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Abstract: Quantile regression as an alternative to modeling the conditional mean

function provides a comprehensive picture of the relationship between a response

and covariates. It is particularly attractive in applications focused on the upper

or lower conditional quantiles of the response. However, conventional quantile re-

gression estimators are often unstable at the extreme tails, owing to data sparsity,

especially for heavy-tailed distributions. Assuming that the functional predictor has

a linear effect on the upper quantiles of the response, we develop a novel estimator

for extreme conditional quantiles using a functional composite quantile regression

based on a functional principal component analysis and an extrapolation technique

from extreme value theory. We establish the asymptotic normality of the proposed

estimator under some regularity conditions, and compare it with other estimation

methods using Monte Carlo simulations. Finally, we demonstrate the proposed

method by empirically analyzing two real data sets.

Key words and phrases: Extrapolation, extreme quantile, extreme value theory,

functional principal component analysis, functional quantile regression, heavy-tailed

distribution.

1. Introduction

With modern technology related to data collection and storage, functional

data have become increasingly available in many scientific fields, such as mete-

orology, chemistry, biomedicine, and neuroimaging (Zhu, Fan and Kong (2014);

Yu, Kong and Mizera (2016); Miranda, Zhu and Ibrahim (2018)). The most strik-

ing feature of functional data is its inherent infinite dimensionality, which poses

challenges both for theoretical analysis and statistical computation, and makes

traditional multivariate statistical analysis methods no longer applicable. On the

other hand, the infinite-dimensional structure of the data is also a rich source

of potential useful information, which brings many opportunities for theoretical

research and data application. For this very reason, functional data analysis

(FDA) has attracted increasing interest in the statistical research community.
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The monographs of Ramsay and Silverman (2005), Ferraty (2011), and Hsing

and Eubank (2015) provide a comprehensive review of FDA statistical methods.

Quantile regression, first introduced by Koenker and Bassett (1978), is now

widely used to analyze the effect of covariates on the conditional distribution

of a response variable. By directly modeling the conditional quantile function,

a quantile regression is more robust to outliers in response measurements, can

better handle heterogeneity in the data, and provides a more comprehensive

regression analysis than that of an ordinary least squares regression. As a result,

quantile regression has attracted considerable applications in a variety of fields

in recent decades (Koenker and Xiao (2002); Koenker (2005, 2017)).

In the FDA literature, works exist on estimating conditional quantiles using

functional covariates. For example, Cardot, Crambes and Sarda (2005) consid-

ered a smoothing splines estimation for functional linear quantile regression mod-

els. Ferraty, Rabhi and Vieu (2005) studied the functional nonparametric estima-

tion of conditional quantiles when the covariates are functional predictors. Chen

and Müller (2012) proposed an “indirect” estimation approach for conditional

quantiles by inverting an estimated conditional distribution function. Kato (2012)

considered a functional principal component analysis (FPCA)-based estimation

of a functional linear quantile regression, and established optimal convergence

rates for his estimators in a minimax sense. Yao, Sue-Chee and Wang (2017)

focused on a partially functional linear quantile regression with high-dimensional

scalar covariates.

The aforementioned works on functional quantile regression have been re-

stricted to a central quantile τ ∈ [ε, 1 − ε], where 0 < ε < 1 is a fixed positive

number. This rules out studying the extreme tail quantiles of the response dis-

tribution. However, in many applications, such as the study of heavy rainfall

(Friederichs and Hense (2007); Gardes and Girard (2010)), extreme warm tem-

peratures (Dupuis, Sun and Wang (2015)), large portofolio losses (Odening and

Hinrichs (2003); Schaumburg (2012)), and significant changes in the price of oil

(Marimoutou, Raggad and Trabelsi (2009)), an important problem is to model

and predict events that are rare, but that have significant social and economic

impacts, which correspond to the upper or lower tails of the distribution. To ad-

dress this problem, we need to study the extreme tail quantiles of the underlying

distributions. However, data sparsity makes estimating extreme tail quantiles

difficult, especially for heavy-tailed distributions. To the best of our knowledge,

estimating the extreme conditional quantiles of a functional linear quantile regres-

sion with heavy-tailed distributions has not yet been considered in the literature.

The aim of this study is to fill this gap.
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In this paper, we develop a novel estimator for the extreme conditional quan-

tiles of a functional linear quantile regression by combining ideas from FPCA and

extreme value theory (EVT). The numerical studies and two real data applica-

tions demonstrate the superior performance of the new estimator compared with

other competing estimators. EVT provides a useful mathematical tool for study-

ing extreme events. Some work has been done on estimating extreme quantiles by

integrating a quantile regression with EVT. For instance, Chernozhukov (2005)

considered estimating the extreme quantiles of linear quantile regression models

based on EVT. Li and Wang (2019) proposed a new estimator for extreme condi-

tional quantiles of time series data. Zhang (2018) established a new asymptotic

theory and inference approach for extremal quantile treatment-effect estimators.

He, Cheng and Tong (2016) and Yoshida (2019) estimated the extremal quantiles

of linear and nonparametric quantile regression models, respectively.

The rest of this paper is organized as follows. In Section 2, we present our

proposed model and develop the estimation procedure. The theoretical properties

of the estimators are studied in Section 3. In Section 4, we conduct Monte Carlo

studies to demonstrate the finite-sample performance of our estimator, and com-

pare it with that of other competing estimators. In Section 5, we demonstrate the

proposed method by empirical analyses of two real data sets. Section 6 concludes

the paper. All detailed proofs are deferred to the Supplementary Material.

2. Model and Estimation Method

2.1. Model

Let Y be a continuous scalar response variable of interest, and X(·) be a

squared integrable and smooth random process supported on a closed interval I.

The conditional distribution of Y given X = x is denoted by FY (·|x) = P(Y ≤
·|X = x). Then, the τth conditional quantile of Y given X = x is defined as

QY (τ |x) = inf{y : FY (y|x) ≥ τ}.

Suppose that we have a random sample Z1, . . . , Zn from some distribution

F (·). If there exist sequences of constants an > 0 and bn ∈ R such that

lim
n→∞

P
(

max1≤i≤nZi − bn
an

≤ z
)

= Gγ(z)

for each continuity point z of Gγ(·), where
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Gγ(z) =

{
exp

{
−(1 + γz)−1/γ

}
, for γ 6= 0, 1 + γz > 0,

exp (−e−z) , for γ = 0,

then F (·) is said to belong to the maximum domain of attraction (MDA) of an

extreme value distribution Gγ , denoted as F (·) ∈ MDA (Gγ). The real-valued

parameter γ is referred to as the extreme value index, and it dominates the tail

behavior of the distribution Gγ .

In this study, we assume that the conditional distribution FY (·|x) ∈ MDA(

Gγ). The MDA assumption is common in the literature on EVT, and is satisfied

by most commonly used continuous distributions (Matthys and Beirlant (2003);

Wang, Li and He (2012); Gomes and Guillou (2015); Gardes (2018)). For ex-

ample, the uniform, Gaussian, t distribution, Pareto, and Cauchy belong to the

MDA with various values of γ. For more details on the extreme value index and

the MDA assumption, refer to de Haan and Ferreira (2006) and the references

therein.

We focus on the case where γ > 0 (i.e., heavy-tailed distributions), for which

the estimation of extreme quantiles is especially challenging because of data spar-

sity in the tail region. Without loss of generality, we focus on estimating the

extremely high conditional quantiles of Y given X = x, that is, QY (τn|x), where

τn → 1 as n → ∞. To this end, we assume that there exists a τ0 ∈ (0, 1) such

that

QY (τ |x) = α(τ) + 〈x, β0〉 for τ ∈ [τ0, 1),

where 〈x, β0〉 =
∫
I x(t)β0(t)dt. Note that we only assume that the conditional

quantile function has a functional linear structure when the quantile level exceeds

τ0, which allows us to model the conditional quantile function without specifying

a structure for τ ∈ (0, τ0). In addition, because τ0 can be very close to one and

the smooth slope function of the functional predictor varies little on the small

interval [τ0, 1), it is reasonable to assume that the quantile slope functions are

common at the upper conditional quantiles of the response.

2.2. Estimation method

In what follows, the covariance function of X is defined as K(s, t) = Cov{
X(s), X(t)}, for all s, t ∈ I. We suppose that K(s, t) is continuous and positive

definite on I × I. Then, K(s, t) has the following eigen-decomposition (Hsing

and Eubank (2015)):]

K(s, t) =

∞∑
j=1

λjφj(s)φj(t),
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where λ1 > λ2 > · · · > 0 are eigenvalues, and {φj}∞j=1 is an orthonormal basis

of L2(I) consisting of the eigenfunctions of the integral operator from L2(I) to

itself with the kernel K(s, t); that is,∫
I
K(·, t)φj(t)dt = λjφj(·), j ≥ 1.

For notational convenience, we assume throughout that the functional co-

variate X has been centered. Because {φj}∞j=1 is an orthonormal basis of L2(I),

we have the following expansion in L2(I):

X(t) =

∞∑
j=1

ξjφj(t), β0(t) =

∞∑
j=1

βjφj(t),

where the principal component scores ξj = 〈X,φj〉 are uncorrelated with E (ξj) =

0 and Var(ξj) = λj , and βj = 〈β0, φj〉. Suppose that (X1, Y1), . . . , (Xn, Yn) is a

random sample from (X,Y ). Based on the sample X1, . . . , Xn, the standard

empirical estimation of K(s, t) is

K̂(s, t) =
1

n

n∑
i=1

Xi(s)Xi(t).

Let K̂(s, t) =
∑∞

j=1 λ̂jφ̂j(s)φ̂j(t) be the eigen-decomposition of K̂(s, t) (Yao,

Müller and Wang (2005); Xiao et al. (2016)), where λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 are

eigenvalues, and {φ̂j}∞j=1 is an orthonormal basis of L2(I) consisting of the eigen-

functions of the integral operator from L2(I) to itself with the kernel K̂(s, t). Let

ξij be the principal component scores of Xi, namely, ξij = 〈Xi, φj〉, where each

ξij is estimated by ξ̂ij = 〈Xi, φ̂j〉.
Our proposed estimator for β0 is as follows:

β̂0(t) =

mn∑
j=1

β̂jφ̂j(t),

where mn is a cut-off level that satisfies 1 ≤ mn ≤ n− 1 and mn →∞ as n→∞
(Yao, Müller and Wang (2005); Li, Wang and Carroll (2013); Zhu et al. (2019)),

and β̂j is defined by

{
α̂(τ1), . . . , α̂(τl), β̂1, . . . , β̂mn

}
= argmin

a1,...,al,b1,...,bmn

l∑
j=1

n∑
i=1

ρτj

Yi − aj − mn∑
q=1

ξ̂iqbq

 ,

(2.1)
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where ρτ (s) = τs− s1(s < 0) is the check loss function and 1(·) is the indicator

function, and τ0 = τ1 < τ2 < · · · < τl = τ0 is a sequence of quantile levels

with τ0 < τ0 < 1. The estimator (β̂1, . . . , β̂mn
)> of (β1, . . . , βmn

)> is obtained

by pooling information from multiple quantile levels (Koenker (2004); Zou and

Yuan (2008)). The objective function in (2.1) can be solved efficiently using the

iterative algorithm proposed by Hunter and Lange (2000).

Assume that FY (·|Xi) are continuous and strictly monotone. Let êi =

Yi − 〈Xi, β̂0〉 and vi ∈ {τ : QY (τ |Xi) = Yi}. Then, QY (vi|Xi) = Yi and vi ∼
Uniform(0,1), for i = 1, . . . , n. It is easy to show that

êi =

{
α(vi) + 〈Xi, β0 − β̂0〉 if τ0 ≤ vi < 1,

QY (vi|Xi)− 〈Xi, β̂0〉 otherwise.
(2.2)

Denote the order statistics of {ê1, . . . , ên} by ê(1) ≤ ê(2) ≤ · · · ≤ ê(n). Then, a

Hill estimator (Hill (1975)) of the extreme value index γ is given by

γ̂ =
1

kn

kn∑
j=1

log
ê(n−j+1)

ê(n−kn)
, (2.3)

where kn → ∞ and kn/n → 0 as n → ∞. The intuitive argument behind this

estimator is that the upper-order statistics {ê(n−kn), . . . , ê(n)} of {ê1, . . . , ên} are

asymptotically equivalent to those of {QY (vi|x = 0), i = 1, . . . , n}; see the proof

of Theorem 2 in the Supplementary Material.

Let HY (t|x = 0) = inf{y : FY (y|x = 0) ≥ 1 − 1/t} = F−1Y (1 − 1/t|x = 0)

for t > 1; that is, HY (t|x = 0) is the (1 − 1/t)th quantile of FY (·|x = 0). By

Theorem 1.1.6 and Lemma 1.2.9 in de Haan and Ferreira (2006), for a heavy-

tailed distribution FY (·|x = 0), when t→∞, we have

HY (tz|x = 0)

HY (t|x = 0)
→ zγ , (2.4)

for any z > 0. It is easy to obtain that α(τ) = HY {1/(1 − τ)|x = 0}, for

τ ∈ [τ0, 1). Therefore,

HY (1/(1− pn) · (1− pn)/(1− τn)|x = 0)

HY (1/(1− pn)|x = 0)
·
(

1− τn
1− pn

)γ
=
HY (1/(1− τn)|x = 0)

HY (1/(1− pn)|x = 0)
·
(

1− τn
1− pn

)γ
=
α(τn)

α(pn)
·
(

1− τn
1− pn

)γ
→ 1, as n→∞,

(2.5)
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where τn → 1 as n→∞ and pn = 1−kn/n. Inspired by (2.5), we estimate α(τn)

by

α̂(τn) =

(
1− pn
1− τn

)γ̂
α̂(pn), (2.6)

where α̂(pn) = ê(n−kn) is an estimator of α(pn), and the pnth quantile of FY (·|x =

0). Here, (2.6) is a Weissman estimator (Weissman (1978)) of α(τn). Note that

τn is assumed to be much closer to one than pn (please also refer to the condition

in Theorem 3). In (2.6), we use the EVT to extrapolate the tail estimation from

pn to τn in order to provide a stable estimate of α(τn), which is otherwise difficult

to estimate, owing to data sparsity in the extreme tails. More justifications on

using (2.6) to estimate extreme quantiles instead of a sample quantile of êi can

be found in Chernozhukov (2005) and Chernozhukov and Fernández-Val (2011).

Hence, we estimate the τnth conditional quantile of Y given X = x by

Q̂Y (τn|x) = α̂(τn) + 〈x, β̂0〉.

Our simulations suggest that the extreme conditional quantiles obtained using

our proposed estimation approach are much more stable than those obtained

using the conventional functional quantile regression estimation method (Kato

(2012)) or functional kernel estimation approach (Gardes and Girard (2012)).

3. Theoretical Results

For notational simplicity, let Fτ (·|Xi) be the conditional distribution of εiτ
given Xi, and let fτ (·|Xi) be the corresponding density function, where εiτ =

Yi − α(τ) − 〈Xi, β0〉 and τ ∈ [τ0, 1). To study the asymptotic properties of the

estimators, some regularity conditions are needed. The following assumptions

are imposed. Throughout the paper, C denotes a generic positive constant, the

value of which varies in different places.

(C1) E
(
||X||4

)
<∞, where ||X||2 =

∫
I X

2(t)dt.

(C2) E(ξ4j ) ≤ Cλ2j , for j ∈ {1, 2, . . .}.

(C3) For some ν > 1, C−1j−ν ≤ λj ≤ Cj−ν and λj − λj+1 ≥ Cj−ν−1, for

j ∈ {1, 2, . . .}.

(C4) For some ζ > ν/2 + 1, |βj | ≤ Cj−ζ , for j ∈ {1, 2, . . .}.

(C5) mn � n1/(ν+2ζ). For positive rn and sn, rn � sn means that rn/sn is

bounded away from zero and infinity.
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(C6) εiτ are independent and identically distributed (i.i.d.), and fτ (·|Xi) and

their derivatives are continuous and bounded away from zero and infinity

uniformly over i in an interval that contains zero for all τ ∈ [τ0, τ
0].

(C7) The first derivative H ′Y (·|x = 0) of HY (·|x = 0) exists, and satisfies limt→∞
tH ′Y (t|x = 0)/HY (t|x = 0) = γ.

Remark 1. If the FPCA approach is used to analyze a functional linear regres-

sion, (C1)–(C5) are standard conditions (Cai and Hall (2006); Hall and Horowitz

(2007)). Condition (C2) is automatically satisfied if X is a Gaussian random

process, because in this case, ξj are Gaussian. In assumption (C3), ν measures

the smoothness of the covariance function K. The second part of assumption

(C3) requires that the spaces between λj are not too small to ensure that each

individual φj is identifiable. Assumption (C4) determines the smoothness of the

slope function β0. Assumption (C5) is a technical condition for proving Theo-

rem 1. For more discussion on these assumptions, see Hall and Horowitz (2007).

Assumption (C6) is a regularity condition on error quantiles (Kato (2012; Yao,

Sue-Chee and Wang (2017)), and is common in the quantile regression literature

when X is a multivariate covariate (Kai, Li and Zou (2011); Ma and He (2016)).

Condition (C7) is a technical condition for proving Theorem 2, and is called the

von Mises condition (see Corollary 1.1.12 in de Haan and Ferreira (2006)). In-

deed, limt→∞tH
′
Y (t|x = 0)/HY (t|x = 0) = C is enough to complete our proof of

Theorem 2, where C is an arbitrary fixed positive constant.

In addition to the above assumptions, we also need to introduce a second-

order condition on the distribution F ∈ MDA (Gγ), where F is continuous and

strictly monotone. Define V (t) = inf{y : F (y) ≥ 1 − 1/t} = F−1(1 − 1/t), for

t > 1. Then, F ∈ MDA (Gγ) implies that there exists a positive function a1(·)
such that for z > 0, as t→∞,

V (tz)− V (t)

a1(t)
→ zγ − 1

γ
, (3.1)

where for γ = 0 the right-hand side is interpreted as log z. For more details on

(3.1), see Theorem 1.1.6 in de Haan and Ferreira (2006).

To get the asymptotic results, it is usually necessary to assume that the

following second-order condition holds (see Corollary 2.3.4 and Theorem 2.3.12

in de Haan and Ferreira (2006)):

(V (tz)− V (t))/a1(t)− (zγ − 1)/γ

a2(t)
→ 1

δ

(
zγ+δ − 1

γ + δ
− zγ − 1

γ

)
, (3.2)
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for any z > 0 as t → ∞, where a2(·) is a positive or negative function and

a2(t) → 0 as t → ∞, and a2(·) ∈ RV (δ) with δ ≤ 0. Here, a2(·) ∈ RV (δ) means

that a2(·) is a regularly varying (RV) function with index δ; that is, namely,

limt→∞a2(tz)/a2(t) = zδ, for all z > 0. When at least one of δ and γ is equal to

zero, the right-hand side of (3.2) is equal to

1

γ

(
zγ log z − zγ − 1

γ

)
if δ = 0 6= γ,

1

δ

(
zδ − 1

δ
− log z

)
if δ 6= 0 = γ,

1

2
(log z)2 if δ = 0 = γ.

Most commonly used families of continuous distributions satisfy condition (3.2).

For instance, a t distribution with degrees of freedom v satisfies (3.2) with γ = 1/v

and δ = −2/v, and a normal distribution satisfies (3.2) with γ = δ = 0.

For γ > 0, the second-order condition (3.2) is equivalent to there existing a

positive or negative function A(·) with limt→∞A(t) = 0 and A(t) ∈ RV (δ), with

δ ≤ 0, such that for all z > 0,

A(t)−1
{
V (tz)

V (t)
− zγ

}
→ zγ

zδ − 1

δ
, as t→∞. (3.3)

We say that V (·) satisfies the second-order condition indexed by (γ, δ, A) when

(3.3) holds.

The following Theorems 1 and 2 present, respectively, the convergence rate of

the estimator for the slope function and the asymptotic normality of the estimator

for the extreme value index.

Theorem 1. Suppose that conditions (C1)–(C6) hold. Then, we have∥∥∥β̂0 − β0∥∥∥2 = Op

(
n−2ζ−1/(ν+2ζ)

)
.

Theorem 2. Let kn → ∞, kn/n → 0, and kγ+2
n n−γ−(2ζ−2−ν)/(4(ν+2ζ)) → 0 as

n→∞. Suppose that HY (·|x = 0) satisfies the second-order condition indexed by

(γ, δ, A), and γ > 0, δ < 0, and
√
knA(n/kn) → η ∈ R. Then, under conditions

(C1)–(C7), we have √
kn (γ̂ − γ)

d−→N

(
η

1− δ
, γ2
)
.

Remark 2. Deriving the asymptotic properties of the estimators requires some
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general conditions on kn, the number of tail observations used in the estimation

procedure. The condition limn→∞ k
γ+2
n n−γ−(2ζ−2−ν)/(4(ν+2ζ)) = 0 is used to make

sure that the upper-order statistics of {ê1, . . . , ên} behave similarly to those of

{QY (vi|x = 0), i = 1, . . . , n}. It is easy to see that kn = nα satisfies all the condi-

tions on kn, where 0 < α < min(2δ/(2δ − 1), (4γ(ν + 2ζ) + 2ζ − 2− ν)/(4(γ+ 2)

(ν+2ζ))).Hence, in theory, there exists a wide range of choices for a proper kn. For

instance, for the t(1) distribution with γ = 1 and δ = −2, min(2δ/(2δ − 1), (4γ(ν+

2ζ)+2ζ−2−ν)/(4(γ+2)(ν+2ζ))) > 1/3. In Section 4, we recommend a practical

choice of kn that performs well in our simulation studies.

The following Theorems 3 and 4 present the asymptotic normality of α̂(τn)

and Q̂Y (τn|x), respectively.

Theorem 3. Assume that nqn = o (kn) and | log(nqn)| = o
(√
kn
)
, where qn =

1− τn. Then, under the same assumptions as in Theorem 2, we have

√
kn

log{kn/(nqn)}

{
α̂(τn)

α(τn)
− 1

}
d−→N

(
η

1− δ
, γ2
)
.

Theorem 4. Assume that
√
kn[log{kn/(nqn)}]−1qγnn−(2ζ−2−ν)/(4(ν+2ζ)) → 0. Un-

der the conditions of Theorem 3, we have

√
kn

log{kn/(nqn)}

{
Q̂Y (τn|x)

QY (τn|x)
− 1

}
d−→N

(
η

1− δ
, γ2
)
.

Remark 3. The condition nqn = o (kn) guarantees that τnth quantile is an ex-

treme quantile level and gives the upper bound on qn. The condition |log (nqn)| =
o
(√
kn
)

gives the lower bound on qn, which restricts the range of extrapolation.

Obviously, qn � n−1 satisfies both of these conditions. The asymptotic normality

of Q̂Y (τn|x) even holds for some τn > 1− 1/n, which means that it is beyond the

range of the available data.

4. Simulation Studies

4.1. Tuning parameter selection

The proposed estimation method depends on the tuning parameter mn and

the number of upper-order statistics kn used in the extreme value index estima-

tion. We use the Bayesian information criterion (BIC) to select mn. Specifically,

for a fixed mn, the BIC is defined as
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BIC (mn) = log


l∑

j=1

n∑
i=1

ρτj

Yi − α̂ (τj)−
mn∑
q=1

ξ̂iqβ̂q

+
mn log n

n
.

The mn that minimizes BIC(mn) is the cut-off level we choose.

In the EVT, the optimal kn is often chosen to minimize the mean squared

error (MSE) of the proposed estimator (de Haan and Ferreira (2006)). However,

the optimal kn depends on the unknown extreme value index γ and the unknown

regularly varying function A(·) in (3.3), which are difficult to estimate in prac-

tice. Drees, de Haan and Resnick (2000) and de Sousa and Michailidis (2004)

proposed plotting the value of the extreme value index γ estimator as a function

of kn and selecting a “stable” point, which is called the Hill plot approach. Hall

(1990) and Beirlant, Vynckier and Teugels (1996) suggested choosing kn based

on a bootstrap method and regression diagnostics on a Pareto quantile plot, re-

spectively. More discussion on the choice of kn can be found in Guillou and

Hall (2001), Gomes, Figueiredo and Neves (2012), Gardes, Guillou and Schorgen

(2012), and Bader, Yan and Zhang (2018). Even though many approaches have

been proposed to select kn, there is no widely accepted method, and its choice

requires more research. In our study, combining our numerical investigation and

the Hill plot approach, we set kn =
[
4n1/4

]
for all of our numerical studies, where

[·] denotes the integer part. Our simulations suggest that both the extreme value

index and the extreme conditional quantiles obtained by our proposed estimation

approach perform well under such a choice.

4.2. Numerical results

We now conduct simulation studies to verify the performance of our proposed

method (EFQR). We also illustrate that the proposed method improves on the

functional kernel estimate (FKE) proposed by Gardes and Girard (2012) and the

conventional functional linear quantile regression estimate (CQR) at high tails.

The data that we use are generated from the following model:

Yi =

∫ 1

0
Xi(t)β0(t)dt+ εi, i = 1, . . . , n,

where β0(t) =
∑50

j=1 βjφj(t), Xi(t) =
∑50

j=1 ξijbjφj(t), β1 = 0.5, βj = 4j−2, for

j > 1, bj = 1/j, φ1(t) = 1, φj+1(t) = 21/2cos(jπt), ξij ∼ Uniform
(
−
√

3,
√

3
)
, for

j ≥ 1, and εi are i.i.d. random variables. Hence, the τth conditional quantile of

Y given X = Xi is
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QY (τ |Xi) = α(τ) +

∫ 1

0
Xi(t)β0(t)dt,

where α(τ) is the τth quantile of εi.

We consider three sample sizes n = 200, 500, and 1000. For each sample size,

we replicate the simulation 500 times. We sample εi from either a t(1) distribution

(γ = 1) or the Pareto distribution with γ = 0.25 or 0.5. For each simulated

data set, we apply the proposed method to estimate QY (τ |x) at τ = 0.99 and

0.995, and compare it with CQR and FKE. Here, the semi-metric we use is the

L2 distance between functions, and the bandwidth, kernel functions, and other

tuning parameters are selected as described in the simulation studies of Gardes

and Girard (2012). For our method, we set τ0 = 0.85, τ0 = 0.95, and get the

estimator (β̂1, . . . , β̂mn
)> of (β1, . . . , βmn

)> by minimizing the combined quantile

objective function (2.1) across quantiles τ1, τ2, . . . , τ10 that are equally spaced

between
[
τ0, τ

0
]
. We evaluate the performance of an estimator by its MSE. For

an estimator Q̂Y (τ |x) of QY (τ |x), its MSE is defined as

1

500

500∑
j=1

(
Q̂

(j)
Y (τ |x)−QY (τ |x)

)2
,

where Q̂
(j)
Y (τ |x) is the estimator of QY (τ |x) obtained from the jth data set.

Tables 1–3 report the MSEs of different estimators of QY (τ |x) at x(t) = 0 or

x(t) =
∑50

j=1 1.5bjφj(t).

5. Real Data Analysis

5.1. Diffusion tensor imaging data

We apply the proposed method to a data set from a study on cognitive

disorders using diffusion tensor images. The study was conducted on 100 multi-

ple sclerosis patients at the Johns Hopkins Hospital with multiple clinical visits

(Goldsmith et al. (2011, 2012)). This cerebral data set is available in the R pack-

age “refund.” To quantify the cognitive disorder, each patient received a paced

auditory serial addition test (PASAT) at every visit, which is the most commonly

used examination of cognitive function affected by multiple sclerosis, with scores

ranging from 0 to 60. The scalar response of interest is the PASAT score, and the

functional covariates are the mean diffusivity profile of the corpus callosum tract

(CCA) and the parallel diffusivity profile of the right corticospinal tract (RCST).

There are 93 and 55 locations along the CCA and RCST, respectively. We refer

to Greven et al. (2010) and Kong, Staicu and Maity (2016) for more detailed



EXTREME QUANTILE ESTIMATION FOR FUNCTIONAL REGRESSION 1779

Table 1. MSEs of different estimators ofQY (τ |x), with errors from the Pareto distribution
with γ = 0.25.

x(t) = 0 x(t) =
∑50

j=1 1.5bjφj(t)

n τ = 0.99 τ = 0.995 τ = 0.99 τ = 0.995

200 CQR 14.45 43.55 84.52 139.58

FKE 10.71 36.16 28.33 61.27

EFQR 9.15 31.64 10.59 31.73

500 CQR 4.71 14.21 39.82 71.78

FKE 3.41 13.52 13.37 24.86

EFQR 3.04 9.17 3.43 10.35

1000 CQR 2.39 6.30 23.40 55.54

FKE 2.03 5.24 6.79 13.93

EFQR 1.58 4.99 1.68 5.32

Table 2. MSEs of different estimators ofQY (τ |x), with errors from the Pareto distribution
with γ = 0.5.

x(t) = 0 x(t) =
∑50

j=1 1.5bjφj(t)

n τ = 0.99 τ = 0.995 τ = 0.99 τ = 0.995

200 CQR 19.58 98.61 161.64 368.80

FKE 15.22 50.43 50.53 120.27

EFQR 10.14 50.24 12.06 47.99

500 CQR 6.16 22.31 62.03 150.49

FKE 6.11 20.29 15.79 43.98

EFQR 3.42 14.03 6.71 33.79

1000 CQR 2.95 10.29 34.90 96.67

FKE 2.26 8.18 9.84 25.11

EFQR 1.91 7.55 3.49 13.71

descriptions of this data set. For illustration, Figure 1 shows 100 trajectories for

the two functional predictors CCA and RCST. After deleting observations with

missing data, we use the remaining 229 observations for our statistical analysis.

In our analysis, we take the response variable Y as the centered -log(PASAT

score+1), and let the two functional covariates X1(·) and X2(·) be centered CCA

and RCST, respectively. Then, we consider the following functional linear model

Y =

∫
I1
X1(t)β1(t)dt+

∫
I2
X2(t)β2(t)dt+ ε, (5.1)

where I1 = [0, 93] and I2 = [0, 55]. We first estimate model (5.1) using the clas-

sic functional least squares method, which assumes the error ε follows a normal
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Table 3. MSEs of different estimators of QY (τ |x), with errors from t(1) distribution.

x(t) = 0 x(t) =
∑50

j=1 1.5bjφj(t)

n τ = 0.99 τ = 0.995 τ = 0.99 τ = 0.995

200 CQR 3,703.41 49,629.05 5,693.75 45,504.57

FKE 433.95 5,787.58 878.25 4,939.58

EFQR 569.96 4,670.20 482.37 4,325.60

500 CQR 412.92 2,099.68 1,563.31 4,148.55

FKE 193.37 1,339.83 332.02 1,631.768

EFQR 175.55 1,321.12 183.28 1,584.86

1000 CQR 173.33 1,990.58 669.89 2,824.52

FKE 112.82 741.48 152.94 896.48

EFQR 94.15 686.07 70.97 719.05
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Figure 1. 100 trajectories for the two functional predictors CCA and RCST.

distribution. Figure 2 displays a histogram and a QQ plot of the resulting stan-

dardized residuals, which are heavily right-skewed. The QQ plot also indicates

that the assumption of a normal distribution for this data set is seriously vio-

lated. Furthermore, we perform a Shapiro–Wilk test of normality for the resulting

standardized residuals and find that the p-value is less than 2.2× 10−16.

These observations motivate us to apply our functional quantile approach as

a robust alternative. The τth conditional quantile of Y given X1 and X2 is

QY (τ |X1, X2) = α(τ) +

∫
I1
X1(t)β1(t)dt+

∫
I2
X2(t)β2(t)dt,

where α(τ) is the τth quantile of ε.

By setting the quantile τ = 0.5 and using the BIC proposed in Subsection
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− −

−

−

−

Figure 2. Histogram (left) and normal QQ plot (right) of the standardized residuals from
the diffusion tensor image data using model (5.1).

4.1 to select the cut-off levels, we obtain the estimators of β1(·) and β2(·), with

mn1 = mn2 = 6. We set kn =
[
4n1/4

]
in estimation of γ, the same as in the

simulation studies. To assess the predictive performance of our proposed estima-

tor, and to compare it with the conventional functional linear quantile regression

estimator, we randomly select 129 observations as a training data set I1, and the

remaining 100 observations as a testing data set I2. If QY (τ |X1, X2) is the true

τth conditional quantile of the response Y , we have E [1{Y > QY (τ |X1, X2)}] =

P{Y > QY (τ |X1, X2)} = 1 − τ. Therefore, the standardized exceedance propor-

tion (SEP) as an assessment criterion for the predictive performance,

SEP
(
Q̂Y (τ |X1, X2)

)
=

∑
i∈I2 1

{
Yi − Q̂Yi

(τ |Xi1, Xi2) > 0
}
/|I2| − (1− τ)√

τ(1− τ)/|I2|
,

should be small, if the estimation method gives reasonable estimates, where |I2|
is the cardinality of the set I2. We show the average of the absolute value of SEP

across 500 repetitions for our proposed estimation method and the conventional

functional linear quantile regression estimation method at different quantile levels

in Table 4.

The results in Table 4 demonstrate that our proposed estimator is superior

to the conventional functional quantile estimator in terms of the SEP criterion.

Moreover, we can see that CQR tends to underestimate the high quantiles, espe-

cially at the extreme tails. In contrast, the proportions of exceeding EFQR are

closer to (1− τ) at the high quantiles that we considered. This suggests that our
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Table 4. The average of the absolute value of SEP of different estimation methods, where
CQR is the conventional functional linear quantile regression estimator and EFQR is our
proposed estimator.

τ 0.95 0.97 0.99 0.995 0.999

CQR 2.29 3.46 7.67 10.96 25.11

EFQR 0.41 0.14 0.55 0.45 0.16
−

−

Figure 3. 50 randomly selected trajectories for daily maximum temperature.

proposed estimation method is more suitable for estimating extreme quantiles.

5.2. The Kansas precipitation data

Next, we apply the proposed method to a Kansas precipitation data set to

study the relationship between temperature trajectories and extreme precipita-

tion. As climate continues to change around the world, there is growing concern

that increasing temperatures will cause extreme precipitation events, including

flood or drought. Extreme precipitation has a significant impact on agriculture,

wild fire prevention, the economy, public safety, and so on.

Our data are obtained from the National Climatic Data Center (https:

//www.ncdc.noaa.gov/data-access), where we have annual precipitation and

daily maximum temperatures for each of the 104 counties in Kansas from 1990

to 2011. Let the response Y be the centered annual precipitation for a specific

year and county; the functional predictor X(t) is the centered daily maximum

temperature trajectory with the time domain I = [0, 365]. To illustrate the func-

tional predictor, we show in Figure 3 50 randomly selected trajectories for daily

maximum temperature.

https://www.ncdc.noaa.gov/data-access
https://www.ncdc.noaa.gov/data-access
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− − − −
−

−

Figure 4. Histogram (left) and normal QQ plot (right) of the standardized residuals from
the Kansas precipitation data.

Table 5. The average of the absolute value of the SEP of different estimation methods.

τ 0.95 0.97 0.99 0.995 0.999

CQR 0.35 0.29 0.77 1.14 2.94

EFQR 0.33 0.05 0.38 0.26 1.10

We first use this precipitation data set to fit a functional linear model using

a functional least squares regression. Figure 4 displays the histogram and the

QQ plot of the resulting standardized residuals. As one can see, the resulting

standardized residuals are right-skewed and do not follow a normal distribution.

Next, we apply our functional quantile approach to this data set and assume

the τth conditional quantile of Y given X is

QY (τ |X) = α(τ) +

∫
I
X(t)β(t)dt.

Similarly to the presentation in Subsection 5.1, we set kn =
[
4n1/4

]
and use the

BIC proposed in Subsection 4.1 to select the cut-off level and obtain mn = 4.

We conduct a cross-validation study to evaluate the predictive performance of

our proposed estimator and the conventional functional quantile estimator. We

randomly select 1,288 samples as the training data set I1, and the remaining

1,000 samples as the validation data set I2. The cross-validation is repeated 200

times, and the average of the absolute value of the SEP across the 200 repetitions

is reported in Table 5.

Similarly to the findings in Table 4, the results in Table 5 show that our
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proposed method offers a more accurate estimation of high conditional quantiles

than that of the conventional functional linear quantile regression estimation

method.

6. Conclusion

We propose a new estimation method for extreme conditional quantiles of

functional quantile regression with heavy-tailed distributions by first estimating

the intermediate conditional quantiles, and then extrapolating the intermediate

conditional quantile estimate to extreme tails based on some regularity condi-

tions on tail behaviors. The asymptotic properties of the proposed estimators

are established using FPCA and EVT. Our simulation studies suggest that the

proposed estimator of high conditional quantiles is much more efficient than the

conventional functional linear quantile regression estimator and the functional

kernel estimator.

We have supposed that the quantile slope functions are common at the upper

conditional quantiles of the response. It would be interesting to consider the case

where these functions differ across these quantiles. This is left to future research.

Supplementary Material

The online Supplementary Material includes proofs of Theorems 1–4 and

some lemmas required to prove these theorems.
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