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Abstract: We propose a distributed sufficient dimension reduction to process massive

data characterized by high dimensionality, a huge sample size, and heterogeneity

(heterogeneity, and huge sample sizes). To address the high dimensionality, we

replace the high-dimensional explanatory variables with a small number of linear

projections that are sufficient to explain the variabilities of the response variable.

We allow for distinctive function maps for data scattered at different locations, thus

addressing the problem of heterogeneity. We assume that the dimension reduction

subspaces at different local nodes are identical. This allows us to aggregate the local

results obtained from each local node to yield a final estimate on a central server. We

explicitly examine the sliced inverse regression and cumulative slicing estimation,

and investigate the nonasymptotic error bounds of the resulting dimensionality

reduction. Our theoretical results are further supported by simulation studies and

an application to meta-genome data from the American Gut Project.

Key words and phrases: Cumulative slicing estimation, distributed estimation, het-

erogeneity, sliced inverse regression, sufficient dimension reduction.

1. Introduction

In the current big data era, massive data are collected at different times

and are usually scattered across locations. Such data are often characterized by

high dimensionality, heterogeneity, and huge sample sizes (3H). For example, in

biological studies, megabytes of genomics data are collected by large research

institutes worldwide (Stephens et al. (2015)). Even a single genome sequence

archive can consist of hundreds of thousands of samples and hundreds of millions

of single nucleotide polymorphisms (SNPs) (BIG Data Center Members (2018)).

For example, the American Gut Project consists of 29 batches and involves 11,336

human participants from 45 countries. There are 15,096 samples in total, each

with 48,599 unique gene fragments mapped to 215 classes. In addition to the

high dimensionality and huge sample sizes, the batch effects, distinctive popula-
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tion structures, and potential problem of selection bias result in heterogeneity.

It is difficult to manage heterogeneous massive data sets for many reasons, in-

cluding memory and storage requirements, transmission capacity, privacy issues,

and ethical concerns. Processing such data on a single computing device, poses

significant challenges to conventional statistical analysis.

In the past two decades, many studies have analyzed massive distributed

data with high dimensionality and huge sample sizes. In general, distributed

algorithms assume there exists a star network architecture. We compute partial

results on each local node and send them to a central server that summarizes

these results to produce a final solution. In unsupervised learning, distributed

algorithms are developed for principal component analyses to perform dimension

reduction when massive data are scattered across different locations; see, for

example, Kargupta et al. (2001), Qi, Wang and Birdwell (2004), Bai, Chan and

Luk (2005) , and Liang et al. (2014). The theoretical properties of distributed

algorithms for principal component analyses are studied thoroughly by Fan et al.

(2019). In supervised learning, distributed algorithms typically assume that the

response variable, denoted by Y ∈ R1, depends upon the p-vector of explanatory

variables, denoted by x = (X1, . . . , Xp)
T ∈ Rp, through a parametric or even a

linear model. Examples include Chen and Xie (2014), Lee et al. (2017), Battey

et al. (2018), Jordan, Lee and Yang (2019), and Fan, Guo and Wang (2021). In

these works, the dimension of x is reduced using the concept of sparsity; that

is, only a small subset of x is truly important for predicting Y . To the best

of our knowledge, very few existing distributed algorithms for unsupervised and

supervised learning examine the problem of heterogeneity.

This study deals with massive distributed data that are simultaneously char-

acterized by high dimensionality, heterogeneity, and a huge sample size. Suppose

there are m local nodes in addition to a central server, and each local node

contains n observations. The total sample size is thus N
def
= nm. We denote

the massive distributed observations by {(xi,j , Yi,j), i = 1, . . . , n, j = 1, . . . ,m},
where xi,j ∈ Rp is a p-vector of explanatory variables and Yi,j denotes the re-

sponse. The subscript i,j stands for the ith observation scattered at the jth node.

We allow very large values for p, n, and m, thus representing high dimensionality

and a huge sample size. The goal of supervised learning is to understand how the

response depends upon the explanatory variables, that is, to study how the condi-

tional distribution of the response varies with the realizations of the explanatory

variables. We assume that all observations are independent, but not necessarily

identically distributed. Specifically, let F (· | ·) be the conditional distribution

function. We assume that the observations at each local node are identically
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distributed, but the dependence structures at different nodes are allowed to be

distinct; that is,

Fi,j(Yi,j | xi,j) = Fj(Yi,j | xi,j), for i = 1, . . . , n, j = 1, . . . ,m. (1.1)

The observations are homogeneous if all Fj are the same, say, Fj = F0. Model

(1.1) indicates the existence of heterogeneity across all m locations.

We propose a distributed sufficient dimension reduction for supervised learn-

ing to process heterogeneous massive distributed data. The dimension reduction

replaces the high-dimensional explanatory variables, x ∈ Rp, with a small number

of linear combinations, BTx ∈ Rd0 , for B ∈ Rp×d0 . We advocate using sufficient

dimension reduction for at least two reasons. First, it does not impose paramet-

ric assumptions on Fj in Model (1.1), and, more importantly, these distribution

functions are allowed to be distinct. Second, a dimension reduction with xi,j
replaced by (BTxi,j) does not cause a loss of regression information in the sense

of

Fj(Yi,j | xi,j) = Fj(Yi,j | BTxi,j), for i = 1, . . . , n, j = 1, . . . ,m. (1.2)

An important implication of (1.2) is that a common basis B is shared with obser-

vations located at all m local nodes. Note that, if the basis matrices are distinct,

say, Fj(Yi,j | xi,j) = Fj(Yi,j | BT

jxi,j), we can define B to be a basis matrix that

spans the column space of (B1, . . . ,Bm). In such a situation, (1.2) remains true.

To ease the subsequent discussion, we assume there exists a mutual basis matrix

B. This assumption is not essential. However, it does improve the efficiency of es-

timating B. If (1.2) holds, xi,j and (BTxi,j) are equivalent in terms of predicting

Yi,j . Note that (1.2) holds trivially if d0 = p and B is a full-rank matrix. Given

the dimension reduction, d0 � p. In many real-world applications, d0 is very

small, say, one, two, or at most three. The goal of sufficient dimension reduction

is to seek a basis matrix B with the smallest column dimension. The column

space of B, if it exists, is referred to as the central subspace, and is denoted by

SY |x (Cook (1998)).

In this article, we propose distributed algorithms for two classic sufficient

dimension reduction methods, the sliced inverse regression (Li (1991)) and cu-

mulative slicing estimation (Zhu, Zhu and Feng (2010)), to process heterogeneous

massive distributed data. A cumulative slicing estimation does not require a care-

ful selection of the slice number, and is thus generally regarded as an improvement

over the sliced inverse regression. Wang, Yu and Zhu (2021) demonstrated using

empirical studies that, in high dimensions, the performance of the sliced inverse
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regression depends on the slice number. Thus, we advocate using a cumulative

slicing estimation for massive data.

Many sufficient dimension reduction methods have been developed. These

methods can be roughly classified into three categories. The first consists of in-

verse regression methods. These include, but are not limited to, the sliced inverse

regression (Li (1991)), cumulative slicing estimation (Zhu, Zhu and Feng (2010)),

sliced average variance estimation (Cook and Weisberg (1991)), and directional

regression (Li and Wang (2007)). The second category mainly includes forward

regression methods, such as the minimum average variance estimation (Xia et al.

(2002)) and its variations (Xia (2007); Wang and Xia (2008)). The third category

contains semiparametric approaches; see, for instance, Ma and Zhu (2012), Ma

and Zhu (2013), and Ma and Zhu (2014). See also Cook (1998), Li (2018), and

the references therein for comprehensive reviews on recent developments.

The asymptotic behaviors of existing sufficient dimension reduction methods

are well understood when p is small relative to n and the observations are homoge-

neous. See Hsing and Carroll (1992), Zhu and Ng (1995), and Li and Zhu (2007)

for the asymptotic results of inverse regression methods when p is fixed. The

slicing estimation for a sliced inverse regression has been proven to be consistent

when p = o(n1/2) (Zhu, Miao and Peng (2006)) and p = o(n) (Lin, Zhao and Liu

(2018)). Wang, Yu and Zhu (2021) show that the cumulative slicing estimation

is consistent if p = o(n), or, more generally, s = o(n) and log(p) = o(n), where

s is the number of non-vanishing components. Existing asymptotic behaviors

are investigated thoroughly for homogeneous observations. However, these can-

not be carried over to heterogeneous massive distributed data without a careful

adaption.

We focus on heterogeneous massive distributed data drawn independently

from (1.1). In addition, we assume that (1.2) holds and aim to develop a dis-

tributed algorithm that aggregates the heterogeneous data across m local ma-

chines. Specifically, we propose performing a sliced inverse regression and a cu-

mulative slicing estimation on each local node. With a slight abuse of notation,

for now, we denote both estimates of B by B̂j , for j = 1, . . . ,m. We send all B̂j

to the central server to form

T̂
def
= m−1

m∑
j=1

B̂jB̂
T

j . (1.3)

We denote by B̂ the top d0 eigenvectors of T̂, which is the average space in a

least squares sense (Fan et al. (2019)). The minimum communication cost of this
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algorithm is O(mpd0).

We investigate the nonasymptotic error bound for

dist(B̂,B)
def
= ‖B̂(B̂TB̂)−1B̂T −B(BTB)−1BT‖F , (1.4)

where ‖·‖F denotes the Frobenius norm. There are several distributed algorithms

for both supervised and unsupervised learning, although few studies examine the

theoretical properties of the resulting estimates obtained from the distributed

algorithms. We assume that each node has the same sample size to simplify the

presentation. When each local node has a different sample size, (1.3) is replaced

by a weighted version.

We show from a theoretical perspective that analyzing distributed algorithms

for sufficient dimension reduction is fundamentally different from doing so for a

principal component analysis. This is because constructing an unbiased estimate

for the covariance matrix in a principal component analysis is straightforward.

However, how to find an unbiased estimate for the kernel matrices in sufficient di-

mension reduction remains unknown in the literature. Consequently, the problem

of bias at each local node carries over to the aggregation procedure in the cen-

tral node. Thus, we must quantify how the bias affects the resulting distributed

estimation.

2. Distributed Estimation

The following notation is used throughout the paper. Suppose that, at the

jth local node, xj ∈ Rp is a vector of explanatory variables and Yj ∈ R1 is

the associated response, for j = 1, . . . ,m. At each local node, n observations

are collected and denoted by {(xi,j , Yi,j), i = 1, . . . , n, j = 1, . . . ,m}. Define

Σj
def
= E {xj − E(xj)} {xj − E(xj)}T, Mj,s

def
= cov{E(xj | Yj)} for a sliced inverse

regression, and Mj,c
def
= E {mj,c(Yj)mj,c(Yj)

T} for a cumulative slicing estimation,

where mj,c(y)
def
= cov{xj , I(Yj ≤ y)} and I(A) is an indicator function, taking the

value one if A is true, and zero otherwise. The subscripts s and c denote a

sliced inverse regression and a cumulative slicing estimation, respectively. At the

sample level, the usual moment estimates of E(xj), Σj , mj,c(y), and Mj,c are

defined, respectively, by

xj
def
= n−1

n∑
i=1

xi,j , Σ̂j
def
= n−1

n∑
i=1

(xi,j − xj) (xi,j − xj)
T , (2.1)

m̂j,c(y)
def
= n−1

n∑
i=1

(xi,j − xj) I(Yi,j ≤ y), M̂j,c
def
= n−1

n∑
i=1

m̂j,c(Yi,j)m̂j,c(Yi,j)
T.
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Li (1991) proposed a slicing procedure to estimate Mj,s. Specifically, suppose that

q0,j , q1,j , . . . , qH,j is a sequence of cutting points, such that −∞ = q0,j < q1,j <

· · · < qH−1,j < qH,j = ∞. Define Ih,j
def
= (qh−1,j , qh,j ] as the hth slice. Define

ph,j
def
= pr(Yj ∈ Ih,j) and mh,j,s

def
= cov{xj , I(Yj ∈ Ih,j)}. Li (1991) suggested

approximating Mj,s by

Mj,a
def
=

H∑
h=1

p−1h,jmh,j,sm
T

h,j,s.

The slicing estimates of ph,j , mh,j,s, and Mj,a are given, respectively, by

p̂h,j
def
= n−1

n∑
i=1

I(Yi,j ∈ Ih,j), m̂h,j,s
def
= n−1

n∑
i=1

(xi,j − xj) I(Yi,j ∈ Ih,j), and

M̂j,a
def
=

H∑
h=1

p̂−1h,jm̂h,j,sm̂
T

h,j,s. (2.2)

Li (1991) suggested specifying qh,j as the (h/H)× 100%th quantile of Yj . In this

case, all qh,j and their corresponding sample counterparts q̂h,j slice the observa-

tions within each local node evenly. This usually facilitates implementing a sliced

inverse regression.

The goal of sufficient dimension reduction is to seek a basis matrix B with

a minimal column dimension d0 such that (1.2) holds. In general, B is not

identifiable. If B satisfies (1.2), then BC satisfies (1.2) as well, for an arbi-

trary nonsingular matrix C ∈ Rd0×d0 . This allows us to assume that B is an

orthogonal matrix such that BTB = Id0×d0 , where Id0×d0 ∈ Rd0×d0 denotes an

identity matrix. However, the column space of B, defined as the central subspace

and denoted by SY |x throughout, is identifiable. At each local node, Li (1991)

suggested recovering SY |x using the column space of Σ−1j Mj,sΣ
−1
j , denoted by

span(Σ−1j Mj,sΣ
−1
j ), and Zhu, Zhu and Feng (2010) suggested recovering SY |x

using the column space of span(Σ−1j Mj,cΣ
−1
j ), for j = 1 . . . ,m. For their sug-

gestions to be valid, the linearity condition is required. That is, E(xj | BTxj)

is a linear function of xj , which is satisfied when x follows a normal or, more

generally, an elliptically contoured distribution. Hall and Li (1993) showed that

this linearity condition holds asymptotically, as long as p is sufficiently large and

d0 is relatively small. Therefore, this linearity condition is typically regarded as

mild (Li (1991)).

It can be clearly seen from (2.1) and (2.2) that M̂j,a and M̂j,c are similar.
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To facilitate the subsequent discussion, we use M̂j to denote either M̂j,a or M̂j,c

unless stated otherwise. Define Ωj
def
= Σ−1j MjΣ

−1
j and Ω̂j is the estimation of

Ωj , where Mj can be Mj,c or Mj,s. This allows us to propose distributed algo-

rithms and investigate the nonasymptotic error bounds for both a sliced inverse

regression and a cumulative slicing estimation within a unified framework. The

following distributed algorithms and theoretical results apply to both sufficient

dimension reduction methods.

2.1. Case I: All sample covariance matrices are invertible

Here, we introduce the distributed algorithms. We first assume all the sample

covariance matrices, namely, Σ̂j , are invertible. This implicitly requires that p be

much smaller than n at each local node. In this case, by invoking the theory of

sufficient dimension reduction, we can simply recover SY |x from the column space

of Ω̂a1,j
def
= Σ̂

−1
j M̂jΣ̂

−1
j . The subscript a1,j represents the estimation obtained

from the jth node by the distributed Algorithm 1, discussed below. Because all

local nodes share an identical central subspace SY |x, combining the estimates at

all local nodes improves the efficiency of estimating SY |x. There are two ways to

achieve this goal. The first is that we pass all Ω̂a1,j to the central server to form

m−1
m∑
j=1

Ω̂a1,j .

We then apply a singular value decomposition to the above average to obtain the

top d0 eigenvectors. The communication cost of this option is of order O(mp2).

The second option is that at each local node, we apply a singular value decompo-

sition to Ω̂a1,j to obtain the top d0 eigenvectors, which is denoted by B̂a1,j . Next,

we pass B̂a1,j to the central server to form T̂a1, defined in (1.3). We further ap-

ply a singular value decomposition to T̂a1 to obtain the first top d0 eigenvectors,

which are denoted by B̂a1. The communication cost of this option is of order

O(mpd0), which is smaller than that of the first option. We advocate using the

second option because the reduction of the communication cost is substantial if

d0 is much less than p, which benefits from sufficient dimension reduction.

The distributed Algorithm 1 is as follows.

2.2. Case II: Not all sample covariance matrices are invertible

If the sample covariance matrices are not all invertible, we have to avoid

using Σ−1j directly. To address this issue, Tan et al. (2018) introduce a convex

formulation to fit a sparse sliced inverse regression, which is solved using a lin-
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Algorithm 1.

1. Estimate Ω̂a1,j
def
= Σ̂

−1

j M̂jΣ̂
−1

j at the jth local node. This amounts to estimating

Σ̂j , M̂j,c, and M̂j,a using (2.1) and (2.2).

2. Apply a singular value decomposition to Ω̂a1,j at the jth local node. The top d0
eigenvectors are denoted by B̂a1,j .

3. Pass all {B̂a1,j} to the central server to form T̂a1, defined in (1.3), with B̂j replaced

by B̂a1,j .

4. Apply a singular value decomposition to T̂a1 to obtain the first d0 top eigenvectors,
which are denoted by B̂a1.

earized alternating direction method of multipliers algorithm. This algorithm is

further improved by Tan, Shi and Yu (2020), although it is methodology spe-

cific. Motivated by Wang, Jiang and Zhu (2021), at the jth local node, we seek

a matrix Φj ∈ Rp×p that is the closest to Ωj , subject to the sparsity constraints

or its relaxations. This is a very general methodology. More importantly, it is

computationally very efficient. Specifically, we propose approximating Ωj under

the following criterion:

trace[{(Φj −Ωj)Σj}2] = trace{(ΦjΣj)
2} − trace(2ΦjMj) + trace(Σ−1j Mj)

2,

where trace(·) is the trace of a matrix. Because the last quantity on the right-

hand side of the above display is irrelevant to the unknown parameter Φj , at the

sample level, we consider minimizing

Ω̂a2,j
def
= argmin

Φj

[
trace{(ΦjΣ̂j)

2} − trace(2ΦjM̂j) + λn,j‖Φj‖1
]
, (2.3)

where the tuning parameter λn,j is typically decided using ten-fold cross-validation,

the subscript a2,j represents the estimation obtained from the jth node by the

distributed Algorithm 2, and

‖Φj‖1
def
=

p∑
k=1

p∑
l=1

|Φk,l|, where Φk,l denotes the (k, l)th entry of Φj .

We use the alternating direction method of multipliers (Boyd et al. (2010)) to

solve the optimization problem (2.3), which yields Ω̂a2,j . Interested readers may

refer to Wang, Jiang and Zhu (2021) on how to solve the minimization prob-

lem (2.3) at the j-local node. In (2.3), we use Σ̂j instead of its inversion Σ̂
−1
j .
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Algorithm 2.

1. Estimate Ωj at the jth local node using (2.3) to obtain Ω̂a2,j .

2. Apply a singular value decomposition to Ω̂a2,j at the jth local node to obtain its

top d0 eigenvectors B̂a2,j .

3. Pass all B̂a2,j to the central server to form T̂a2, defined in (1.3), with B̂j replaced

by B̂a2,j .

4. Apply a singular value decomposition to T̂a2 to obtain the first d0 top eigenvectors,
which are denoted by B̂a2.

Therefore, it can be readily used, even when p is much greater than n. With

Ω̂a2,j obtained from (2.3), the second through fourth steps of the distributed Al-

gorithm 2 are, in spirit, the same as those described in Section 2.1. We denote

by B̂a2 the final solution of this distributed algorithm.

2.3. The nonasymptotic error bounds

Next, we investigate the nonasymptotic error bounds for the two distributed

estimates B̂a1 and B̂a2. To this end, we define the projection matrix of B as

P(B)
def
= B(BTB)−1BT. Similarly, P(B̂)

def
= B̂(B̂TB̂)−1B̂T, where B̂ can be either

B̂a1 or B̂a2. To quantify the accuracy of B̂, we define

{dist(B̂,B)}2 def
= trace[{P(B̂)−P(B)}2] and r2(d0)

def
=

trace{P(B̂)P(B)}
d0

.

It is easy to show that {dist(B̂,B)}2 = 2d0{1 − r2(d0)}. In other words, these

two metrics are equivalent in terms of measuring the accuracy of B̂. In addition,

r2(d0) increases from zero to one, as dist(B̂,B) decreases from (2d0)
1/2 to zero.

In particular, if B̂ is a poor estimate of B, r2(d0) is small and dist(B̂,B) is large.

Note that dist(B̂,B) = ‖P(B̂)−P(B)‖F , where ‖ · ‖F is the Frobenius norm.

Following Vershynin (2018), we define the ψ1-norm and ψ2-norm of a random

variable X by

‖X‖ψ1

def
= sup

k≥1

(E|X|k)1/k

k
and ‖X‖ψ2

def
= sup

k≥1

(E|X|k)1/k

k1/2
,

respectively. A random vector x ∈ Rp is said to be sub-Gaussian if there exists

a positive constant C such that ‖αTx‖ψ2
≤ C{E(αTx)2}1/2, for all α ∈ Rp.

Throughout, C, c, C1, c1, C2, c2, . . . denote generic constants that may vary at

each appearance. We assume the following conditions.
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(C1) The explanatory variables {xi,j : i = 1, . . . , n; j = 1, . . . ,m} are all sub-

Gaussian.

(C2) There exists a positive constant c such that

c−1 ≤ inf
j=1,...,m

{λmin(Σj)} ≤ sup
j=1,...,m

{λmax(Σj)} ≤ c,

where λmin and λmax denote the minimum and maximum eigenvalues, re-

spectively, of Σj , for j = 1, . . . ,m.

(C3) The smallest nonzero eigenvalues of Mj , for j = 1, . . . ,m, are uniformly

bounded away from zero.

Define

Ω∗
def
= m−1

m∑
j=1

E{P(B̂j)},

which can be Ω∗a1 if B̂j = B̂a1,j and Ω∗a2 if B̂j = B̂a2,j . Denote the top d0
eigenvectors of Ω∗ by B∗, which can be either B∗a1 or B∗a2. By the triangle

inequality, we have

dist(B̂,B) ≤ dist(B̂,B∗) + dist(B∗,B).

Note that dist(B̂,B∗) and dist(B∗,B) correspond to the variance and the bias of

B̂, respectively, when estimating B. In what follows, we quantify the accuracy

of B̂, which can be either B̂a1 or B̂a2, when estimating B using dist(B̂,B∗) and

dist(B∗,B).

We study the nonasymptotic error bound of B̂a1 first. Lemmas 1 and 2 give

the orders of dist(B̂a1,B
∗
a1) and dist(B∗a1,B), respectively.

Lemma 1. In addition to (C1)–(C3), we assume there exists C > 0 such that

n ≥ 2C2d0p. Then, ‖dist(B̂a1,B
∗
a1)‖ψ1

≤ C1(d0p/N)1/2, for C1 > 0.

Lemma 2. Assume Conditions (C1)–(C3) hold. Then, there exists C2 > 0 such

that dist(B∗a1,B) ≤ C2d
1/2
0 p/n.

Here, Σ̂
−1
j and M̂j are the respective biased estimates of Σ−1j and Mj . Con-

sequently, Ω̂a1,j and its eigenvectors are biased, with the magnitude determined

by the local sample size n. These biases are carried over to the central server,

and do not necessarily diminish, even when the total sample size N diverges to

infinity. If the sample size n at the local nodes is sufficiently large, such that

n ≥ mp(C2
2/C

2
1 ), the bias dist(B∗a1,B) is smaller than ‖dist(B̂a1,B

∗
a1)‖ψ1

, and
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thus negligible. In other words, the bias issue of this distributed algorithm is not

critical if the sample size n is sufficiently large. However, if m is very large, the

bias term dist(B∗a1,B) plays a dominant role. This also makes the distributed

algorithms for a sufficient dimension reduction quite different from those for a

principal component analysis. In particular, we can construct an unbiased esti-

mate for the covariance matrix in a principal component analysis. However, how

to construct an unbiased estimate for Ωj
def
= Σ−1j MjΣ

−1
j in a sufficient dimen-

sion reduction remians unknown. Consequently, the bias issue at each local node

carries over to the aggregation procedure in the central node.

Theorem 1 is an immediate result of the above two lemmas.

Theorem 1. Under the conditions of Lemma 1, we have

‖dist(B̂a1,B)‖ψ1
≤ C

{(
d0p

N

)1/2

+ d
1/2
0

(
p

n

)}
.

Here, the error bound of B̂a1 is minimized when m = O(n/p). In other words,

if we are able to distribute all N observations to m local nodes, each of size n, an

optimal m is of order (n/p). In many real-world applications (e.g., the American

Gut Project), the number of local nodes, m, is relatively small, and the sample

size at each local node, n, is sufficiently large. In such applications, the bias term,

dist(B∗a1,B), is usually negligible when compared to ‖dist(B̂a1,B
∗
a1)‖ψ1

.

Next, we study the nonasymptotic error bound of the distributed estimate

B̂a2. To simplify the subsequent discussion, we introduce the following notation.

We define Sj
def
= {(k, l) : the (k, l)th entry of Ωj is nonzero}. We denote by sj the

cardinality of Sj . Let Γj
def
= Σj⊗Σj . Then, ΓSc

j ,Sj ,j and ΓSj ,Sj ,j are sub-matrices

of Γj indexed by (Scj ,Sj) and (Sj ,Sj), respectively. For a matrix A = (akl)p×p,

we define

‖A‖∞
def
= max

1≤k≤p

p∑
l=1

|akl|, Dj
def
= ‖Γ−1Sj ,Sj ,j‖∞ and κj

def
= 1− ‖ΓSc

j ,Sj ,jΓ
−1
Sj ,Sj ,j‖∞.

Lemma 3. In addition to (C1)–(C3), we assume that κj > 0 and sj{log(p)/n}1/2

→ 0, for 1 ≤ j ≤ m. Suppose there exist C3 > 0 and c2 > 0 such that

n ≥ c2 max
1≤j≤m

(κ−1j Dj)
2d0p.
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Then, it follows that

‖dist(B̂a2,B
∗
a2)‖ψ1

≤ C3 max
1≤j≤m

(κ−1j Djs
1/2
j )

{
d0 log(p)

N

}1/2

.

Lemma 4. In addition to (C1)–(C3), we assume that κj > 0 and sj{log(p)/n}1/2

→ 0, for 1 ≤ j ≤ m. Then, there exists C4 > 0 such that

dist(B∗a2,B) ≤ C4 max
1≤j≤m

(κ−1j Djs
1/2
j )

{
log(p)

n

}1/2

.

Lemma 4 indicates that the dimension p has a very small effect on

dist(B∗a2,B), in the order of {log(p)}1/2. In contrast, the number of truly impor-

tant explanatory variables, sj , plays a much more important role than p in both

dist(B̂a2,B
∗
a2) and dist(B∗a2,B).

The above two lemmas lead to Theorem 2.

Theorem 2. Under the conditions of Lemmas 3 and 4, we have

‖dist(B̂a2,B)‖ψ1
≤ C

[
max

1≤j≤m
(κ−1j Djs

1/2
j )

{
d0 log(p)

N

}1/2

, (2.4)

+ max
1≤j≤m

(κ−1j Djs
1/2
j )

{
log(p)

n

}1/2
]
. (2.5)

In the distributed Algorithm 2, the bias term dist(B∗a2,B) is magnified to

the order of {log(p)/n}1/2, which usually dominates ‖dist(B̂a2,B
∗
a2)‖ψ1

, because

N is usually much larger than n and d0 is often a small number.

3. Numerical Examples

We illustrate the performance of the distributed estimates using synthetic

examples. Throughout, we fix p = 200, draw x = (X1, . . . , Xp)
T ∈ Rp from

a multivariate normal distribution with mean zero and covariance matrix Σ =

(ρ|k−l|)p×p, and generate the error term ε from a standard normal distribution.

Set β1 = (1, 1, 0, . . . , 0)T ∈ Rp and β2 = (0, 0, 1, 1, 0, . . . , 0)T ∈ Rp. Let m =

{25, 26, 27, 28} and N = {29p, 210p, 211p, 212p}. All N observations are scattered

uniformly across m nodes, each of size n.

We consider three examples.

Example 1. We set ρ = 0.5 in Σ = (ρ|k−l|)p×p. At each local node, we generate

Y randomly from the following models with equal probability 1/3. Thus, the
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observations at different local nodes are heterogeneous.

Y =
1 + 2βT

1x

0.5 + (1.5 + βT

2x)2
+ ε, (3.1)

Y = sin(βT

1x) + exp(βT

2x) + ε, (3.2)

Y = (βT

1x) exp(βT

2x) + ε, (3.3)

We implement Algorithm 1 for the sliced inverse regression and cumulative slicing

estimation. We fix the slice number to H = 10 in the sliced inverse regression.

Example 2. We set ρ = 0.8 in Σ = (ρ|k−l|)p×p. The response Y is generated in

the same way as in Example 1. We implement Algorithm 2 for both the sliced

inverse regression and the cumulative slicing estimation as well.

Note that B = (β1,β2) ∈ Rp×2 in the above examples.

Example 3. We set ρ = 0.5 in Σ = (ρ|k−l|)p×p. At each local node, we generate

Y from the following two models with equal probability 1/2:

Y = sin

{
(β1 + β2)

Tx

2

}
+ ε, (3.4)

Y = sin

{
(β1 + β2)

Tx

2
+

(k + 3)π

8

}
+ ε. (3.5)

We vary the value of k from {1, 2, 3, 4, 5} to allow for the heterogeneity. In this

example, we fix N = 29p and m = 24, and set B = (β1 + β2) ∈ Rp×1. We

implement Algorithms 1 and 2 for both the sliced inverse regression and the

cumulative slicing estimation.

We repeat each simulation 1,000 times, and report dist(B̂,B∗), dist(B∗,B),

and dist(B̂,B) to evaluate the performance of the distributed estimates. This

requires that we approximate P(B∗)
def
= B∗(B∗TB∗)−1B∗T. We propose approx-

imating B∗ from the top d0 eigenvectors of the average of P(B̂) obtained from

1,000 replications. The simulation results are summarized in Figures 1–2 for

Examples 1–2 and in Table 1 for Example 3.

In subplots (A) and (D) in Figure 1, dist(B̂,B∗) decreases as the total sample

size N increases, for each given m. This is in line with our anticipation that

larger sample sizes typically yield better estimates. This phenomenon echoes the

theoretical investigations in Lemma 1. The subplots (B) and (E) present the

bias term dist(B∗,B). As stated in Lemma 2, dist(B∗,B) decreases as the local

sample size n = N/m increases, for each given m. In these examples, dist(B̂,B∗)

dominates dist(B∗,B). This is because n is very large and m is relatively small
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Figure 1. The horizontal axis respresents the log(2)-transformed value of the total sample

size N , and the vertical axis respresents dist(B̂,B∗) in (A) and (D), dist(B∗,B) in (B)

and (E), and dist(B̂,B) in (C) and (F). All distributed estimates of B are obtained using
Algorithm 1. The distributed estimates of the sliced inverse regression are displayed in
subplots (A)–(C), and those of the cumulative slicing estimation are displayed in subplots
(D)–(F).

in our setting. It is thus not surprising that dist(B̂,B) and dist(B̂,B∗) exhibit

similar patterns.

Subplots (A) to (C) in Figure 2 present the results of the sliced inverse

regression using Algorithm 2. Its performance is not very stable, probably because

the slice number is fixed. This phenomenon echoes the empirical studies in Wang,

Yu and Zhu (2021). Subplots (D) to (F) in Figure 2 show the results of the

cumulative slicing estimation using Algorithm 2. For each given m, the distances

decrease as N increases. Furthermore, dist(B̂,B∗) does not dominate dist(B∗,B)

in this example, which is consistent with the theoretical results in Theorem 2.

In Example 3, we compare the following six estimators, of which four are

the distributed estimates for the sliced inverse regression and cumulative slicing

estimation obtained using either Algorithm 1 or 2, and two pooled estimates

are obtained by pooling all heterogeneous observations together. The value of

k controls the degree of heterogeneity. Our aim is to compare the performance
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Figure 2. The horizontal axis respresents the log(2)-transformed value of the total sample

size N , and the vertical axis respresents dist(B̂,B∗) in (A) and (D), dist(B∗,B) in (B)

and (E), and dist(B̂,B) in (C) and (F). All distributed estimates of B are obtained using
Algorithm 2. The distributed estimates of the sliced inverse regression are displayed in
subplots (A)–(C), and those of the cumulative slicing estimation are displayed in subplots
(D)–(F).

of distributed estimates with that of the pooled estimates. Table 1 summa-

rizes the simulation results for the averages of dist(B̂,B) after 1,000 repetitions.

Here, when the observations exhibit heterogeneity, the distributed estimates are

much better than the pooled estimates, particularly when k ≥ 2. This example

demonstrates the advantages of distributed estimates over pooled estimates in

the presence of heterogeneity.

4. American Gut Project Revisited

We revisit the American Gut Project described in Section 1, which is built

on open-source and open-access principles. For a detailed description, see http:

//humanfoodproject.com/americangut/. It is known that billions of bacteria

in the human gut participate in regulatiing, among others, the digestion function

and the immunity system. Human gut microbiota begin to evolve immediately

http://humanfoodproject.com/americangut/
http://humanfoodproject.com/americangut/
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Table 1. Simulation results for Example 3. We report the averages of dist(B̂,B) after
1,000 repetitions. The six estimates are the two distributed estimates for the sliced
inverse regression and cumulative slicing estimation obtained using Algorithm 1, denoted
by B̂sir,1 and B̂cume,1, respectively, the two distributed estimates for the sliced inverse
regression and cumulative slicing estimation obtained using Algorithm 2, denoted by
B̂sir,2 and B̂cume,2, respectively, and the two pooled estimates obtained by pooling all

observations together, denoted by B̂sir,pool and B̂cume,pool, respectively.

k = 1 k = 2 k = 3 k = 4 k = 5

B̂sir,1 0.5044 0.4279 0.3043 0.2606 0.2498

B̂cume,1 0.3656 0.3617 0.3005 0.2615 0.2498

B̂sir,2 0.4307 0.4103 0.3774 0.3498 0.3434

B̂cume,2 0.4301 0.4094 0.3765 0.3502 0.3434

B̂sir,pool 0.5196 0.8062 1.0247 1.0225 1.0343

B̂cume,pool 0.5290 0.8134 1.0232 1.0173 1.0330

when the embryo leaves the mother’s body, and experience various stages of evo-

lution at different ages. The immune system is weakest and most unstable during

infancy. Therefore, many modern studies have attempted to reveal the underly-

ing human gut microbiota structure at different ages (Yatsunenko et al. (2012);

Nagpal et al. (2018); Xu, Zhu and Qiu (2019)). Unfortunately, little information

has been revealed thus far on the age-related classes of human gut microbiota.

One possible reason for this is that the sample size in a single study is often

very limited. The American Gut Project, which aggregates many studies around

the world, provides an excellent opportunity to discover the dominant classes of

microbiota in growth. To control for the race effect on the gut metagenome con-

struction, we consider only N = 7470 Caucasian samples. There are 29 batches of

observations in total, two of which have very low expression levels, and are thus

removed from the subsequent analysis, leaving m = 27 batches of observations.

The number of subjects, n, ranges from 106 to 631 at different batches. The age

of subjects, Y , ranging from 0 to 26, and the abundance levels for 215 classes

predicted from 16S rRNA V4 gene fragments, x = (X1, . . . , X215)
T, are recorded.

In this project, the dimension is large relative to the sample sizes for all batches.

It is thus important to reduce the dimension of the explanatory variables prior

to a subsequent statistical analysis. The principal components of x given Y are

of independent interest, regardless of the prediction problem.

We first examine the condition number of the sample covariance matrices for

all 27 batches of observations, and observe that the minimum of these condition

numbers is 1.0666× 1016. This indicates that the sample covariance matrices are
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nearly singular. Thus, we advocate using Algorithm 2, proposed in Section 2, to

perform the distributed sufficient dimension reduction. The cumulative slicing

estimation is used here because it does not require specifying the number of slices.

We apply the maximum eigenvalue ratio criterion (Luo, Wang and Tsai (2009))

to determine the structural dimension d0 using two steps. In the first step, we

apply this criterion to 27 batches individually. This yields 27 estimates of the

structural dimensions, denoted as d̂j , for j = 1, . . . , 27. At each local node, we

pass the d̂j principal eigenvectors, denoted as B̂j ∈ Rp×d̂j , and the associated

eigenvalues, which correspond to the diagonal elements in the diagonal matrix

Λ̂j ∈ Rd̂j×d̂j , to the central node. In the second step, we apply the same criterion

to

T̂
def
= m−1

m∑
j=1

B̂jΛ̂jB̂
T

j (4.1)

at the central node, which finally yields an estimate of d0. Our analysis indicates

that d̂0 = 2, which shows how Y depends on (BTx), for B ∈ Rp×d̂0 . Figure

3 displays the dependence structures of Y on (B̂T

a2x) using the mean functions

E(Y | B̂T

a2x), where B̂a2 is the distributed estimate of B obtained from Algorithm

2. This exhibits an obvious heterogeneity issue, which is likely caused by the

batch effects, because the underlying structure of gut microbiota correlated with

age should, in general, be the same. A bootstrap procedure described in the

online Supplementary Material shows that in the presence of heterogeneity, the

distributed estimate is much more stable than the pooled estimate. This echoes

our observations in Example 5.

A close inspection of the entries of B̂a2 = (β̂1, β̂2) ∈ Rp×2 reveals that there

are only six rows with elements larger than 0.01, which are summarized in Table

2. Clearly, the three classes, Bacteroidia, Clostridia, and Gammaproteobacte-

ria, are dominant in that the magnitudes of their coefficients are significantly

larger than those of the other classes. This observation is in line with existing

knowledge. In particular, Gao et al. (2018) found that the number of microbial

interactions involving Bacteroidia increases over time during the first three years

of life. Nie et al. (2017) conducted a functional analysis of the gut metagenome

from yaks, and observed that Bacteroidia and Clostridia are closely related to

energy metabolism and the synthesis of amino acids, which are essential in the

early life of animals. An increase of Clostridia is also seen in the gut metagenome

of premature neonates during hospitalization (Ferraris et al. (2012)). In addi-

tion, Mosbæk et al. (2016) found that Clostridia is actively involved in acetate
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Figure 3. The dependence structures displayed using the mean functions Ê(Y | B̂T
a2x)

across all 27 batches. They appear to be different, indicating the existence of hetero-
geneity.

turnover, indicating that it facilitates acetate consumption. Gammaproteobac-

teria is also found to be the predominant class (Chang et al. (2011)), which is

related to fatty acid metabolism (Yao and Rock (2017)). These advances all in-

dicate that the three classes, Bacteroidia, Clostridia and Gammaproteobacteria,

play important roles during growth.

5. Conclusion

We propose two distributed algorithms for sufficient dimension reduction, one

of which requires that all sample covariance matrices are invertible, and the other

does not. These distributed algorithms are communication efficient. In addition,

their nonasymptotic error bounds are established in the present context. One
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Table 2. The six rows of B̂a2 = (β̂1, β̂2) with entries larger than 0.01.

X1 X2 X3 X4 X5 X6

β̂1 0.8281 -0.5535 -0.0647 -0.0466 -0.0369 -0.0069

β̂2 0.4174 0.6987 -0.5729 -0.0814 -0.0047 -0.0145

X1: Bacteroidia, X2: Clostridia, X3: Gammaproteobacteria, X4: Bacilli, X5: Actinobacteria and X6:
Erysipelotrichi

problem with these error bounds is that the biases of both distributed estimates

do not vanish, even when the total sample size increases to infinity. A possible

solution to this problem is to construct unbiased estimates for the kernel matrices

of the sufficient dimension reduction methods; see Zhang and Zhang (2014) and

Javanmard and Montanari (2014) for “de-biased” algorithms of regularized M-

estimators. In addition, Lin and Li (2019) proposed a bias-correction approach

to remove the biases of the least square estimates incurred with the `1- and `2-

penalties. How to adapt these de-biased algorithms to the context of sufficient

dimension reduction deserves further investigation. The second problem is how to

decide the structural dimension of the central subspace in a distributed fashion.

We adopt the maximum eigenvalue ratio criterion for simplicity. Implementing

this criterion requires specifying the upper bound of the structural dimensions,

which seems unrealistic in complicated situations because we are usually unaware

of the underlying structures. An additional problem is how to study the theo-

retical properties of distributed estimates for second-order sufficient dimension

reduction methods. Both the sliced inverse regression and the cumulative slicing

estimation are first-order methods in the context of sufficient dimension reduc-

tion. Second-order methods include the sliced average variance estimation and

the directional regression. The distributed algorithms can be readily adapted

to second-order methods. However, their theoretical properties are much more

difficult. These topics are left to future research.

Supplementary Material

The online Supplementary Material contains additional numerical studies

and technical details.
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