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Abstract: In the Supplement, we study three additional issues.

Firstly, we propose a distributed algorithm when the central sub-

spaces at the local nodes are distinctive from each other, which

takes the advantages of the low-rank structure of the kernel ma-

trices. Secondly, we demonstrate the distributed algorithm may

outperform its pooled version in the presence of heterogeneity. A

bootstrap procedure is also introduced to make a fair comparison.

Finally, we provide technical details, such as proofs of theorems

and some useful lemmas, in this Supplement.

S1 When the Local Central Subspaces are Distinctive

Throughout the main context, we assume the central subspaces at all local

nodes are identical. To be specific, in model (1.2), we assume a common
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S1. WHEN THE LOCAL CENTRAL SUBSPACES ARE DISTINCTIVE

basis, B, is shared by all m local nodes. In some situations, this is perhaps

unrealistic. In this Supplement, we allow the central subspaces at the local

nodes to be distinctive from each other. In symbols, we assume that:

Fj(Yi,j | xi,j) = Fj(Yi,j | BT

jxi,j), for i = 1, . . . , n, j = 1, . . . ,m. (S1.1)

Here, Bj is a p × dj matrix. By the very purposes of dimension reduc-

tion, dj is much smaller than p. Recall the definition of Ωj in Section

2 of the main context. It follows from Li (1991) and Zhu et al. (2010)

that span(Ωj) ⊆ span(Bj) under the linearity condition. An important

observation is that Ωj is a low-rank matrix, which has at most dj nonzero

eigenvalues. Taking the advantage of this low-rank structure, we can re-

cover Ωj from its principal eigenvectors and the associate eigenvalues. With

slight abuse of notations, we let Bj ∈ Rp×dj be the dj principal eigenvec-

tors. In addition, lets Λj ∈ Rdj×dj be a diagonal matrix with its diagonal

elements being the nonzero eigenvalues of Ωj. It follows immediately that

Ωj = BjΛjB
T

j . Therefore, it suffices for a distributed algorithm to transfer

the principal eigenvectors and the nonzero eigenvalues to the central node.

Our proposed distributed algorithm proceeds as follows.

Algorithm 3

1. Estimate Ωj at the jth local node, which yields Ω̂j. We can simply

use the dense estimate Ω̂j in Algorithm 1, if all covariance matrices
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are invertible, or the sparse estimate Ω̂j in Algorithm 2 otherwise.

2. Apply a certain criterion to decide the rank of Ω̂j at the jth local

node, which yields d̂j. In our subsequent illustration, we simply use

the maximum eigenvalue ratio criterion of Luo et al. (2009).

3. Apply singular value decomposition to Ω̂j to obtain its top d̂j eigenvec-

tors B̂a3,j ∈ Rp×d̂j and the associated eigenvalues, which are the diago-

nal elements of Λ̂a3,j ∈ Rd̂j×d̂j . We approximate Ω̂j with B̂a3,jΛ̂a3,jB̂
T

a3,j.

4. Recall that Λ̂a3,j is a diagonal matrix. Pass B̂a3,j and the diagonal

elements of Λ̂a3,j to the central node to form

T̂a3
def

= m−1
m∑
j=1

B̂a3,jΛ̂a3,jB̂
T

a3,j (S1.2)

The communication cost in this step is

(p+ 1)
m∑
j=1

dj.

5. Apply singular value decomposition to T̂a3 to obtain the first d0 top

eigenvectors, which yields B̂a3. If d0 is unknown, we can again apply

a certain criterion, say, Luo et al. (2009), to decide the rank of T̂a3.

We demonstrate the finite-sample performance of the above distributed

algorithm through simulations.
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S1. WHEN THE LOCAL CENTRAL SUBSPACES ARE DISTINCTIVE

Example 4: We illustrate the performance of Algorithm 3 in this simu-

lated example. We fix p = 200, and draw x = (X1, . . . , Xp)
T ∈ Rp from

multivariate normal distribution with mean zero and covariance matrix

Σ = (ρ|k−l|)p×p. We set ρ = 0.5. At each local node, we generate Y

from the following models with equal probability 1/2:

Y = sin(βT

1x) + ε,

Y = exp(βT

2x) + ε,

We generate the error term ε from standard normal distribution. We set

β1 = (1, 1, 0, . . . , 0)T ∈ Rp and β2 = (0, 0, 1, 1, 0, . . . , 0)T ∈ Rp. Let m =

{25, 26, 27, 28} and N = {29p, 210p, 211p, 212p}. All the N observations are

scattered uniformly across m nodes each of size n.

We implement Algorithm 3 for both sliced inverse regression and cumu-

lative slicing estimation under the case when all sample covariance matrices

are invertible. In other words, we use the dense estimate Ω̂j.

Example 5: We generate the observations in the same way as in Example 6,

except for ρ = 0.8 in Σ = (ρ|k−l|)p×p. We implement Algorithm 3 for both

sliced inverse regression and cumulative slicing estimation under the case

when not all sample covariance matrices are invertible. In other words, we

use the sparse estimate Ω̂j.

In the above two examples, B = (β1,β2) ∈ Rp×2. We repeat each
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S2. AMERICAN GUT PROJECT REVISITED

simulation 1000 times, and report dist(B̂,B∗), dist(B∗,B) and dist(B̂,B)

to evaluate the performance of distributed estimates. The simulation results

are summarized in Figures 4 and 5 for Examples 4 and 5, respectively.

Figures 4 and 5 deliver similar messages. In both examples, cumula-

tive slicing estimation outperforms sliced inverse regression, and the per-

formance of the latter depends on the number of slices.

S2 American Gut Project Revisited

We revisit the American Gut Project in Section 4 of the main context.

We explore how to implement a bootstrap procedure in the presence of

heterogeneity. We compare two versions of bootstrap methods. There are

three steps for both procedures. In the firs step, we bootstrap new obser-

vations at each local node. To implement the first version of bootstrap, we

perform dimension reduction on the locally bootstrapped observations in

the second step, and aggregate the dimension reduction results at all local

nodes in the third step. To implement the second version of bootstrap,

we pool the locally bootstrapped observations together to form a complete

bootstrap sample in the second step, and perform dimension reduction on

the complete bootstrap sample in the third step. We replicate the above

procedures 100 times, and compare the distances (1.4) of the central sub-
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(A): dist(B̂,B∗) (B): dist(B∗,B) (C): dist(B̂,B)

(D): dist(B̂,B∗) (E): dist(B∗,B) (F): dist(B̂,B)

Figure 4: The horizontal axis stands for the log(2)-transformed value of the total sample

size N , and the vertical axis stands for dist(B̂,B∗) in (A) and (D), dist(B∗,B) in (B)

and (E), and dist(B̂,B) in (C) and (F). All the distributed estimates of B are obtained

through Algorithm 3. The distributed estimates of sliced inverse regression are displayed

in the subplots (A)-(C) and those of cumulative slicing estimation are displayed in the

subplots (D)-(F).
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(A): dist(B̂,B∗) (B): dist(B∗,B) (C): dist(B̂,B)

(D): dist(B̂,B∗) (E): dist(B∗,B) (F): dist(B̂,B)

Figure 5: The horizontal axis stands for the log(2)-transformed value of the total sample

size N , and the vertical axis stands for dist(B̂,B∗) in (A) and (D), dist(B∗,B) in (B)

and (E), and dist(B̂,B) in (C) and (F). All the distributed estimates of B are obtained

through Algorithm 2. The distributed estimates of sliced inverse regression are displayed

in the subplots (A)-(C) and those of cumulative slicing estimation are displayed in the

subplots (D)-(F).
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spaces obtained from the bootstrap samples and the original observations.

The simulation results are summarized in Figure 6 in this Supplementary

Material. It can be clearly seen that, the first version of bootstrap, which

in spirit corresponds to the distributed dimension reduction, is much more

stable than the second version of bootstrap, which indeed yields a pooled

dimension reduction. This indicates that, in the presence of heterogeneity,

the distributed dimension reduction methods are perhaps more advanta-

geous than the pooled ones.

Figure 6: The distances between the estimates obtained by using the bootstrapped

samples and those obtained by using the original observations. The left boxplot stands

for the distributed estimates and the right one corresponds to the pooled estimates.
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S3 Some Useful Lemmas

We first provide some lemmas that pave the road to prove Theorems 1 and

2 . Define the spectral norm ‖A‖ def

= λ
1/2
max(ATA), where λmax stands for the

maximum eigenvalue.

Lemma 5. In addition to Conditions (C1)-(C3), we assume the sample

covariance matrices Σ̂
−1
j s are all invertible. Then there exists an absolute

positive constant C such that

‖‖Ω̂a1,j −Ωj‖‖ψ1 ≤ C(p/n)1/2, for j = 1, . . . ,m.

Proof of Lemma 5: Recall that Ω̂a1,j
def

= Σ̂
−1
j M̂jΣ̂

−1
j and Ωj

def

= Σ−1j MjΣ
−1
j .

We further defineQ1
def

= ‖Ω̂a1,j−Σ̂
−1
j M̂jΣ

−1
j ‖, Q2

def

= ‖Σ̂
−1
j (M̂j−Mj)Σ

−1
j ‖,

and Q3
def

= ‖Σ̂
−1
j MjΣ

−1
j − Ωj‖. It follows immediately that Q1 =

‖Σ̂
−1
j M̂jΣ

−1
j (Σj−Σ̂j)Σ̂

−1
j ‖ and Q3 = ‖Σ−1j (Σj−Σ̂j)Σ̂

−1
j MjΣ

−1
j ‖. By the

triangular inequality, ‖Ω̂a1,j−Ωj‖ ≤ Q1+Q2+Q3. The Cauchy-Schwartz in-

equality implies immediately that ‖AB‖ ≤ ‖A‖‖B‖(Golub and Van Loan,

2013), both Q1 and Q3 are dominated by ‖Σj − Σ̂j‖, and Q2 is controlled

by ‖Mj − M̂j‖. By Conditions (C2) and (C3), there exists constants C1

and C2 independent of j such that

‖Ω̂a1,j −Ωj‖ ≤ C1‖Σj − Σ̂j‖+ C2‖Mj − M̂j‖. (A.1)

It remains to study the convergence rates of ‖Σj − Σ̂j‖ and ‖Mj − M̂j‖.
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S3. SOME USEFUL LEMMAS

Define r(Σj)
def

= trace(Σj)/{nλmax(Σj)}, which is not greater than p/n.

Koltchinskii and Lounici (2017) showed that, under Conditions (C1)-(C2),

for any t ≥ 1, there exists a generic constant C3 ≥ 1 such that

pr
(
‖Σ̂j −Σj‖ ≥ C3‖Σj‖max

[
{r(Σj)}1/2, r(Σj), (t/n)1/2, t/n

])
≤ exp(−t).

This, together with Lemma 2.2.1 in Van Der Vaart and Wellner (1996),

entails that

‖‖Σ̂j −Σj‖‖ψ1 ≤ C4(p/n)1/2. (A.2)

Accordingly, C4 in (A.2) is related to C3, which has been proved as an

absolute constant in Koltchinskii and Lounici (2017). Next we study the

convergence rate of ‖M̂j −Mj‖. Both M̂j,a (5) and M̂j,c (6) have the same

form. On account of |p̂h,j − ph,j| = Op(n
−1/2), the technical details for

processing ‖M̂j,a−Mj,a‖ and ‖M̂j,c−Mj,c‖ are thus very similar. To avoid

redundancy, we only provide the details for cumulative slicing estimation

in what follows. Define

M̃j,c
def

= n−1
n∑
i=1

mj,c(Yi,j)mj,c(Yi,j)
T.

By triangular inequality, ‖M̂j,c −Mj,c‖ ≤ ‖M̂j,c − M̃j,c‖ + ‖M̃j,c −Mj,c‖.

Following similar arguments for proving (A.2), we can show that

‖‖M̃j,c −Mj,c‖‖ψ1 ≤ C5(p/n)1/2, (A.3)
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where C5 is an absolute constant. We turn to ‖M̂j,c − M̃j,c‖. By Lemma 5

in Wang et al. (2021), we have

pr(‖M̂j,c − M̃j,c‖ ≥ t2 + 2c
1/2
1 t) ≤ exp(2 + log n+ p log 5− Cnt2), (A.4)

where c1 and C are absolute constants induced by Proposition 5.10 of Ver-

shynin (2010). Following similar arguments for proving (A.2), we can also

show that

‖‖M̂j,c − M̃j,c‖‖ψ1 ≤ C6/n. (A.5)

Similarly, constant C6 in (A.5) is constructed from constants in (A.4), thus

C6 is independent of j. By definition, ‖‖M̂j,c − Mj,c‖‖ψ1 ≤ ‖‖M̂j,c −

M̃j,c‖‖ψ1 + ‖‖M̃j,c −Mj,c‖‖ψ1 . This, together with (A.3) and (A.5), yields

that ‖‖M̂j,c −Mj,c‖‖ψ1 ≤ C7(p/n)1/2, where C7 is an absolute positive

constant. Thus far we complete the proof for cumulative slicing estimation.

With similar arguments we can deal with sliced inverse regression. In other

words, ‖‖M̂j −Mj‖‖ψ1 ≤ C8(p/n)1/2 and C8 is independent of j. This,

together with (A.1) and (A.2), completes the proof of Lemma 5. �

The following lemma is a direct consequence of Lemma 5.

Lemma 6. In addition to Conditions (C1)-(C3), we assume the sample

covariance matrices Σ̂
−1
j s are all invertible. Then there exists an absolute
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positive constant C such that

‖dist(B̂a1,j,B)‖ψ1 ≤ C(d0p/n)1/2, for j = 1, . . . ,m.

Proof of Lemma 6: Denote the column space of B by span(B). Further

denote the principal angles between span(B̂j) and span(B) by Θ(B̂j,B)
def

=

(θ1,j, θ2,j, . . . , θd0,j)
T. In other words, the singular values of B̂T

jB are cos(θ1,j),

cos(θ2,j), . . ., cos(θd0,j). Then

{dist(B̂a1,j,B)}2 = 2

d0∑
k=1

{1− cos2(θk,j)} = 2‖ sin{Θ(B̂j,B)}‖2F .(A.6)

By Conditions (C2)-(C3) and Davis-Kahan-Theorem (Yu et al., 2015, Theo-

rem 2), the right hand side of the above display is bounded by C0d
1/2
0 ‖Ω̂a1,j−

Ωj‖, and C0 is an absolute constant induced by Conditions (C2) and (C3).

Therefore, dist(B̂a1,j,B) ≤ C0d
1/2
0 ‖Ω̂a1,j−Ωjc‖. The proof is completed by

invoking Lemma 5. �

Lemma 7. In addition to Conditions (C1)-(C3), we assume the sample

covariance matrices Σ̂
−1
j s are all invertible. Then there exists an absolute

positive constant C such that

‖E(Ω̂a1,j −Ωj)‖F ≤ Cp/n, for j = 1, . . . ,m.
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Proof of Lemma 7: As defined in Lemma 5,

Ω̂a1,j −Ωj = Σ̂
−1
j M̂jΣ̂

−1
j −Σ−1j MjΣ

−1
j

=(Σ̂
−1
j −Σ−1j + Σ−1j )(M̂j −Mj + Mj)(Σ̂

−1
j −Σ−1j + Σ−1j )−Σ−1j MjΣ

−1
j

=Σ̂
−1
j (Σj − Σ̂j)Σ

−1
j (M̂j −Mj)Σ̂

−1
j (Σj − Σ̂j)Σ

−1
j + 2Σ−1j (M̂j −Mj)Σ̂

−1
j (Σj − Σ̂j)Σ

−1
j

+ Σ̂
−1
j (Σj − Σ̂j)Σ

−1
j MjΣ̂

−1
j (Σj − Σ̂j)Σ

−1
j

Therefore, by Conditions (C2) and (C3), we can find an absolute positive

constant C1, such that ‖E(Ω̂a1,j −Ωj)‖F ≤ C1‖E(Σ̂j −Σj)
2‖F . The proof

is completed by invoking (A.2). �

Next we study the non-asymptotic error bound of the penalized esti-

mates Ω̂a2,js, which do not require all the sample covariance matrices are

invertible. Define

‖A‖∞
def

= max
1≤k≤l≤p

|akl| and Dj
def

= ‖Γ−1Sj ,Sj ,j‖∞.

Lemma 8. In addition to Conditions (C1)-(C3), we assume there exist

generic constants C1 and C2 such that ‖Σj‖∞ ≥ C1{log(p)/n}1/2 and

C2sjDj‖Σj‖∞{log(p)/n}1/2 < κj for all j = 1, . . . ,m. Then there exists

an absolute positive constant C, such that,

‖‖Ω̂a2,j −Ωj‖∞‖ψ1 ≤ Cκ−1j Dj{log(p)/n}1/2.

Proof of Lemma 8: We re-present an equivalent form of (2.7) to stack all p

columns into a vector. For notational clarity, we define Γ̂j
def

= Σ̂j ⊗ Σ̂j. It
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follows that,

vec(Ω̂a2,j) = arg min
vec(Φj)

[
vec(Φj)

TΓ̂jvec(Φj)− 2vec(M̂j)
Tvec(Φj) + λn,j‖vec(Φj)‖1

]
.

Setting Â = 2Γ̂j, â = 2vec(M̂j), A = 2Γj and a = 2vec(Mj) in Lemma

7 of Wang et al. (2021), we can derive the non-asymptotic error bound of

vec(Ω̂a2,j). Towards this goal, we need to verify the conditions required by

Lemma 7 of Wang et al. (2021).

By definition, ‖Γ̂j − Γj‖∞ = ‖Σ̂j ⊗ (Σ̂j − Σj) + (Σ̂j − Σj) ⊗ Σj‖∞,

which is not greater than (‖Σ̂j‖∞ + ‖Σj‖∞)‖Σ̂j −Σj‖∞. It follows that

‖ΓScj ,Sj ,jΓ
−1
Sj ,Sj ,j‖∞+2sj‖Γ−1S,S,j‖∞‖Γ̂j−Γj‖∞ ≤ 1−κj+2sjDj(‖Σ̂j‖∞+‖Σj‖∞)‖Σ̂j−Σj‖∞.

By Lemma 5 of Wang et al. (2021), we have ‖‖Σ̂j−Σj‖∞‖ψ1 ≤ C1{log(p)/n}1/2,

and C1 is a general constant. Accordingly, ‖‖Σ̂j‖∞‖ψ1 ≤ ‖Σj‖∞+C1{log(p)/n}1/2.

Consequently,

‖‖ΓScj ,Sj ,jΓ
−1
Sj ,Sj ,j‖∞ + 2sj‖Γ−1S,S,j‖∞‖Γ̂j − Γj‖∞‖ψ1

≤ 1− κj + 2sjDj(‖‖Σ̂j‖∞‖ψ1 + ‖Σj‖∞)‖‖Σ̂j −Σj‖∞‖ψ1 .

The right hand side is smaller than or equal to 1−κj+C2sjDj‖Σj‖∞{log(p)/n}1/2,

which, by the assumption we imposed, is strictly smaller than 1. Thus the

first set of condition required by Lemma 7 of Wang et al. (2021) is satisfied.

Next we study the property of ∆
def

= 2‖vec(M̂j)− vec(Mj)‖∞+ 2‖(Γ̂j −

Γj)vec(Ωj)‖∞. We only process cumulative slicing estimation here. Let
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ek be a unit length p-vector with its kth entry being one. By condi-

tion (C1) and Proposition 2.5.2 in Vershynin (2018), we can show that

eT

k(xi,j − xj) is sub-Gaussian for all k, j = 1, . . . , p. Using the general

Hoeffding’s inequality (Vershynin, 2018, Theorem 2.6.3), eT

km̂j,c(y) is also

sub-Gaussian for all k, j = 1, . . . , p. Therefore, it follows immediately from

Lemma 2.7.6 and Bernstein’s inequality in Vershynin (2018) that there ex-

ists general constants c1 and c2, such that pr
{
|ek(M̂j −Mj)el‖ ≥ t

}
≤

2 exp{−nmin(c1t
2, c2t)} for k, l = 1, . . . , p. Setting t = c3{log(p)/n}1/2, we

can find an absolute constant C, such that ‖‖vec(M̂j)− vec(Mj)‖∞|‖ψ1 =

‖‖M̂j −Mj‖∞|‖ψ1 ≤ C{log(p)/n}1/2. In addition,

‖(Γ̂j − Γj)vec(Ωj)‖∞ = ‖Σ̂jΩjΣ̂j −ΣjΩjΣj‖∞

≤ ‖(Σ̂j −Σj)Ωj(Σ̂j −Σj)‖∞ + 2‖ΣjΩj(Σ̂j −Σj)‖∞

≤ sj‖Ωj‖∞‖Σ̂j −Σj‖2∞ + 2‖ΩjΣj‖∞‖Σ̂j −Σj‖∞,

which, by invoking ‖‖Σ̂j−Σj‖∞‖ψ1 ≤ C1{log(p)/n}1/2, implies immediately

that ‖‖(Γ̂j−Γj)vec(Ωj)‖∞‖ψ1 ≤ C2{log(p)/n}1/2, and C2 is independent of

j. It follows that ‖∆‖ψ1 ≤ C3{log(p)/n}1/2. C3 is also an absoluate constant

since it is induced by C and C2 . Set λn,j = 3C3κ
−1
j {log(p)/n}1/2. Thus

the second set of condition required by Lemma 7 of Wang et al. (2021)

is satisfied. Thus we are enabled to complete the proof of Lemma 8 by

applying Lemma 7 in Wang et al. (2021) directly. �
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S4. PROOF OF LEMMA 1

Lemma 9. Assume the conditions of Lemma 8 hold true. Then there exists

an absolute positive constant C such that

‖dist(B̂a2,j,B)‖ψ1 ≤ Cκ−1j Dj{d0sj log(p)/n}1/2.

Proof of Lemma 9: By Davis-Kahan-Theorem (Yu et al., 2015, Theorem

2), the result in (A.6), and conditions (C2) and (C3), there exist absolute

constant C0 such that

dist(B̂a2,j,B) ≤ C0(8d0)
1/2‖Ω̂a2,j −Ωj‖ ≤ C0(8sjd0)

1/2‖Ω̂a2,j −Ωj‖∞.

This, together with Lemma 8, completes the proof of Lemma 9. �

S4 Proof of Lemma 1

By Jensen’s inequality,

‖Ω∗a1−BBT‖F ≤ m−1
m∑
j=1

E‖B̂a1,jB̂
T

a1,j−BBT‖F ≤ max
1≤j≤m

‖dist(B̂a1,j,B)‖ψ1 .

For sufficiently large n such that n ≥ 2d0pC
2, Lemma 6 ensures that

‖dist(B̂a1,j,B)‖ψ1 < 1/4. Because BBT is a projection matrix, λd0(BBT) =

1 and λd0+1(BBT) = 0. This, together with Weyl’s inequality, indicates that

λd0(Ω
∗) > 3/4 and λd0+1(Ω

∗) < 1/4. It follows from Davis-Kahan-Theorem

(Yu et al., 2015, Theorem 2) that

dist(B̂a1,B
∗
a1) ≤ 4‖T̂a1 −Ω∗a1‖F . (A.7)
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S5. PROOF OF LEMMA 2

In addition, by Lemma 4 in Fan et al. (2019), we have

‖‖T̂a1 −Ω∗a1‖F‖ψ1 ≤ Cm−1/2‖‖B̂a1,jB̂
T

a1,j − E(B̂a1,jB̂
T

a1,j)‖F‖ψ1 . (A.8)

It remains to bound ‖B̂a1,jB̂
T

a1,j−E(B̂a1,jB̂
T

a1,j)‖F from above. By Jensen’s

inequality, ‖E(B̂a1,jB̂
T

a1,j)−BBT‖F ≤

E{dist(B̂a1,j,B)} ≤ ‖dist(B̂a1,j,B)‖ψ1 . We apply triangle inequality to ob-

tain that ‖B̂a1,jB̂
T

a1,j −E(B̂a1,jB̂
T

a1,j)‖F ≤ dist(B̂a1,j,B) + ‖E(B̂a1,jB̂
T

a1,j)−

BBT‖F , which, by definition, is not greater than dist(B̂a1,j,B)+‖dist(B̂a1,j,B)‖ψ1 .

This implies that

‖‖B̂a1,jB̂
T

a1,j − E(B̂a1,jB̂
T

a1,j)‖F‖ψ1 ≤ 2‖dist(B̂a1,j,B)‖ψ1 . (A.9)

Invoking (A.7) - (A.9), we have ‖dist(B̂a1,B
∗
a1)‖ψ1 ≤ 8Cm−1/2‖dist(B̂a1,j,B)‖ψ1 .

The proof is completed by invoking Lemma 6. �

S5 Proof of Lemma 2

With similar arguments for proving (A.6), we have dist(B∗a1,B) = 21/2‖ sin{Θ(B∗a1,B)}‖F ,

where Θ(B∗a1,B) are the principal angles between span(B∗a1) and span(B).

Invoking Davis-Kahan-Theorem (Yu et al., 2015, Theorem 2) again, we

have

dist(B∗a1,B) ≤ 81/2‖Ω∗a1 −BBT‖F ≤ 81/2 max
1≤j≤m

‖E(B̂a1,jB̂
T

a1,j −BBT)‖F
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S5. PROOF OF LEMMA 2

For notational clarity, we define Ea1,j
def

= Ω̂a1,j−Ωj. Let (b̂1,j, b̂2,j, . . . , b̂p,j)

be the eigenvectors of Ω̂a1,j, and (b1,b2, . . . ,bp) be the eigenvectors of Ω.

For any fixed s ∈ {0, 1, . . . , p− d0}, we define S
def

= {s+ 1, . . . , s+ d0} and

Gk
def

=
∑
l /∈S

{(λl(Ωj)− λs+k(Ωj)}−1blbT

l .

Let f be a linear map f : Rp×d0 7→ Rp×d0 , (v1, . . . ,vd0) 7→ (−G1v1, . . . ,−Gd0vd0).

By the linearity of f and the triangular inequality, we have∥∥∥E [B̂a1,jB̂
T

a1,j − {BBT + f(Ea1,jB)BT + Bf(Ea1,jB)T}
]∥∥∥

F

≥ ‖EB̂a1,jB̂
T

a1,j −BBT‖F − ‖f{E(Ea1,j)}BBT‖F − ‖Bf{E(Ea1,j)}BT‖F .

Define εa1
def

= ‖Ea1,j‖/min{λs(Ωj)−λs+1(Ωj), λs+d0(Ωj)−λs+d0+1(Ωj)}. By

Lemma 2 in Fan et al. (2019) and Jensen’s inequality,∥∥∥E [B̂a1,jB̂
T

a1,j − {BBT + f(Ea1,jB)BT + Bf(Ea1,jB)T}
]∥∥∥

F
≤ 24d

1/2
0 E(ε2a1).

In addition, ‖f{E(Ea1,j)}BBT‖F ≤ ‖f{E(Ea1,j)}‖F ≤ C‖E(Ea1,j)‖F . The

first inequality follows from Lemma A1 in Yu et al. (2015), and the second is

a direct application of Jensen’s inequality. Similarly, ‖Bf{E(Ea1,j)}BT‖F ≤

C‖E(Ea1,j)‖F . Lemma 7 proves that ‖E(Ea1,j)‖F ≤ C1p/n. Besides, Lemma

5 indicates that ‖E(ε2a1)‖ψ1 ≤ C2p/n.

Summarizing the above results, we obtain that there exists an absolute

positive constant C such that dist(B∗a1,B) ≤ Cd
1/2
0 p/n, for 1 ≤ j ≤ m.

The proof is now completed. �

18



S6. PROOF OF LEMMA 3

S6 Proof of Lemma 3

Following similar arguments for proving Lemma 1, we can prove this lemma

by using Lemma 9. Details are omitted from the present context. �

S7 Proof of Lemma 4

Invoking Davis-Kahan-Theorem (Yu et al., 2015, Theorem 2) again, we

have

dist(B∗a2,B) ≤ 81/2‖Ω∗a2 −BBT‖F ≤ 81/2 max
1≤j≤m

‖E(B̂a2,jB̂
T

a2,j −BBT)‖F

In parallel to Lemma 2, we define Ea2,j
def

= Ω̂a2,j−Ωj and let (b̂1,j, b̂2,j, . . . , b̂p,j)

be the eigenvectors of Ω̂a2,j. Recall that (b1,b2, . . . ,bp) are the eigenvectors

of Ω, and f is a linear map defined in Lemma 2. By triangular inequality

again, we have

∥∥∥E [B̂a2,jB̂
T

a2,j − {BBT + f(Ea2,jB)BT + Bf(Ea2,jB)T}
]∥∥∥

F

≥ ‖EB̂a2,jB̂
T

a2,j −BBT‖F − ‖f{E(Ea2,j)}BBT‖F − ‖Bf{E(Ea2,j)}BT‖F .

Define εa2
def

= ‖Ea2,j‖/min{λs(Ω) − λs+1(Ω), λs+d0(Ω) − λs+d0+1(Ω)}. By

Lemma 2 in Fan et al. (2019) and Jensen’s inequality,

∥∥∥E [B̂a2,jB̂
T

a2,j − {BBT + f(Ea2,jB)BT + Bf(Ea2,jB)T}
]∥∥∥

F
≤ 24d

1/2
0 E(ε2a2).
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In addition, ‖f{E(Ea2,j)}BBT‖F ≤ ‖f{E(Ea2,j)}‖F ≤ C‖E(Ea2,j)‖F , Lemma

8 shows that ‖‖Ea2,j‖∞‖ψ1 ≤ Cκ−1j Dj{log(p)/n}1/2. Therefore, ‖E(Ea2,j)‖F ≤

E‖Ea2,j‖F ≤ s
1/2
j E‖Ea2,j‖∞ ≤ s

1/2
j ‖‖Ea2,j‖∞‖ψ1 . Summarizing the above

results, we obtain that dist(B∗a2,B) ≤ Cκ−1j Dj{sj log(p)/n}1/2 for 1 ≤ j ≤

m. This completes the proof. �
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