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In this Supplement Material, we provide proofs for Theorem 1-3 and zero-independence

equivalence of equation (4.1) in the main context.

S.1. Proof of Theorem 1

For notation clarity, we re-define si(X(h,j))
def
= s(Ti;X(h,j)), εi(X(h,j))

def
=

ε(Ti;X(h,j)) and νi(Yj)
def
= 1(Yj ≥ Ti) − E{1(Yj ≥ Ti) | Ti}. Let ET be

the expectation taking over the subscript T given all other random vari-

ables.

We define Λ
def
= E

[
var{1(Y ≥ T ) | X,T}

]
, W

def
= E

[
var{1(Y ≥ T ) | T}

]
,

Λ̂
def
= {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

{1(Y(h,j) ≥ Ti)− 1(Y(h,l) ≥ Ti)}2 and

Ŵ
def
= {n2(n− 1)}−1

n∑
i=1

n∑
j<l

{1(Yj ≥ Ti)− 1(Yl ≥ Ti)}2, where
c∑
j<l

def
=

∑
1≤j<l≤c

.



It follows that S(X, Y ) = (W − Λ)/W and Ŝ(X, Y ) = (Ŵ − Λ̂)/Ŵ . Thus,

n1/2{Ŝ(X, Y )− S(X, Y )} = n1/2{(Ŵ −W )Λ−W (Λ̂− Λ)}/(ŴW ).

Here, Ŵ is a two-sample U−statistic. By Theorem 12.6 of van der Vaart

(1998), Ŵ = W + Op(n
−1/2). Thus, Ŵ converges to W in probability.

By Slutsky’s Lemma, it suffices to prove the asymptotic normality for

n1/2{(Ŵ −W )Λ−W (Λ̂− Λ)}.

Following Theorem 1 of Zhu and Ng (1995), we divide Λ̂ into three

parts. Define

I1
def
= {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

{si(X(h,j))− si(X(h,l))}2,

I2
def
= {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

{si(X(h,j))− si(X(h,l))}{εi(X(h,j))− εi(X(h,l))} and

I3
def
= {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

{εi(X(h,j))− εi(X(h,l))}2.

We have Λ̂ equals to

{n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

[{
si(X(h,j)) + εi(X(h,j))

}
−
{
si(X(h,l)) + εi(X(h,l))

}]2
= {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

[{
si(X(h,j))− si(X(h,l))

}2

+ 2
{
si(X(h,j))− si(X(h,l))

}{
εi(X(h,j))− εi(X(h,l))

}
+
{
εi(X(h,j))− εi(X(h,l))

}2

]
= I1 + 2I2 + I3,



It follows immediately that n1/2{Λ(Ŵ −W ) −W (Λ̂ − Λ)} = n1/2{Λ(Ŵ −

W )−W (I3 − Λ)} − n1/2WI1 − 2n1/2WI2. We shall prove the first term is

asymptotically normal and the other two quantities converge in probability

to 0.

In what follows, we will prove the asymptotic normality for n1/2{Λ(Ŵ−

W )−W (I3 − Λ)} in three steps. We first decompose it as

n1/2{Λ(Ŵ −W )−W (I3 − Λ)}

= n1/2{Λ(Ŵ1 − Ŵ2 −W )−W (I4 − I5 − Λ)}. (S.1.1)

In the above display,

Ŵ1
def
= {n2(n− 1)}−1

n∑
i=1

n∑
j<l

{ν2
i (Yj) + ν2

i (Yl)},

Ŵ2
def
= {n2(n− 1)}−1

n∑
i=1

n∑
j 6=l

νi(Yj)νi(Yl),

I4
def
= {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

{ε2
i (X(h,j)) + ε2

i (X(h,l))} and

I5
def
= {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j 6=l

εi(X(h,j))εi(X(h,l)).

The equation (S.1.1) can be further divided into three parts as follows,

n1/2{Λ(Ŵ1 −W )−W (I4 − Λ)}+ n1/2WI5 − n1/2ΛŴ2.

Step 1. We derive the asymptotic normality for n1/2{Λ(Ŵ1−W )−W (I4−



Λ)}.

ΛŴ1 −WI4 = n−2

n∑
i=1

n∑
j=1

{Λν2
i (Yj)−Wε2

i (Xj)}.

which is a two-sample U−statistic. Denote

ζ1
def
= var

[
E{ΛW−1ν2

i (Yj)− ε2
i (Xj) | (Xj, Yj)}

]
+var

[
E{ΛW−1ν2

i (Yj)− ε2
i (Xj) | Ti}

]
. (S.1.2)

Apparently, E{ΛW−1ν2
i (Yj)− ε2

i (Xj)}2 <∞. By Theorem 12.6 of van der

Vaart (1998), n1/2{Λ(Ŵ1−W )−W (I4−Λ)} d−→ N (0,W 2ζ1), as n→∞. If

X and Y are independent, Λν2
i (Yj)−Wε2

i (Xj) = 0 and hence n1/2{Λ(Ŵ1−

W )−W (I4 − Λ)} = 0.

Step 2. We prove the asymptotic normality for n1/2WI5. I5 equals to

{n2(c− 1)}−1

H∑
h=1

c∑
j 6=l

n∑
i=1

[εi(X(h,j))εi(X(h,l))− ETi{εi(X(h,j))εi(X(h,l))}]

+{n(c− 1)}−1

H∑
h=1

c∑
j 6=l

ETi{εi(X(h,j))εi(X(h,l))}

= {n(c− 1)}−1

H∑
h=1

c∑
j 6=l

ETi{εi(X(h,j))εi(X(h,l))}+Op(n
−1), (S.1.3)

where the last equality is established by Chebyshev’s inequality and the



fact that

E

[
{n2(c− 1)}−1

H∑
h=1

c∑
j 6=l

n∑
i=1

εi(X(h,j))εi(X(h,l))− ETi{εi(X(h,j))εi(X(h,l))})

]2

= {n4(c− 1)2}−1

n∑
i=1

H∑
h=1

c∑
j 6=l

E
(
2[εi(X(h,j))εi(X(h,l))− ETi{εi(X(h,j))εi(X(h,l))}]2

)
= O(n−2).

The first equation of above display is because of the conditional un-correlation,

and the second is by the boundedness of εi(X(d,p)).

Parallel to the arguments used in Hsing and Carroll (1992, Theorem

2.3) and Zhu and Ng (1995, Theorem 1), we can prove that, using Central

Limit Theorem, n1/2I5 converges to normal distribution, given the fact that∑c
j 6=lETi{εi(X(h,j))εi(X(h,l))} for h = 1, . . . , H are conditional independent

crossing slice. The mean of the normal distribution is 0 and the asymptotic



variance can be calculated as follows.

nE

[
{n(c− 1)}−1

H∑
h=1

c∑
j 6=l

ETi{εi(X(h,j))εi(X(h,l))}

]2

= {n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

H∑
d=1

c∑
p6=q

E
[
ETi{εi(X(h,j))εi(X(h,l))}ETi{εi(X(d,p))εi(X(d,q))}

]
= {n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

E
[
2ETi{εi(X(h,j))εi(X(h,l))}2

]
= 2{n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

E
[
E{εi(X(h,j))εi(X(h,l))εk(X(h,j))εk(X(h,l)) | Ti, Tk}

]
= 2{n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

E{V (Ti, Tk;X(h,j))V (Ti, Tk;X(h,l))}, (S.1.4)

where the second equation is because the expectation does not equal to zero

only when (h, j) = (d, p), (h, l) = (d, q) or (h, j) = (d, q), (h, l) = (d, p).

We decompose E{V (Ti, Tk;X(h,j))V (Ti, Tk;X(h,l))} = E{V (Ti, Tk;X(h,j))
2}−

E
[
V (Ti, Tk;X(h,j)){V (Ti, Tk;X(h,l)) − V (Ti, Tk;X(h,j))}

]
, Thus, by Lemma

4, the above equality equals to

2{n(c− 1)}−1

H∑
h=1

c∑
j=1

E{V (Ti, Tk;X(h,j))
2}

−2{n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

E[V (Ti, Tk;X(h,j)){V (Ti, Tk;X(h,l))− V (Ti, Tk;X(h,j))}]

= 2(c− 1)−1E{V (T1, T2;X)2}+ o(1).

Therefore, n1/2WI5
d−→ N (0, 2(c− 1)−1W 2E{V (T1, T2;X)2}).

If X and Y are independent, the asympototic variance can be further



simplified.

nE

[
{n(c− 1)}−1

H∑
h=1

c∑
j 6=l

ETi{εi(X(h,j))εi(X(h,l))}

]2

= 2{n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

E
([
ETi{νi(Y(h,j))νi(Y(h,l))}

]2)
= 2(c− 1)−1E

([
ETi{νi(Y1)νi(Y2)}

]2)
. (S.1.5)

In particular, if Y is continuous, the above equation can be further simplified

to 2(c− 1)−1E
[
F{min(Y1, Y2)} − F (Y1)− F (Y2) + F (Y2)2/2 + F (Y2)2/2 +

1/3
]2

= {45(c− 1)}−1, where F (·) is the distribution function of Y . Thus,

n1/2WI5
d−→ N

(
0, 2(c− 1)−1W 2E

[
ETi{νi(Y1)νi(Y2)}

]2
)
.

When Y is continuous, the asymptotic variance reduces to W 2/{45(c−1)}.

Step 3. We combine n1/2{Λ(Ŵ1 − W ) − W (I4 − Λ)}, n1/2WI5 and

n1/2ΛŴ2 to derive the asymptotic normality for n1/2{Λ(Ŵ −W )−W (I3−

Λ)}. In the previous steps, we show that n1/2{Λ(Ŵ1 −W ) −W (I4 − Λ)}

and n1/2WI5 are asymptotically normal. Thus, their covariance can be

decomposed that n · cov(ΛŴ1 −WI4, I5) = nΛ · cov(Ŵ1 −W, I5) − nW ·

cov(I4 − Λ, I5). We have

nW · cov(I4 − Λ, I5)

= W{n2(c− 1)}−1

n∑
p=1

n∑
q=1

H∑
h=1

c∑
j 6=l

E[εi(X(h,j))εi(X(h,l)){εp(Xq)
2 − Λ}] = 0,



where the last equation is due to the conditional uncorrelation. We also

have

nΛ · cov(Ŵ1 −W, I5)

= Λ{n2(c− 1)}−1

n∑
p=1

n∑
q=1

H∑
h=1

c∑
j 6=l

E
[
{ν2

p(Yq)−W}εi(X(h,j))εi(X(h,l))
]

= 0.

Thus, n · cov(ΛŴ1 −WI4, I5) = 0. Note that

E

[
{n2(n− 1)}−1

n∑
i=1

n∑
j 6=l

νi(Yj)νi(Yl)

]2

= {n4(n− 1)2}−1

n∑
i=1

n∑
r=1

n∑
j 6=l

2E{νi(Yj)νi(Yl)νr(Yj)νr(Yl)} = Op(n
−2).

This, together with Chebyshev’s inequality, gives that Ŵ2 = Op(n
−1).

Therefore, using Delta’s method, we have

n1/2{Λ(Ŵ−W )−W (I3−Λ)} d−→ N

(
0,W 2

[
ζ1+2(c−1)−1E{V (X,T1, T2)2}

])
.

If X and Y are independent and Y is continuous, the asymptotic variance

reduces to {45(c− 1)}−1W 2.

Noting that si(X(h,j))− si(X(h,l)) = 0 for any h, j and l under the case

that X and Y are independent, we have n1/2Ŝ(X, Y ) = n1/2{Λ(Ŵ −W )−

W (I3−Λ)}/(ŴW ). Given the fact that W = 1/6 under independence, the

proof for Theorem 1 (i) is accomplished directly using Slutsky’s Lemma.

When X and Y are dependent, under condition (C1), combining Lem-

mas 3 and 2, we have I1 = op(n
−1/2) and I2 = op(n

−1/2). Thus, n1/2{Ŝ(X, Y )−



S(X, Y )} = n1/2{Λ(Ŵ−W )−W (I3−Λ)}/(ŴW )+op(1), which converges to

normal distribution with mean 0 and variance [ζ1+2(c−1)−1E{V (X,T1, T2)2}]/W 2.

S.2. Proof of Theorem 2

This proof follows almost the same path as that used to prove Theorem 1.

We firstly prove Theorem 2 (i), the case that X and Y are independent. By

the same arguments of Theorem 1, we have I1 = 0, I2 = 0, ΛŴ1−WI4 = 0

and Ŵ2 = Op(n
−1). As for I5, given c = o(n), from (S.1.3), we can derive

that

(nc)1/2I5 = H−1/2

H∑
h=1

[
(c− 1)−1

c∑
j 6=l

ETi{εi(X(h,j))εi(X(h,l))}

]
+ op(1).

As H goes to infinity, applying the central limit theorem for triangular

arrays derived in Hsing and Carroll (1992, Theorem A.4) to I5, (nc)1/2I5

converges to normal distribution with mean 0 an variance derived from

(S.1.5) as

lim
c→∞

E{(nc)1/2I5}2 = lim
c→∞

c{45(c− 1)}−1 = 45−1.

The Lyapunov condition can be verified via direct calculation for the bound-

ness of item. Using Slutsky’s Lemma, we complete the proof for Theorem

2 (i).



When X and Y are dependent, following the proof of Lemma 3 and 2 ,

under condition (C1∗), it can be similarly prove that n1/2I1 and n1/2I2 both

equal to op(cn
−1/2+max{r,1/(2+b)}). Under Condition (C2∗), n1/2I1 and n1/2I2

are both op(1).

We can also prove that n1/2I5 = op(1), given the following fact. As c

goes to infinity, from equation (S.1.4), we can derive that the asymptotic

variance nE(I2
5 ) can be calculated as follows,

2{n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

E{εi(X(h,j))εi(X(h,l))εk(X(h,j))εk(X(h,l))}+O(n−1/2)

≤ 2{n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

1 +O(n−1/2)

≤ 2/(c− 1) +O(n−1/2)→ 0.

Other terms are the same as in Theorem 1, we have

n1/2{Λ(Ŵ −W )−W (Λ̂− Λ)} = n1/2{Λ(Ŵ1 −W )−W (I4 − Λ)}+ op(1),

which converges to normal distribution with mean 0 and variance W 2ζ1,

which has been proved in Step 1 of Theorem 1. Using Slutsky’s Lemma,

we complete the proof of Theorem 2 (ii).

S.3. Proof of zero-independence equivalence of (4.1)

The proof of zero-independence equivalence in the multivariate case is in

spirit exactly the same as that in the univariate one expect for X replaced



with x. The proof in the univariate case was given in Lemma A.1, page 1

of the Supplement to Chatterjee (2020). We omitted the details here.

S.4. Proof of Theorem 3

Denote

Λ̃
def
= n−2

n∑
i=1

H∑
h=1

nh∑
j<l

{1(Y(h,j) ≥ Ti)− 1(Y(h,l) ≥ Ti)}2/(nh − 1).

With this notation, Ŝ(x, Y )−S(x, Y ) = {(Ŵ −W )Λ−W (Λ̃−Λ)}/(ŴW ).

Following similar arguments in the proof of Theorem 1, we divide Λ̃ into

several parts that, in symbols, Λ̃ = Ĩ1 + 2Ĩ2 + Ĩ3, where

Ĩ1
def
= n−2

n∑
i=1

H∑
h=1

nh∑
j<l

(nh − 1)−1{si(x(h,j))− si(x(h,l))}2,

Ĩ2
def
= n−2

n∑
i=1

H∑
h=1

nh∑
j<l

(nh − 1)−1{si(x(h,j))− si(x(h,l))}{εi(x(h,j))− εi(x(h,l))} and

Ĩ3
def
= n−2

n∑
i=1

H∑
h=1

nh∑
j<l

(nh − 1)−1{εi(x(h,j))− εi(x(h,l))}2.

To deal with Ĩ3, we decompose it as two parts that Ĩ3 = Ĩ4 − Ĩ5, where

Ĩ4
def
= n−2

n∑
i=1

H∑
h=1

nh∑
j<l

{ε2
i (x(h,j)) + ε2

i (x(h,l))}/(nh − 1) and

Ĩ5
def
= n−2

n∑
i=1

H∑
h=1

nh∑
j 6=l

εi(x(h,j))εi(x(h,l))/(nh − 1).



Firstly, we consider the case when x and Y are independent. Under this

case, we have Ĩ1 = Ĩ2 = 0,

Ĩ4
def
= n−2

n∑
i=1

H∑
h=1

nh∑
j=1

ν2
i (Y(h,j)) and

Ĩ5
def
= 2n−2

n∑
i=1

H∑
h=1

nh∑
j<l

νi(Y(h,j))νi(Y(h,l))/(nh − 1).

Thus, we have (ncn)1/2{(Ŵ −W )Λ−W (Λ̃−Λ)} = (ncn)1/2{(Ŵ1 + Ŵ2)Λ−

W (Ĩ4− Ĩ5)}. Given the fact that the sum of ordered observations is equal to

that of the non-ordered, we have Ĩ4 = Ŵ1. Ŵ2 = Op(n
−1) has been shown

in the proof of Theorem 1. We also have W = Λ under independence.

Thus, (ncn)1/2{(Ŵ −W )Λ−W (Λ̃− Λ)} = (ncn)1/2WĨ5 + op(1). Define

Ĩ5,1
def
= 2n−1

H∑
h=1

nh∑
j<l

ETi{νi(Y(h,j))νi(Y(h,l))}/(nh − 1).

Following (S.1.3), we can further prove that

(ncn)1/2{(Ŵ −W )Λ−W (Λ̃− Λ)} = (ncn)1/2WĨ5,1 + op(1).

If x and Y are independent, Ĩ5,1 and

2n−1

H∑
h=1

nh∑
j<l

ETi{νi(Yh,j)νi(Yh,l)}/(nh − 1)



follow exactly the same distribution. AsH diverges to infinity, (ncn)1/2WĨ5,1

is asymptotically normal with mean 0 and variance of the form

lim
n→∞

E(cnnW
2Ĩ2

5,1)

= lim
n→∞

4cnn
−1W 2

H∑
h=1

nh∑
j<l

E
[
E2
Ti
{νi(Yh,j)νi(Yh,l)}

]/
(nh − 1)2

= 2W 2E
[
E2
Ti
{νi(Y1)νi(Y2)}

]
= W 4σ2.

As a two-sample U -statistic, Ŵ converges in probability to W as n diverges

(van der Vaart, 1998, Theorem 12.6). The Slutsky’s Theorem yields that

(ncn)1/2Ŝ(x, Y ) is asymptotically normal with mean 0 and variance σ2. In

particular, if Y is continuous, σ2 = 4/5. The proof is completed under

independence.

Next we prove the consistency of Ŝ(x, Y ) when x and Y are not inde-

pendent. As we have already shown that Ŵ converges in probability to W ,

we only prove Λ̃−Λ converges in probability to 0 in the following context.

Under Condition (C3)–(C4), we know Ĩ1 = op(1) and Ĩ2 = op(1). Thus,

Λ̃− Λ = Ĩ4 − Ĩ5 − Λ + op(1). We have

Ĩ4 = n−2

n∑
i=1

H∑
h=1

nh∑
j=1

ε2
i (x(h,j)) = n−2

n∑
i=1

n∑
j=1

ε2
i (xj).

The above formula shows that Ĩ4 is a two sample U-statistics. From van der

Vaart (1998, Theorem 12.6), Ĩ4 converges in probability to E{ε2
i (Xj)} = Λ.



Similarly as the deviation in (S.1.3), we can prove that

Ĩ5 = n−1

H∑
h=1

nh∑
j 6=l

ETi
{
εi(x(h,j))εi(x(h,l))

}
/(nh − 1) +Op(n

−1).

To prove Ĩ5 = op(1), we derive that

pr

[
n−1

H∑
h=1

nh∑
j 6=l

∣∣ETi {εi(x(h,j))εi(x(h,l))
}∣∣ /(nh − 1) > η

]

≤ E

(
pr

[
n−1

H∑
h=1

nh∑
j 6=l

∣∣ETi {εi(x(h,j))εi(x(h,l))
}∣∣ /(nh − 1) > η

∣∣∣∣{xi}ni=1

])
.

To control the probability inside the expectation, we use the concentration

inequality for bounded difference function (Wainwright, 2019, Corollary

2.21). Given {xi}ni=1, we denote

g(Y1, . . . , Yn)
def
= n−1

H∑
h=1

nh∑
j 6=l

ETi
{
εi(x(h,j))εi(x(h,l))

}
/(nh − 1).

If Yj is replaced by Y ′j , the change of g(Y1, . . . , Yn) is bounded by n−1.

Therefore, we have

pr

[
n−1

H∑
h=1

nh∑
j 6=l

∣∣ETi {εi(x(h,j))εi(x(h,l))
}∣∣ /(nh − 1) > η

∣∣∣∣{xi}ni=1

]
≤ 2 exp(−nη2).

Thus, we have pr(|Ĩ5| > η) ≤ 2 exp(−nη2), which means that Ĩ5 = op(1).

This completes the proof.

S.5. Technical Lemmas

Lemma 1 (Lemma A.1 of Hsing and Carroll (1992)). Suppose Z1, . . . , Zn

are an i.i.d. sample and r is a positive constant. Let Z(i) be the i-th order



statistic. Then n−1/r(|Z(n)|+|Z(1)|) = op(1) if and only if xrpr(|Z| > x)→ 0

as x→∞.

Lemma 2. Under Condition (C1), I2 = op(n
−1/2).

Proof of Lemma 2: By definition,

I2 = {n2(c− 1)}−1

H∑
h=1

c∑
j<l

n∑
i=1

{si(X(h,j))− si(X(h,l))}{εi(X(h,j))− εi(X(h,l))}.

We have

|I2| ≤ {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

|si(X(h,j))− si(X(h,l))|

≤ {n2(c− 1)}−1

n∑
i=1

c−1∑
m=1

n−m∑
j=1

|si(X(j+m))− si(X(j))|

≤ {n2(c− 1)}−1

n∑
i=1

c−1∑
m=1

m∑
k=1

n−1∑
j=1

|si(X(j+1))− si(X(j))|

≤ 2c/n2

n∑
i=1

n−1∑
j=1

|si(X(j+1))− si(X(j))| (S.5.1)

By the boundedness of εi(X(h,j)), the first inequality follows. The second

is resulted from the additivity across different slices, the third follows from

the triangle inequality, and the fourth uses the fact that the summations

over m and k have c(c− 1)/2 terms.

In what follows, we shall show that

Sn
def
=

n−1∑
j=1

|si(X(j+1))− si(X(j))| = op(n
1/2).



If X has a bounded support, by (C1),

lim
n→∞

n−1/2 sup
Πn(B)

n−1∑
j=1

|si(X(j+1))− si(X(j))| = 0

almost surely, which implies Sn = op(n
1/2).

If the support of X is unbounded, it suffices to show that for δ ∈

(0, 1/2),

n−1/2

[n(1−δ)]∑
j=[nδ]

|si(X(j+1))− si(X(j))|
pr→ 0, (S.5.2)

and, for η > 0,

lim
δ→0

lim sup
n→∞

pr

n−1/2

[nδ]∑
j=1

|si(X(j+1))− si(X(j))| > η

 (S.5.3)

+pr

n−1/2

n−1∑
j=[n(1−δ)]

|si(X(j+1))− si(X(j))| > η

 = 0.

We shall show (S.5.2) and (S.5.3) in the following two steps.

Step 1. We aim to show (S.5.2) holds. Let G be the distribution of X

and G← the left-continuous inverse of G. Define An = 1{X([nδ]) > G←(β)}

and Bn = 1{X([n(1−δ)]) < G←(1 − β)} for 0 < β < δ. For some β > 0,

min{E(An), E(Bn)} → 1. Thus (S.5.2) follows from

n−1/2

[n(1−δ)]∑
j=[nδ]

|si(X(j+1))− si(X(j))|AnBn
pr→ 0,

which, in turns, follows from (C1) with r = 1/2.



Step 2. We aim to show (S.5.3). Set δ > 0 small enough such that

E(Cn)→ 1, where Cn = 1(X([nδ]) < −B0). By the non-expansive condition

in (C1), we have

n−1/2

[nδ]∑
j=1

|si(X(j+1))− si(X(j))|Cn ≤ n−1/2

[nδ]∑
j=1

|M(X(j+1))−M(X(j))|

= n−1/2|M(X(1))−M(X([nδ]))|,

which approaches zero by Lemma 1. The other tail can be dealt with

similarly.

Combining steps 1-2, we have

I2 = 2c/n2

n∑
i=1

op(n
1/2) = op(n

−1/2),

which completes the proof of Lemma 2.

Lemma 3. Under Condition (C1), I1 = op(n
−1/2).

Proof of Lemma 3: By definition,

I1 = {n2(c− 1)}−1

H∑
h=1

c∑
j<l

n∑
i=1

{si(X(h,j))− si(X(h,l))}2

= {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

{si(X(h,j))− si(X(h,l))}2.

We apply a similar operation in (S.5.1) to obtain that

I1 = {n2(c− 1)}−1

n∑
i=1

H∑
h=1

c∑
j<l

{si(X(h,j))− si(X(h,l))}2

≤ 2c/n2

n∑
i=1

n−1∑
j=1

|si(X(j+1))− si(X(j))|.



The above term is the same as the bound term in (S.5.1). Following the

same paradigm in proof of Lemma 2, we complete the proof of Lemma 3.

Lemma 4. Under Condition (C2), we have

{n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

E[V (Ti, Tk;X(h,j)){V (Ti, Tk;X(h,l))− V (Ti, Tk;X(h,j))}] = o(1).

Proof of Lemma 4: We mainly follow similar arguments for proving

Lemma A.2 of Hsing and Carroll (1992). With straightforward algebraic

calculations,∣∣∣∣∣{n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

V (Ti, Tk;X(h,j)){V (Ti, Tk;X(h,l))− V (Ti, Tk;X(h,j))}

∣∣∣∣∣
≤ {n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

|V (Ti, Tk;X(h,j))||V (Ti, Tk;X(h,l))− V (Ti, Tk;X(h,j))|

≤ {n(c− 1)2}−1

H∑
h=1

c∑
j 6=l

|{V (Ti, Tk;X(h,l))− V (Ti, Tk;X(h,j))|

≤ n−1

H∑
h=1

c∑
j=2

|{V (Ti, Tk;X(h,j))− V (Ti, Tk;X(h,j−1))|

≤ n−1

n∑
j=2

|{V (Ti, Tk;X(j))− V (Ti, Tk;X(j−1))|.

It suffices to prove the following two facts.

n−1

[n(1−δ)]∑
j=[nδ]

|{V (Ti, Tk;X(j))− V (Ti, Tk;X(j−1))}|
pr→ 0 (S.5.4)



and for any η > 0,

lim
δ→0

lim sup
n→∞

pr

n−1

[nδ]∑
j=1

|{V (Ti, Tk;X(j))− V (Ti, Tk;X(j−1))| > η

 (S.5.5)

+ lim
δ→0

lim sup
n→∞

pr

n−1

n∑
j=[n(1−δ)]

|{V (Ti, Tk;X(j))− V (Ti, Tk;X(j−1))| > η

 = 0

Under condition (C2), we can prove (S.5.4) following similar procedure to

derive (S.5.2). In addition, (S.5.5) is true because V (Ti, Tk;Xj) is bounded.

Lemma 5. Under Condition (C3)-(C4), Ĩ2 = op(1) and Ĩ1 = op(1).

Proof of Lemma 5: We only prove Ĩ2 = op(1) and omit the proof for

Ĩ1 = op(1), which follows similar pattern. By definition,

Ĩ2 = n−2

n∑
i=1

H∑
h=1

nh∑
j<l

(nh − 1)−1{si(x(h,j))− si(x(h,l))}{εi(x(h,j))− εi(x(h,l))}.

We have

|Ĩ2| ≤ n−2

n∑
i=1

H∑
h=1

nh∑
j<l

(nh − 1)−1|si(x(h,j))− si(x(h,l))|

≤ n−2

n∑
i=1

H∑
h=1

nh∑
j<l

(nh − 1)−1
{
|si(x(h,j))− si(x(h,0))|+ |si(x(h,l))− si(x(h,0))|

}
≤ (C3/n)

H∑
h=1

nh∑
j=1

‖x(h,j) − x(h,0)‖ ≤ C3{n−1

H∑
h=1

nh∑
j=1

‖x(h,j) − x(h,0)‖2}−1/2.

Here, x(h,0) is the sample mean of the data in h-th cluster. By the bound-

edness of εi(X(h,j)), the first inequality follows. The second is resulted from



the triangle inequality. And the third can be established from Condition

(C4). The last uses Cauchy-Schwarz inequality. According to Lemma 6, we

know Ĩ2 converges in probability to 0, as n diverges to infinity. Thus, we

complete the proof of Lemma 5.

Lemma 6. Under Condition (C3), given H = O(nδ), there exists H points

for initial centers in K-means algorithm, that

n−1

H∑
h=1

nh∑
j=1

‖x(h,j) − x(h,0)‖2

converges in probability to 0, as n diverges to infinity.

Proof of Lemma 6: For simplicity, we prove the case that there is no

cluster deleted in each iteration. Under Condition (C3), we have

pr

(
sup

i∈{1,...,n}
‖xi‖ > r

)
≤ C1n exp(−C2r

2).

Denote the ball Zr
def
= {z ∈ Rp : ‖z‖ ≤ r} equipped with Euclidean distance.

Let {zh}Hh=1 be the ε-covering of Zr, that for any z ∈ Zr, infh∈{1,...,H} ‖z−

zh‖ ≤ ε. According to the covering number (Wainwright, 2019, Example

5.8), such covering set exists, if we set H ≥ (1 + 2r/ε)p. And we denote

these H points as the initial points for K-means algorithm.

For K-means clustering with standard algorithm, we know that the loss

function decreases monotonically in each iteration. Therefore, the loss in



the final iteration less or equal to the loss with initial points. That is,

n−1

H∑
h=1

nh∑
j=1

‖x(h,j) − x(h,0)‖2 ≤ n−1

n∑
j=1

inf
h∈{1,...,H}

‖xj − zh‖2.

We consider the right side term and have

pr

(
n−1

n∑
j=1

inf
h∈{1,...,H}

‖xj − zh‖2 > t

)

≤ pr

{
n−1

n∑
j=1

inf
h∈{1,...,H}

‖xj − zh‖21(‖xj‖ ≤ r) > t

}
+ pr

(
sup

i∈{1,...,n}
‖xi‖ > r

)
.

To deal with the first term, we use the concentration inequality for bounded

difference function (Wainwright, 2019, Corollary 2.21). From the definition

of covering set {zh}Hh=1, if xj is replaced by x′j, the change of the following

function is bounded by ε2/n.

g(x1, . . . ,xn)
def
= n−1

n∑
j=1

min
h
‖xj − zh‖21(‖xj‖ ≤ r).

Therefore,

pr
{∣∣g(x1, . . . ,xn)− E [g(x1, . . . ,xn)]

∣∣ > t/2
}
≤ 2 exp{−nt2/(2ε4)}(S.5.6)

From the definition of covering set, we also have g(x1, . . . ,xn) < ε2. Thus,

E [g(x1, . . . ,xn)] = E
[
min
h
‖x− zh‖21(‖x‖ ≤ r)

]
≤ ε2. (S.5.7)

Let ε = n−γ1 , t = n−γ2 with δ1/p > γ1 ≥ 2−1γ2 > 0, 1 + 4γ1 − 2γ2 > 0.
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Combining the result of (S.5.6) and (S.5.7), we have

pr

{
n−1

n∑
j=1

inf
h∈{1,...,H}

‖xj − zh‖21(‖xj‖ ≤ r) > n−γ2

}
≤ n−2γ1 + 2 exp(−n1+4γ1−2γ2/2).

We choose r = nγ3 that γ3 > 0 and p(γ1 + γ3) ≤ δ, we have

pr

(
n−1

n∑
j=1

inf
h∈{1,...,H}

‖xj − zh‖2 > n−γ2

)
≤ n−2γ1 + 2 exp(−n1+4γ1−2γ2/2) + C1n exp(−C2n

2γ3).

As n→∞, we have

n−1

n∑
j=1

inf
h∈{1,...,H}

‖xj − zh‖2 p−→ 0.

Here,
p−→ stands for “converge in probability”.
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