1/2
1 b̃−11 (λ

−1/2
2 b̃2, . . . , λ

−1/2
p b̃p)

Ip−1

)
.

Denoting the minimum eigenvalue of Vp by λmin(Vp), there exists a constant

c not depending on p such that λmin(Vp) ≥ c, for all p ≥ 2.

Condition (A3) is a standard second-order kernel condition. The bandwidth

in condition (A4)(i) is used in the final step of Algorithm 1 to calculate η̂dn .

Conditions (A4)(ii) and (iii) put some restrictions on dn and h∗. Here, we use two

bandwidths h and h∗ to estimate η and its derivative η′, because the convergence

rate of the estimator of η′ is slower than that of the estimator of η. See Chiou

and Müller (1998) and Wang et al. (2010) for more discussion on using different

bandwidths in relevant models. Given conditions (A1) and (A2), we may set

h ∼ n−1/4, h∗ ∼ n−1/8
√
ph and dn ∼ p/(nh) to ensure that condition (A4) is

satisfied. Condition (A5)(i) is a standard smoothness condition for the density

function. Condition (A5)(ii) implies that the density function fβ0
(u) is sub-

exponential. Given condition (A5)(ii), it is not difficult to show

P[fβ0
(u) ≤ n−c] = O(n−c log n), (3.6)

for any c > 0, which has a close relationship to (3.6) of Chen, Hall and Müller

(2011). Condition (A5)(iii) focuses on the infinitesimal relative change in the

density function fβ0
. It is easy to verify that both conditions (A5)(ii) and (iii)

are obtained if X is a Gaussian process. In the case that ‖X‖2 is bounded almost

surely, which ensures condition (A5)(ii), if the FPC scores x·j are all independent

and have continuous probability densities and β0 has at least (log dn)/(log h∗)

nonzero expansion coefficients b0j , condition (A5)(iii) also holds. This can be ver-
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ified simply by using the formulae for the convolution of probability distributions.

Condition (A6) is a standard smoothness condition for η and η2j . Condition (A7)

is a sufficient condition to derive the asymptotic results. Condition (A8) parallels

the condition in Lemma A.7 of Li et al. (2011). It is not difficult to show that,

given that η′(U(β0)) is not identical to zero for X ∈ Ax in condition (A6), condi-

tion (A8) holds if X has an elliptically contoured distribution, which is satisfied

if X is a Gaussian process, although the latter is not necessary. See Li and Hsing

(2010) for more details. Therefore, condition (A8) is not very restrictive.

Theorem 1 provides the convergence rate of the estimator β̂ and that of

the mean squared prediction error of the scalar single index, which achieve the

minimax lower bounds for the estimation of the slope function and the prediction

of the response, respectively, in functional linear regression models.

Theorem 1. Suppose that conditions (A1)–(A8) are satisfied. Then, there exists

a root b̌p for the estimating equations (2.16) such that P[b̂p ∈ Bp(n, C1)] → 1

with C1 < ∞, where b̂p = bp(b̌p) is defined in (2.12) and Bp is defined in (3.3).

Therefore, it follows that

‖β̂ − β0‖22 = Op

(
n(−2α1+1)/(α0+2α1)

)
(3.7)

and

EX

[∫
I
(X(t)− µ̂(t))β̂(t) dt−

∫
I
(X(t)− µ(t))β0(t) dt

]2
= Op

(
n(−α0−2α1+1)/(α0+2α1)

)
,

(3.8)

where the expectation EX is taken only over the new observation X.

By an argument similar to the proof of Theorem 1 in Cai and Yuan (2012),

the minimax lower bounds of the rates in Theorem 1 are not less than the corre-

sponding rates in functional linear regression models. Therefore, the rates given

in Theorem 1 are optimal in the minimax sense.

We now turn to the estimator for the link function η̂dn given in the final

step of Algorithm 1. In Theorem 1, we have shown P(b̂p ∈ Bp) → 1. Therefore,

we need only consider the asymptotic property of η̂dn with β ∈ Bp. Recall that

U(β0) =
∫
I [X(t) − µ(t)]β0(t) dt. Write Û(β) =

∫
I [X(t) − µ̂(t)]β(t) dt. Given

a positive sequence {un}∞n=1, let Ax(un) = {X ∈ Ax : ‖X − µ‖2 ≤ un} and

d′n = infX∈Ax(un)[fβ0
(U(β0))].

Theorem 2. Suppose that conditions (A1)–(A8) except for (A4)(iii) are satisfied.
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If un = O(log n) and lim infn→∞ d
′
n/dn > 1, then we have

sup
(β,X)∈Bp×Ax(un)

[η̂dn(Û(β))− η(U(β0))]
2

= Op(h
4) +Op

(
p log n

nhd′n

)
+Op

(
n(−2α1+1)/(α0+2α1)u2n

)
,

(3.9)

and

EX sup
β∈Bp

{
[η̂dn(Û(β))− η(U(β0))]

2 I[X ∈ Ax(un)]
}

= Op
(
h4
)

+Op

(
pun log n

nh

)
,

(3.10)

where the expectation EX is taken only over the new observation X.

In Theorem 2, we restrict X ∈ Ax(un) to the bound |U(β0)− Û(β̂)|, which is

required in the proof. In addition, we suppose lim infn→∞ d
′
n/dn > 1. A simple

explanation is that there are no sufficient observations in the region where the

probability density fβ0
is near zero. However, we still allow un → ∞ so that η

can be consistently estimated on the whole real line. Equation (3.9) provides a

uniform convergence rate for the squared perdition error of η̂dn . Specifically, the

first term on the right side of (3.9) is attributed to the bias of the local linear

estimator. The second term is due to the variance of the local linear estimator.

Here, we allow p → ∞ and d′n → 0, which induce an additional penalty p/d′n.

Similar results can also be found in Hansen (2008) for the Nadaraya–Watson

regression estimators and the local linear regression estimators. The last term on

the right side of (3.9) results from the truncated error of the functional predictors,

which can be improved if additional assumptions on the FPC scores of the new

observation X are available. In practice, one may only be concerned with the

estimate of η on a compact interval. In this case, both un and d′n are constants,

and the last two terms on the right side of (3.9) become Op[(p log n)/nh] and

Op[n
(−2α1+1)/(α0+2α1)], respectively.

For the mean squared prediction error in (3.10), the bias caused by the trun-

cation error of the slope function is dominated by the second term on the right side

of (3.10). Note that the right side of (3.10) does not depend on d′n. Intuitively,

although the variance of η̂dn(u) for a given u is large if the corresponding density

fβ0
(u) is low, the effect on the mean squared prediction error can be offset by its

density when taking the expectation. When un ∼ log n, the optimal bandwidth

that minimizes the right side of (3.10) is in the order of (n−1p log2 n)1/5. Recall

that p = o(n1/4) by conditions (A1) and (A2). By taking h ∼ (n−1p log2 n)1/5,
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the mean squared convergence rate in (3.10) is faster than that in Theorem 1 of

Chen, Hall and Müller (2011).

Let êi = Yi − η̂dn(Ûi(β̂)) be the estimate of the regression error. Define the

estimator of σ2e by σ̂2e = n−1
∑n

i=1 ê
2
i . The next theorem provides the asymptotic

normality of σ̂2e .

Theorem 3. Under the conditions of Theorem 2, we have

√
n(σ̂2e − σ2e)(V̂ar(e21))

−1/2 d→ N(0, 1), (3.11)

where

V̂ar(e21) =
1

n

n∑
i=1

ê4i −

[
1

n

n∑
i=1

ê2i

]2
.

4. Simulation Studies

In this section, we illustrate the finite-sample performance of the proposed

estimating procedure for functional single-index models using simulations. We

use three different sample sizes n = 100, 200, and 400 in the simulations. The

functional predictors are generated from the process Xi(t) = t +
∑50

j=1 xijφj(t)

with t ∈ [0, 1], where φj(t) = 21/2 sin(2jπt) for odd j and φj(t) = 21/2 cos(2jπt)

for even j, and the FPC scores are i.i.d. as N(0, j−1.5). The slope function is

generated by β(t) =
∑50

i=1 bjφj(t), with bj = 1 for j = 1, 2, and, 3 and bj = j−2

for j = 4, . . . , 50. The following link functions are considered:

Model I η(Ui) = cos(πUi) + Ui, non-monotone link with a linear trend;

Model II η(Ui) = (Ui+1/2) sin[2−1πUi(1/2+exp(Ui))/(1+exp(Ui))], period link

with varying amplitude and frequency; and

Model III η(Ui) = arctan(2Ui), monotone link.

Here, Ui =
∫ 1
0 Xi(t)β(t) dt in all models. The Response Yi are obtained as

Yi = η(Ui) + ei, where the errors ei, for i = 1, . . . , n, are i.i.d. as N(0, σ2e)

with σ2e = RVar(g(Ui)). Here, R is a measure of the noise-to-signal ratio,

which is set to 0.1 or 1 in our simulations.

We compare our method with the functional cumulative slicing (FCS) method

in Yao, Lei and Wu (2015). We use the truncated local linear estimator described

in (2.14) to estimate the link function η for the FCS method. The quartic kernel

K(u) = (15/16)(1 − u2)2, |u| ≤ 1 is used for all the smoothing steps. To select

the optimal number of FPC scores p and the bandwidth h, we employ five-fold
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Table 1. Simulation results for the angles between β̂ and β and the mean squared predic-
tion errors of the scalar single index MSPEI, obtained from 100 Monte Carlo repetitions.
The standard errors are provided in parentheses. All entries are multiplied by 100.

Proposed FCS

Model n R Angle MSPEI Angle MSPEI

I 100 0.1 18.4 (12.5) 0.54 (1.31) 27.5 (14.0) 1.49 (1.18)

1 45.6 (22.7) 3.81 (4.30) 54.4 (26.4) 5.82 (5.25)

200 0.1 9.47 (3.99) 0.09 (0.21) 16.7 ( 5.68) 0.58 (0.41)

1 31.6 (17.6) 1.52 (2.07) 34.4 (19.6) 2.24 (2.11)

400 0.1 6.56 (1.82) 0.03 (0.02) 11.1 ( 3.46) 0.27 (0.21)

1 20.4 (10.9) 0.49 (0.94) 20.4 (12.2) 1.04 (0.99)

II 100 0.1 20.6 (12.4) 0.61 (1.30) 26.7 (12.1) 1.75 (1.97)

1 50.1 (25.1) 4.46 (4.38) 58.0 (29.1) 7.08 (5.70)

200 0.1 12.0 ( 4.72) 0.12 (0.11) 19.5 ( 8.30) 0.97 (1.12)

1 33.7 (15.9) 1.96 (2.70) 34.2 (20.3) 2.69 (2.83)

400 0.1 7.49 (2.04) 0.04 (0.03) 12.5 ( 4.11) 0.39 (0.32)

1 23.3 ( 7.45) 0.45 (0.24) 20.2 (11.6) 1.06 (1.03)

III 100 0.1 21.9 ( 7.76) 0.44 (0.28) 25.9 (11.4) 0.93 (0.71)

1 57.8 (18.8) 4.80 (3.03) 58.9 (21.3) 5.34 (3.43)

200 0.1 14.7 ( 5.24) 0.18 (0.11) 17.5 ( 7.18) 0.38 (0.24)

1 43.6 (13.2) 2.24 (1.30) 44.1 (16.0) 2.50 (1.67)

400 0.1 9.99 (3.29) 0.07 (0.04) 11.3 ( 4.54) 0.17 (0.11)

1 31.8 (10.7) 0.98 (0.71) 30.7 (14.4) 1.20 (0.90)

cross-validation, repeated over 10 random partitions. The accuracy of the slope

function is quantified by the angle in radians between β̂ and β. To assess the

model estimation, we generate a validation sample of size N = 1,000 in each

Monte Carlo run, and quantify the prediction error of the scalar single index by

its mean squared prediction error MSPEI = N−1
∑N

i=1

∫ 1
0 [(Xi(t)− µ̂(t))(β0(t)−

β̂(t))]2 dt, where β0 = β/‖β‖2, and quantify the prediction error of the scalar

response by MSPEY = N−1
∑N

i=1[Y
∗
i − η̂(Ûi)]

2 where Y ∗i = η(Ui).

We report the average values of the angles, MSPEI, and MSPEY over 100

Monte Carlo repetitions in Tables 1 and 2, along with their standard errors. The

prediction errors of the scalar responses with known β are also reported, which

serves as a benchmark. Tables 1 and 2 indicate that our method outperforms the

FCS method by Yao, Lei and Wu (2015) when the noise-to-signal ratio R = 0.1.

For the case R = 1, the two approaches perform comparably, which could be

because the proposed method is more sensitive to larger regression errors. Our

method has lower prediction errors of the scalar single indices.
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Table 2. Simulation results for the mean squared prediction errors of the scalar responses
MSPEY obtained from 100 Monte Carlo repetitions. The standard errors are provided
in parentheses. All entries are multiplied by 100.

Proposed FCS β is known

Model n R MSPEY

I 100 0.1 35.6 (15.4) 46.1 (14.4) 26.3 ( 7.48)

1 75.8 (29.2) 79.1 (29.9) 34.3 (12.7)

200 0.1 25.8 ( 8.21) 31.9 ( 7.63) 23.8 ( 6.19)

1 48.1 (22.0) 52.5 (20.5) 27.7 ( 8.34)

400 0.1 7.67 (3.70) 10.8 ( 4.47) 5.50 (2.83)

1 26.9 (11.7) 31.8 (11.8) 18.2 ( 4.02)

II 100 0.1 13.8 ( 7.56) 19.8 ( 9.15) 9.29 (2.35)

1 31.9 (14.8) 35.5 (15.9) 11.5 ( 4.38)

200 0.1 5.10 (2.54) 9.17 (4.38) 3.56 (1.40)

1 19.8 ( 9.95) 21.2 ( 9.22) 9.14 (2.88)

400 0.1 1.95 (0.93) 3.78 (1.94) 1.51 (0.85)

1 8.12 (3.34) 11.1 ( 5.78) 4.43 (1.87)

III 100 0.1 5.29 (2.28) 6.45 (2.32) 3.60 (1.34)

1 24.5 ( 9.64) 22.1 (10.1) 9.72 (5.49)

200 0.1 3.04 (1.16) 3.63 (1.25) 2.15 (0.73)

1 13.6 ( 5.99) 12.1 ( 5.03) 5.72 (2.84)

400 0.1 1.53 (0.70) 1.84 (0.76) 1.16 (0.55)

1 6.50 (2.76) 6.19 (2.36) 3.34 (1.49)

5. Real-Data Application

In this section, we apply the functional single-index model to the Teca-

tor spectrometric data set available on http://lib.stat.cmu.edu/datasets/

tecator. The data set consists of 215 absorbance spectrum curves of finely

chopped pure meat samples, measured at 100 wavelengths from 850 nm to 1,050

nm. The absorbance is − log10 of the transmittance. The spectrum curves are

displayed in Figure 1(a). The fat content of each meat sample is determined by

analytical chemistry. Our aim is to predict the percentage of fat content Yi from

the spectrometric curve Xi(·). According to the Beer–Lambert Law in analytical

chemistry (Skoog et al. (2013)), there is a near linear relationship between the

absorbance and the concentration of the absorbing species.

We first rescale the functional predictors on the interval [0, 1]. As suggested

by Chen, Hall and Müller (2011), we normalize each spectrometric curve Xi

by subtracting its area under the curve
∫ 1
0 Xi(t) dt. The normalized curves are

displayed in Figure 1(b). In a preprocessing step, we remove three outliers by a

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator
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Figure 1. (a) (b) Spectra curves and normalized spectra curves of 215 meat samples. (c)

The estimated slope function β̂. (d) The estimated link function η̂dn
(blue solid line)

and the percentages of fat content of the samples Yi (red dots).

simple visual inspection of the normalized curves. We then remove seven other

curves according to the box plot of the residuals of the functional single-index

model computed using the proposed method. In Chen, Hall and Müller (2011),

the authors suggested an additive multiple-index model with two indices. Because

the shapes of the slope functions of those indices were similar, it is natural to

ask whether a single-index model is sufficient to capture the main relationship

between the response and the functional predictor.

We use the proposed estimating procedure with the quartic kernel to fit the

data and employ five-fold cross-validation, repeated over 10 random partitions,

to select the number of FPC scores p and the bandwidth h. Because there is a

significant difference between the cross-validated errors with p = 3 and 4, while

including more FPCs in the model has little effect on the cross-validated error,

we select p = 4 in this real-data application. The estimated slope functions β̂

and the link function η̂dn are displayed in Figures 1(c) and 1(d), respectively.

The shape of the slope function estimate β̂ is similar to the shapes of the slope
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function estimates in Figure 3 of Chen, Hall and Müller (2011). The estimated

link function η̂dn is near-linear, and bends down when the scalar index is large.

The leave-one-out cross-validated mean squared prediction error of fat content

as a percentage for the single-index model estimated by the proposed method is

2.27, while those for the additive multiple-index model with two indices estimated

by the FCS method in Yao, Lei and Wu (2015) and reported in Chen, Hall and

Müller (2011) are 3.20 and 2.39, respectively. Therefore, a single-index model is

reasonable in this application.

We also apply the backfitting procedure described in Chen, Hall and Müller

(2011) to check whether an additive multiple-index model with two indices is more

appropriate. The leave-one-out cross-validated mean squared prediction error for

the multiple-index model is 2.02, about 88% of that for the single-index model,

showing a limited improvement. Although the additional index may provide some

useful information for Yi, we do not explore that here.

Supplementary Material

The online Supplementary Material contains proofs of Lemmas 1 and 2 and

Theorems 1–3.
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