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Supplementary Material

We report the data and code information in Section 1. The proofs of Lemma 1 and Theorem 1 are provided in

Section 2 and 3. In addition, we present a consistent theorem for an extended situation where the dimension p → ∞

and p/n → 0. This result is reported in Theorem 2 in Section 4.

S1. Data and code information

Both the data and code used for the paper are available on public websites as specified

below. Readers can download them to reproduce the results in the paper. The real example

data (Section 5 in the main paper) is originally from Gene Expression Omnibus

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782). We have created an R

format data file that can be directly loaded to the R workplace. The R code and partial

data can be accessed on GitHub:

https://github.com/chenstatistics/Treatment-Recommendation
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Due to the limit space of GitHub, we cannot store all data there. Instead, we have the

complete set of R code and all data for the simulation studies and the real example on the

following website:

https://www.stat.purdue.edu/∼chen3490/work/upload rev2/

Instructions for running the R code are also provided on the websites.

S2. Proof of Lemma 1

According to Section 2.1 in the main text, we have a random vector (X, A, Y ), where X ∈

X ⊂ Rp denotes clinical covariates plus a big set of genetic variables, A ∈ A = {1, . . . ,M}

denotes the treatment index, and Y is the treatment response with larger values for better

treatment outcome. A treatment recommendation rule d is a deterministic decision rule

from X into A. The Value of d is defined as V (d) , Ed(Y ), where the expectation is with

respect to P d as the distribution of (X, A, Y ) when d is used to assign the treatment. The

optimal treatment recommendation rule, d0, is defined as

d0 ∈ argmax
d

V (d).

We have shown d0(X) ∈ argmaxaQ0(X, a), where Q0(x, a) , E(Y |X = x, A = a). Let

Q(X, A) be an estimate of the true condition mean Q0(X, A) and the corresponding treat-

ment recommendation rule d(X) ∈ argmaxaQ(X, a). We make the following assumption on

the margin of the treatment effect.
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A. 1. Let T0(X, A) = Q0(X, A) − E [Q0(X, A)|X]. There exists some constant C > 0 and

α > 0 such that

P

(
max
a
T0(X, a)− max

a∈A\argmaxa T0(X,a)
T0(X, a) ≤ ε

)
≤ Cεα

for any ε > 0.

Lemma 1. Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs and assume

A.1. For any treatment rule d : X 7→ A and square integrable function Q : X ×A 7→ R such

that d(X) ∈ argmaxa∈AQ(X, a), we have

V (d0)− V (d) ≤ C
′ [
E(Q(X, A)−Q0(X, A))2

](1+α)/(2+α)

where C
′
= (22+3αS1+αC)1/(2+α).

Proof. Let T (X, A) = Q(X, A)−E[Q(X, A)|X] and T0[X, A] = Q0(X, A)−E[Q0(X, A)|X].

Then

E
[
(T (X, A)− T0(X, A))2

]
= E

[
(Q(X, A)−Q0(X, A)− E[Q(X, A)−Q0(X, A)|X])2

]
= E[(Q(X, A)−Q0(X, A))2]

− 2E[(Q(X, A)−Q0(X, A))E[Q(X, A)−Q0(X, A)|X]]

+ E[(E[Q(X, A)−Q0(X, A)|X])2]

= E[(Q(X, A)−Q0(X, A))2]− E[(E[Q(X, A)−Q0(X, A)|X])2]

≤ E[(Q(X, A)−Q0(X, A))2]

Then Lemma 1 follows from Theorem 3.1 in [Qian and Murphy 2011].
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S3. Proof of Theorem 1

Besides the margin condition (A.1), we require additional assumptions from SIR and for the

nonparametric LOESS estimator. We first rewrite (A.2) by denoting the treatment index

as i ∈ A = {1, . . . ,M} and the projection directions β’s as Bi ∈ Rk×p, k < p.

A. 2. There exist some full-rank matrices Bi ∈ Rk×p, k < p, such that E[Y |X, A = i] =

E[Y |BiX, A = i] = ηi(BiX), where ηi(·)’s are ρ-Lipschitz continuous and have continuous

second derivatives. Furthermore, for any row vector ξ ∈ Rp, E [ξX|BiX] is a linear function

of BiX. Besides, the dimension of the central inverse curve E [X|y, A = i] equals to the

dimension of the space spanned by the columns of Bi, col(Bi), and the variance vi(u) =

V ar[Y |BiX = u,A = i] is a continuous function.

A. 3. Denote the kernel function of LOESS by KH(u) = |H|−1/2K(H−1/2u), where u ∈ Rk

and the bandwidth matrix H ∈ Rk×k. Assume the kernel function K(·) is ρ-Lipschitz,

compactly supported, and satisfies
∫
uu>K(u)du = µ2(K)I, where I is the identity matrix

and µ2(K) is a constant depending on K. Moreover, all odd-order moments of K equal

to zero, that is,
∫
ul11 · · ·u

ld
d K(u)du = 0 for all non-negative l1 · · · ld when their sum is odd.

Additionally, the bandwidth matrix H is symmetric and positive definite with each entry,

as well as n−1|H|, tending to 0 as n → ∞, and the ratio of the largest and the smallest

eigenvalue of H is uniformly bounded for all n.

A. 4. For all i ∈ A, let fi(·) be the conditional density function of BiX given A = i. Assume



S3. PROOF OF THEOREM 1

that fi(·) is uniformly bounded away from 0 and has a continuous gradient function Dfi(·).

A. 5. Denote ni = |{j : Aj = i}| as the number of observations in the treatment group

A = i. Assume mini∈A P (A = i) > c for some positive constant c and the support set of X

is bounded.

As represented in Formula (2) in Section 2.3 in the main text, we write the treatment

recommendation rule as d(x) ∈ argmax
i∈A

Q(x, i), where Q(x, i) = g̃i(B̂ix) with B̂i as the

estimated projection directions from SIR and g̃i(·) the LOESS function from the training

data {B̂ixj, yj}{j:Aj=i}.

Theorem 1. Assume (A.1)-(A.5). Then the difference between the optimal Value, V (d0),

and V (d) of our treatment recommendation rule converges to 0 in probability:

V (d0)− V (d) ≤
(
|H|−1‖H−1/2‖2

FOp(
1

n
) +Op

(
|H|−1/2

n
+ ‖H‖2

1

)) 1+α
2+α

, (S3.1)

where ‖H‖1 denotes the maximum column absolute sum and ‖ · ‖2
F denotes the Frobenius

norm. When the bandwidth matrix H = diag{h, · · · , h} with h = n−
1
k+3 , the upper bound

on the right hand side becomes Op(n−
2(1+α)

(k+3)(2+α) ).

Proof. Using the notation of Lemma 1, we have Q0(x, i) = ηi(Bix), and the LOESS regres-

sion yields Q(x, i) = g̃i(B̂ix), where B̂i’s are obtained by the SIR algorithm.

We can rewrite Q(x, A) =
∑
i∈A

g̃i(B̂ix)1A=i and rewrite Q0 in similar form as Q0(x, A) =∑
i∈A

ηi(Bix)1A=i, where the function g̃i is the LOESS estimate of the true fucntion ηi(·)

training from {B̂iXj, Yj}{j:Aj=i}. Furthermore, let gi(·) be the LOESS function with the
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training data {BiXj, Yj}{j:Aj=i}. Then

E(Q(x)−Q0(x))2 = E

[∑
i∈A

(g̃i(B̂ix)− ηi(Bix))21A=i

]

≤
∑
i∈A

E[g̃i(B̂ix)− ηi(Bix)]2

=
∑
i∈A

E[g̃i(B̂ix)− gi(B̂ix) + gi(B̂ix)− ηi(B̂ix) + ηi(B̂ix)− ηi(Bix)]2

≤3
∑
i∈A

(
E|gi(B̂ix)− g̃i(B̂ix)|2 + E|gi(B̂ix)− ηi(B̂ix)|2 + E|ηi(B̂ix)− ηi(Bix)|2

)
(S3.2)

where the expectation is w.r.t. random variable x only. Note that due to the estimation

error of SIR, there is a discrepancy between the true low dimensional projection BiX and

the SIR estimated projection B̂iX. To explicitly represent the dependency between the

LOESS nonparametric regression function estimator and the training data for LOESS, we

rewrite:

g̃i(B̂ix) = g({B̂iXj, Yj}{j:Aj=i}, B̂ix)

gi(B̂ix) = g({BiXj, Yj}{j:Aj=i}, B̂ix).

(S3.3)

For notation simplicity, when not causing confusion, we denote the index set {j : Aj = i}

as {1, . . . , ni}.

It is sufficient to study E|gi(B̂ix) − g̃i(B̂ix)|2 + E|gi(B̂ix) − ηi(B̂ix)|2 + E|ηi(B̂ix) −

ηi(Bix)|2 for some fixed i. In what follows, when causing no confusion, we will drop the

subscript i, e.g., we write Bi, fi and Dfi as B, f and Df respectively.

We first studyE|g(B̂x)−g̃(B̂x)|2. By [Ruppert and Wand 1994], we have g({BXj, Yj}nij=1, B̂x) =

e>1 (X>
B̂x

WB̂xXB̂x)−1X>
B̂x

WB̂xY, where Wz = diag{KH(BX1 − z), · · · , KH(BXni − z)},
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Y = (Y1, · · · , Yni)>,

Xz =


1 (BX1 − z)>

...
...

1 (BXni − z)>

 (S3.4)

and e1 = (1, 0, . . . , 0) is a d × 1 vector with only the first entry being 1. Similarly, we can

rewrite g̃({B̂Xj, Yj}nij=1, B̂x) = e>1 (X′>
B̂x

W′
B̂x

X′
B̂x

)−1X′>
B̂x

W′
B̂x

Y, with X′z,W
′
z are defined

accordingly. By the same argument used in [Ruppert and Wand 1994], we have

(n−1
i X>z WzXz)

−1 =

 f(z)−1 + op(1) −Df (z)>f(z)−2 + op(1)

−Df (z)f(z)−2 + op(1) {µ2(K)f(z)H}−1 + op(H
−1)

 . (S3.5)

Using first-order Taylor approximation, we have the following results:

E|g(B̂x)− g̃(Bx)|2

=E[e>1 (X>
B̂x

WB̂xXB̂x)−1X>
B̂x

WB̂xY − (X′>
B̂x

W′
B̂x

X′
B̂x

)−1X′>
B̂x

W′
B̂x

Y)]2

=E[e>1 (∆(X>
B̂x

WB̂xXB̂x)−1X>
B̂x

WB̂xY + (X>
B̂x

WB̂xXB̂x)−1∆X′>
B̂x

W′
B̂x

Y

+ (X>
B̂x

WB̂xXB̂x)−1X>
B̂x

∆WB̂xY)]2

≤ sup
z

3
(
[e>1 ∆(X>z WzXz)

−1X>z WzY]2 + [e>1 (X>z WzXz)
−1∆X>z WzY]2

+[e>1 (X>z WzXz)
−1X>z ∆WzY]2

)
,

(S3.6)

where ∆(X>
B̂x

WB̂xXB̂x)−1 = (X′>
B̂x

W′
B̂x

X′
B̂x

)−1 − (X>
B̂x

WB̂xXB̂x)−1, ∆XB̂x = X′
B̂x
−XB̂x

and ∆WB̂x = W′
B̂x
−WB̂x. These delta values are introduced by the estimation error

between B̂ and B which converges to 0 due to the consistency of SIR. Note that due to

compactness of X , the supremum in the above equation is taken over a compact set as well.
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The first term of the right hand side (RHS) of (S3.6) can be bounded by

sup
z

(e>1 (∆(X>z WzXz)
−1X>z WzY)2 = sup

z

[
e>1 ∆(X>z WzXz/ni)

−1X>z WzY/ni
]2

= sup
z

[
e>1 (X>z WzXz/ni)

−1∆(X>z WzXz/ni)(X
>
z WzXz/ni)

−1X>z WzY/ni
]2

≤ sup
z

∥∥e>1 (X>z WzXz/ni)
−1∆(X>z WzXz/ni)

∥∥2

2

∥∥(X>z WzXz/ni)
−1X>z WzY/ni

∥∥2

2

≤ sup
z
C
∥∥e>1 (X>z WzXz/ni)

−1∆(X>z WzXz/ni)
∥∥2

2
,

(S3.7)

where we use the fact that ∆A−1 = A−1(∆A)A−1, and (X
>
z WzXz

ni
)−1 X>

z WzY
ni

= (ηi(z),∇ηi(z))+

o(1) which is bounded due to the smoothness of ηi and compactness of X .

To simplify the notations, K ′j and Kj is used to denote KH(B̂Xj−z) and KH(BXj−z)

respectively. Then, by (S3.5), (S3.7) can be further bounded by:

sup
z
C
∥∥e>1 (X>z WzXz/ni)

−1(∆Xz
>WzXz/ni + Xz

>∆WzXz/ni + Xz
>Wz∆Xz/ni)

∥∥2

2

≤ sup
z
C

∥∥∥∥∥f(z)−2Df (z)>
∑

jKj(B̂−B)Xj

ni

∥∥∥∥∥
2

2

+ f(z)−4

∥∥∥∥∥Df (z)>
∑

jKj(B̂−B)Xj(BXj − z)>

ni

∥∥∥∥∥
2

2

+

∥∥∥∥f(z)−1

∑
j ∆Kj

ni
− f(z)−2Df (z)>

∑
j ∆Kj(BXj − z)

ni

∥∥∥∥2

2

+

∥∥∥∥∥f(z)−1

∑
j ∆Kj(BXj − z)

ni
− f(z)−2Df (z)>

∑
j ∆Kj(BXj − z)(BXj − z)>

ni

∥∥∥∥∥
2

2

+

∥∥∥∥∥f(z)−1

∑
jKj(B̂−B)Xj

n
− f(z)−2Df (z)

∑
jKj(BXj − z)((B̂−B)Xj)

>

ni

∥∥∥∥∥
2

2


(S3.8)

By the assumption of kernel K, we have Kj ≤ O(|H|−1), which further implies that∥∥∥∑
KjXj

ni

∥∥∥2

2
≤ O

(∥∥∥|H|−1
∑
j Xj

ni

∥∥∥2

2

)
and

∥∥∥∑
KjXj(BXj−B̂x)>

ni

∥∥∥2

2
≤ O

(∥∥∥|H|−1
∑

Xj(BXj−B̂x)>

ni

∥∥∥2

2

)
.
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By Assumption 4, |f(z)|−1 and Df (z) are bounded. Moreover, by the Law of Large number,

and the fact that EX(BX−B̂x)>, EX, E‖X‖(BX−B̂x) are E‖X‖(BX−B̂x)(BX−B̂x)>

bounded (due to Assumption 5, (S3.8) is then bounded, in probability, by

sup
z

(e>1 (∆(X>z WzXz)
−1X>z WzY)2

=Op
(
|H|−1‖H−1/2‖2

2

∥∥∥B̂−B
∥∥∥2

F
+ |H|−1

∥∥∥B̂−B
∥∥∥2

F

)
= Op

(
|H|−1‖H−1/2‖2

2

∥∥∥B̂−B
∥∥∥2

F

)
,

(S3.9)

where we use the fact that ‖H−1/2‖2 →∞.

Next, we bound the second term of the RHS of equation (S3.6) by similar argument.

sup
z

[
e>1 (X>z WzXz/ni)

−1∆Xz
>WzY/ni

]2 ≤ sup
z

[
−f(z)−2Df (z)>

∑
jKjYj(B̂−B)Xj

ni

]2

≤ sup
z
f(z)−4‖Df (z)‖2

2

∥∥∥B̂−B
∥∥∥2

F

∥∥∥∥
∑

jKjYjXj

ni

∥∥∥∥2

2

= Op
(
|H|−1

∥∥∥B̂−B
∥∥∥2

F

)
.

(S3.10)

Then we bound the third term on the RHS of equation (S3.6).

sup
z

[
e>1 (X>z WzXz/ni)

−1Xz
>∆WzY/ni

]2
≤ sup

z
C

[
f(z)−1

∑
j ∆KjYj

ni
− f(z)−2Df (z)>

∑
j ∆KjYj(BXj − z)

ni

]2

≤ sup
z
C ′

([
|H|−1/2‖H−1/2‖2

∥∥∥B̂−B
∥∥∥
F

∑
j ‖Xj‖Yj
ni

]2

+

∥∥∥∥
∑

j ∆KjYj(BXj − z)

ni

∥∥∥∥2

2

)

≤C ′
(
|H|−1‖H−1/2‖2

2

∥∥∥B̂−B
∥∥∥2

F
+ |H|−1‖H−1/2‖2

2‖B̂−B‖2
F sup

z

∥∥∥∥
∑

j ‖Xj‖Yj(BXj − z)

ni

∥∥∥∥2

2

)

=Op
(
|H|−1/2‖H−1/2‖2

2‖B̂−B‖2
F

)
.

(S3.11)

By the convergence theorem of SIR, (see, e.g., [Lin et al. 2021], we have ‖B̂ − B‖2
F =
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Op( 1
ni

). Combined with (S3.9), (S3.10), (S3.11), we derive that

E|g(B̂x)− g̃(B̂x)|2 ≤ |H|−1‖H−1/2‖2
FOp(

1

ni
) = |H|−1‖H−1/2‖2

FOp(
1

n
). (S3.12)

Due to Theorem 1 of [Ruppert and Wand 1994] and the compactness of X , the second

term of the RHS of equation (S3.2) can be bounded by,

E
[
g(B̂x)− η(B̂x)

]2

=Op
(
|H|−1/2/n+ E(tr{HHη(B̂x)}2)

)
+ op(tr{H}2)

≤Op
(
|H|−1/2/n+ ‖H‖2

1

)
.

(S3.13)

where Hη(B̂x) denotes the Hessian matrix of function η at B̂x, and ‖H‖1 denote the

maximum column absolute sum. Note that the last inequality is due to the boundedness of

Hη(·).

In the next step, we bound the third term of equation (S3.2). By assumption 2, we can

bound the term by the difference of estimate dimension reduction matrix with the true one,

which is controlled by the SIR method.

E|ηi(B̂x)− ηi(Bx)|2 ≤ E
[
ρ
∥∥∥B̂−B

∥∥∥
F
‖x‖2

]2

= Op
(∥∥∥B̂−B

∥∥∥2

F

)
, (S3.14)

which is dominated by the term Op
(
|H|−1‖H−1/2‖2

2

∥∥∥B̂−B
∥∥∥2

F

)
.

Combining the above three inequality, finally, the equation (S3.2) can be bounded by:

E(Q−Q0)2

≤|H|−1‖H−1/2‖2
FOp(

1

n
) +Op

(
|H|−1/2/n+ ‖H‖2

1

)
.

(S3.15)

To be more specific, there exists some full rank matrix A, ‖B̂i − ABi‖2F = Op( 1
ni

) due to the nonidentifiability Bi.

W.O.L.G, we ignore this matrix A in the proof.
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If we choose diagonal bandwidth matrix H = diag{h, · · · , h}, then

|H|−1‖H−1/2‖2
FOp(

1

n
) +Op

(
|H|−1/2/n+ ‖H‖2

1

)
=Op(

1

nhk+1
+

1

nhk/2
+ h2) = Op(

1

nhk+1
+ h2),

(S3.16)

where the last equation is because k > 1 then 1
nhk+1 ≥ 1

nhk/2
for h < 1. To minimize the RHS

of (S3.16) w.r.t. h, we choose h � n−1/(3+k) which leads to that E(Q−Q0)2 = O(n−2/(3+k)).

This concludes our theorem by combining Lemma 1.

S4. Extension to high dimension

In the section, we study the asymptotic behavior of the proposed algorithm when lim p =∞

and lim p/n = 0. Note that we will still keep k as an constant. Technically, we can still

explore the convergence as k grows, however we believe this matter is of less interest, since

kernel-based regression estimation usually performs unsatisfactorily under high dimensional

setting in practice.

To establish consistency beyond fixed-p scenario, we need the following additional as-

sumption.

A. 6. X{A=i} is sub-Gaussian, and there exists positive constants C1 and C2 for each sub-

script i such that,

C1 ≤ λmin(ΣX{A=i}) ≤ λmax(ΣX{A=i}) ≤ C2

where ΣX{A=i} is the covariance matrix of X{A=i} and λmin, λmax refer to the minimum and

maximum eigenvalue respectively. The central curve ωi(y) = E[X|y, A = i] has finite fourth
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moment and is v-sliced stable with respective to y and ωi(y). The term v-sliced stable

function is defined in Definition 1 shown as below.

Definition 1. Let C1 and C2 be any two positive constants and BL(C1, C2) be a collection

R partitions with size N which any partition −∞ = a0 < a1 < · · · < aL−1 =∞ in that set

satisfying

C1

L
≤ P (ai ≤ y < ai+1) ≤ C2

L

The central curve ω(y) = E[X|y] is v-sliced stable for some constant v if there exist positive

constants C1, C2 and C3 such that for any ϑ in Rp and any partition in BL(C1, C2),

1

L
|
L−1∑
l=0

var(ϑ>ω(y)|al ≤ y ≤ ah+1)| ≤ C3

Lv
var(ϑ>ω(y))

for sufficiently large L.

Remark 1. Assumption 6 is a technical condition due to [Lin et al. 2018] which ensures the

consistency of SIR under the growing p situation. It is a refined version of the smoothness

and tail conditions proposed by [Hsing and Carrol 1992].

Theorem 2. If we allow the dimension p grows with n satisfying lim p/n = 0 but the

dimension k of the projection space is fixed, and set the number of slices in the SIR procedure

to be a sufficiently large constant, then the difference between Values of d0 and d converges

to 0 in probability:

V (d0)− V (d) ≤
(
|H|−1‖H−1/2‖2

FOp(
p

n
) +Op

(
|H|−1/2

n
+ ‖H‖2

1

)) 1+α
2+α

, (S4.17)



S4. EXTENSION TO HIGH DIMENSION

where ‖H‖1 denote the maximum column absolute sum. To simplify, we set the bandwidth

matrix H = diag{h, · · · , h} with h = ( p
n
)

1
k+3 . Then the convergence rate on the right hand

side becomes Op(( pn)
2(1+α)

(k+3)(2+α) ).

Proof. By the same arguments used in the proof of Theorem 1, we can conclude that

E[g̃i(B̂ix)− ηi(Bix)]2 ≤ Op(|H|−1‖H−1/2‖2
F )‖B̂i −Bi‖2 +Op

(
|H|−1/2/n+ ‖H‖2

1)
)
.

By Theorem 1, Remark 3, Lemma 13 of [Lin et al. 2018], Lemma 22 of [Lin et al. 2021],

we have that when the number of slice in SIR procedure is a sufficiently large constant, we

have that ‖B̂i −Bi‖2 = O(p/n).

If we choose diagonal bandwidth matrix H = diag{h, · · · , h}, then

|H|−1‖H−1/2‖2
FOp(

p

n
) +Op

(
|H|−1/2/n+ ‖H‖2

1)
)

=Op
(
h−k−1 p

n
+ h−k/2

1

n
+ h2

)
= Op

(
h−k−1 p

n
+ h2

) (S4.18)

To minimize the RHS of above inequality w.r.t. h, we choose h � ( p
n
)1/(k+3) which leads to

that E(Q−Q0)2 = O(( p
n
)2/(k+3)). This concludes our theorem by combining Lemma 1.
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