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SLICED INDEPENDENCE TEST
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Abstract: An ideal independence test should possess three properties: it should be

zero-independence equivalent, numerically efficient, and asymptotically normal. We

introduce a slicing procedure for estimating a popular measure of nonlinear depen-

dence, leading to the resultant sliced independence test simultaneously possessing

all three properties. In addition, the power performance of the sliced independence

test improves as the number of observations within each slice increases. The pop-

ular rank test corresponds to a special case of the sliced independence test that

contains two observations within each slice. The sliced independence test is thus

more powerful than the rank test. The size performance of the sliced independence

test is insensitive to the number of slices, in that the slicing estimation is consistent

and asymptotically normal for a wide range of slice numbers. We further adapt the

sliced independence test to account for the presence of multivariate control vari-

ables. The theoretical properties are confirmed using comprehensive simulations

and an application to an astronomical data set.
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1. Introduction

Testing for independence between two random variables is a fundamental

problem in statistics. Weihs, Drton and Leung (2016); Weihs, Drton and Mein-

shausen (2018) stated that an independence test should simultaneously possess

the following three properties:

1. Zero-independence equivalent: At the population level, the dependence met-

ric is equal to zero if and only if the two random variables are independent.

This ensures that the independence test is consistent.

2. Numerically efficient: The complexity of implementing an independence

test is linear or nearly linear in the sample size n, say O{n log(n)}. This is

almost the minimal computational cost that we have to bear.

3. Asymptotically normal: The asymptotic null distribution of an indepen-

dence test is normal. The asymptotic normality is more desirable for prac-
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titioners than is the asymptotically distribution-free property.

Many tests has been proposed in the literature. However, few of them possess

these properties simultaneously. For example, the Pearson correlation (Pear-

son (1895)) and its variations, such as Spearman’s rho (Spearman (1906)) and

Kendall’s tau (Kendall (1938)), are not zero-independence equivalent, although

estimating these metrics is numerically efficient. The Hoeffding’s index (Hoeffd-

ing (1948)) is zero-independence equivalent only if both random variables are

continuous. The independence tests based on the correlation of Blum, Kiefer and

Rosenblatt (1961) and its variations, such as Zhou and Zhu (2018), are asymptot-

ically distribution free. However, implementing these independence tests has the

complexity of a quadratic order of the sample size n, which is typically regarded

as numerically inefficient. In general, the distance correlation (Székely, Rizzo and

Bakirov (2007)), projection correlation (Zhu et al. (2017)), and binning approach

(Heller, Heller and Gorfine (2013)) are not numerically efficient when used to test

the independence between two random vectors. In addition, their asymptotic null

distributions depend on the parent distribution of the two random vectors. A chi-

squared distribution is suggested to approximate the asymptotic null distribution

of the distance correlation test, although it is quite conservative (Székely, Rizzo

and Bakirov (2007, p.2783)). In general, using bootstrap or random permuta-

tions to approximate asymptotic null distributions is regarded as computationally

intensive. Several algorithms have been proposed to speed up the calculation of

the distance correlation. In particular, Huang and Huo (2022), Huo and Székely

(2016), and Chaudhuri and Hu (2019) improved the computational complexity of

calculating the distance correlation to the order of O{n log(n)} when both ran-

dom variables are univariate. Huang and Huo (2022) proposed approximating

the asymptotic null distribution of the distance correlation test using a gamma

distribution, although this lacks a rigorous theoretical justification (Gao et al.

(2021, p.2012)).

Dette, Siburg and Stoimenov (2013), Kong, Xia and Zhong (2019), and

Chatterjee (2021) independently introduced a dependence metric that is zero-

independence equivalent. It has attracted much attention for its simplicity and

implementability (Cao and Bickel (2020); Wiesel (2021)). Dette, Siburg and

Stoimenov (2013) and Kong, Xia and Zhong (2019) suggested estimating this

metric using a kernel smoother. However, implementing kernel smoothing has

complexity of nearly a quadratic order of the sample size, which limits its use-

fulness when the sample size is extremely large. In addition, its asymptotic null

distribution depends upon the kernel function. In contrast, Chatterjee (2021)
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proposed a rank estimation that is computationally efficient and asymptotically

standard normal. This rank estimation satisfies all desirable properties simulta-

neously, and thus is more appealing than kernel smoothing.

Here, we introduce a slicing procedure for estimating the dependence metric

suggested by Dette, Siburg and Stoimenov (2013), Kong, Xia and Zhong (2019),

and Chatterjee (2021). This procedure divides the observations into several slices

according to the realizations of one random variable, evaluates the local variation

of the other within each slice, and aggregates the variations across all slices to

form a slicing estimation. The complexity of implementing the resultant sliced

independence test is nearly linear in the sample size, which is thus numerically

efficient. The asymptotic null distribution is standard normal, and does not de-

pend on the parent distributions of the two random variables. The resultant

sliced independence test further improves the popular rank test of Chatterjee

(2021), from two perspectives. The rank test corresponds to the sliced indepen-

dence test when there are only two observations within each slice. We show that

the power performance of the sliced independence test improves as the number

of observations within each slice increases, even when the total sample size is

fixed, making our proposed test more powerful than the rank test. In addition,

the slicing estimation is consistent and asymptotically normal for a wide range of

the number of slices. Therefore, the size performance of the sliced independence

test is, surprisingly, highly insensitive to the number of slices. The concept of

this slicing estimation procedure can be readily generalized to the multivariate

case using K-means clustering (MacQueen (1967)). These theoretical properties

are demonstrated using comprehensive simulations and an application to an as-

tronomical dataset. An R package for implementing the sliced independence test

will be available on the Comprehensive R Archive Network.

The remainder of this paper is organized as follows. We propose the slicing

procedure and connect it with the rank test in Section 2. We study the asymptotic

properties of the sliced independence test in Section 3, and generalize this slicing

procedure to the multivariate case using K-means clustering in Section 4. We

demonstrate the finite-sample performance of the sliced independence test using

comprehensive simulations and an analysis of an astronomical data set in Section

5, and conclude the paper in Section 6. All technical proofs are relegated to the

online Supplementary Material.
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2. The Slicing Estimation Procedure

2.1. A brief review

Suppose X and Y are two univariate random variables. Define s(t;X)
def
=

pr(Y ≥ t | X). Let T be an independent univariate random variable with proba-

bility mass/density and cumulative distribution functions ω(t) and µ(t), respec-

tively. The support of T is denoted by supp(T )
def
= {t : ω(t) > 0}. We assume

throughout that supp(Y ) ⊆ supp(T ). It follows immediately that X and Y are

independent if and only if var{s(t;X)} = 0, for all t ∈ R. Dette, Siburg and

Stoimenov (2013), Kong, Xia and Zhong (2019) and Chatterjee (2021) indepen-

dently suggested using the following metric to quantify the degree of deviation

from independence:

S(X,Y )
def
=

∫
var{s(t;X)}dµ(t)∫

var{1(Y ≥ t)}dµ(t)
. (2.1)

The denominator in (2.1) ensure that S(X,Y ) ranges from zero to one. The law

of total variance immediately yields that S(X,Y ) is equal to

1−
∫
E
[
var{1(Y ≥ t) | X}

]
dµ(t)∫

var{1(Y ≥ t)}dµ(t)
. (2.2)

Dette, Siburg and Stoimenov (2013), Kong, Xia and Zhong (2019), and Chatterjee

(2021) simply set T to be an independent copy of Y . For now, we allow T to

be an arbitrary random variable, as long as supp(Y ) ⊆ supp(T ). We revisit this

issue in Study 1 of Section 5. We retain the asymmetry between X and Y in

S(X,Y ) deliberately in order to study which random variable impacts the other

(Zheng, Shi and Zhang (2012); Cui, Li and Zhong (2015); Kong, Xia and Zhong

(2019)).

Kong, Xia and Zhong (2019, Lemma 1) and Chatterjee (2021, Thm. 1) show

that this metric possesses several desirable properties at the population level. For

example, S(X,Y ) = 0 if and only if X and Y are independent, and S(X,Y ) = 1 if

and only if Y is a measurable function of X. If (X,Y ) is bivariate Gaussian with

correlation coefficient ρ, then S(X,Y ) is strictly increasing in |ρ|. In addition,

S(X,Y ) remains unchanged if we apply strictly monotone transformations to

both X and Y .
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2.2. The slicing procedure

Next, we discuss how to estimate S(X,Y ) using a random sample {(Xi, Yi),

i = 1, . . . , n}. The literature offers two solutions, namely, kernel smoothing and

rank estimation. Dette, Siburg and Stoimenov (2013) and Kong, Xia and Zhong

(2019) suggest estimating var{1(Y ≥ t) | X} using kernel smoothing, for each

given t. The overall complexity of estimating S(X,Y ) using kernel smoothing is in

O(n2) time, which limits its usefulness when n is extremely large. The asymptotic

null distribution depends upon the kernel function, which is not desirable either.

Chatterjee (2021) proposed a rank estimation for S(X,Y ) that has complexity

in O(n log n) time. In addition, the rank estimation is asymptotically standard

normal. Using the rank estimation is thus more appealing than using kernel

smoothing.

We introduce a slicing procedure to estimate S(X,Y ), which proceeds as

follows. We first order the random sample {(Xi, Yi), i = 1, . . . , n} according to

the values of Xi, which yields {(X(i), Y(i)), i = 1, . . . , n}, where X(1) ≤ · · · ≤ X(n)

are the ordered values of Xis, and Y(i) is the concomitant of X(i). Next, we

divide the ordered sample {(X(i), Y(i)), i = 1, . . . , n} into H slices according to

the values of X(i), such that there are c observations within each slice. We

assume, for simplicity, that n = Hc. We rewrite X(h,j) = X(c(h−1)+j) and Y(h,j) =

Y(c(h−1)+j), for j = 1, . . . , c and h = 1, . . . ,H. The observations in the hth slice

are {(X(h,j), Y(h,j)), j = 1, . . . , c}. Given t, we estimate var{1(Y ≥ t) | X} within

each slice and E
[
var{1(Y ≥ t) | X}

]
with

H−1
H∑
h=1

(c− 1)−1
c∑
j=1

{
1(Y(h,j) ≥ t)− c−1

c∑
j=1

1(Y(h,j) ≥ t)
}2


= {n(c− 1)}−1

H∑
h=1

c∑
j<l

{
1(Y(h,j) ≥ t)− 1(Y(h,l) ≥ t)

}2
.

Suppose {Ti, i = 1, . . . , n} is a random sample drawn from µ(t). Let t run through

the values of Ti, which allows us to estimate∫
E
[
var{1(Y ≥ t) | X}

]
dµ(t) (2.3)

in (2.2) with

{n2(c− 1)}−1
n∑
i=1

H∑
h=1

c∑
j<l

{1(Y(h,j) ≥ Ti)− 1(Y(h,l) ≥ Ti)}2
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= {n2(c− 1)}−1
H∑
h=1

c∑
j<l

|r(h,j) − r(h,l)|, (2.4)

where r(h,j) stands for the number of Ti such that Y(h,j) ≥ Ti, for i = 1, . . . , n.

Thus, we have r(h,j) = #{Ti : Y(h,j) ≥ Ti, i = 1, . . . , n}.
Next, we turn to the denominator in (2.2). For each given t, we esti-

mate var{1(Y ≥ t)} using the standard U -statistic theory van der Vaart (1998,

Chap. 12). Specifically, we estimate the denominator in (2.2) as

{n2(n− 1)}−1
n∑
i=1

n∑
j<k

{1(Yj ≥ Ti)− 1(Yk ≥ Ti)}2 = {n2(n− 1)}−1
n∑
i=1

Ri(n−Ri),

where Ri stands for the number of Yjs such that Yj ≥ Ti. Then, we combine the

above estimate with (2.4) to form a slicing estimation of S(X,Y ), and denote

Ŝ(X,Y ) as

1− (n− 1)(c− 1)−1

∑H
h=1

∑c
j<l |r(h,j) − r(h,l)|∑n

i=1Ri(n−Ri)
. (2.5)

The complexity of calculating Ŝ(X,Y ) in (2.5) is O{n log(n)}.
In the above estimation procedure, we assume implicitly thatX is continuous.

If X is categorical or discrete, taking H distinctive values, say, X = 1, . . . ,H,

then we simply divide the random sample {(Xi, Yi), i = 1, . . . , n} into H slices

according to the distinctive levels of X. Observations for Xi that take the same

value appear in the same slice. The number of observations within each slice is

not necessarily the same. We estimate var{1(Y ≥ t) | X} within each slice, and

aggregate over all H slices to form an estimate of (2.3). We omit the details for

the present context.

The notion of a slicing estimation originated from Mardia, Kent and Bibby

(1979, Chap. 12) and Li (1991). We adapt this concept to estimate S(X,Y ).

If there are only two observations within each slice, namely, c = 2, our slicing

estimation reduces, in spirit, to the popular rank estimation of Chatterjee (2021).

A similar observation is also made by Hsing and Carroll (1992). The slicing

estimation introduces an annoying tuning parameter H, or equivalently, c. Thus,

it is natural to ask what role H or c plays in the estimation or independence

testing. This amounts to studying the theoretical properties of our proposed

slicing estimation.
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3. The Sliced Independence Test

In this section, we study the asymptotic properties of the slicing estimation

by assuming that T is an independent copy of Y . In Study 1 of Section 5, we

demonstrate that µ(t) has little impact on either the estimation or the testing.

We define a family of real-valued functions, x 7→ f(t;x), for t ∈ T , to have a

uniform total variation of order r over T , if for any finite B > 0,

lim
n→∞

n−r sup
t∈T ,Πn(B)

n∑
i=1

|f(t; X̃(i+1))− f(t; X̃(i))| = 0, (3.1)

where Πn(B) is a collection of all possible n-point partitions of [−B,B] such that

−B ≤ X̃(1) ≤ · · · ≤ X̃(n) ≤ B. Condition (3.1) is weaker than the uniform

bounded variation condition, which requires

lim
n→∞

sup
t∈T ,Πn(B)

n∑
i=1

|f(t; X̃(i+1))− f(t; X̃(i))| <∞.

If f(t;x) has bounded first partial derivatives with respect to x on every finite

interval, then condition (3.1) holds for any r > 0. We further define x 7→ f(t;x)

to be nonexpansive in the metric of M(x) on both sides of B0 if there exists a

nondecreasing real-valued function M(x) and a real number B0 > 0 such that,

for any two points, say, X̃1 and X̃2, both in (−∞,−B0] or both in [B0,∞),

|f(t; X̃1)− f(t; X̃2)| ≤ |M(X̃1)−M(X̃2)|. (3.2)

Let ε(t;X)
def
= 1(Y ≥ t) − s(t;X) and V (t1, t2;X)

def
= cov{ε(X, t1), ε(X, t2) | X}.

We assume the following two conditions on s(t;x) and V (t1, t2;x):

(C1) Assume that x 7→ s(t;x) has a uniform total variation of order r = 1/2

and is nonexpansive in the metric of M(x) on both sides of a real number

B0 > 0, such that M2(x)pr(X > x)→ 0 as x→∞.

(C2) Suppose that x 7→ V (t1, t2;x) has a uniform total variation of order r = 1.

These conditions are related to the variation and tail behavior of s(t;x) and

V (t1, t2;x), and are typically regarded as mild and are popular in the literature;

see, for example, Hsing and Carroll (1992), Zhu and Ng (1995), Zhu, Miao and

Peng (2006), Li and Zhu (2007), Lin, Zhao and Liu (2018), and Kong, Xia and

Zhong (2019).

Let Y , T , T1, and T2 be independent copies, and let “
d−→ ” denote converge

in distribution. Define θ1
def
= E{V (T1, T2;X)2}, θ2

def
= E

[
var{1(Y ≥ T ) | T}

]
,
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σ2 def
= 2E

[
cov2{1(Y1 ≥ T ), 1(Y2 ≥ T ) | T}

]
/θ2

2, and τ2 def
= {ζ1 + 2θ1/(c− 1)} /θ2

2,

where ζ1 > 0 is defined in (S.1.2) of the online Supplementary Material.

Theorem 1. Assume the number of observations within each slice, c, is fixed.

(i) If X and Y are independent, then {n(c − 1)}1/2Ŝ(X,Y )
d−→ N (0, σ2) as

n→∞. In particular, if Y is a continuous random variable, then σ2 = 4/5.

(ii) If X and Y are not independent, then under Conditions (C1)–(C2),

n1/2{Ŝ(X,Y )− S(X,Y )} d−→ N (0, τ2) as n→∞.

Theorem 1 has several important implications. In particular, the slicing esti-

mation is root-n consistent and asymptotically normal for an arbitrary constant

c ≥ 2. The larger c is, the smaller is the asymptotic variance. We reject the

null hypothesis H0: X and Y are independent if n1/2Ŝ(X,Y )/σ ≥ z1−α at the

significance level α, where z1−α is the (1− α)th quantile of the standard normal

distribution. Let Φ(·) be the cumulative distribution function of the standard

normal distribution. The asymptotic power is 1−Φ
[
{z1−α σ−n1/2S(X,Y )}/τ

]
,

which is equal to

Φ

(
θ2S(X,Y )

[
n

ζ1 + 2θ1/(c− 1)

]1/2

− θ2z1−α

[
4

5(c− 1)ζ1 + 10θ1

]1/2
)
. (3.3)

This is a strictly monotone increasing function of c. In other words, the larger

c is, the more powerful the proposed test becomes. The rank test of Chatterjee

(2021) corresponds to the sliced independence test with c = 2, indicating that,

in general, the sliced independence test is more powerful than the rank test.

The asymptotic power function in (3.3) inspires us to ask whether we can

enhance the power performance of the sliced independence test if we allow c→∞
as n→∞. To this end, we assume the following conditions:

(C1∗) Assume that x 7→ s(t;x) has a uniform total variation of order r > 0 and is

nonexpansive in the metric of M(x) on both sides of a real number B0 > 0

such that M2+b(x)pr(X > x)→ 0, for b > 0, as x→∞.

(C2∗) Let c = O(nα), where α = 1/2−max{r, 1/(2 + b)}.

These conditions are even weaker than (C1) and (C2). Letting c diverge

to infinity, we relax the smoothness condition on x 7→ s(t;x) slightly and avoid

assuming smoothness conditions on x 7→ V (t1, t2;x). If x 7→ s(t;x) is L-Lipschitz

continuous and X is sub-Gaussian or has a bounded support, then conditions

(C1∗) and (C2∗) hold for any r > 0, b > 0, M(x) = Lx, and c = o(n1/2).

Define τ2
∗

def
= ζ1/θ

2
2, which is smaller than τ2 = {ζ1 + 2θ1/(c− 1)} /θ2

2.
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Theorem 2. Assume the number of observations within each slice, c, diverges.

(i) If X and Y are independent and c = o(n), then (nc)1/2Ŝ(X,Y )
d−→ N (0, σ2)

as n, c→∞. In particular, σ2 = 4/5 if Y is continuous.

(ii) If X and Y are not independent, under Conditions (C1∗)–(C2∗),

n1/2{Ŝ(X,Y )− S(X,Y )} d−→ N (0, τ2
∗ ) as n, c→∞.

The sliced estimation converges at the faster rate of (nc)−1/2 than the rank

estimate (Chatterjee (2021)). The asymptotic variance decreases as c increases.

At the significance level α, the asymptotic power is

Φ

[
θ2S(X,Y )

(
n

ζ1

)1/2

− θ2z1−α

{
4

5cζ1

}1/2]
,

which again increases with c. The power improvement of the sliced independence

test over the rank test (Chatterjee (2021)) is substantial when c diverges to

infinity.

4. An Extension to Multivariate Control Variables

In this section, we generalize the concept of slicing using the K-means clus-

tering procedure (MacQueen (1967)) to account for the presence of multivariate

control variables. We use the random vector x = (X1, . . . , Xp)
T ∈ Rp to replace

the univariate control variable X in S(X,Y ), which leads to

S(x, Y )
def
=

∫
var{s(t;x)}dµ(t)∫

var{1(Y ≥ t)}dµ(t)
,

where s(t;x)
def
= pr(Y ≥ t | x). Similarly, we can verify that S(x, Y ) is equal to

1−
∫
E
[
var{1(Y ≥ t) | x}

]
dµ(t)∫

var{1(Y ≥ t)}dµ(t)
. (4.1)

Both S(X,Y ) and S(x, Y ) share the zero-independence equivalency property at

the population level. However, the slicing procedure used to estimate S(X,Y )

cannot be directly used to estimate S(x, Y ), unless the sorting algorithm is deli-

cately adapted to account for multivariate observations.

Suppose a random sample {(xi, Yi), i = 1, . . . , n} is available. Instead of using

the slicing procedure, in this section, we propose using the K-means clustering

approach (MacQueen (1967)) to partition the random sample into H clusters

according to the realizations of the control variables, {xi, i = 1, . . . , n}. We
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estimate var{1(Y ≥ t) | x} within each cluster, and aggregate the resultant

estimates to form an estimate of S(x, Y ).

We implement theK-means clustering approach according to {xi, i = 1, . . . , n}
only, which proceeds as follows:

1. Randomly choose H points in {xi, i = 1, . . . , n} as the initial centers.

2. For each center, identify the points in {xi, i = 1, . . . , n} that are “closer” to

it than any other center. Update the centers of all clusters.

3. Iterate the above step until convergence.

4. Delete the clusters with a single data point and repeat all of the above steps.

5. Either (a) absorb the data points in the previously deleted clusters into the

cluster with the nearest center and terminate, or (b) terminate without the

data points in the deleted clusters.

The last two steps avoid the presence of clusters with a single data point. We im-

plement this K-means clustering approach to partition the whole random sample

{(xi, Yi), i = 1, . . . , n} into H clusters, according to the realizations of the control

variables, {xi, i = 1, . . . , n}. The K-means clustering approach cannot guarantee

that each cluster contains an equal number of observations. Therefore, we assume

that the hth cluster consists of nh observations, for h = 1, . . . ,H. We re-index

the random sample as {(x(h,j), Y(h,j)), j = 1, . . . , nh, h = 1, . . . ,H}, and estimate∫
E
[
var{1(Y ≥ t) | x}

]
dµ(t)

in (4.1) using a weighted summation, as follows:

n−1
n∑
i=1

H∑
h=1

nh
n

 nh∑
j<l

{1(Y(h,j) ≥ Ti)− 1(Y(h,l) ≥ Ti)}2

nh(nh − 1)

 .
Recall that r(h,j) stands for the number of Ti such that Y(h,j) ≥ Ti, for i = 1, . . . , n.

It is straightforward to verify that the above is equal to

n−2
H∑
h=1

nh∑
j<l

|r(h,j) − r(h,l)|
nh − 1

.

This motivates us to define

Ŝ(x, Y )
def
= 1−

∑H
h=1

∑nh

j<l |r(h,j) − r(h,l)|/(nh − 1)∑n
i=1Ri(n−Ri)/(n− 1)

,
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where Ri is defined in Section 2. We further define

c−1
n

def
=

H∑
h=1

nh
{n(nh − 1)}

,

which is equal to 1/(c−1) if nh = c, for all h = 1, . . . ,H. To study the asymptotic

behavior of Ŝ(x, Y ) when x and Y are not independent, we assume the following

two conditions:

(C3) There exist two positive constants, C1 and C2, such that pr(‖x‖ > t) ≤
C1 exp(−C2t

2), for all t ∈ R.

(C4) There exists a positive constant C3 such that |s(t;x1)− s(t;x2)| ≤ C3‖x1−
x2‖, for all t ∈ R and x1,x2 ∈ Rp.

Condition (C3) requires that x be sub-Gaussian, and condition (C4) concerns the

smoothness of x 7→ s(t;x).

Theorem 3. Assume the number of slices, H, diverges.

(i) If x and Y are independent, (ncn)1/2Ŝ(x, Y )
d−→ N (0, σ2) as n → ∞. In

particular, σ2 = 4/5 if Y is continuous.

(ii) If x and Y are not independent and H = O(nδ), for some 0 < δ ≤ 1, un-

der conditions (C3)–(C4), Ŝ(x, Y ) converges in probability to S(x, Y ) and,

accordingly, (ncn)1/2Ŝ(x, Y )→∞ as n→∞.

5. Numerical Studies

5.1. Simulations

We first demonstrate the finite-sample performance of the slicing estimation

and the sliced independence test by means of simulations.

Study 1. The definition of (2.1) involves a probability measure µ(t). We evaluate

the effect of µ(t) on the asymptotic null distribution. We draw Xi and Yi indepen-

dently from uniform, standard normal, and t(1) distributions. We fix n = 1024

and c = 32. We consider four choices for µ(t): (i) Ti = Yi; (ii) Ti ∼ N (0, 1); (iii)

Ti ∼ t(1); and (iv) Ti is a bootstrap sample of Yi. We replicate each scenario

10,000 times, and draw the kernel density functions of Z
def
= n1/2Ŝ(X,Y )/σ in

Figure 1. All of the kernel densities are relatively close to the reference curve

N (0, 1). This is not surprising, because the indicator functions in the slicing

estimation (2.4) vary only at Yi. The figure also shows that the asymptotic null

distribution does not depend on the parent distribution of (X,Y ).
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Figure 1. The kernel densities with different choices for µ(t)s: (i) Ti = Yi (solid), (ii)

Ti
i.i.d.∼ N(0, 1) (dashed), (iii) Ti

i.i.d.∼ t(1) (dotted), and (iv) Ti is a bootstrap sample
(dotdash). The density function of the standard normal distribution is used as a reference
curve (longdash).

Study 2. Next, we evaluate how the number of observations within each slice,

c, affects the resulting slicing estimation. We generate ε ∼ N(0, 1) and X ∼
uniform(−1, 1) independently, and consider the following six dependent struc-

tures:

(A) Log: Y = C1 log(X2) + λε.

(B) Circular: Y = Z(1 − X2)1/2 + λC2ε, where Z is independent of X and

pr(Z = ±1) = 1/2.

(C) W-shaped: Y = |X + 0.5|1(X < 0) + |X − 0.5|1(X ≥ 0) + λC3ε.

(D) Sinusoid: Y = cos (C4πX) + 3λε.

(E) Doppler: Y = {X2(1−X2)}1/2 sin(1.05π/X2) + λC5ε.

(F) HeaviSine: Y = 4 sin(4πX2)− sign(X2 − 0.3)− sign(0.72−X2) + λC6ε.

These structures have been used in similar contexts; see, for example, Chatterjee

(2021), Heller, Heller and Gorfine (2013), Kong, Xia and Zhong (2019), and

Donoho and Johnstone (1995). In this study, we fix (C1, . . . , C6) = (0.05, 0.9, 0.75,

8, 1.5, 24), λ = 0.7, and n = 512, and vary c ∈ {2, 4, 8, 16}. We replicate each

scenario 10,000 times. Box plots of the resultant slicing estimation with different

c values are shown in Figure 2. Clearly, in terms of the median values of the

slicing estimates, Ŝ(X,Y ) converges to S(X,Y ) across all scenarios. However,

the variances of Ŝ(X,Y ) decrease substantially as c increases, supporting our

theoretical results in Theorems 1 and 2.
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Figure 2. Box plot of Ŝ(X,Y ) with c ∈ {2, 4, 8, 16} in Study 2.

Study 3. We use the dependence structures in Study 2 to compare the power

performance of our proposed sliced independence test with that of the modified

Blum–Kiefer–Rosenblatt correlation test (Zhou and Zhu (2018)), distance corre-

lation test (Székely, Rizzo and Bakirov (2007)), multivariate test of Heller, Heller

and Gorfine (2013), and composite coefficient of determination test of Kong, Xia

and Zhong (2019). Note that the composite coefficient of determination is esti-

mated using kernel smoothing, which is computationally intensive. We use 200

random permutations to approximate the asymptotic null distributions for the

last three tests. We fix n = 512, and vary c ∈ {2, 4, 8, 16} and λ = 0 : 0.1 : 1. We

report the empirical power of each test at the significance level α = 0.05 in Figure

3. Our proposed tests appears to be superior to its competitors in the oscillatory

cases, that is the Sinusoid, HeaviSine, and Doppler structures. Furthermore, as

c increases, the empirical power of our proposed test improves accordingly. This

again confirms the theoretical results in Theorems 1 and 2.

Study 4. Next, we compare the running times of several popular independence

tests in Study 3. We implement the multivariate test of Heller, Heller and Gorfine

(2013) using the R package HHG, and the composite coefficient of determination
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Figure 3. The empirical power of four independence tests: the sliced independence test
with c = 2 (+), c = 4 (4), c = 8 (◦), and c = 16 (�); the distance correlation test
(♦); the modified Blum–Kiefer–Rosenblatt correlation test (

`
); the multivariate test of

Heller, Heller and Gorfine (2013) (�); and the composite coefficient of determination test
of Kong, Xia and Zhong (2019) (∗). The horizontal axis represents λ, and the vertical
axis represents the empirical power.

test with the R code provided by Dr Zhong Wei, one of the authors of Kong, Xia

and Zhong (2019). Implementing these two tests is very time consuming. We

terminate them when their implementations take more than 30 minutes. We also

include three versions of the distance correlation test in the comparison, which

are available in the R packages energy, kpcalg, and dcov, respectively. The first

is the classic version of the distance correlation test, referred to as DC1 in Table

1. We refer to the last two versions as DC2 and DC3, respectively. For the DC2

test, the asymptotic null distribution of the distance correlation test is approxi-

mated by a gamma approximation in the R package kpcalg, where the function

dcov.gamma() is used. In the DC3 test, the distance correlation is estimated using
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Table 1. The average wall-clock time (in seconds) over 100 replications for three ver-
sions of the distance correlation test (DC1, DC2, and DC3), the modified Blum–Kiefer–
Rosenblatt correlation test (MBKR), the multivariate test of Heller, Heller and Gorfine
(2013) (HHG), the composite coefficient of determination test (CCD), and the sliced
independence test (SIT).

n DC1 DC2 DC3 MBKR HHG CCD SIT

128 0.006 0.032 0.0004 0.004 0.089 1.395 0.00014

256 0.034 0.037 0.0014 0.039 0.248 9.995 0.00017

512 0.109 0.559 0.0034 0.184 0.849 45.934 0.00031

1,024 0.812 0.989 0.0174 1.684 3.834 210.100 0.00056

2,048 4.540 3.502 0.0708 13.253 14.580 575.938 0.00114

4,096 15.823 12.305 0.2249 116.463 > 30mins > 30mins 0.00215

8,192 63.869 51.024 1.3841 899.942 > 30mins > 30mins 0.00434

the algorithm proposed by Huo and Székely (2016), which is computationally very

efficient. To further speed up the DC3 test, we also use the gamma approximation

in the R package dcov. In the sliced independence test, we fix the number of slices

as c = 16, and vary the sample size n ∈ {128, 256, 512, 1024, 2048, 4096, 8192}.
We summarize the averages of the wall-clock time in Table 1, based on 100 repli-

cations. The sliced independence test runs the fastest, followed by the DC3 test.

These two tests have the smallest order of complexity, and thus are much more

efficient numerically than all other competitors.

Next, we conduct a simulation study with multivariate control variables.

Instead of using the slicing estimation procedure, we use the K-means clustering

approach to classify the observations into H clusters.

Study 5. Let x = (X1, . . . , X5)T. We generate Xk independently from the

uniform distribution defined on the interval [−1, 1], for k = 1, . . . , 5, and ε from

the standard normal distribution. Denote m(x)
def
= (X1 + . . .+X5)/5. We use the

simulated examples used in Study 2, but with X replaced by m(x) throughout.

We set (C1, . . . , C6) = (0.05, 0.05, 0.75, 2, 0.5, 24) in this study, and vary H ∈
{8, 16, 32, 64} for our proposal. We include the distance correlation test (Székely,

Rizzo and Bakirov (2007) and the multivariate test of Heller, Heller and Gorfine

(2013) in our comparison. The sample size is fixed at n = 512. We vary λ =

0 : 0.1 : 1, and replicate each experiment 1,000 times to compare the power

performance of the tests. The significance level is fixed at α = 0.05, and the

simulated results are summarized in Figure 4. In this simulation study, the

proposed test is clearly still more powerful than other tests, except for the Doppler

case.
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Figure 4. The empirical power of four independence tests: the sliced independence test
with H = 8 (+), H = 16 (×), H = 32 (♦), and H = 64 (

`
), the distance correlation test

(◦), and the multivariate test of Heller, Heller and Gorfine (2013) (4). The horizontal
and vertical axes represent λ and the empirical power, respectively.

5.2. Real-data analysis

We apply the sliced independence test to an astronomical data set. The Pho-

tometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)

data set is available on https://www.kaggle.com/c/PLAsTiCC-2018. This is a

simulated data set and consisting of 15 classes. We consider the r band in classes

65 and 88 only. There are 981 objects in class 65 and 370 objects in class 88.

For each object, the number of observations, n, ranges from 10 to 60. We remove

objects with fewer than 30 observations, leaving 313 objects in class 65 and 119

https://www.kaggle.com/c/PLAsTiCC-2018
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Table 2. The number of times that the null hypothesis, H0: X and Y are independent, is
rejected at the significance level α = 0.05. The distance correlation test, modified Blum–
Kiefer–Rosenblatt correlation test, multivariate test of Heller, Heller and Gorfine (2013),
and sliced independence test are denoted by DC, MBKR, HHG, and SIT, respectively.

DC MBKR HHG SIT SIT

class c = 2 c = 4

65 16 11 17 12 10

88 115 118 119 119 119

20

10

0

10

20

0                  20                 40                  60

(a) class 65

0

100

200

300

400

0                  20                 40                  60

(b) class 88

Figure 5. Scatter plots of the intensity of brightness (on the vertical axis) over time (on
the horizontal axis) for one representative object in each class. The dashed line is fitted
using a k-nearest neighbor regression (k = 7).

objects in class 88. The target is to examine whether the intensity of brightness

(Y ) varies over time (X) for each object in these two classes.

We apply the sliced independence test with c = 2 and c = 4, the distance

correlation test (Székely, Rizzo and Bakirov (2007)), the modified Blum–Kiefer–

Rosenblatt correlation test (Zhou and Zhu (2018)), and the multivariate test

of Heller, Heller and Gorfine (2013) to this data set. In Table 2, we report the

number of times that we reject the null hypothesis, H0: X and Y are independent,

at the significance level α = 0.05. The intensity of brightness does not change over

time for more than 95% of the objects in class 65. In contrast, the independence

tests all strongly indicate that, for almost all objects in class 88, the intensity of

the brightness changes over time.

We present the intensity of the brightness of two representative objects, one

from each class, in Figure 5, which echoes the results in Table 2. In class 65, most

objects exhibit a similar pattern that the brightness intensity remains unchanged

over time. In contrast, for most objects in class 88, the brightness intensity varies

over time.
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6. Conclusion

We have introduced a slicing procedure for estimating a popular measure of

nonlinear dependence. The resultant sliced independence test encompasses the

rank test as a special case, has almost the minimal computational complexity, and

is asymptotically distribution free. We show that as the number of observations

within each class increases, the asymptotic variance of the slicing estimation

decreases and the power of the independence test improves. In addition, the

size performance of the sliced independence test is insensitive to the number of

slices. The slicing estimation is consistent for a wide range of slice numbers. We

also generalize the concept of slicing using K-means clustering to account for

multivariate control variables. Generalizing this concept further is challenging if

both random variables are multivariate, and is left to future research.

Supplementary Material

The proofs of Theorems 1–3 are relegated to the Supplementary Material.
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